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Abstract 

The consequences of the use of absolute weights restrictions (i.e. restricting the 

multipliers) on the efficiency score and targets of a DEA model have been explored 

elsewhere, the same is not true for the use of restrictions on the virtuals (i.e. the product 

of the input/ output factor by its multiplier).  In this paper, a reflection on the uses of 

virtual weights restrictions is presented.  The reasons for using virtual weights 

restrictions instead of absolute weights restrictions, in particular cases, are explained.  

Following a critique of Wong and Beasley’s (1990) first proposed method for 

constraining the virtuals in DEA, a new classification scheme for virtual weights 

restrictions is presented, which brings the concept of assurance regions into virtual 

weights restrictions.  It is shown that the use of simple virtual restrictions and virtual 

assurance regions are preferable to the use of the more generally advocated WB’s 

proportional virtual weights restrictions.  In recognition of levels of decision making at 

the unit, and external to the unit, the use of the terms unit of assessment (UOA) and 

controller is proposed.  It is concluded that the use of virtual assurance regions applying 

to the target UOA can be a natural representation of preference structures and translate 

established patterns between the input-output divide.  Also, the meaning of the 

efficiency score and targets in this approach most approximate traditional DEA.  

Alternatives to using virtual weights restrictions are considered, namely using absolute 

weights restrictions with a virtual meaning.  Finally, an empirical example is offered.   

 

Keywords: data envelopment analysis; virtuals, weights restrictions, assurance regions. 
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1 Introduction 

The application of DEA to concrete situations has motivated the use of weights 

restrictions to curb the complete freedom of variation of weights allowed by the original 

DEA model.  The problem of allowing total flexibility of the weights is that the values 

of the weights obtained by solving the unrestricted DEA program are often in 

contradiction to prior views or additional available information. 

Thompson et al. (1986) were the first authors to propose the use of weights 

restrictions to increase discrimination of the results of a DEA problem to support the 

siting of a laboratory, where only six alternatives were under consideration.  Their 

technique included the imposition of acceptable bounds on ratios of multipliers 

(weights), to solve a choice problem.  Dyson and Thanassoulis (1988) were concerned 

about the omission of particular inputs or outputs from the efficiency score, through the 

assignment of zero weights.  They suggested imposing meaningful bounds directly on 

individual multipliers based on average input levels per unit of output.  Charnes et al. 

(1990), in another approach to the problem, suggested transforming input-output data to 

simulate weights restrictions, where DMUs are assessed on the basis of the input-output 

levels of pre-selected DMUs which were a priori recognised by experts as being 

efficient.  

One of the problems with directly restricting the multipliers, i.e. absolute weights 

restrictions, is that they are dependent on the units of measurement of the inputs and 

outputs.  Virtual input/ output, the product of the input/ output level and optimal weight 

for that input/ output, however, is dimensionless.  The virtual inputs and outputs of a 

DMU reveal the relative contribution of each input and output to its efficiency rating.  

The higher the level of virtual input/ output, the more important that input/ output is in 

the efficiency rating of the DMU concerned.  Therefore use of virtual inputs and outputs 

can help to identify strong and weak areas of performance.  Additionally, it is hard to 

give a meaning to absolute weights restrictions.  Virtual weights restrictions are, in most 
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occasions, more intuitive for the decision-maker.  In order to avoid the problems of 

absolute weights restrictions, Wong and Beasley (1990) proposed the use of virtual 

weights restrictions, and in particular, the use of proportional virtual weights 

restrictions, which were intended to make it easier for the decision maker to quantify 

value judgements in terms of percentage values.  Roll and Golany (1993), to avoid the 

dependence on the units of measurement of the input and output factors in absolute 

weights restrictions, proposed instead the normalisation of the input-output data.  One of 

the disadvantages of this method is that once results are obtained they must be 

transformed back to the original form in order to interpret the results.  Also, absolute 

weights restriction can be a problem for the analyst when dealing with managers who do 

not necessarily understand DEA.  In which case, it is easier to elicit from management 

virtual weights restrictions in terms of the proportional importance of the factors.  The 

Roll and Golany approach overcomes some of the problems with absolute weights 

restrictions, but does not allow direct comparisons of the relative contributions of inputs 

and outputs to the efficiency rating. 

A comprehensive review of the evolution, development and research directions on 

the use of weights restrictions can be found in Allen et al. (1997a).  In this review the 

consequences for the interpretation of the results from DEA models with weights 

restrictions has been analysed for absolute weights restrictions.  The analysis of the pros 

and cons of the use of virtual weights restrictions and how it compares with the use of 

absolute weights restrictions are proposed as a further direction of research.  This paper 

proposes to contribute to that analysis. 

The intention of incorporating value judgements might be, as seen above, to 

incorporate prior views or information regarding the assessment of efficient DMUs.  On 

the other hand, there might be two levels of decision-making, the DMU (for instance, a 

department or university), and the corporate top management or external evaluator (for 

instance the State, or the applicant in relation to a university or department in Sarrico et 

al. (1997)).  The DMU might use its value judgements if it wants to use the assessment 
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for benchmarking itself against other DMUs (see, for instance, Sarrico and Dyson 

(2000)).   

However, if an external agent does the evaluation, the expressions DMU and decision 

maker might be misleading, as the decision maker is, in fact, at a different level.  In this 

case, the DEA assessment becomes a game between what can be called the unit of 

assessment (UOA) trying to show itself in the best possible light, and a higher level 

decision maker, i.e. a controller imposing its preference structure.  Sarrico et al. (1997) 

and Sarrico and Dyson (2000) have used DEA in the assessment of UK universities’ 

performance, where the university or department is the UOA with the applicant or the 

State, respectively, being the controller.  A similar situation occurs in the regulated 

industries where the regulator is the controller.  Virtual weights restrictions are 

particularly appealing in these circumstances when ‘outside’ judgements need to be 

translated into a DEA model weights restrictions.  The higher the level of a virtual input 

or output, the more important that input or output for the efficiency rating of the DMU 

concerned.  Absolute weights, however, do not normally have an obvious meaning to the 

controller. 

Allen et al. (1997a) point out that the substantial changes to the UOA’s current mix 

of input and output levels indicated by the imposition of weights restrictions might be 

beneficial.  It might lead to the conclusion that the current mix is inadequate given the 

controller’s preferences.  The same goes for the deterioration of current levels of some 

inputs and outputs.   

Although there are often references in the literature to WB’s first proposed methods 

of restricting the virtuals in DEA, neither WB’s original paper nor subsequent literature 

explore the consequences of their use in the interpretation of the efficiency score and 

targets thus obtained.  Section 2 proposes to do that.  In section 3 it is shown how WB’s 

restrictions could be translated into equivalent absolute weights restrictions, and how 

easily some of their methods lead to infeasible problems.  In section Error! Reference 

source not found., the authors support the use of virtual weights restrictions, albeit of a 
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different kind of WB’s, for particular cases.  They then propose a new classification of 

virtual weights restrictions, which introduce the concept of virtual assurance regions.  In 

section 5 the consequences of using the authors proposed virtual weights restrictions is 

explored, and their advantage over WB’s ascertained.  Finally, in section 6 an empirical 

example, which illustrates the use of a range of types of weights restrictions including 

virtual assurance regions, is presented. 

2 The Use of Proportional Virtual Weights Restrictions 

It is noted that the ideas in this paper are developed with reference to the original 

DEA formulation by Charnes, Cooper and Rhodes (1978) below, which assumes 

constant returns to scale and that all input and output levels for all DMUs are strictly 

positive.  Consideration of the use of virtual weights restrictions in relation to variable 

returns to scale formulations is left for further research. 

The CCR model measures the efficiency of target unit jo relative to a set of peer 

units: 
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where 

yrj  = amount of output r from unit j, 

xij  = amount of input i to unit j, 

ur
 = the weight given to output r, 

vi  = the weight given to input i, 

n  = the number of units, 

s  = the number of outputs, 

m  = the number of inputs, 

  = a positive non-Archimedean infinitesimal. 

 

It is assumed that there are n DMUs to be evaluated.  Each DMU consumes varying 

amounts of m different inputs to produce s different outputs.  The CCR model translates 

into the following: unit jo is said to be efficient (eo=1) if no other unit or combination of 

units can produce more than unit jo on at least one output without producing less in some 

other output or requiring more of at least one input. 

The method first developed by WB to restrict flexibility of the virtuals in DEA is 

based upon the use of proportions.  Conceptually the proportional virtual output r of 

UOA j represents the importance attached to the output measure (a similar reasoning can 

be applied to an input factor).  Thus the controller can set limits on this proportion to 

reflect value judgements, as follows:  

a
y u

y u

br

rj r

rj r

r

s r 

=

 0

1

 for an output factor, and 

c
x v

x v

di

ij i

ij i

i

m i 

=


1

 for an input factor. 

Note that these kinds of restrictions are UOA specific, which raises questions for 

their implementation, namely to which UOAs should the restrictions apply, and what 

effect they have on other UOAs.  WB suggest three different alternatives.  However, 

they did not explore the consequences of the imposition of their restrictions for the 

interpretation of the efficiency score and target setting, which we propose to do next.   
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An output-oriented model (i.e. where y urj rr

s

01
1

= = ) is considered to explore the 

consequences of the use of the different approaches.  The use of an input-oriented model 

would lead to similar conclusions. 

2.1 Proportional virtual weights restrictions apply only to the target UOA j0. 

When proportional weights restrictions are applied to the target UOA j0, each UOA is 

assessed with two additional constraints for each factor (output or input) being 

restricted: 
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Adding the weights restrictions to the multipliers formulation, it becomes: 
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Since these kind of restrictions are UOA specific, as they are dependent on the target 

unit’s input/ output levels, the target unit will thus be ‘imposing’ different, and possibly 

unreasonable, restrictions on the virtuals of the other units when assessing the target 

unit.   
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The consequences for the measure of efficiency and target setting can be better 

appreciated from the envelopment formulation: 
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The targets for UOA j0 will thus be: 
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Two new variables  r  and  r  appear in the objective function of the linear 

program, which might not be negligible in comparison with  0 .  The efficiency measure 

e0

*
 will no longer necessarily approximate the inverted radial expansion factor 1 0/ * , as 

it would in an unrestricted model.  Moreover this measure will depend on the limits 

imposed for the proportional virtual outputs in an output-oriented model (and on the 

limits imposed for the proportional virtual inputs in an input-oriented model).   

As to the targets, two different situations arise for inputs and outputs.  For both input 

and output factors, the targets obtained can mean either an improvement or deterioration 
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in the current level.  However, for an input factor, its target will also depend on the 

limits imposed ( ci  and di ) for all the proportional virtual inputs.  Because of this 

characteristic, it would seem more appropriate to impose this kind of weights restriction 

only on the virtual outputs for an output-oriented model, and only on the virtual inputs 

for a virtual input model.  This procedure would be more in line with ‘classical’ DEA, 

where in the input-oriented models, one focuses on maximal movement towards the 

frontier through proportional reduction of inputs, whereas in the output-oriented models, 

one focuses on maximal movement via proportional augmentation of outputs, but not 

both simultaneously.  The choice of model will depend on which factors under 

consideration are more easily controlled by the UOA. 

In conclusion, in this alternative the target UOA might impose unreasonable 

restrictions on the virtuals of the other UOAs.  Also, in an output-oriented model, the 

restrictions applied to the target unit for the outputs affect the efficiency score and 

output targets, whereas the restrictions applied to the inputs will affect the input targets 

in an unconventional way. 

2.2 Proportional virtual weights restrictions apply to all UOAs j 

As seen in the previous section, applying proportional virtual weights restrictions 

only to the target UOA might impose unreasonable virtuals on the other UOAs.  WB’s 

second approach, however, proposes that all virtual weights restrictions should apply to 

all UOAs: 
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For each input or output factor being constrained 2n inequalities are added to each 

linear program. 
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Adding the weights restrictions to the multipliers formulation, it becomes: 
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The envelopment formulation becomes: 
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The targets: 
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As with the previous approach the efficiency score e0

*
 will no longer necessarily 

approximate the inverted radial expansion factor 1 0/ * .  Moreover, the interpretation of 

the targets becomes increasingly difficult.  The targets for a factor (either input or 

output) become dependent, not only on the value of that factor for the target unit, but 

also on the value of that factor for all the other units.  Additionally, they become 
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dependent on the limits imposed for the virtuals ( ar
 and br

 for outputs and ci  and di  

for inputs) of all other factors. 

WB’s argument that this alternative is computationally expensive is probably the 

least of its caveats as software and hardware become increasingly more powerful.  This 

approach applies each unit’s restrictions to all the other units, and is thus applying the 

‘worst case’ to each unit.  As a consequence, and more worrying is the propensity of this 

approach to lead to infeasible linear programs, as will be shown in section 3 of this 

paper. 

As an alternative, Roll and Golany (1993) propose the “common set of weights” 

approach, where all units are treated the same.  However, this approach requires 

additional (often subjective) information to be introduced into the analysis. 

2.3 Proportional virtual weights restrictions apply to target and to an ‘average’ 
artificial UOA ja 

In order to keep to the spirit of their second approach in section 2.2, but to avoid its 
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Thus, when this approach is implemented, each UOA is assessed with four additional 

constraints for each factor being restricted:   
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This averaging construct will penalise units with small or large, input or output 

values, as it imposes a ‘majority rule’, which is clearly against the spirit of traditional 

DEA. 
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The envelopment formulation becomes: 
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The obtained targets are then: 
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Being a compromise between the first (2.1) and second (2.2) approaches, the third 

approach has characteristics of both of them.  As in the previous approaches, the 

efficiency measure e0

*
 will no longer necessarily approximate the inverted radial 
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expansion factor 1 0/ * .  And, the targets are increasingly difficult to interpret: not only 

are they dependent on the current levels of input and output of the target UOA, they are 

also dependent on the average value of all the units.  As with the previous approach, this 

alternative can also easily lead to infeasible linear programs, as will be shown in section 

3 of this paper. 

3 Using Absolute Weights Restriction with a ‘Virtual’ Meaning 

A problem with virtual weights restrictions is that they are UOA specific.  Allen et al 

(1997b) (see also Dyson et al (2001)) have suggested that virtual weights restriction, as 

proposed by WB’s second alternative (2.2), could be converted into absolute weights 

restrictions, in the following manner: 

When considering a lower bound on output r, of ar, such as a y u jr rj r , , clearly 

the virtual restriction corresponding to the UOA with the lowest output level can be 

binding.  Similarly, if a virtual upper bound restriction were imposed on an output r, of 

br, such as y u b jrj r r , , the binding virtual restriction would be the one corresponding 

to the UOA with the largest input or output level.  Allen et al (1997b) conclude that a 

more economical approach to WB’s would be to add only the required binding absolute 

restrictions.  The idea would be very useful in transforming simple virtual weights 

restrictions, when only lower or upper bounds have been determined for each factor, but 

not both simultaneously, as in WB’s second (2.2) and third (2.3) approaches.  In those 

cases Allen et al’s suggestion of transforming proportional virtual weights restrictions 

into absolute ones often leads to infeasibility, as it is shown next.   

Consider the example of a factor, whose importance should, according to the 

controller, be between 5% and 15%.  If the maximum value for this factor is 100, and 

the minimum 1 (as is the case in some of the factors in Sarrico et al. (1997), for 

example), the following expression is derived: 
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5% 15%,  y u jrj r  

 

Using Allen et al’s approach, it would lead to the following: 
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In conclusion, the alternative will easily lead to infeasible results for some ‘intuitive’ 

set of bound on the virtuals.  In fact, for the use of proportional virtual weights 

restrictions to be feasible for all units in each linear program in section 2.2, the bounds 

have to be carefully chosen, such that: 
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is feasible for all the units.  This will mean: 

* setting up the lower limit ar, and then calculate the upper limit br as follows: 
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* or, setting up the upper limit br, and then ar is calculated as follows: 
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Going back to our previous example, if ar were set at the 5% level, then br would 

have to be at least 500%, for the restriction to be feasible for all UOAs in section 2.2.  If 

br were set at the 15% level, then ar could not exceed 0.15%.  These results are clearly 

no longer intuitive, as promoted by WB. 

A similar reasoning for approach in section 2.3, where the restrictions apply to both 

target and average unit simultaneously, can be made: 
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for each linear program. 

Two situations arise; either the level of the output for the target unit is less than the 

average, or greater than the average.  However, for all linear programs to be feasible, in 

either case, the same conclusion as for section 2.2 is reached: 
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It is thus demonstrated that if both upper and lower bounds are considered in WB’s 

second (2.2) and third (2.3) approaches, the programs will often be infeasible.   

WB were optimistic that obtaining the limits, ar and br corresponding to value 

judgements, was ‘not too difficult’, but the multicriteria decision making (MCDM) 

perspective on the use of DEA disagrees (see, for instance, Belton and Vickers, 1993; 

Stewart, 1996; Belton and Stewart, 1997).  Recently, Belton and Stewart on a discussion 

on the interactions between MCDM and DEA, point out that the DEA field could learn 

from the extensive experience of MCDM in eliciting and working with value 
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judgements.  They consider that it is difficult to set meaningful bounds on the weights, 

especially in the case of multiple input - multiple output problems, except in terms of 

ratios.  Moreover ‘intuitive’ limits expressed as a percentage, as seen, can easily lead to 

infeasibility in WB’s approaches described above.  Interdisciplinary research between 

the MCDM and DEA fields looks like fertile ground for further research. 

The realisation that using explicit boundaries for weights is, in general, a difficult 

task, has led the authors of this paper to advocate the use of virtual assurance regions, 

similar to the use of assurance regions with absolute weights, rather than the simple 

direct restrictions on the virtuals.  In the next section, a new classification of virtual 

weights restrictions is proposed and their advantages in relation to WB’s original 

proposals are shown. 

4 Virtual Assurance Regions 

4.1 Why use virtual weights restrictions? 

As described above there are problems with using WB’s approaches, in that the 

choice of bounds by the decision maker/ controller can easily render the problems 

infeasible, and in addition, the efficiency score and targets are not always readily 

interpreted.  Despite the portrayed problems, the authors still think that the use of virtual 

weights restrictions is valuable when dealing with an external controller.  When the 

different factors in the assessment do not have a common unit, such as a monetary unit, 

it is often easier to translate the external decision-maker’s preference structure into 

restrictions on the virtuals, rather than on absolute weights.   

However, although inspired by WB’s virtual weights restrictions, the virtual weights 

restrictions advocated by the authors of this paper are different.  It will be shown that the 

restrictions proposed present advantages relative to the original proportional virtual 

weights restrictions proposed by WB.  Especially, the introduction of the concept of 

virtual assurance regions will avoid the problem of the decision maker having to choose 
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explicit bounds on the virtuals, when no objective information exists to allow him to 

make such a decision. 

4.2 A New Classification 

Thompson et al. (1990) proposed a classification of absolute weights restrictions into 

simple absolute weights restrictions and assurance regions.  They named assurance 

regions of type I (ARI) the absolute weights restrictions that incorporate into the analysis 

the relative ordering or values of the inputs or outputs; and assurance regions of type II 

(ARII), the absolute weights restrictions that translate relationships across the input and 

output divide.  In fact, information about a numerical range to translate the importance 

of the input or output factor as in simple direct restrictions on the multipliers, in general, 

might be difficult to obtain, and an ordering of preferences, as in assurance regions, 

might be more suitable.   

For this reason, in this section a similar classification for virtual weights restrictions 

is proposed.  That is, to have virtual weights restrictions equivalent to simple absolute 

weights restrictions, as well as equivalent to assurance regions of type I (ARI) and of 

type II (ARII).  Thus the ordering of preferences by applicants to universities in Sarrico 

et al. (1997) are translated by virtual weights restrictions of the type I.  Indeed, most 

applicants would not be able to specify explicit weights.  The linking of teaching and 

research outputs produced by a cost group in each university to the inputs available to 

that cost group, when assessing the performance of universities from the perspective of 

the State in Sarrico (1998), is an example of virtual weights restrictions of type II, a 

small example of which will be shown in section 6 of this paper. 

All proposed virtual weights restrictions can be described by the general set of 

w=1...t weights restrictions, applying to the target unit: 
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This expression encapsulates the three different kinds of virtual weights restrictions, 

of the new classification presented below. 

Simple virtual weights restrictions 

Simple virtual weights restrictions involve constraining the virtual of a single factor.  

This approach is equivalent to using proportional virtual weights restrictions applied to 

output virtuals in an output-oriented model, as the denominator is 1, (i.e. 

y urj rr

s

01
1

= = ).  If applied also to input virtuals in an output-oriented model, it will 

only be equivalent for the units that are efficient (i.e. 1
1 0

= = i

m

i ij vx ), and therefore 

define the frontier.  They are of the form: 
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for restricting the virtual input i’; and  
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for restricting virtual output r’. 

These restrictions are useful when the decision maker is able to specify particular 

bounds, or wants to assure that a certain factor attains a threshold value, for instance. 

Virtual assurance regions of type I 

Virtual ARI restrictions are equivalent to absolute weights restrictions ARI.  They 

link virtual inputs or outputs to translate an ordering of preference.  They are: 
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to link virtual inputs, and  
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to link virtual outputs. 

These restrictions are useful when the decision maker cannot assign particular bounds 

to the factors, but is able to decide that a factor is more important than another, twice as 

important, etc. 

Virtual assurance regions of type II 

Finally, virtual ARII restrictions are equivalent to absolute weights restrictions ARII.  

They link the input-output divide.  They can be translated by: 
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where at least one aiw  0  and one brw  0 . 

These restrictions are useful when there is a known relationship between an input and 

an output.  For instance, it is known that to produce a certain output, one needs to have a 

certain level of a certain input.   

In the next section the consequences of the use of this section virtual weights 

restrictions for the interpretation of the efficiency score and targets is explored, and 

reasons given why they are preferred to WB’s. 
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5 Virtual Assurance Regions with Factor Linkages 

5.1 Virtual weights restrictions apply to the target UOA j0  

When combinations of different types of virtual weights restrictions are used in a 

model, the multipliers formulation becomes: 
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The effect on the envelopment formulation is as below: 
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And the targets: 
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If the model includes simple virtual weights restrictions, where either a minimum 

and/ or maximum virtual is imposed for some or all factors, then the efficiency score e0

*
 

will no longer necessarily approximate the inverted radial expansion factor 1 0/ * , as the 

objective function contains a term with the new variable w0
 to be maximised.  On the 

other hand, if the model contains only virtual weights restrictions of the type ARI and 

ARII, the efficiency score will converge to be 1 0/ * , as the term 
0

1

w

t

w

wk 
=

 will not 

exist.  As for the targets, their interpretation is easier than in the models with 

proportional virtual weights restrictions.  Either an improvement or deterioration of 

current levels of the factors is possible, but in any case they can still be interpreted as a 

contraction or expansion of the current levels of the factors of the target unit. 

The same problems discussed, when proportional virtual weights restrictions apply 

only to the target unit, occur.  Restrictions applying to all units can be envisaged, as in 

the next section. 
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5.2 Virtual weights restrictions apply to all UOA j 

The multipliers formulation with the virtual weights restrictions applying to all 

UOAs are as below: 
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The effect on the envelopment formulation would be as below: 
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And the targets: 
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As in the previous section, if the model includes simple virtual weights restrictions, 

where either a minimum and/ or maximum virtual is imposed for some or all factors, 

then the efficiency score e0

*
 will no longer necessarily approximate the inverted radial 

expansion factor 1 0/ * .  On the other hand, if the model contains only virtual weights 

restrictions of the type ARI and ARII, the efficiency score will converge to be 1 0/ * . 

However, the interpretation of the targets as a contraction or expansion of the current 

levels of inputs or outputs, depending on the controller’s preferences translated by the 

weights restrictions imposed, no longer applies.  The expression of the targets for the 

UOA under analysis has a new term, which not only depends on the current levels of the 

factor for the target unit but also for all the other units.  However, it is still an 

improvement from the targets obtained from the use of proportional virtual weights 

restrictions applying to all units, in that the target for the factor under analysis does not 

depend on the virtual limits imposed on all the other factors.  

In conclusion, the use of the virtual weights restrictions applying to the target UOA j0 

only, as in section 5.1, seems to be the best approach.  This approach was widely used in 

the context of performance measurement in UK universities in Sarrico (1998), an 

example of which will be shown in the next section.  It allows for the natural 

representation of preference structures; linkages between inputs and outputs translating 

established patterns; and finally, the meaning of the efficiency score and targets are most 

easily interpreted.   
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6 An application to the UK university sector for the academic year 1995/96 

6.1 Units of assessment 

Assume that the efficiency of universities is to be compared.  Handling subject mix in 

the context of university performance measurement has long been a problem.  A 

procedure is required which ensures that universities with low cost subjects do not have 

an unfair advantage in the assessment of performance.  In the past, universities have 

been divided into different comparable sets, and assessed separately.  In this empirical 

application a solution for taking into account subject mix in universities is arrived at by 

linking inputs and outputs across the input-output divide, via virtual assurance regions.  

This represents a novel application of the method devised by Thanassoulis et al. (1995) 

in relation to absolute weights restrictions, which prevents units from taking undue 

advantage of weight flexibility contrary to the known links between certain inputs and 

outputs.  

Consider 89 UK universities, which can develop teaching and research activities in 

four different cost bands considered by the funding councils.  The cost bands are as 

follows: Group A: Clinical, Group B: Science, Engineering and Technology, Group C: 

Other high cost subjects with a studio, laboratory or fieldwork element, and Group D: 

All other subjects.   

6.2 Experimental design 

To disentangle the subject-mix effect from the measurement of institutional 

efficiency, the four cost band groups are considered.  The inputs, outputs and weights 

restrictions used in the CCR model are as in Table 1.  The variables used in the model 

are defined as follows: 

EXP_A: It is the sum of Academic Departments expenditure for academic cost 

centres (ACCs) belonging to Group A in £ thousands, from Higher Education Statistics 

Agency (HESA). 

EXP_B, EXP_C, EXP_D: As in EXP_A, but for ACCs belonging to groups B, C, 

and D, respectively. 
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CNTRL_EXP: It is the sum of Academic Services, Administration and Central 

Services, Premises, Residences and Catering Operations, and Research Grants and 

Contracts expenditures, in £ thousands, from HESA statistics. 

TEACH_A: It is the total number of full-time-equivalent (FTE) students in the 

subject areas (from HESA statistics) belonging to Group A, as the measure of volume, 

multiplied by the average teaching rating (1-24) for the university, as a measure of 

quality. 

TEACH_B, TEACH_C, TEACH_D: As in TEACH_A, but for subject areas 

belonging to groups B, C, and D, respectively. 

RES_A: It is the total number of FTE academic staff in UOAs (from the Research 

Assessment Exercise 1996 database) belonging to Group A, as the measure of volume, 

multiplied by the average research rating (1 to 7) for the university, as a measure of 

quality.  

RES_B, RES_C, RES_D: As in RES_A, but for UOA belonging to groups B, C, and 

D. 

Table 1: University efficiency taking account of subject mix 

Variable Set    

Inputs Outputs  Weights Restrictions Type  

EXP_A 

EXP_B 

EXP_C 

EXP_D 

CNTRL_EXP 

TEACH_A 

TEACH_B 

TEACH_C 

TEACH_D 

RES_A 

RES_B 

RES_C 

RES_D 

 VTEACH_A + VRES_A > VEXP_A 

VTEACH_B + VRES_B > VEXP_B 

VTEACH_C + VRES_C > VEXP_C 

VTEACH_D + VRES_D > VEXP_D 

WEXP_A > 4.5 WEXP_D 

WEXP_B > 2.0 WEXP_D 

WEXP_C > 1.5 WEXP_D 

VEXP_D > 0.05 

VCNTRL_EXP > 0.40 

Virtual II 

Virtual II 

Virtual II 

Virtual II 

Absolute I 

Absolute I 

Absolute I 

Virtual Simple 

Virtual Simple 

Note: The prefix V indicates the virtual associated with the factor, and the prefix W indicates the 

multiplier associated with the factor. 

 

The weights restrictions reflect the following: 
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* The first four virtual assurance regions reflect the fact that the teaching and research 

output virtual weights combined for each group should be at least the same as the 

departmental expenditure virtual weight for that group.  This reflects the fact that 

both departmental expenditure and a proportion of central expenditure contribute for 

the departmental output.  Since the variables are expressed in different units, virtual 

weights restrictions are preferred.  Assurance regions are preferred because no 

meaningful bounds on the variables could be ascertained. 

* The absolute weight for Group A should be at least 4.5 times that for Group D, for 

Group C 2.0 times, and for Group B 1.5 times.  This reflects empirical evidence 

collected by the funding councils.  Since all expenditures refer to the same monetary 

unit, absolute weights restrictions are used. 

* The two last virtual weights restrictions reflect the evidence in the data; that for all 

units under assessment, at least 5% of the total expenditure is academic departmental 

expenditure in Group D, and at least 40% of the total expenditure is in central 

activities.  Simple virtual weights restrictions are used, since meaningful bounds on 

the weights can be ascertained, and to avoid that some of the factors are not 

considered by the UOA by assigning zero weights to some of the factors. 

The model thus requires several categories of weights restrictions to capture the 

required preferences.  Several categories of virtual weights restrictions were also used in 

the Kenilworth School case study in Sarrico et al (1997). 

6.3 Results 

The results for the model in Table 1, taking into account of the effect of a university’s 

subject mix in the measurement of efficiency, are shown in Table 2.  There does not 

seem to be much of a difference in the results between clinical and non-clinical, English 

and non-English, and London and Non-London universities.  As for the difference in 

results between old and new universities, it seems that under CRS assumption new 

universities are more efficient than old universities.  New universities were for their 

majority polytechnics, which were allowed to acquire university status following the 
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1992 Further and Higher Education Act.  Oxford is efficient, whereas Cambridge is 

inefficient (88.9%).  This incongruence in the results for Oxbridge, keeps the debate 

open as to the legitimacy of their different funding structure, from the other universities.  

The allocation of virtual weights between teaching and research activities is, also, quite 

different.  Old universities, despite years of University Grants Committee (UGC) 

funding based on that teaching and research should be pursued in a ratio of 

approximately 2:1, put considerable more emphasis on research than teaching, whereas 

the weight put on teaching and research by the new universities is more balanced.   

 

Table 2: Results 

 Count #Efficient 
Units 

Average 
Efficiency 

Average Sum of 
Teaching Virtuals 

Average Sum of 
Research Virtuals 

All 89 40 93.7 42.6 57.4 

Clinical 21 9 95.5 34.4 65.6 

Non Clinical 68 31 93.1 45.1 54.9 

Non English 20 11 94.4 30.0 70.0 

English 69 29 93.4 46.2 53.8 

New 40 24 97.1 55.0 45.0 

Old 49 16 90.9 32.5 67.6 

London 11 2 91.2 53.3 46.8 

Non London 78 38 94.0 41.1 59.0 

 

In the past universities have been pooled in different groups of similar subject mix 

before their efficiency could be compared.  The use of virtual assurance regions of type 

II linking the input-output divide for each subject group, allows efficiency comparisons 

to be made for all universities irrespective of their subject mix.  

7 Concluding Remarks 

Absolute weights restrictions, and assurance regions have been advocated as ways of 

restricting the values of weights (multipliers) in DEA.  However they can also have 

limited scope.  This paper has advocated the use of restrictions on virtual weights in 

DEA on the grounds that they often provide a natural representation of preferences.  

Restrictions on virtual weights were proposed first by Wong and Beasley.  The paper has 
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shown that their proportional weights restrictions can lead to problems of feasibility and 

in the interpretation of targets and efficiency scores.  As an alternative, the paper 

proposes the use of (non-proportional) virtual weights restrictions, and categorises them 

as simple virtual weights restrictions, and virtual assurance regions of types I and II, 

following the categories established for absolute weights restrictions.  It is concluded 

that these categories overcome many of the difficulties of proportional weights 

restrictions whist retaining the benefit of the natural representation of preference 

structures, which often need to be imposed on the basic DEA model.  Additionally they 

can translate established patterns across the input-output divide, and the meaning of the 

efficiency score and targets in this approach are more easily interpreted.  Simple virtual 

restrictions can be used when meaningful bounds can be established. 

The paper concludes with an application that illustrates how a range of categories of 

weights restrictions may be required to capture the preference structures in the context of 

higher education.  The overall conclusion is thus that different approaches to weights 

restrictions may be appropriate to capture particular preference information, and that 

virtual weights restrictions have a key role to play in that arena. 
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