
ISSN 0016-8521, Geotectonics, 2022, Vol. 56, No. 6, pp. 791–809. © Pleiades Publishing, Inc., 2022.
ISSN 0016-8521, Geotectonics, 2022. © Pleiades Publishing, Inc., 2022.
Golpayegan Metamorphic Complex (Sanandaj–Sirjan Zone, Iran) 
as Evidence for Cadomian Back-Arc Magmatism: 

Structure, Geochemistry and Isotopic Data
S. Ahmadi-Bonakdara, S. M. Tabatabaei Manesha, *, A. Nadimia, A. Mirlohia,

J. F. Santosb, and O. V. Parfenovac

a University of Isfahan, Department of Geology, Hezarjrib, Isfahan, 81746-73441 Iran
b University of Aveiro, Department of Geosciences, Geobiotec, Aveiro, 3810-193 Portugal

c Lomonosov Moscow State University, Geology Faculty, Department of Petrology, Moscow, Russia
*e-mail: tabatabai@sci.ui.ac.ir

Received July 4, 2022; revised October 3, 2022; accepted November 7, 2022

Abstract—The Golpayegan metamorphic complex is located in the Sanandaj-Sirjan Zone, Iran. This com-
plex consists of various metamorphic rocks including schists, marbles, slates, gneisses, and amphibolites,
most of them have Neoproterozoic age. The presence of structures such as sigma fabrics, boudinage, folded
boudinage and interfering fold patterns indicates the occurrence of more than two deformation phases in the
Golpayegan metamorphic complex. The measurement of strain intensity in the folds indicated deep immer-
sion of structures and old Precambrian settings that had been influenced by orogenic events in the Neopro-
terozoic. These deformed rocks were exposed during extensional movements and, subsequently, sheared. The
results based on field works shown geochemical relations and initial εNd(600 Ma) values of amphibolites in
three sampling points located in Golpayegan region manifested that the protolith of the first (a') and second (b')
sampling points had mantle origin (ortho-amphibolite), whilst protolith of the third (c') sampling point had
sedimentary origin (para-amphibolite). Geochemically, the Golpayegan ortho-amphibolites showed sub-
alkaline basalt-basaltic andesite compositions of tholeiitic affinity. The negative anomalies of Nb and Ti rel-
ative to Pb, La, and Ce in the primitive mantle-normalized spider-diagram and εNd(600 Ma) values revealed
the subduction environment for ortho-amphibolites. The ortho-amphibolites exhibited the intermediate
chemistry between the normal mid-ocean ridge basalt and island-arc tholeiitic basalt. Enrichment in large
ion lithophile elements (LILE), light rare earth elements (LREE), and relative depletion in high field strength
elements (HFSE) suggest the back-arc basin setting for the Golpayegan ortho-amphibolites. The primitive
magma of the ortho-amphibolites was produced by 8–20% melting of spinel lherzolite. According to the
Neoproterozoic age of the Golpayegan ortho-amphibolites and their relationship with the Golpayegan
granitic gneiss (596‒578 Ma), it shows that they can be related to the Cadomian back-arc basin in the north
of Peri-Gondwana at the Neoproterozoic. The high values of 87Sr/86Sr (0.708450‒0.714986) interpreted as
result of seawater hydrothermal alteration.
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INTRODUCTION
The Zagros orogenic belt is portion of the Alpine–

Himalayan orogenic belt was formed during the con-
vergence between the Arabian and Eurasian plates and
includes the Urumieh‒Dokhtar magmatic arc, meta-
morphic and magmatic Sanandaj–Sirjan zone (SSZ),
and Zagros fold-thrust belt [1, 7] (Fig. 1a). The Gol-
payegan area is located in the SSZ and northern mar-
gin of the Zagros orogenic belt. In the area, Gol-
payegan metamorphic complex (GMC) was known as
a complex and portion of the Precambrian continental
basement [66]. Most of the Iranian basements area
comprised of the Cadomian igneous and metamor-
phic rocks [57].

Defining the age of Golpayegan amphibolites
using K‒Ar isotopic technique of 180‒150 Ma (Mid-
dle-Upper Jurassic) suggested cooling process of the
metamorphic rocks [9, 49]. The xenocrystic zircons
placed in the amphibolites of the Muteh‒Golpayegan
metamorphic complex may be derived from the
Archean basement which lacked exposure [59]. There
was suggested the age of 596‒578 Ma of the Gol-
payegan‒Muteh granite using U‒Pb method [23].

The Precambrian rocks and occurrence of multiple
deformations of different characteristics and intensi-
ties in the Sanandaj–Sirjan area, indicated deep and
old Precambrian setting in the area [39]. The Ediaca-
ran‒Cambrian arc-type magmatism (so-called Cado-
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mian arc) along the northern margin of Gondwanan
supercontinent generated from Late Neoproterozoic
to Early Paleozoic (600‒500 Ma) blocks within the
orogenic belt [21, 31, 56]. The Proto-Tethys Ocean
surrounded Gondwana from North Africa to Australia
in the Late Proterozoic to the Early Paleozoic [64].

The Proto-Tethys Ocean subducted beneath the
northern edge of the Peri-Gondwana during ~600 Ma
(Late Precambrian) giving rise to the Cadomian arc.
Following that subduction, rifting occurred at the
northern margin of the Gondwana supercontinent
which was drufting to the north. The rifting also led to
the thinning of the crust, triggering igneous activity
(between 590‒540 Ma) in the northern most parts of
Gondwana [5, 21]. Rifting of the most of the northern
margin of Gondwana during the Permian (250‒280 Ma)
and the expansion of the Neo-Tethys Ocean are
responsible for separation of Central Iran, SSZ, Alborz
(Iran), and Tauride–Anatolian (Turkey) blocks and
moving towards Eurasia, each block contained Cado-
mian rocks [69]. These terranes again re-amalgamated
to the Arabian Plate during the Oligo-Miocene times
[56]. The Cadomian magmatism is seen in various
regions of Iran, Turkey, Europe, and Tibet [5, 21, 31,
57, 71].

The goal of this study is to adduce the Cadomian arc
magmatism event in the Golpayegan metamorphic
complex (GMC) based on evidence of deformation in
metamorphic rocks (e.g., the examination of fold inter-
ference patterns) as well as to determine the petrologi-
cal and geochemical nature and geotectonic setting of
the Golpayegan amphibolites.

GEOLOGICAL SETTING
The Sinandaj‒Sirjan zone (SSZ), as one of the

main basement blocks of Iran, is located between the
northwestern margin of the Arabian Plate and the
micro-continent of Central-Eastern Iran [7, 10, 62, 65].
The Sinandaj–Sirjan zone extends ~1500 km from the
northwest (Sanandaj) to southeast (Sirjan) parallel to
the Zagros fold-thrust belt with width of 150–200 km
(Fig. 1a) [67]. Tectonically, the Sinandaj–Sirjan zone
is one of the most active zones of Iran due to specific
metamorphic processes and is distinct from other
parts of the geological divisions of Iran [18, 26].

The Sinandaj‒Sirjan zone consists of metamor-
phic, igneous, and sedimentary rocks of late Neopro-
terozoic to Neogene age in the hanging wall of the Main
Zagros Thrust [1, 36]. Also, it is a region of multistage
deformation and metamorphism phases that occurred
under greenschist and amphibolite facies [36].

The Sinandaj‒Sirjan zone (SSZ) is considered to
be the continental active margin of Neo-Tethys. The
GEOTECTONICS  Vol. 56  No. 6  2022
Neo-Tethys opened and closed along the southwest
margin of the SSZ, whilst the Paleo-Tethyan lied to the
north of Sinandaj‒Sirjan zone [7, 55]. There are signi-
ficant similarities between Sinandaj‒Sirjan zone and
tectonic structures of the Central Iran in respect of
magmatism, metamorphism, and orogenic events [9].

The Golpayegan metamorphic complex, as the
study area is located at the NE margin of the central
part of Sinandaj‒Sirjan zone (Fig. 1a).

There are two fault systems in the study area that
consists of:

— NW‒SE trending faults striking parallel to the
Zagros orogenic structures;

— NE‒SW trending faults perpendicular to the
first system that was formed during lateral extension
movement after the Middle Miocene.

At this step, some NE‒SW trending horsts and
grabens were developed, and at the horsts, the Pre-
cambrian basement rock units were exposed [41].

Rock assemblages in the study area can be divided
into the metamorphosed core and the non-metamor-
phosed cover. The core rocks are tectonically overlain
by non-metamorphosed strata containing the Permian,
Jurassic, Cretaceous, and Eocene sedimentary succes-
sions. The metamorphic core is mainly composed of
schists, marbles, slates, gneisses and amphibolites, most
of them have the Neoproterozoic age [37, 60] (Fig. 1b).
Precambrian rocks include sillimanite-kyanite-stau-
rolite-garnet-micaschist and quartz-tremolite-epi-
dote-marble in the lower part and staurolite-garnet-
micaschist, quartzite and gneiss, amphibolite,
micaschist and granite gneiss in the upper part [37]
(Fig. 1b).

ANALYTICAL METHODS
In this study, significant features of the folds, such as

the orientation of axial surface, axis of the folds and the
identification of different generations of folds, are
amongst the important issues that were pondered in the
structural studies of folds in Golpayegan region. Struc-
turally examine a fold is confined to the size of the
folded units. In Golpayegan region, several deforma-
tion phases can be seen in which the differing phases of
deformation range from ductile to ductile-brittle.

The amount of strain was statistically measured as
the amount of shortening in the folds (Table 1).

Mineral chemical analyses were conducted by the
wave-length-dispersive electron probe microanalyzer
(EPMA) JEOL JXA-8800 (WDS) (Jeol, Ltd., Tokyo,
Japan) at the Moscow State University (Moscow,
Russia). The studies were performed under an acceler-
ating voltage of 20 kV and the beam current of 12 nA.
Fig. 1. The major structural units of Iran (after [18], modified) the location of Golpayegan metamorphic complex in Sanan-
daj‒Sirjan zone. The sampling points a', b' and c' of amphibolite are shown in black squares (a); Geological map of rock units of
the Golpayegan metamorphic complex (after [37], modified) (b).
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Table 1. The results of strain measurements of 21 fold samples in the surveyed cherty marbles and banded gneisses in GMC

L1 (primary length); L2 (secondary length); e = (L2 – L1)/L1; S = L2/L1; M (moderate deformation); I (severe deformation) and HI
(very intense deformation).

Number L1 L2 e Shortening, % S Deformation intensity

1 20 4.3 –0.78 78 0.21 H-I
2 19 9 –0.52 52 0.47 I
3 15.3 2.8 –0.81 81 0.18 H-I
4 25 3.7 –0.85 85 0.14 H-I
5 10 1.8 –0.82 82 0.18 H-I
6 11 6.2 –0.43 43 0.56 M
7 37.8 11.1 –0.70 70 0.29 H-I
8 13 4.7 –0.63 63 0.36 I
9 6.5 1.6 –0.75 75 0.24 H-I

10 12 3.6 –0.70 70 0.30 I
11 8.9 3.7 –0.58 58 0.41 I
12 19.7 4.9 –0.75 75 0.24 H-I
13 12.4 2.8 –0.77 77 0.22 H-I
14 7 1.5 –0.78 78 0.21 H-I
15 7.7 2.4 –0.68 68 0.31 I
16 14.7 5.2 –0.64 64 0.35 I
17 16.6 5.9 –0.64 64 0.35 I
18 11.7 5.4 –0.53 53 0.46 I
19 6.1 3.4 –0.44 44 0.55 M
20 18.2 5.8 –0.68 68 0.31 I
21 44.5 14.6 –0.67 67 0.32 I
To implement the thermometry studies using cou-
pled minerals of hornblende-plagioclase, equilib-
rium between them and absence of reaction rim on
the petrographic studies appear to be a desideratum,
which has been taken into account in choosing
decent samples for EPMA analysis.

The structural formula and Fe2+ and Fe3+ contents
of amphiboles were calculated after Schumacher [54].
Tables 2 and 3 include the results of chemical studies
of amphibole and plagioclase.

The whole-rock, major and trace-element composi-
tions were determined using the Inductively Coupled
Plasma–Mass Spectrometry (ICP–MS) at the
Zarazma Mineral Studies Company, Ltd. (Tehran,
Iran). Geochemical analyses of the Golpayegan amphi-
bolites are shown in Table 4. In mineral analyses, min-
eral abbreviations are from Whitney and Evans [74].

Sr‒Nd isotopic compositions were measured at the
Laboratory of Isotope Geology of the University of
Aveiro (Portugal). The selected samples for Sr‒Nd
isotopic analysis were dissolved by HF/HNO3 solu-
tion in poly-tetra-fluor-ethene (PTFE) Parr acid
digestion bombs at a temperature of 200°C for three
days. After evaporation of the final solution, the sam-
ples were dissolved in HCl (6.2 N), and then in acid
digestion bombs. Also, they dried again.

The elements to analyze were purified by conven-
tional ion chromatography technique in two stages:
separation of Sr and REE in ion exchange columns
containing AG8 50 W Bio-Rad cation exchange resin
(i) followed by separation of Nd from other lantha-
nides in columns containing Ln Resin (Elchrom
Technologies) cation exchange resin (ii).

All reagents used in the preparation of the samples
were sub-boiling distilled, and the water was produced
by a Milli-Q Element (Millipore) apparatus. The Sr
was loaded on the single Ta filament with H3PO4,
whiles Nd was loaded on Ta outer side filament with
HCl in the triple filament arrangement. 87Sr/86Sr and
143Nd/144Nd isotopic ratios were defined using multi-
collector Thermal Ionization Mass Spectrometer
(TIMS) VG Sector-54. Data were acquired in the
dynamic model with peak measurements at 1–2 V for
88Sr and 0.5–1.0 V for 144Nd. The Sr‒Nd isotopic
ratios were corrected for mass fractionation relative to
88Sr/86Sr = 0.1194 and 146Nd/144Nd = 0.7219.

The SRM-987 standard gave an average value of
87Sr/86Sr = 0.710265(19) (N = 11; conf. lim = 95%)
and JNdi-1 standard gave an average value of
GEOTECTONICS  Vol. 56  No. 6  2022
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Table 2. Chemical analyses (in wt %) and calculated structural formula of amphiboles of the Golpayegan amphibolites
in the GMC

Components
c'-location b'-location c'-location

hb32-430 hb31-430 hb12-447 hb11-447 hb3-3-323 hb2-4-323

SiO2 47.83 45.16 44.81 47.15 44.57 44.51
Al2O3 8.34 11 12.34 9.98 12.27 11.55
MgO 13.98 12.51 11.45 13.09 9.75 9.63
FeO 13.05 14.05 16.59 18.63 17.12 17.26
TiO2 0.51 0.83 0.54 0.49 0.92 0.98
MnO 0.23 0.25 0.4 0.54 0.3 0.34
CaO 11.5 11.23 10.51 7.87 11.55 11.49
Na2O 1.06 1.41 1.41 1.14 1.26 1.35
K2O 0.16 0.28 0.2 0.2 0.53 0.49
Total 96.66 96.72 98.24 99.08 98.4 97.72
Oxygen# 23 23 23 23 23 23
Si 7.02 6.69 6.59 6.87 6.59 6.64
Al 1.44 1.92 2.14 1.71 2.14 2.03
Mg 3.06 2.76 2.51 2.84 2.15 2.14

Fe+2 1.48 1.61 1.81 2.08 2.04 1.64

Fe+3 0.11 0.11 0.19 0.15 0.06 0.49
Ti 0.05 0.09 0.06 0.05 0.10 0.11
Mn 0.03 0.03 0.05 0.06 0.04 0.04
Ca 1.81 1.78 1.65 1.23 1.83 1.84
Na 0.30 0.40 0.40 0.32 0.36 0.39
K 0.030 0.05 0.04 0.04 0.10 0.09

AlIV 0.97 1.31 1.40 1.13 1.40 1.35

AlVI 0.47 0.61 0.73 0.58 0.74 0.68

Mg/(Mg + Fe+2) 0.65 0.61 0.55 0.55 0.50 0.49

Fe+2/(Mg + Fe+2) 0.34 0.38 0.45 0.44 0.49 0.50
B (Ca + B∑M2+)/∑B ≥ 0.75 1 1 1 1 1.05 1.03
BCa/B (Ca + Na) ≥ 0.75 1 1 1 1 0.98 0.97
c(Al + Fe+3 + 2Ti) 0.69 0.91 1.0458 0.84 1.01 1.39
A(Na + K + 2Ca) 0.36 0.47 0.4821 0.38 0.43 0.43
Name Magnesio-

hornblende
Magnesio-
hornblende

Magnesio-
hornblende

Magnesio-
hornblende

Magnesio-
hornblende

Magnesio-
hornblende
143Nd/144Nd = 0.5120958(88) (N = 12; conf. lim = 95%,
2σ), during this study. The Rb‒Sr and Sm‒Nd iso-
tope compositions are listed in Table 5.

RESULTS

Deformations of the Golpayegan Metamorphic Complex

The Golpayegan metamorphic complex has fold
and boudin structures, which suggests the occur-
rence of several stages of deformation. Folds are a
fundamental structure of contractional orogens, and
GEOTECTONICS  Vol. 56  No. 6  2022
yet deciphering their kinematic history continues to
be controversial [20].

The folds’ amplitude range from a few centimeters
to a few meters in size (Fig. 2). Different phases of
deformation have created differing patterns of folding
in the study area (Fig. 2a). Superposed folds or inter-
fering fold patterns are witnessed in Golpayegan
region (Fig. 2b). In orogenic areas such as the study
area at the Sanandaj‒Sirjan Zone, interfering fold
patterns are formed [51]. Superposed folds or fold
interference patterns occur when one generation of
folds is overprinted by a later generation [16, 50].
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Fig. 2. Position of two axial planes, which implies two phases of deformation. The older fold (recumbent) of axial plane is marked
in yellow and the newer fold is marked in green (a); patterns of interference (superimposed) folds, sigma fabric, boudinage, and
folded boudinage. The axial planes are marked and numbered, in which identical numbers are presumably related to the certain
deformation phase. Signatures of right- and left-lateral shear movements can be seen in this figure (b).
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In Golpayegan region, the pattern of axes in folds
is scattered in different directions, which indicates
several phases of deformation (Fig. 2). Structural vari-
ety of the folds is one of the most important factors in
Table 3. Chemical analyses (in wt %) and calculated struct
in the GMC

Components
c'-location

pl38-430 pl37-430 pl24

SiO2 57.85 56.77 57.
Al2O3 26.48 26.89 26.
FeO 0.2 0 0.
CaO 8.09 8.68 8.
Na2O 7.12 6.66 7.
K2O 0 0.04 0.
Total 99.74 99.02 100.

Oxygen# 8 8 8
Si 2.59 2.57 2.
Al 1.40 1.43 1.
Fe 0.01 0 0.
Ca 0.39 0.42 0.
Na 0.62 0.58 0.
K 0 0.01 0.
Ab 61.43 58 60.
An 38.57 41.8 39.
Or 0 0.2 0.
the complexity of this region. The change of the folds’
geometric elements at short distances indicates the
influence of multiple stages of evolution on these
rocks, connoting long and eclectic history.
GEOTECTONICS  Vol. 56  No. 6  2022

ural formula of plagioclase of the Golpayegan amphibolites

b'-location a'-location

-447 pl23-447 Pl2-323 Pl3-323

89 60.34 59.86 57.9
9 25.17 26.95 28.19
13 0.08 0.14 0.13
35 6.51 6.72 8.24
03 8.03 7.72 6.75
07 0.05 0.09 0.07
36 100.19 101.47 101.28

8 8 8
58 2.68 2.63 2.55
41 1.32 1.39 1.47
01 0.01 0.01 0.01
31 0.31 0.32 0.39
61 0.69 0.65 0.57
01 0.01 0.01 0.01
15 68.87 67.2 59.5
5 30.9 32.4 40.12
35 0.23 0.4 0.38
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Table 4. Geochemical compositions of the Golpayegan amphibolites in the Golpaegan metamorphic complex

Major elements (wt %); trace elements (ppm).

Components
a'-location b'-location c'-location

S323 SFG1 SAD1 S447 S2FG2 SFG14 S430 S2FG1

SiO2 50.79 51.81 49.59 51.15 51.57 53.21 52.3 52.68

Al2O3 13.71 13.5 14.67 14.91 14.47 13.85 15.98 13.9

Fe2O3 11.24 11.34 10.23 11.93 9.76 11.04 9.31 8.75

MgO 6.98 6.99 7.34 9.4 7.27 7.31 8.7 9.56
CaO 9.52 8.93 10.87 5.4 9.38 8.4 9.1 9.62
Na2O 3.5 3.5 3.08 3.78 3.14 2.92 2.1 2.12

K2O 0.4 0.50 0.42 0.15 0.91 0.33 0.55 0.26

MnO 0.21 0.18 0.14 0.22 0.17 0.25 0.12 0.13
TiO2 1.89 2.19 2.28 2.03 1.14 1.63 0.44 0.82

P2O5 0.20 0.20 0.18 0.32 0.16 0.17 0.04 0.02

Cr2O3 0.02 0.02 0.03 0.01 0.01 0.03 0.02 0.07

LOI 1.2 1.1 1.08 0.93 1.05 0.93 1.3 1.45
Ba 59 247 1.1 126 419 65 87 39
Ce 22 21 22 45 22 20 15 6
Cs 0.5 0.5 0.5 0.5 0.9 0.5 1 0.5
Dy 9.3 7.19 8.18 10.26 4.29 5.51 2.13 2.26
Er 5.93 4.89 5.13 7.06 2.69 3.57 1.27 1.57
Eu 2.53 1.99 2.08 2.65 1.3 1.56 0.82 0.95
Gd 7.4 5.83 6.51 9.4 3.13 4.6 0.88 0.95
La 10 10 10 21 9 10 7 3
Lu 0.88 0.69 0.72 0.93 0.37 0.51 0.16 0.23
Nb 2.9 3.4 6.1 1 3.8 5.2 21.4 1
Nd 16.5 13.1 15.2 29.3 10.6 11.8 3.3 0.5
Ni 64 56 63 24 25 57 56 98
P 875 890 702 1404 717 746 192 96

Pb 18 36 18 20 20 22 15 11
Pr 3.03 2.28 2.82 6.02 2.03 2.25 0.57 0.06
Rb 17 19 7 12 43 16 26 15
Sm 6.3 4.89 4.64 8.55 3.41 4.05 1.29 1.13
Sr 125.1 151 188 123.6 239 113 143.8 183.2
Tb 1.3 1.08 1.14 1.54 0.66 0.9 0.37 0.39
Th 0.1 0.1 0.1 3.05 0.1 0.45 0.25 0.1
Ti 11325 13137 10835 12147 6830 9805 2643 4916

Tm 0.9 0.68 0.71 0.96 0.41 0.53 0.21 0.27
U 0.3 0.2 0.2 0.6 0.1 0.55 0.3 0.1
V 247 282 255 267 251 252 217 208
Y 41.2 38.7 43.4 52 21.1 28.5 11.3 12.7

Yb 4.7 4.5 4.2 5.7 2.8 3.5 1.7 1.9
Zr 125 135 133 139 124 122 41 52
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Table 5. Rb‒Sr and Sm‒Nd isotope from the amphibolite in the GMC

Standard Values
SRM 987: 87Sr/86Sr = 0.710265 ± 19 (conf. lim95%, N = 11)

Nd Jndi: 143Nd/144Nd = 0.5120958 ± 88 (conf. lim95%, N = 12)

System Rb/Sr

Ref Lab Ref sample Litology Analysis Conc ppm Sr ppm Rb 87Rb/86Sr error(2s) 87Sr/86Sr error(2s)

15.28 323 Amphibolite ICPMS 148 6 0.117 0.006 0.711938 0.000028
15.29 430 Amphibolite ICPMS 172 4 0.067 0.004 0.708450 0.000028
15.30 447 Amphibolite ICPMS 144 2 0.040 0.002 0.714986 0.000026

System Sm/Nd

Ref Lab Ref sample Litology Analysis Conc ppm Nd ppm Sm 147Sm/144Nd error(2s) 143Nd/144Nd error(2s)

15.28 323 Amphibolite ICPMS 17.1 5.46 0.193 0.010 0.512697 0.000013
15.29 430 Amphibolite ICPMS 18.4 4.22 0.139 0.007 0.512352 0.000013
15.30 447 Amphibolite ICPMS 30.8 8.03 0.158 0.008 0.512652 0.000016
The strain rate (shortening) in the folds was calcu-
lated through the following equation:

(1)
The elongation rate was calculated through the fol-

lowing equation:

(2)
The L1 and L2 are the primary and secondary

lengths. The minimum value of shortening was 43% and
the maximum was 85% (Table 1). The samples divided
into three parts according to the severity of the deforma-
tion: moderate, severe and very severe (Table 1).

In the study area, the signatures of shear movement
are in the form of sigma and those of extensional-
compressional are folded boudinage (Fig. 2b). Shear
movement in Golpayegan region displays dextral and
sinistral directions (Fig. 2b).

Petrography and Mineral Chemistry
in the Amphibolite Rocks

The studied amphibolites in Golpayegan are
exposed well at three sampling points in the study
region (Fig. 3).

Amphibolites dark-green to black color (Fig. 3a,
sample a'; Fig. 3b, sample b') are associated with
granitic gneisses (Neoproterozoic) [37].

Amphibolites green to grey color (Fig. 3c, sample c')
are associated with granite (Cretaceous), [37] (Fig. 1b).

The Golpayegan amphibolites are formed mainly by
oxides and minerals of the next grained sizes (Fig. 4):

— amphibole, plagioclase, minor quartz and
sphene (coarse);

— Ti‒Fe oxides that display nematoblastic texture
(medium);

— amphibole crystals (fine size).

= −2 1 1( )e [50].L L L

= 2 1 [50].S L L
The abundance of plagioclase in amphibolites
green to grey color is less than amphibolites dark-
green to black color (Figs. 3, 5b, 5c). Orthopyroxene
corona is around the amphibole crystals of amphibo-
lites dark-green to black color (Figs. 3a, 3b, 5c).

Based on B (Ca + B∑M2+)/∑B ≥ 0.75 and BCa/B
(Ca + Na) ≥ 0.75 ratios [25], amphiboles in the Gol-
payegan amphibolites are of calcic variety (Table 2).
Additionally, the amphiboles are of magnesio-horn-
blende variety (Fig. 5a, Table 2). Electron microprobe
analyses of minerals show that plagioclases are andes-
ine (An 30 to 42%) in chemical composition (Fig. 5b,
Table 3).

Whole-Rock Chemistry in the Amphibolite Rocks

For discerning ortho- from para-amphibolite and
igneous- from sedimentary-protolith we used geo-
chemical methods besides field and textural properties
to determine the provenance of amphibolites.

The Golpayegan amphibolites are divided into two
types based on the protolith (Fig. 6):

— ortho-amphibolite (igneous) (Fig. 3a, sample a',
3b, sample b');

— para-amphibolite (sedimentary) (Fig. 3c, sam-
ple c').

The Golpayegan ortho-amphibolites fall within
the basalt to basaltic andesite field in total alkalis (TA)
versus silica diagram by Middlemost [33] and SiO2
versus Zr/TiO2 diagram (Fig. 7b) by Winchester and
Floyd [73] (Fig. 7a).

Using the Nb/Y–SiO2 [72] and Y versus Zr dia-
grams [48] show that all analyzed samples plot within
the sub-alkaline and tholeiite to calc-alkaline transi-
tion series field (Figs. 7c, 7d).
GEOTECTONICS  Vol. 56  No. 6  2022
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Fig. 3. Photos from the outcrop of amphibolite with granite, schist, and marble in GMC. Dark-green to black amphibolite (sam-
pling point a') (a); green to grey amphibolite (sampling point b') (b); grey amphibolite (sampling point c') (c).
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Whole-rock geochemical analyses of samples from
ortho-amphibolites of the Golpayegan area show that
the SiO2 content of the analyzed samples is 49.59 to
53.40 (wt %) (Table 4). It shows that they were origi-
nally basalt-basaltic andesite in chemical composi-
tion. In the studied rocks:

— TiO2 amount (1.14‒2.28 wt %);
— Al2O3 amount (13.5‒14.911 wt %);
— Fe2O3 high values (9.76‒11.933 wt %; average:

10/92 wt %);
— K2O low contents (0.33‒0.912 wt %) in the stud-

ied rocks conclude their tholeiitic nature.
LOI values of the studied ortho-amphibolites

(0.93‒1.2 wt %) can be attributed to the presence of
hydrous minerals (e.g., amphibole).

Chondrite-normalized REE patterns of the Gol-
payegan samples show distinct differences in the pat-
tern and amount of trace elements in sampling point c'
(para-amphibolite) compared to sampling points b'
and a' (ortho- amphibolite) (Figs. 3, 8a). The normal-
ized REE patterns by chondrite of the Golpayegan
ortho-amphibolites indicate parallel patterns and
slight enrichment in light rare earth elements (LREE)
to the heavy rare earth elements (HREE). LREE dis-
play more variations than HREE (Fig. 8b). HREE and
MREE in the samples show the fairly horizontal trend.

In spider-diagrams of the elements normalized by
primitive mantle and normalized by N-MORB, the
ortho-amphibolite samples show positive anomalies
of LILE (e.g., Rb, Cs, Pb, K and U) and negative
anomalies of HFSE (e.g., Ti and Nb) (Figs. 8c, 8d).
In the Golpayegan ortho-amphibolites, HFS elements
GEOTECTONICS  Vol. 56  No. 6  2022
pattern approximates the normal mid-ocean ridge
basalts (N-MORB). Also, the pattern of LIL elements
approximates island-arc tholeiitic basalts (IATB).

DISCUSSION
The Golpayegan Amphibolites and Protolite

The Golpayegan amphibolites were studied at
three sampling points (Figs. 1b; 3):

— a' (around Aderba Village);
— b' (between Aderba Village and Ochestan Farm);
— c' (around Ochestan Farm).
Based on B (Ca + B∑M2+)/∑B ≥ 0.75 and BCa/B

(Ca+Na) ≥ 0.75 ratios [25], amphiboles of the Gol-
payegan are classified as calcic-amphiboles (Table 2).

The Golpayegan amphibolites are similar as per
the mineral composition of amphibole and plagioclase
but based geochemically, they are different in protolith
as per major and trace elements (Figs. 5a, 5b, 6, 8a).
They are divided into para-amphibolite located at c'
sampling point and ortho-amphibolite at a' and b'
sampling points (Figs. 1a, 3).

Sr‒Nd Isotopes for Amphibolite Rocks
Thiele et al. [66] suggested the Precambrian age for

the metamorphic rocks of Golpayegan region. Based on
rock units from Moosavi et al. [37], the studied amphi-
bolites have the Neoproterozoic age (Fig. 1b). There-
fore, initial Sr and Nd isotopic ratios of all samples
were calculated based on the age of 600 Ma. For the
Golpayegan amphibolites, the values of the initial
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Fig. 4. Photomicrographs of the amphibolite in the GMC. The Golpayegan amphibolites are mostly formed by amphibole and
plagioclase and minor ilmenite and sphene (ppl) (a); The orthopyroxene corona is around the amphibole crystals of amphib-
olite (ppl) from sampling points a' and b', indicated: amphibole (Amp), plagioclase (Pl), orthopyroxene (Opx), ilmenite (Ilm),
sphene (Spn) (b); In amphibolites from sampling point c', the amount of plagioclase is less than that of amphibole (ppl) (c).
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Fig. 5. C(Al + Fe+3 + 2Ti) versus A(Na + K + 2Ca) [25] showing the amphibole chemistry (a); Or–Ab–An diagram showing the
composition of plagioclases [11], sampling points: a' (grey square), b' (black square), c' (black triangle) (b).
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Fig. 6. Protolith discrimination diagrams for the amphibolites from sampling points a' (grey square) and b' (grey square),
K2O/Al2O3 versus Na2O/Al2O3 [17] (a); TiO2 versus Ni [28] (b); TiO2 versus MnO [34], sampling point c' (black triangle) (c).
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87Sr/86Sr isotope ratio are between 0.708450–0.714986,
and the initial isotopic ratio of 143Nd /144Nd is between
0.512352‒0.512697 (Table 5).

The calculated εNd(600 Ma) values for amphibo-
lite rocks (Fig. 3):

+1.44 (sample a');
+3.24 (sample b');
–1.15 (sample c').
Epsilon (ε) values were calculated using present-

day ratio of:
— 87Sr/86Sr = 0.7045 and 87Rb/86Rb = 0.0827 for

the Bulk Silicate Earth (BSE) [12];
— 143Nd/144Nd = 0.512638 and 147Sm/144Nd =

0.1967 for the Chondritic Uniform Reservoir
(CHUR) [27].

The 87Sr/86Sr initial isotopic ratio versus
εNd(600 Ma) diagram of the Golpayegan amphibolite
samples display variable Sr‒Nd isotopic compositions
which have strong deviation from the mantle array
(Fig. 9). Also, this diagram shows that the protolith of
amphibolites in the c' sampling point originate from
the crust, and the protolith of amphibolites in a' and b'
sampling points originate from the mantle (Figs. 3, 9).
The high ratio of initial 87Sr/86Sr in ortho-amphibo-
lites can be due to the isotopic exchange resulted from
GEOTECTONICS  Vol. 56  No. 6  2022
hydrothermal alteration of seawater [13, 44] (Table 5;
Fig. 9).

Petrogenesis and Tectonic Setting of Ortho-Amphibolites
The Golpayegan ortho-amphibolites (a' and b'

sampling points) have derived from the mantle origin
as per the petrographic and geochemical similarities
and have been affected by identical post-magmatism
events (Figs. 3a, 3b).

Chondrite-normalized REE patterns show enrich-
ment in LREE and an almost f lat HREE pattern
(Figs. 8a, 8b). In the chondrite-normalized REE dia-
gram of the Golpayegan ortho- amphibolites, the posi-
tive Eu anomaly has been a reason for the insignificance
of plagioclase fractionation and the flat pattern in
HREE and LREE enrichment indicates the absence of
garnet in the mantle source because HREE is compat-
ible in garnet structure and has high garnet/melt par-
tition coefficients [52] (Fig. 8b).

The REE ratios (chondrite normalized) of the Gol-
payegan ortho-amphibolites are (LaN/YbN) = 1.42–
2.90, (SmN/YbN) = 1.17‒2.62 and (GdN/YbN) =
0.86‒1.31, which the low values of these ratios indi-
cate low separation of HREE and partial melting of
the mantle originated from the spinel stability field
[30, 32]. The ortho-amphibolites in the study area are
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Fig. 7. Classification diagrams (a)‒(b) and discrimination diagram (c)‒(d) for the Golpayegan ortho-amphibolites. SiO2 versus
Na2O + K2O [33] (a); SiO2 versus Zr/TiO2 [73] (b); Nb/Y versus SiO2 [72] (c); Y versus Zr [48] (d). Sampling points: a' (grey
square), b' (black square).
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of MORB type of generated magma and continental
plate margin basalts (Fig. 10). In the La versus La/Sm
diagram, the Golpayegan ortho-amphibolite samples
were formed through partial melting of the mantle in
the spinel stability field, indicating 8–20% of the par-
tial melting of the E-MORB source [4] (Fig. 11a).

The primitive mantle-normalized and N-MORB-
normalized spider diagrams show positive anomalies for
Rb, Cs, Pb, K, and U and negative anomalies for Nb,
Th, and Ti (Figs. 8c, 8d). The depletion in Nb and
enrichment in the LILE (such as Cs and U), LREE,
and Pb may be due to magmas originating from an
enriched mantle (by the fluid) or to crustal contamina-
tion of magma’s originating from the mantle [29, 76].

In the 147Sm/144Nd versus εNd (600 Ma) diagram
[68] (Fig. 11b), the Golpayegan ortho-amphibolites
(a' and b' sampling points) fall within the E-MORB
field (Figs. 3a, 3b). The back-arc basin for tectonic
setting is suggested of the ortho-amphibolite samples
(Fig. 12). In the Golpayegan ortho-amphibolites, the
HFS elements’ pattern is similar to N-MORB (nega-
tive anomalies of HFSE) and the LIL elements’ pat-
tern is similar to IATB (positive anomalies of LILE),
which this is of magma properties in the back-arc
basin [53] (Figs. 8c, 8d). In the back-arc basin, basalts
(ortho-amphibolites) are essentially from 6 to 30 times
further enriched in chondrites for rare earth elements
with usually positive Eu anomaly such as rock samples
from a' and b' sampling points [72] (Figs. 3a, 3b, 8b).
Extensional processes in the back-arc basins are simi-
lar to those of MORB and are effective by factors such
as mantle, oceanic crustal subduction, melting, assim-
ilation, and crystallization [47, 53].

Deformation and Exhumation

In Golpayegan region, shear, extensional-com-
pressional, and compressional movements have gen-
erated plastic and brittle deformations on the rocks. The
deformations are in the format structures like sigma,
boudinage, folded boudinage, and fold (Fig. 2). Over
two folding phases have occurred in the GMC (Table 1;
Fig. 2). High structural diversity in these folds is one of
the most important factors in the complexity of Gol-
payegan region. The change of folds geometric ele-
ments at short distances indicates the influence of
multiple stages of evolution on these folds, connoting
long and eclectic history.
GEOTECTONICS  Vol. 56  No. 6  2022
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Fig. 8. Chondrite-normalized REE diagram of the Golpayegan amphibolites (a); Chondrite-normalized REE diagram for the
Golpayegan ortho-amphibolites from sampling points a' (grey square), b' (black square), REE contents of chondrite (after [42]) (b);
Primitive mantle-normalized multi-element variation diagram for the Golpayegan ortho-amphibolites, compositions for the
average primitive mantle data (after [63]) (c); N-MORB-normalized spidergram for the Golpayegan ortho-amphibolites, nor-
malized values for N-MORB (after [63]), the average composition of IATB and N-MORB (after [43]) (d).
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Fig. 10. Geotectonic plots of the Golpayegan ortho- amphibolites. (a) Zr versus Ti [45]. IAT (A), MORB-CAB-IAT (B), CAB (C),
MORB (D); (b) Sm*50-Ti/50-V diagram [70]; (c) Ti/1000 versus V [61]; (d) Ti/Y versus Zr/Y [46]. Island-arc tholeits (IAT), island
arc basalts (IAB), back-arc basin basalts (BABB), continental flood basalts (CFB), mid-ocean ridge basalts (MORB), oceanic
island basalts (OIB), calc-alkaline basalts (CAB). Indicated sampling points: a' (grey square), b' (black square).
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Measuring (shortening) strain shows that the main
factor in the formation of interfering fold patterns in
Golpayegan region may is strain variations due to var-
ied orogeny phases (Table 1).

The severity of the plastic deformation in the folds
indicates that these rocks have deformed in the deep
portions of the Earth crust. Then, they had exposed at
the surface or uplifted until near the surface during
some tensional movements and exhumation [41].
These rocks are old (Neoproterozoic age [37]) and
were deformed during the Neoproterozoic orogenic
phases, then they were affected by subsequent phases,
either. Due to the recent strike-slip movements, this
tectonic unit had sheared horizontally similar to a card
box [40].

Back-Arc Basin in Sanandaj‒Sirjan Zone

The samples are from Golpayegan metamorphic
complex at Sanandaj‒Sirjan zone as a part of Zagros
orogeny, which itself is a part of the Alpine–Hima-
layan orogenic belt [1, 7]. It is related to the tectonic
phases associated with the opening and closure of the
Neo-Tethyan Ocean during the Mesozoic [14, 24]. In
Sanandaj‒Sirjan, the back-arc basin was formed in
two different periods. The first back-arc basin was
formed in the Peri-Gondwana at 570 Ma. This is
related to the Cadomian magmatism in various
regions of Iran such as SSZ [57]. The entire Cadomian
crust including Iran has separated from Gondwana
during Permian–Triassic time and rested adjacent to
the southern side of Eurasia [57]. The second back-arc
basin existed in the Late Triassic‒Early Jurassic in the
area located between Central Iran and Sanandaj‒Sir-
jan zone [2, 18, 19, 58].

Based on the age of the Golpayegan ortho-amphi-
bolites (Late Neoproterozoic [37]), these rocks corre-
spond with the Cadomian back-arc in the Peri-Gond-
wana’s north. The Cadomian igneous and metamor-
phic rocks comprise most of the basement of Iran [57].
According to Linnemann et al. [31], the evolution of
peri-Gondwana during Ediacaran‒Cadomian is based
on the arc-back- arc basin model. Golpayegan ortho-
amphibolites (i.e., basalt-andesitic basalt of tholeiitic
composition pertaining to the Cadomian back-arc)
were associated with granitic gneiss of protolith age
(557 ± 12 Ma) pertaining to the differentiated granites
of I-type and of sub-alkaline composition pertaining
GEOTECTONICS  Vol. 56  No. 6  2022
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Fig. 11. Plots of La/Sm versus La [4]. DMM (depleted MORB mantle), PM (primitive mantle), WAM (Western Anatolian
mantle) (a); Isotopic compositions are plotted in εNd(600 Ma) versus 147Sm/144Nd diagram [68] (b). Indicated sampling
points: a' (grey square), b' (black square), c' (black triangle).
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to Cadomian arc [38], which can be an evidence of the
back-arc basin model (Figs. 1b, 4a, 4b).

Cadomian terranes in Iran and Turkey are fragments
rifted away from the Arabian–Nubian shield in which
the Neoproterozoic crust dominates [21, 57]. Gürsu
and Göncüoglu [22] postulated three-stage model for
the Cadomian Arc in Turkey, in which arc magmas
were injected into the Gondwana basement above the
subduction to the south at the northern margin of
Gondwana (590‒570 Ma). Subsequently, the I-type
granites was formed at the early stages of extension and
rifting in the continental crust of Gondwana (550–
540 Ma). The lithosphere thinned and the back-arc
extension took place at the peri-cratonic margin above
the southward subduction system during the early
Cambrian, generating diabasic dykes and spilitic lavas
of back-arc chemical properties (540‒530 Ma).

In this study, as peridentical tectonic events of
Cadmium magmatism in Iran and Turkey as well as
GEOTECTONICS  Vol. 56  No. 6  2022
field observations and geochemical results obtained
in the Golpayegan metamorphic complex (the rela-
tionship between ortho-amphibolites in Golpayegan
and granitic gneiss in Golpayegan), the three-stage
model of Gürsu and Göncüoglu [22] to interpret the
formation of these rocks is more acceptable.

In most continental back-arc regions, extensional
tectonics had led to the formation of shallow marine
basins on the earth’s surface where igneous and sedi-
mentary rocks [8]. Therefore, it can be inferred that
association and concurrence of ortho-amphibolites
with metamorphosed sedimentary rocks such as mar-
ble, quartzite, and schist may confirm their formation
in a shallow depositional basin (Fig. 1b).

CONCLUSIONS

(1) In Golpayegan region, the signatures of over two
deformation phases in folds of different deformation
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Fig. 12. Determination of back-arc tectonic setting of the Golpayegan ortho-amphibolites. Y versus La/Nb [15]; (b) Zr versus
V/Ti [75]; (c) Zr versus Ti/Zr [6] (a); Island-arc tholeits (IAT), fore-arc platform basalts (FAPB), back-arc basin basalts (BABB),
oceanic f lood basalts (OFB), normal mid-ocean ridge basalts (N-MORB), enriched mid-ocean ridge basalts (E-MORB), tran-
sitional mid-ocean ridge basalts (T-MORB). Indicated sampling points: a' (grey square), b' (black square), c' (black triangle).
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intensities is evident. Formation of structures such as
sigma, boudinage, folded boudinage and fold fabrics
due to shear, extensional, extensional-compressional
and compressional movements in metamorphic rocks
characterize a deep and old setting, which had uplifted
through extensional movements and then sheared.

(2) Mineralogically, the Golpayegan amphibolites
are similar, while geochemically, they are different in
protolith (as per major and trace elements) and are
divided into ortho-amphibolite (a' and b' sampling
points) and para-amphibolite (c' sampling point). The
concentration of εNd(600 Ma) for amphibolitic rocks
in a', b' and c' sampling points are +1.44, +3.24, and
‒1.15, respectively. The Golpayegan ortho-amphibo-
lites are originally tholeiitic basalt-basaltic andesite.

(3) The chemical composition of the ortho-amphi-
bolites is experiencing a transitional between N-MORB
(depletion of immobile elements of subduction, e.g.,
HFSE) and IATB (enrichment of mobile elements of
subduction, e.g., LILE) as per the total chemistry of
rock, and these rocks belong to the plate-margin set-
ting and basalts of the back-arc basin.

(4) The parental magmas of the Golpayegan ortho-
amphibolites have formed by the relatively high degree
of partial melting of the spinel lherzolite source. Fur-
thermore, these rocks pertained to the Cadomian
back-arc basin in the Peri-Gondwana’s north in Neo-
proterozoic and their generation is similar to back-arc
in the Taurides in Turkey.

(5) The occurrence of several ductile and ductile-
brittle deformation phases along with the characteris-
tics of deep and old environments as well as the pres-
ence of orthoamphibolites with the characteristics of
the back arc basin in relation to granite gneiss indicate
the default of the Cadomian magmatism in the Gol-
payegan metamorphic complex.
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