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Abstract: In the last decades, researchers have shown the potential of using Electrocardiogram (ECG)
as a biometric trait due to its uniqueness and hidden nature. However, despite the great number
of approaches found in the literature, no agreement exists on the most appropriate methodology.
This paper presents a systematic review of data acquisition methods, aiming to understand the
impact of some variables from the data acquisition protocol of an ECG signal in the biometric
identification process. We searched for papers on the subject using Scopus, defining several keywords
and restrictions, and found a total of 121 papers. Data acquisition hardware and methods vary widely
throughout the literature. We reviewed the intrusiveness of acquisitions, the number of leads used,
and the duration of acquisitions. Moreover, by analyzing the literature, we can conclude that the
preferable solutions include: (1) the use of off-the-person acquisitions as they bring ECG biometrics
closer to viable, unconstrained applications; (2) the use of a one-lead setup; and (3) short-term
acquisitions as they required fewer numbers of contact points, making the data acquisition of benefit
to user acceptance and allow faster acquisitions, resulting in a user-friendly biometric system. Thus,
this paper reviews data acquisition methods, summarizes multiple perspectives, and highlights
existing challenges and problems. In contrast, most reviews on ECG-based biometrics focus on
feature extraction and classification methods.

Keywords: electrocardiogram; biometrics; acquisition methods; acquisition devices; databases

1. Introduction

Nowadays, recognition systems are used in a variety of real-world applications to
protect ourselves and our information. While some of these systems still depend on
conventional technologies, such as cards, keys, or passwords, these mechanisms often have
usability and security issues.

As a result, there has been a recent interest in the biometric field. Biometric recogni-
tion uses distinctive physiological and behavioral characteristics to automatically identify
individuals. The former characteristics can include the face, fingerprint, iris, and hand
geometry, whereas the latter can be gait signature and keystroke [1].

In recent years, researchers have been exploring the use of electrocardiogram (ECG)
signals as a biometric recognition trait due to their unique properties: (1) liveness detection:
Since the ECG is a recording of the electrical activity of the heart, ECG signals can only be
acquired from living individuals [2]; (2) high security: ECG signals are extremely difficult
to counterfeit and consequently, a technology to artificially produce them has not been
developed yet [3]; (3) combined information: the analysis of ECG signals can give us
information regarding the identity of a person, as well as heart conditions and emotional
and physical status [4]. The most important advantage of ECG signals is their unique-
ness among individuals, which is mainly due to changes in ionic potential, the levels of
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electrolytes in the plasma, and physiological differences caused by chest geometry, size,
and position of the heart [2]. A typical ECG wave, such as the one presented in Figure 1,
consists of a P wave, a QRS complex, and a T wave.

Figure 1. The sequence of depolarization and repolarization events in the heart and their relationship
with the different heartbeat waveforms in an ECG signal (adapted from [5], original figure kindly
provided by the authors).

A biometric system is a technology that identifies or authenticates a person through
their unique biometric traits. It consists of three main components: an acquisition module,
which consists of a sensor that measures the biometric trait; a storage module, where
personal data of enrolled subjects is stored); and a biometric algorithm. The biometric
algorithm processes the data from the acquisition and storage modules, following two steps:
feature extraction and pattern recognition [5]. Concerning a biometric system using ECG,
signals can be acquired through different formats. The standard 12-lead ECG provides
information on cardiac activity from 12 different leads over a short period of time, while
Holter ECGs record electrical activity from five to seven leads over longer periods of time.
Although 12-lead ECGs provide more information, they are not practical for real-world use.
Instead, off-the-person methods that acquire ECG signals through skin or finger contact
have become more common, making the process more convenient for users [6].

The advancement of sensing technology has made it possible to explore the use of ECG
as a non-invasive biometric, similar to a fingerprint. This has made society’s acceptance of
ECG as a biometric very promising [2]. In addition to traditional off-the-person methods,
small wireless ECG body sensors are being developed for long-term monitoring. These
sensors use a single lead to measure the electrical potential difference between electrodes
placed near the heart. These sensors allow ECG analysis and monitoring to be used for
a wider range of applications beyond diagnosing cardiovascular disorders [6]. However,
when compared to medical devices such as Holter devices, wearable sensors produce
noisier signals due to various factors, such as the type of electrodes and the number and
location of leads. While medical ECG recorders use 12 or 6 wet electrodes, wearable devices
typically use between one and three dry electrodes, with only the first lead being used due
to its easy implementation in mobile devices. Medical ECG recorders generally provide
more reliable data than wearable devices due to their longer and more detailed recording
periods and the higher complexity of the setup [7].
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In the next stage of the biometric process, features are extracted from the ECG data.
These features are specific attributes of the ECG that allow for the recognition of a particular
individual based on inter-subject variability. Feature extraction is a crucial step in pattern
recognition. Approaches for feature extraction can be divided into three categories: fiducial,
non-fiducial, and hybrid (or partially fiducial). Fiducial-based techniques rely on the
accurate detection of reference points, such as the P wave, QRS complex, and T wave.
These techniques can also use interval, amplitude, angle, and area measurements of these
points as biometric features. However, these approaches require a lot of feature engineering,
which can be time-consuming [8,9]. Non-fiducial-based ECG biometric detection methods
do not require the detection of fiducial points. Instead, non-fiducial features are derived
from segmented windows of ECG signals and may include autocorrelation coefficients
and wavelet coefficients. Non-fiducial approaches often have a large number of redundant
feature sets that need to be reduced [10]. Hybrid methods combine both fiducial and
non-fiducial techniques by locating only the R-peaks. These are used to segment the ECG
signal into single heartbeat waveforms, from which time or frequency domain information
is extracted as features [8].

The final stage of the ECG recognition process consists of classification or pattern
recognition. In this stage, the selected features of ECG signals are used as inputs for a
classifier. The accuracy of the selection of the features will determine whether the classifier
makes a correct or incorrect decision. There are many classification methods that have
been proposed in recent years, including Bayesian Network, Linear Discriminant Analysis,
Decision Trees, k-Nearest-Neighbors, Support Vector Machines, and Artificial Neural
Networks. Each approach has its own advantages and disadvantages [10].

The success of identifying an individual through their ECG depends on the conditions
they are exposed to during the acquisition process, the features that are extracted, and the
classifiers used for identification or authentication. It is, therefore, important to evaluate the
impact that certain changes have on biometric identification results [11]. This systematic
review aims to discuss past research on the impact of variables in the data acquisition
methods of an ECG signal on the biometric recognition process.

The paper is organized as follows: Section 2 presents the review methodology. Section 3
provides an overview of ECG acquisition and databases, which are discussed in Section 4.
Finally, the conclusions drawn are presented in Section 5.

2. Review Methodology

In this section, the search strategy, which includes the identification, screening, and in-
clusion phases, is described, and the research questions we aim to answer are presented.

2.1. Search Strategy

This systematic review is structured according to Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analyses (PRISMA) guidelines [12]. Our literature research was
performed from 5 June to 7 October 2022 in the Scopus database. The process of literature
search for this literature review is illustrated in Figure 2, and it is a three-stage process
consisting of identification, screening, and inclusion.

2.1.1. Identification

For the identification stage, the following general search terms were compiled for
the Scopus research on the title, abstract, and keywords fields: (biometric* OR biometry
AND ecg* OR electrocardiogram* OR electrocardiography* OR electrocardiographic* OR
heart* AND authentication OR identification OR verification OR recognition AND “data
collection” OR “signal collection” OR acquisition* OR collection OR signal* OR “body
sensors” OR “body sensor” OR sensor* OR biosensor* OR database* OR electrode*). This
search resulted in 958 papers. Six of those were duplicates and were consequently removed.
Thus, the identification stage resulted in a total of 952 papers.
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Figure 2. Flow diagram of the literature research process (adapted from Prisma Guidelines [12]).

2.1.2. Screening

Before moving to the manual process of screening, we applied some exclusion criteria
in our research. The first criterion concerned the year of publication of the article; only the
ones published between 2000 and 2022 were considered. The second criterion was related
to the subject area and the following areas were included: computer science, engineering,
mathematics, materials science, and decision science. All remaining areas were excluded
from our search. The document type was also an exclusion criteria: only conference papers,
articles, and reviews the types of paper were considered. Lastly, only papers in English
were included. A total of 137 articles were excluded based on the inclusion and exclusion
criteria. A total of 815 papers were retrieved from the exclusion criteria process. The second
part of the screening stage was a manual process of document exclusion. The purpose of
this step was to filter the articles based on their abstract, methodology, results, or findings
section to ensure that the articles match the goal of this systematic review. The screening
process involved two rounds. In the first round, filtering, and screening were performed to
exclude studies based on their respective title and abstract. Studies that did not focus on
ECG-based biometric recognition were eliminated in this stage, and a total of 542 articles
continued to the following round. The second round performed filtering by an accurate
full-text reading of the examined articles from the first round based on an accurate full-text
reading. Studies were eliminated based on the following exclusion criteria: (1) not focusing
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on the data collection process; (2) using ECG for non-biometric purposes; (3) not developing
a biometric system algorithm; (4) not available online; and (5) using ECG combined with
other biometric traits in a multimodal system. A total of 285 papers were eliminated due to
reason (1), seventeen (17) due to reason (2), twenty-eight (28) due to reason (3), thirty-eight
(38) due to reason (4), and fifty-three (53) due to reason (5).

2.1.3. Inclusion

After the screening process, 99 studies were integrated into our search. However, we
also added some other reports from citation searching (7), resulting in a total of 106 studies
included in this systematic review. The majority of papers included were from the jour-
nals/conferences presented in Figure 3 (top). The bottom of this figure presents the
temporal increase of research on ECG-based biometric systems.

Figure 3. Main journals of publications of the papers included in this systematic review (top),
and temporal increase of the research on ECG-based biometric systems (bottom).

2.2. Research Questions

This work mainly aims to provide some answers to the following questions about the
ECG data for biometric systems:

Question 1: How are the ECG signals collected for biometric systems? What is
the acquisition hardware information? This review compares the various aspects of the
acquisition hardware, such as the intrusiveness of the acquisition (on-the-person vs off-the-
person acquisitions), the number of leads used, and the duration of the acquisition. We also
present the most used commercially available and the self-developed acquisition devices
and compare them in Table 1.

Question 2: What should the acquisition protocol look like for a biometric system?
Which conditions of acquisition should be considered? The aim of the present systematic
review is to evaluate and compare the acquisition protocol of different research concerning
the number of subjects and the assessment of the stability of the ECG signal over time.
Moreover, since the health status of the subjects is also considered by many researchers, this
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systematic review presents literature findings regarding the impact of physical conditions,
posture, emotions, and cardiac conditions on a biometric system.

Table 1. Overview of the commercially available and self-developed devices.

Acquisition
Devices

Type of
Acquisition Type of Electrode Data Transmission Performance Accuracy

Vital Jacket Off-the-person
(Wearable)

Conductive fabric
electrodes Bluetooth Recognition Rate 100%

[13]

RespiBan Off-the-person
(Wearable) Pre-gelled electrodes Bluetooth Equal Error Rate 7.07%

[7]

Nymi Band Off-the-person
(Wearable) Dry electrodes Bluetooth Equal Error Rate: 0.9%

[14]

ReadMyHeart Off-the-person Conductive Plates USB connection Equal Error Rate:
10.52% [15]

Vernier ECG Sensor On-the-person Gel electrodes VernierGo!Link (USB
sensor interface)

Equal Error Rate: 4.34%
while walking 8.17%
while sitting 10.56%

after exercise [16]
Philips PageWriter

Trim III On-the-person Gel electrodes - Equal Error Rate: 9.01%

Error of Identification:
15.64% [17]

Shimmer ECG sensor On-the-person Gel electrodes -

Identification Rate:
between 77.25% and
91.30% for different

methods [18]

BioPlux
Electrocardiography

Sensor
Off-the-person Dry electrodes

Electrolycra -

Identification Error:
1.66% with dry

electrodes 5.61% with
electrolycra [19]

Maxim 86150
Evaluation Kit Off-the-person Stainless steel dry

electrodes Bluetooth Identification Rate: 97%
[20]

The BioRadio Off-the-person
(Wearable) Dry electrodes - -

BioPac On-the-person

Wet electrodes/
Adhesive disposable

Ag/AgCl wet
electrodes

-

Equal Error Rate: 2.69%
to 4.71% [21]

Identification Rate:
100% at rest, 99.8%

exercising [22]
Identification Rate: 75%

to 80% [23]

Kardia Off-the-person
(Wireless) Dry electrodes -

True Accept Rate:
81.82% False

Acceptance Rate: 1.41%
[24]

Savvy Off-the-person
(Wireless)

Self-adhesive
electrodes Bluetooth Equal Error Rate: 6% to

13% [25]

Basco et al. [26] Off-the-person
(Wearable) Dry electrodes Bluetooth -

Guven et al. [3] Off-the-person Dry electrodes USB connection Identification Rate:
100%

Wieclaw et al. [10] Off-the-person Dry electrodes USB connection Identification Rate: 96%

Peter et al. [27] On-the-person
Wet cloth electrodes

with conductive
adhesive hydrogel

- -

Ramli et al. [28] Off-the-person
(Wearable) Dry electrodes Bluetooth Equal Error Rate: 2%

Lourenço et al. [29] Off-the-person Dry electrodes Bluetooth
Identification Rate:

94.3%
Equal Error Rate: 10.1%
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Question 3: Which ECG datasets are used for biometric purposes? What are the main
differences between them? These questions are addressed in Section 3.3 by presenting a
description of the most used ECG databases in the literature and by providing a comparison
between them in Table 2.

Table 2. Overview of the most used databases in the literature.

Database OP NS Electrode
Placement

Leads/
Electrodes

Health
Conditions

Activity/
Posture Sessions Publicly

Available

CYBHi [30] Yes 128 Palm +
Fingers 2/4 None

Reactions
triggered
by sound
and video

Up to two
5-min

sessions, 3
months

apart

Yes

Drive DB
[31] No 9 Chest 1/- None

Rest,
highway
and city
driving

50 min to
1.5h Yes

ECG-ID
[32] No 90 Wrists 1/- None

Siting, un-
restrained
movement

Various 20s
recordings
per subject

over 6
months

Yes

E-Hol 24h
[33] No 203 Chest 3/4 None Ambulatory

recordings 24h Yes

MIT-BIH
Arrhyth-

mia
[34]

No 47 Chest 2/- Arrythmias Ambulatory
recordings 30 min Yes

MIT-BIH
Normal

[35]
No 18 Chest 2/- None Ambulatory

recordings 30 min Yes

PTB [36] No 290 Chest +
Limbs -/15

Various
cardiac

conditions
At rest only

1–5 per
subject,

38.4–104.2 s
Yes

QT [37] No 105 Chest -
Various
cardiac

conditions

Rest and
exercise 15 min Yes

UofTDB
[38] Yes 1019 Fingers 1/2 None

Sit, stand,
supine,
exercise

and tripod

Up to six
2–5 min

recordings
over 6

months

No

Fantasia
[39] No 40 Chest +

Limbs 12 None Supine at
rest 120 min Yes

MIT-BIH
Atrial

Fibrillation
Yes 23 Chest +

Limbs 12
Atrial

Fibrillation
[40]

Ambulatory
recordings 10h Yes

DREAMER
[41] Yes 23 Limbs 1 None

During
emotional

stimuli
1h Yes

WESAD
[42] Yes 17 - - None

Sitting,
speaking

and
watching

video clips

- Yes

Question 4: Which factors of the data acquisition influence the intra- and inter-subject
variability? What impact can these two variables have on the performance of a biometric
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system? The answers to these questions are discussed in Section 4, in which the sources of
intra and inter-subject variability are described.

3. ECG Acquisition and Databases

Regarding ECG acquisition, we covered the characteristics of the systems and proto-
cols, as well as commercially available and self-developed devices. Finally, this section
presents an overview of the databases used for biometric purposes.

3.1. Data Acquisition

Data acquisition can be organized according to criteria, such as the acquisition hard-
ware information and acquisition protocol.

3.1.1. Acquisition Hardware Information

To analyze the characteristics of the acquisition systems, we should consider the
intrusiveness of the acquisition and the types of electrodes, the number of leads used,
and the duration of the acquisition.

Intrusiveness

Since the early research on ECG-based biometrics, the configurations used for data
acquisition have significantly evolved. Researchers have mostly focused on addressing the
main disadvantage of ECG as a biometric trait: its intrusiveness during data acquisition [5].
This has led to the development of off-the-person data acquisition methods which are less
intrusive than traditional medical settings that use multiple wet electrodes. Data acquisition
methods can be broadly divided into two categories based on their level of intrusiveness:

1. On-the-Person Acquisitions
Acquisition methods that require attachment to the body, such as wet Ag/AgCl
electrodes applied to the skin with a conductive electrolyte gel, are known as on-the-
person methods. This approach relies on half-cell potential, double-layer capacitance,
and parallel and series resistances to function. Despite providing good signal quality,
wet electrodes can irritate the skin and restrict the user’s movement and may also
cause interference between neighboring electrodes. These factors must be considered
when using on-the-person data acquisition methods [43].
This type of acquisition can either be medical or unrestricted by movement, such as
through Holter systems. According to medical standards and guidelines, the standard
12-lead configuration allows for the acquisition of an ECG signal in 12 leads (or chan-
nels) using three bipolar limb leads, three monopolar limb leads, and six monopolar
precordial leads. The orthogonal configuration, also called Frank leads, allows the
acquisition of ECG signals using seven electrodes. In early ECG biometric research,
recordings from standard 12-lead and Frank leads were used in the development and
evaluation of algorithms [44–50]. Some researchers chose acquisitions without move-
ment restrictions, with longer duration, and with fewer electrodes, such as Holter
systems, which can acquire ECG signals for several hours while subjects perform their
daily activities [7,51].

2. Off-the-Person Acquisitions
The off-the-person acquisition method refers to devices that are integrated in ob-
jects or surfaces with which the subjects interact (e.g., a computer keyboard) and do
not require any special preparation of the subject [52]. Wet electrodes character-
istic of medical acquisitions were replaced by dry metallic electrodes, which in-
crease the long-term performance and cause low skin irritation. However, they have
high impedance between the electrode and skin, and are susceptible to motion ar-
tifacts [43]. Off-the-person acquisitions reduce the number of leads to two or three,
and their placements are confined to the upper limbs, especially on the wrists, hands,
or fingers [5,15,16,20,24,53–55]. Recently, a few initiatives have been conducted to
improve off-the-person configurations and approach unconstrained settings in ECG
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biometrics. These efforts seek to close the gap to real, commercial applications by de-
veloping wearable technologies for ECG acquisition or embedding the sensors into
common objects [7,11,13,18,28].

Table 3 presents a comparison of on-the-person and off-the-person acquisitions. Some
researchers also compared different types of data acquisition and their influence on the
performance of the biometric system. Jyotishi et al. [56] evaluated their model using
three on-the-person ECG databases and two-off-the-person ECG databases. The results
showed that the model performs well for both off-the-person and on-the-person ECG data.
Srivastva et al. [2] used two databases, one on-the-person and the other off-the-person,
and even mixed them together in a large database. The identification accuracies achieved
for both the on-the-person and the off-the-person databases were individually about 99%,
whereas an accuracy of approximately 98.5% was obtained for the mixed database. Thus,
the authors proved the robustness of their ECG biometric method from signal acquisition
methods. Biçakci et al. [7] used data from two different acquisition devices—the wearable-
based chest bands and the medical-based Holter—to investigate whether the models are
consistent and not biased by device specifications, providing reliable biometric verification
with wearable devices. The results achieved for both datasets presented an equal error rate
(EER) of around 5% for an enrollment time of 150 s, proving the reliability of using wearable
devices for ECG acquisition for biometric purposes. It is also important to note that off-
the-person methods have been gaining popularity in recent years for various applications
beyond biometric recognition, such as disease detection. For example, in [57], the authors
presented a method for recognizing diseases related to ECG and EEG data using sensors
available in off-the-shelf mobile devices as well as sensors connected to a BITalino device.
This suggests that these types of practical and convenient signal acquisition methods can
be useful for a wide range of applications beyond biometric recognition.

Table 3. Comparison of on-the-person and off-the-person acquisitions (adapted from [58]).

Item On-the-Person Off-the-Person

Type of Electrodes Wet electrodes Dry metallic electrodes
Number of Leads 5, 7, or 12 electrodes 2 or 3 electrodes

Placement of Leads Wrists, ankles, chest Wrists, hands, fingers
Movement Limited No restriction

Noise Low High
Performance High Medium

Number of Leads

A standard 12 lead ECG (or even 15-lead ECG) system can record more abnormalities
than a single-lead ECG (similar to lead I in a 12 lead ECG). Figure 4 shows a representation
of the standard 12-lead and the orthogonal-lead configurations. Due to the practical
difficulty of collecting 12-lead ECG, biometric systems with a reduced number of leads
have been evaluated.

Dong et al. [44] proposed an identity recognition system and investigated their be-
havior on the different ECG leads. The experiments based on one-lead ECG showed that
the best classification performance was obtained based on lead III and lead V1 and the
worst classification performance was obtained based on lead V6. Moreover, experiments
based on two-lead ECG outperformed experiments with one-lead ECG. Jekova et al. [59]
used 12-lead resting ECG and evaluated the influence of the different leads on a biometric
system. The capability of single limb leads was the lowest in III and aVR, and the highest
in I and II. The identification capability of single chest leads was the lowest in V3 and the
highest in V1. Multi-lead identification models yield considerably higher accuracy (about
20%) compared to the best single-leads. Porée et al. [47] proposed a method testing n = 1,
3, 6, and 12 leads, with all possible n-combinations of 12 leads tested. The best perfor-
mances were obtained with 12 leads and then decreased with the decrease of the number
of leads. With n = 3 and 6, the identification rate (IR) was still greater than 90%, whereas
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for n = 1, the IR was always lower than 90%. Fang et al. [60] tested their identification
system with one- and three-lead ECGs, achieving optimal accuracies of 93% and 99%,
respectively. Zhang et al. [9] suggested to place all the ECG electrodes on the left upper-arm
or behind the ears in order to achieve excellent wearability. For the acquisition on the
arm, the electrodes were integrated into an arm band, whereas for the acquisition behind
the ears, electrodes were integrated into headsets or glasses. The signal strength of the
single-arm ECG proved to be around 10% of the signal strength of the chest-ECG. However,
arm-ECG heartbeats can still be distinguished. Moreover, the ear-ECG was found to be
much weaker (5% of chest-ECG), but also shows a great potential for user identification
purpose leveraging distinguishable morphologies. The mean accuracy obtained was as
high as 98.8% and 91.1% for the single-arm and ear datasets, respectively.

Figure 4. Electrode placement and leads on the standard 12-lead configurations (left) and Frank
leads (right), with the anterior electrodes depicted in red and the posterior electrodes depicted in a
lighter red (adapted from [5], original figure kindly provided by the authors).

Duration of Acquisition

Some researchers also assessed the impact of the duration of the ECG segment on the
biometric identification’s performance. In the literature, it is predicted that the shorter the
duration of the ECG segment used, the lower the performance obtained by the system.
Ramos et al. [11] observed this behavior. However, when increasing the acquisition du-
ration, this conclusion was not valid from a certain point onwards, as more data might
introduce redundancy to the system. Results showed that around 10 s of signal are enough
to test the identity of an individual. Biçakci et al. [7] evaluated the performance of their pro-
posed method by varying the sample length. They used 5, 50, 150, 250, and 500 s of samples,
achieving an EER of around 7% with only 5 s of enrollment. Ibtehaz et al. [61] studied the
influence of the number of beats on the performance of the system, and results showed that
increasing the number of beats significantly improved the performance. They achieved the
perfect 100% accuracy using only three (ECG-ID [32], PTB [36] databases) and six (MIT-BIH
Arrhythmia [34] and Normal Sinus Rhythm [35] databases) beats. Bernal-Romero et al. [62]
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tested their authentication method on different ECG signal duration: 10, 5, and 3 s. The EER
rates for the authentication system with ECG signals had average values of 5.99%, 7.12%,
and 9.66% for signal lengths of 10 s, 5 s, and 3 s, respectively. Pinto et al. [63] varied the
number of enrollment templates between 5, 10, 15, and 30 s, achieving equal error rates
of 13.70%, 10.92%, 9.52%, and 7.56%, respectively. Djelouat et al. [64] used testing times
from 2 s to 5 s, and results showed an increasing identification rate from 84.44% to 98.88%.
Carvalho et al. [23] aimed to measure the minimal number of heartbeats in which it was
possible to identify subjects, even in situations where they were under the effect of fear
or disgust, using from just one heartbeat up to twenty heartbeats. The results showed an
optimal accuracy of around 75–80% when using 5–12 heartbeats.

3.1.2. Acquisition Protocol
Time Stability

The temporal separation between biometric evaluations may influence the system’s
performance. Chee et al. [65] investigated the influence of different time separations
between enrollment and testing data, using PTB [36] and ECG-ID [32] databases, with
83.9 days and 5.5 days between acquisitions, respectively. The model achieved accuracies
of 64.16% and 92.70%, for long- and short-time separation, respectively, meaning that the
model performance drops significantly when the time separation between the enrollment
and classification increases. Ramos et al. [11] studied this influence by evaluating ECG
segments from the same/different sessions. The results show that there is a decrease in
performance when the sessions are different, except when the signal is collected on the
fingers. Thus, the signal acquired on the fingers shows greater stability in the long term.
Conversely, the point of acquisition that presents the greatest decrease in performance
over time is the chest. Ibtehaz et al. [61] analyzed the cross-session accuracy using two
databases, concluding that identification accuracy sharply falls when tested on data from
a different session. Nevertheless, an accuracy above 90% was obtained for the ECG-
ID database [32] and, for the CYBHi database [30], the accuracy dropped below 80%.
Sun et al. [66] proposed a method for biometric identification, reaching a recognition
accuracy of about 95%. However, they found that the accuracy degraded dramatically to
40% when considering a significant time interval between the acquisition of the training
and testing templates. Porée et al. [47] proposed tests concerning the evaluation of the
performances with time, concluding that there may exist a degradation of the ECG stability
over time, with performances still acceptable after 16 months.

Number of Subjects

The impact of the database size on the accuracy of a biometric system is also a topic of
research. Choi et al. [67] used 20, 40, 60, 80, and 100 subjects, reaching an accuracy of 100%
for 20 subjects and an accuracy of 96% for 100 subjects, showing that the drop in accuracy
when increasing the number of subjects is minimal. Jekova et al. [59] presented consistent
validation of their identification models on an independent dataset by increasing its size
from 10 to 230 subjects. Their validation results confirmed the expected trend for accuracy
drop with the increase in the number of subjects. Chen et al. [53] evaluated their algorithm
on 5, 10, 20, 30, 40, and 50 subjects. They noticed that the performance decreases slightly
with the number of users increasing (false acceptance rate—FAR—increases from 0.00%
to 8.00% and false reject rate—FRR—increases from 0.00% to 10.00% when increasing the
number of subjects from 5 to 50). Carreiras et al. [17] tested the recognition system on an
ECG signal database with 618 subjects. However, they also tested the system with subsets
of this population, assessing the behavior of the recognition system with a varying number
of subjects. For the entire database, results showed an EER of 9.01% and an Identification
Error (IE) of 15.64%. The results of the population subsets highlight the fact that the EER
does not seem to be affected by the population size, while, conversely, the IE increases with
the number of subjects.
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Physical Condition

Some researchers investigated the influence of exercise and body movement on the
performance of a biometric system. Ramos et al. [11] studied the impact of the variability
caused exclusively by moving the hands, feet, and chest. The results demonstrated that
movement of the wrists causes the largest error in biometric identification, followed by
movement of the fingers, while movement of the chest has almost no impact on the
performance of the method. Huang et al. [68] showed that the ECG signal undergoes
small noise interferences while the subject is walking and large noise when the subject
is running or jumping. Nobunaga et al. [22] aimed to evaluate the effectiveness of their
proposed identification method on exercising humans. They measured ECG during rest for
one minute, with the subject lying down, and used these acquisitions to train the model.
The exercise ECG used to test the model was measured for each subject after raising their
foot so that their heart rate increased to over 100 bpm. The study reached an accuracy
of 100% during rest and 99.8% during exercise, indicating that their method is accurate
at identifying individuals doing exercise. Komeili et al. [54] also considered the case in
which enrollment and testing are in different body conditions: rest and exercise. A feature
selection was conducted to select features that are less affected by exercise; these were, then,
used for enrolling and testing the biometric system’s users. Experimental results showed
an EER of 11%. Moreover, Lee et al. [69] showed that the ECG cycle became shorter after
10 min of physical exercises, running, and holding breath for a certain period.

Posture

Most of the studies only consider supine rest conditions, which represent an impor-
tant limitation regarding the use of ECG-based biometric systems in real-life contexts.
Tirado-Martin et al. [21] acquired signals in different posture positions: sitting down at rest,
standing at rest, and after exercise. They proved that different heart rates between the en-
rollment and recognition data result in lower performances. However, the best performance
was achieved with the enrollment data acquired in a sitting position at rest. Iqbal et al. [70]
achieved an accuracy of 100% when identifying 9 subjects at normal and resting conditions
and an accuracy of 96.4% when identifying 39 subjects in 6 different physiological states
(working, going up stairs, going down stairs, natural gait, lying with changed position
and resting while watching TV). Wahabi et al. [71] considered an enrollment protocol in
which each user’s ECG signal is collected under sit, stand, supine, and tripod postures.
The accuracies achieved were 98.04% for sit, stand, and supine and 94.12% for tripod.
Raj et al. [16] used ECG collected in three postures: a sitting posture at rest, a standing
posture at rest, and a sitting posture after 20 s of exercise. They achieved an EER of 4.34%
for the “standing” case, whereas the “sitting” and “after-exercise” cases worsened to 11.07%
and 12.06%, respectively. Moreover, Wahabi et al. [72] also investigated the effect of body
posture on ECG biometric accuracy, demonstrating that the performance of all the methods
degraded when the train and testing data were not from the same body position. However,
Porée et al. [47] showed that it is still possible to obtain good results even if the position in
which the testing data was recorded is not present in the enrolment database.

Emotions

An individual’s emotional state is continually changing. These changes occur natu-
rally as a result of body chemistry, levels of stress, and even time of the day. The changes
in emotional state are expressed in the ECG trace as changes in heart rate, noise in trace
due to muscle flexor action, and variations in electrical potential gain. Thereby, some
researchers have investigated the impact of emotions on the identification of individu-
als [73]. Zhou et al. [74] proposed a method of ECG biometrics using signals acquired
under different stress levels, achieving an average recognition rate of 95%. Li et al. [18]
used the public database DREAMER, in which the ECG signals acquired from wearable
devices are disturbed by the physiological noises from emotional fluctuations induced by
different stimuli. The accuracy obtained was of 91.30%, meaning that their method was
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capable of handling different kinds of emotional disturbances and identifying individuals
accurately. Zheng et al. [75] investigated whether ECG based identification was affected
by the status of ECG signal collecting, considering four status pairs: emotional status
(calm, high pressure), eating (starve, satiation), sleeping (full, lack), and health (healthy,
tired/cold). From the obtained results, the authors concluded that negative emotions
(high pressure) and lack of sleep reduced the True Positive Rate (TPR) slightly (around
2–3%), but there was no effect on both eating and health pair status. When using ECG
data mixed with all four statuses, the overall TPR of identification reached approximately
85%. Zheng et al. [76] self-collected calm and high-pressure ECG datasets to investigate the
influence of different emotional statuses. They achieved accuracies of 98.10% and 95.67%
for calm and high-pressure data, respectively, showing that the ECG signals under different
emotion statuses can be used in reliable and accurate biometric systems. Israel et al. [73]
used ECG data collected during seven different tasks performed to stimulate different states
of anxiety. The low stress tasks were the subject’s baseline state, mediative, and recovery
tasks. The high stress tasks were reading aloud, mathematical manipulation, and driving
in virtual reality. Results showed that both within and between anxiety states, nearly all
the individuals were correctly classified, as the accuracies obtained were around 97–98%.

Cardiac Conditions

The behavior of a biometric system under heart conditions has also been assessed.
Chen et al. [77] focused on the comparative performance analysis of human identifica-
tion with ECG signals collected from subjects in different health conditions. Data used
consisted of ECG signals from 38 elderly subjects with a variety of chronic diseases and
30 young healthy students. Experimental results indicated that a better recognition ac-
curacy is achieved for healthy subjects (98.14%) when compared to elderly unhealthy
subjects (95.62%). Becerra et al. [78] used a database comprising 20 healthy subjects and
20 pathological subjects (diagnosed with different types of cardiac murmurs). The accu-
racies obtained were 91.19% and 97.74% for patients with cardiac murmurs and healthy
patients, respectively. Singh et al. [79] used the QT database for patients with cardiac
diseases and a second database for healthy patients. The proposed ECG biometric method
achieved EER of 0.76% and 0.71% in recognizing people suffering from cardiac arrhyth-
mia and people of good health, respectively. Regarding mixed health status, the method
achieved an EER of 1.31%, confirming a very good performance and robustness of the
proposal. Singh et al. [48] proposed a method to identify arrhythmic and normal subjects,
reaching an accuracy of 87.37% for the subjects of MIT-BIH Arrhythmia database [34] and
92.88% for the IIT (BHU) database. Sidek et al. [80] also used three different databases
containing various irregular heart states: MIT-BIH Arrhythmia database [34], MIT-BIH
supraventricular arrhythmia, and Charles Sturt diabetes complication screening initiative,
achieving accuracies of 96.7%, 96.4%, and 99.3% for each, respectively. Loong et al. [81]
showed that diseased ECG only reduced the recognition rate by less than 1% and, thus,
the system is robust towards diseased ECG. Contrarily, Chiu et al. [82] registered a drop
of 19% between identifying normal subjects and subjects with arrhythmia (100% and 81%,
respectively). Moreover, Ghazarian et al. [83] assessed the accuracy of ECG-based identifi-
cation for distinct heart condition groups. They discovered that, in contrast to the initial
expectation that identification accuracy for healthy normal sinus rhythm should be the
highest, the identification accuracy is higher for patients with sinus tachycardia or patients
who are diagnosed with both ST changes and supraventricular tachycardia. Conversely,
they observed that patients with premature ventricular contractions have an identification
accuracy as low as 78.54% and patients with a pacemaker presented an accuracy of 80.2%.

The conditions under which ECG data are acquired can have a major impact not only
on the performance of a biometric system but also on the ability to accurately and reliably
detect heart conditions. As such, several studies have been investigating the influence
of several factors, such as electrode placement, lead configuration, physical exercise, and
the intrusiveness of acquisition, on the detection of heart diseases [84–86].



Sensors 2023, 23, 1507 14 of 31

3.2. Acquisition Devices
3.2.1. Commercially Available Devices

During the last years, the market of medical-grade wearable ECG devices has ex-
panded, and these have increasingly been used for biometric purposes since they can be
easily integrated in biometric systems, reducing costs, power consumption, and time of
acquisition. However, researchers still use non-wearable devices for data acquisition since
they allow records with higher quality. In this section, some of the most used commercially
available acquisition devices are presented, as well as some self-developed sensors for ECG
acquisitions. Figure 5 shows the commercially available devices described in this section.

Figure 5. Commercially available devices.

1. Vital Jacket
The VitalJacket [87], presented in Figure 5a, is a wearable device developed by re-
searchers from the IEETA research unit at the University of Aveiro and commercialized
by Biodevices SA [88]. It is designed to continuously record high-quality ECG and
other vital signals in various clinical and everyday settings. The collected data can
be stored on an SD card for offline analysis or transmitted via Bluetooth to mobile
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devices for real-time monitoring and online processing. Ye et al. [13] investigated
the applicability of ECG signals from such wearable device in human identification.
In the five-subject study, their proposed method exhibited near 100% recognition rates
based on single heartbeats, even with a six-month interval between the training and
testing data. Ramos et al. [11] used VitalJacket to collect ECG signals from twenty
healthy participants in two sessions separated by 2 weeks. They investigated the
impact of movement, the influence of using different ECG acquisition placement,
the impact of temporal separation between sessions, and the impact of the acquisition
time. The authors reached an accuracy of 99% for signals collected on the fingers
in two different sessions. For the various experiments, the results suggested that the
ECG signals acquired using VitalJacket can be used as robust biometrics.

2. RespiBan
The RespiBAN Professional, which is presented in Figure 5b, is a wearable system
made by PLUX, which includes a PLUX accelerometer biosensor and biosignal acqui-
sition hardware, as well as a respiration biometric sensor embedded in the chest strap
fabric. This device can measure various biosignals, including ECG, electrodermal
activity (EDA), electromyogram (EMG), and skin temperature. The collected data can
be transmitted to mobile devices via Bluetooth. Biçakci et al. [7] used the WESAD
dataset, which consists of ECG recordings collected from a RespiBAN device. The EER
obtained was 7.07%, meaning that ECG biometrics will be a valid verification option
(or could be in the future) using wearable devices for data acquisition.

3. Nymi Band
The Nymi Band [89], shown in Figure 5c, is a wearable device that uses the wearer’s
unique cardiac signal to unlock Bluetooth-enabled devices such as computers, smart-
phones, and cards. To authenticate the user, the Nymi Band is placed on the wrists
and the top of the device is touched with a finger. As long as the device is worn,
the user remains authenticated. The Nymi Band is equipped with a heart rate monitor,
accelerometer, gyroscope, and biometric authenticator, and is powered by a recharge-
able battery. Chun et al. [14] used ECG data from 15 subjects collected using the Nymi
Band, achieving an EER of 0.9%, which proves the reliability of this wearable device.

4. ReadMyHeart
ReadMyHeart [90], shown in Figure 5d, is a handheld, non-invasive heart monitor-
ing device made by DailyCare BioMedical Inc. It allows users to record electrical
signals from their hearts by placing their thumbs on the device’s conducting plates,
without the need for wires or conducting gel. The device takes 30 s to record each
measurement and displays the average heart rate, ST segment, and QRS interval.
These readings are based on a “modified Lead I-ECG”, rather than traditional stan-
dard ECG readings. Islam et al. [15] captured ECG signals from 112 individuals using
the handheld ECG device ReadMyHeart, achieving a minimum EER of 10.52%.

5. Vernier ECG Sensor
The Vernier ECG Sensor [91], presented in Figure 5e, is a device used to measure the
electrical potential waveforms produced during the contraction of the heart. It can
be used to record standard three-lead ECG tracings or surface EMG recordings of
muscle contractions in various parts of the body. The device is usually associated
with the Vernier Go!Link interface, which is a low-cost USB sensor interface that
connects Vernier sensors to a computer. Raj et al. [16] used the Vernier sensor for
ECG acquisitions on the arm with different body postures, achieving an Optimal
performance with an EER of 4.34%.

6. Philips PageWriter Trim III
The PageWriter Trim III [92] is a compact and cost-effective cardiograph made by
Philips, shown in Figure 5f. It is an interpretative ECG system designed for fast-paced
clinical environments, with features such as a high-resolution full-color display and
the ability to report, store, and transmit 12-lead ECG data using industry-standard
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XML. Carreiras et al. [17] used Philips PageWriter Trim III for ECG acquisitions of
618 subjects, achieving an EER and an IE of 9.01% and 15.64%, respectively.

7. Shimmer ECG Sensor
The Shimmer ECG unit [93] is a device designed for the measurement of physiological
signals for ECG, and it is presented in Figure 5g. It includes a configurable digital
front-end and an ECG sensor that can record the pathway of electrical impulses
through the heart muscle. The sensor can be used to record ECG data on resting and
ambulatory subjects, or during exercise to provide information on the heart’s response
to physical exertion. Li et al. [18] used a public database, DREAMER, in which data
were acquired using the Shimmer ECG Sensor, and an accuracy of 97.2% was obtained.

8. BioPLUX Electrocardiography Sensor
The BioPLUX [94] low-noise ECG local differential triode configuration enables fast
application and unobtrusive single-lead ECG data acquisition. This sensor can be used
to extract heart rate data and other ECG features, enabling its application in research
fields such as biomedical, biofeedback, psychophysiology, and sports, among many
others. Silva et al. [19] used the BioPlux Electrocardiography Sensor presented in
Figure 5h integrated on a steering wheel for in-vehicle driver recognition, achieving
an IE of 2.40%.

9. Maxim 86150 Evaluation Kit
Maxim 86150 Evaluation Kit [95], presented in Figure 5i, is a device designed to
evaluate the photoplethysmogram (PPG) and ECG bio-sensor module. The device
includes a Microcontroller Board and a Sensor Board. The Microcontroller Board
houses a microcontroller unit (MCU) with preloaded firmware, Bluetooth connectivity,
and power management. The Sensor Board includes the MAX86150 Bio-Sensor
Module and two stainless steel dry electrodes for ECG measurement. The Evaluation
Kit is powered by an included lithium polymer battery, which is charged with a
micro-USB cable. When monitoring is active, the module uses IR Proximity Mode
to detect each user’s fingers, and a red LED will turn on when a finger is near the
module. Sorvillo et al. [20] used the Maxim 86150 Evaluation Kit to collect ECG for
human identification under rest and mental and physical stress, reaching accuracies
of 88% and 68%, respectively.

10. The BioRadio
The BioRadio [96] is a wireless biomedical monitor, shown in Figure 5j, with pro-
grammable channels for recording and transmitting various combinations of human
physiological signals. It is easy to set up and operate, and the wearable device cap-
tures data in a flexible file format compatible with a variety of software suites and
proprietary tools. Huang et al. [68] used the BioRadio device with the positions of the
electrodes following the Einthoven’s configuration. Abdelazez et al. [97] also used
this device, but the electrodes were positioned under the right and left thumbs instead.
Their system achieved a precision of 0.68, being able to identify 98.7% of the false
positives while retaining the true positives rate.

11. Biopac MP160
The BIOPAC MP160 [98] is a 16-channel system designed for the acquisition of various
physiological signals, including Heart Rate Variability (HRV), Electroencephalogram
(EEG), EMG, EGG, and many more. The device, represented in Figure 5k, offers
multiple configurations to suit different research and teaching needs, and records
multiple channels with different sample rates up to 400 kHz. Used in conjunction with
AcqKnowledge software and BIOPAC electrodes, amplifiers, transducers, and other
system components, the MP160 is part of a complete data acquisition and analysis
system. Many researchers used the BIOPAC system for data acquisition of their
proposed biometric system [21–23].
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12. Kardia by ALIVECOR
Kardia [99] is a wireless device that allows users to record a medical-grade single-lead
ECG in 30 s and receive instant analysis on their phones. It is clinically validated, CE
marked, and FDA-cleared, making it a reliable option for checking one’s heart from
home. Kardia, in Figure 5l, is compatible with most popular phones and tablets and,
to use it, one only needs to download the Kardia app. Arteaga-Falconi et al. [24] used
the Kardia device along with a mobile phone for ECG acquisitions at different times
and conditions, proving the reliability of this mobile device, since the results revealed
1.41% of FAR and 81.82% of true acceptance rate.

3.2.2. Self-Developed Acquisition Devices

As mentioned above, there are also some researchers who developed their own
ECG sensors.

1. Savvy
Rashkovska et al. [25] developed a wireless ECG sensor for long-term monitoring
and tested it in various applications, including biometric authentication. The initial
prototype of the wireless body sensor (WBS) was powered by a coin-sized battery and
included a low power microcontroller and a 2.4 GHz radio transceiver. The design
was later improved to include a rechargeable battery and a Bluetooth Low Power
(BLE) radio transceiver for communication. The WBS is attached to the skin by using
self-adhesive electrodes and has evolved into a more flexible and lightweight design
that allows for unobtrusive long-term health monitoring and low-cost implementation.
It is now commercially available as the SavvyTM sensor. The proposed methodology
for biometric authentication using this device achieved an EER from 6% to 13%,
depending on the subject.

2. Basco et al. [26]
Blasco et al. [26] developed a wearable sensor capable of measuring photoplethysmog-
raphy (PPG), ECG, Galvanic Skin Response (GSR), and Acceleration (ACC) signals
from the wrists. The ECG sensor is from Bitalino [100] and the two electrodes were
placed on the inner side of the wristband and on top of the wristband, respectively.
The viability of the use of the sensor on a biometric system was tested in three differ-
ent acquisition conditions: sitting, walking, and sitting after exercise, and the results
were promising.

3. Guven et al. [3]
Guven et al. [3] also developed a fingertip ECG data acquisition device for biomet-
ric purposes. The device consists of two dry-contact sensors, produced by Plessey
Semiconductors, an instrumentation amplifier, an anti-aliasing filter, an optocoupler,
a digital signals controller (DSC), and a USB connection unit. The authors conducted
an experiment to evaluate the performance of the proposed device by comparing it to
the use of lead-I ECG signal, recorded using Biopac MP36 with three conventional
Ag/AgCl electrodes and gel. The results achieved were around 100% for the IE,
showing that this portable, inexpensive, and user-friendly device is very promising
for biometric applications.

4. Wieclaw et al. [10]
Wieclaw et al. [10] developed a sensor using an Arduino Uno and e-Health Sensor
Platform V2.0 for data acquisition. Arduino Uno is a microcontroller board with 16
MHz quartz crystal and a USB port for programming, debugging, and data transfer.
The e-Health Sensor Platform V2.0 extends the Arduino Uno and enables the imple-
mentation of biometric and medical applications. Data acquisition was performed
using differential OpAmp schema followed by 8-bit ADC operating at 277 Hz sam-
pling rate. ADC data were transferred to a PC via the COM-port using the PySerial
Library. Modified schema required the user to touch the electrodes with two fingers
from the left hand and one finger from the right.
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5. Peter et al. [27]
Peter et al. [27] used a low-cost sensor and designed a sensor processing board.
They used conventional wet cloth electrodes with repositionable conductive adhesive
hydrogel to measure the electrical activity from the skin surface. Then, a sensor
board that amplifies and filters the signals was designed. They applied a standard
difference amplifier approach, which is a suitable solution since the basic ECG data is
obtained as an output of the difference of two leads placed on the body. The circuit
build consists of three parts: the differential amplifier, a filter, and a post amplifier.
Afterwards, the signal follows to an embedded target platform, called Raspberry Pi
(RPi), which is a low-power single-board computer. One advantage of the RPi is that
it is supported by MATLAB Simulink and a range of design tools, which facilitates
easy and fast prototyping.

6. Ramli et al. [28]
Ramli et al. [28] developed a portable ECG detection kit integrated into a wearable
bracelet that is responsible for detecting the heartbeat signal of the user and sending
out the ECG signals to be processed via Bluetooth. The sensor is equipped with three
electrodes and by placing a finger on the topside electrode while the user’s wrists are
in contact with the other two electrodes, an electrical circuit is completed; ECG signals
are able to be detected by the device. The heartbeat detection kit is formed by six
main parts: instrumentation amplifier (IA), high-pass filter (HPF), 60 Hz notch filter,
low-pass filter (LPF), analog-to-digital converter (ADC), and signal transmitter. They
also developed an Android platform application that acts as a secure login system.
This application receives the serial data from the heartbeat detection kit through a
Bluetooth connection. Then, when the sign-in or sign-up function of the application
is triggered, the incoming data is saved to the database. The database will trigger
the back-end system which is the Intel platform board to perform the embedding,
features extraction, and pattern-matching processes. Once the processes are done,
the verification result will be sent to the android application GUI.

7. Lourenço et al. [29]
Lourenço et al. [29] proposed a method and device for ECG acquisition, using a single
lead setup at the fingers, with Ag/AgCl electrodes without gel. This setup aims to
increase the usability and acceptability of ECG-based biometric systems to the level of
other biometric traits in terms of signal acquisition. The rigid base integrates three
leads which, due to the underlying sensor design, correspond to the ground, positive,
and negative poles. The right-hand thumb is used as a negative electrode and the
left-hand index finger acts simultaneously as the positive and ground electrodes.
The base sensor is an ecgPLUX active ECG triode and the transmission was done via
a Bluetooth wireless bioPLUX research biosignal acquisition unit.

Table 1 show an overview of the commercially available and self-developed sensors
described in Sections 3.2.1 and 3.2.2.

3.3. Databases

Currently, there are several collections publicly available for ECG biometrics research.
Below, the most relevant of the currently available ECG collection are characterized. Table 2
summarizes the characteristics of each. Some are publicly available and can be found on
physionet [101].

3.3.1. On-the-Person

1. MIT-BIH Arrhythmia Database
The MIT-BIH Arrhythmia database [34] is a widely used resource for ECG-based bio-
metrics research and is available at the Physionet repository. It consists of 48 half-hour
ECG recordings from 47 subjects that were collected in the laboratories at Boston’s
Beth Israel Hospital. Out of 27 subjects, 23 recordings were selected from a mixed
population of inpatients (about 60%) and outpatients (about 40%), and the remaining
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25 recordings were selected from the same set to include less common but clinically
significant arrhythmias. The recordings were digitized at 360 samples per second per
channel with an 11-bit resolution over a 10 mV range [49].

2. MIT-BIH Normal Sinus Rhythm Database
This database is composed of excerpts from 18 subjects from the MIT-BIH Arrhythmia
database presented above, which are deemed to be free from arrhythmias or other
diseases. Subjects included in this database were found to have had no significant
arrhythmias, and they include 5 men, aged 26 to 45 and 13 women, aged 20 to 50 [35].

3. MIT-BIH Atrial Fibrillation
This database contains 25 long-term ECG recordings of human subjects with atrial fib-
rillation (mostly paroxysmal). The individual recordings are each 10 h in duration and
include two ECG signals. The original analog recordings were made at Boston’s Beth
Israel Hospital using ambulatory ECG recorders with a typical recording bandwidth
of approximately 0.1 Hz to 40 Hz [40].

4. PTB Diagnostic Database
This database is obtained by the Physikalisch-Technische Bundesanstalt (PTB), Na-
tional Metrology Institute of Germany [36]. The database contains 549 records with
diverse profile information and various lengths of ECG from 290 subjects. Of the
290 subjects, 148 had suffered from myocardial infarction, 18 had cardiomyopathy
or heart failure, and 52 were healthy subjects. Acquisitions were performed both
through the standard 12-leads and the three Frank leads [49].

5. ECG-ID Database
The ECG identification database was recorded for biometric identification purposes [32].
Each raw ECG record was acquired for about 20 s with a sampling rate of 500 Hz
and a 12-bit resolution. The first two records acquired on the same day were used for
each subject. The database consists of 310 one-lead ECG recording sessions obtained
from 90 volunteers during a resting state. The number of sessions for each volunteer
varied from 2 to 20, with a time span of 1 day to 6 months between the initial and last
recordings [49].

6. E-HOL-03-0202-003 Database
This is an ECG database from the University of Rochester that is focused on biometrics.
The study population consists of 202 healthy subjects from the Intercity Digital Elec-
trocardiogram Alliance (IDEAL) database. The database includes 24 Holter recordings
that were acquired using the SpaceLab-Burdick digital Holter recorder. The equip-
ment provides 200 Hz sampling frequency signals with 16-bit amplitude resolution.
The ECG was acquired using a pseudo-orthogonal lead configuration (X, Y, and Z),
obtained through four electrodes placed on the chest. There is an initial resting supine
period with a duration of 20 min before starting the ambulatory recording [33].

7. QT Database
The QT database is a collection of ECGs that have been selected to showcase a wide
range of QRS and ST-T shapes, with the goal of testing QT detection algorithms
with real-world variability. These records were largely drawn from various ECG
databases, including the MIT-BIH Arrhythmia Database [34], as well as additional
recordings gathered at Boston’s Beth Israel Deaconess Medical Center. The additional
recordings were chosen to represent extreme examples of cardiac (patho)physiology,
including data from Holter recordings of patients who experienced sudden cardiac
death during the recordings, as well as age- and gender-matched patients without
diagnosed cardiac disease. The QT database includes a total of 105 fifteen-minute
excerpts of two-channel ECGs [37].

8. Drive Database
This database contains data collected from a real-world driving task designed to mea-
sure a driver’s stress level. The driving protocol involved following a predetermined
route for 20 min on open roads in the Boston area while following a set of instruc-
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tions. Four types of physiological sensors were used during the experiment: ECG,
electromyogram (EMG), skin conductivity (EDA and GSR), and respiration. These
sensors were connected to a FlexComp analog-to-digital converter, which isolated the
subject from the power supply. The ECG electrodes were positioned in a modified
lead II configuration to minimize motion artifacts and maximize the amplitude of the
R-waves, and the ECG was sampled at 496 Hz. In total, 27 collections were recorded, 6
from drivers who completed the course only once, and 7 from 3 drivers who repeated
the course on multiple days [31].

9. Fantasia Database
The Fantasia Database is a collection of 120 min of continuous ECG recordings taken
while subjects were lying down. Two groups of healthy human subjects, ten young
and ten elderly participated in this acquisition. Only healthy, nonsmoking subjects
with normal exercise tolerance tests, no medical problems, and taking no medication,
were admitted to the study. The subjects laids supine for 120 min while continuous
ECG signals were collected. All subjects remained in a relaxed state with a normal
sinus rhythm while watching the movie “Fantasia” from Disney to help maintain
wakefulness [39].

3.3.2. Off-the-Person

1. CYBHI Database
In this work, Silva et al. [30] presented the CYBHI database which consists of 128 ECG
recordings acquired using the off-the-person approach. The ECG signals (2 min
long) were recorded simultaneously from both wrists and fingers using dry Ag/AgCl
electrodes and electrolycra strips, respectively. These sensors were placed on custom
hand-shaped support, and data synchronization was ensured using the syncPLUX
synchronization kit. The electrodermal activity data was also collected to provide
information about the arousal state of the subject, as the acquisition protocol included
both neutral and emotional elicitation tasks. The acquisition protocol consisted of
short-term and long-term sessions. Short-term sessions were conducted over 2 days
with 65 participants. The participants completed an experimental procedure that was
5 min long, during which they watched a low-arousal video and a high-arousal video
(a horror movie trailer). Long-term sessions consisted of 2 data acquisition moments
separated by a 3-month period with 63 participants. In both phases, only ECG signals
from the fingers were recorded, and in each of the sessions, the subjects were seated
for 2 min in a resting position with two fingers on the dry Ag/AgCl electrodes [52].

2. UofTDB
Pouryayevali et al. [38] collected a large database with 1012 ECG recordings from
different people. The acquisition hardware consisted of a pad with dry Ag/AgCl elec-
trodes, positioned so that the left thumb was placed on the positive electrode, whereas
the right thumb and right forefinger were placed on the negative and reference elec-
trodes, respectively. According to the acquisition protocol, the ECG recordings were
performed in the following conditions: supine, tripod, sit, physical exercise, and stand.
The ECG signals were recorded for all the subjects while sitting, but they were col-
lected in supine, tripod, physical exercise, and standing conditions only for 63, 63,
71, and 81 participants, respectively. Regarding the time interval, 72, 65, 54, 47, and
43 out of 1012 subjects participated in 2, 3, 4, 5, and 6 acquisition sessions, respectively.
The length of each recording ranged from 2 min to 5 min [52].

3. DREAMER Database
This database contains two-lead ECG recordings taken during affect elicitation using
audio-visual stimuli. The data was collected using eight film clips containing scenes
from different films that were designed to elicit a range of emotions. Of these eighteen
film clips, two were intended to evoke the following nine emotions: amusement,
excitement, happiness, calmness, anger, disgust, fear, sadness, and surprise. The film
clips were between 65 and 393 s long. ECG was recorded using a SHIMMER wireless
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sensor. A total of 25 healthy volunteers aged between 22 and 33 years old participated
in the study [41].

4. WESAD Database
This dataset consists of ECG recordings, along with several other physiological signals,
collected from 15 subjects using a RespiBan device. The device was placed around the
subject’s chest and recorded ECG using a standard three-lead configuration. After the
subjects were equipped with the sensors, a 20-min baseline was recorded (baseline
condition), while sitting/standing at a table. Neutral reading material (magazines)
was provided. During the amusement condition, the subjects watched a set of eleven
funny video clips. The following phase was a stress condition, in which the subjects
were exposed to the Trier Social Stress Test (TSST), which consists of a public speaking
and mental arithmetic task. The subjects had to deliver a five-minute speech on
their personal traits in front of a panel of three people, focusing on strengths and
weaknesses. After the speech, the panel asked to subjects to count down from 2023 to
0, in steps of 17, and asked to start over if they made a mistake. Both tasks lasted about
5 min, resulting in a total of ten minutes for the stress condition. The amusement
and stress conditions were followed by a meditation, in which subjects followed
instructions with their eyes closed while sitting in a comfortable position for seven
minutes [42].

4. Discussion

Based on the data reported so far, the following issues are discussed: (i) the comparison
of the acquisition hardware, (ii) the comparison of the acquisition protocol, (iii) inter-subject
variability, and (iv) intra-subjects variability.

4.1. Acquisition Hardware
4.1.1. Acquisition Devices

Most databases were collected from medical devices that often have more leads, which
makes them more informative. However, the large number of electrodes required, their
uncomfortable placement, the limited movement allowed, and the duration of recordings,
make it difficult to develop robust biometric systems. Some researchers have attempted
to address these issues by using acquisition methods that allow more movement and
longer durations using fewer electrodes. One of the most prominent examples was the
use of Holter systems, which are designed to continuously acquire ECG signals for several
hours while the subjects move and perform daily activities. The Holter monitors are
smaller devices compared to standard 12-lead ECG devices, but they still use many wires
to connect the electrodes to the recording machine. While these monitors have become
more advanced and capable of recording high-quality single or multi-lead ECG, they can
still be uncomfortable for patients to wear and can affect the ECG signal’s strength as a
biometric trait [25,102].

Despite the potential of off-the-person systems in a practical setting, there are still
some challenges that need to be overcome. Off-the-person systems still require the user to
hold the electrode or deliberately place the fingers or palms over them. This prevents us
to designate them as unconstrained systems, which puts the ECG at a disadvantage over
other biometric traits that can already be used for unconstrained recognition. In addition,
the use of dry electrodes in farther placement makes the acquisition more vulnerable to
interferences, thus affecting the quality of the signal. The efforts on wearable devices have
brought ECG biometrics closer to viable, unconstrained applications.

However, the adoption of wearables for biometrics also introduces new challenges [26].
First, wearable devices tend to use cheaper sensors and hardware than traditional biometric
systems. Consequently, sensor readings have more noise, and combined with natural
variability in the subject’s state, accuracy is more of an issue. Furthermore, wearable devices
have limited computational capabilities and must optimize the usage of their resources to
maximize battery life, while providing a quick response to biometric challenges. Hence,
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these issues must be addressed and adequately solved in order to obtain viable commercial
ECG biometric systems [3].

4.1.2. Number of Leads

It is known that each ECG lead contains discriminative information regarding the
electrical activity of the heart. However, the use of 12-lead ECG is a very unpractical
solution for biometric purposes, as it requires the placement of many electrodes. Hence,
biometric systems have been evaluated with a reduced number of leads, since it represents
interest from a technological point of view. Some researchers, such as Porée et al. [47],
tested the use of different combinations of leads (n = 1, 3, 6, and 12 leads) to evaluate the
behavior of the system. As expected, they achieved optimal performances with 12 leads
and then the performance decreased with the number of leads. However, with only one
lead, the performance was still close to 90%. Concerning the use of single-lead ECG,
researchers like Jekova et al. [59] used all 12 leads individually as single-lead configurations
in order to assess the influence of each lead. They stated that the capability of single
limb leads is highest in lead I (and lead II), which justifies the use of lead I in almost
all studies in the literature. Moreover, Zhang et al. [9] tried to reach high wearability
by placing the electrodes on the upper arm or behind the ears, using an armband and
headsets, respectively, proving that, although the strength of the ECG is much lower than
the chest-ECG, it still has a great potential for user identification purposes. Thus, more
efforts should continue to be made to improve performance while using a single-lead ECG,
gathered with minimal intrusiveness, as it is a much more user-friendly approach.

4.1.3. Duration of Acquisition

Short-term ECG data (less than several minutes) and long-term ECG data can com-
plement each other. Short-term ECG data is cheaper and easier to collect. Many cardiac
diseases can be detected based on short-term ECG, so such data represent the primary
diagnostic tool in outpatient departments. However, long-term ECG can help to detect
diseases with intermittent symptoms such as paroxysmal ventricular fibrillation (VF) and
atrial fibrillation (AF) [103]. Data acquisition should be a relatively fast process for bio-
metric scenarios. Nevertheless, it is predicted that the shorter the duration of the ECG
segment used, the lower the performance obtained by the recognition system. Thereby,
many studies assessed the impact of the duration of the ECG segment on the performance
of the biometric system, as mentioned above. In general, this behavior was observed in
most studies. However, Ramos et al. [11] showed that this pattern may not always be
valid from a certain point onwards, as more data can introduce redundancy to the system.
While optimal performances were achieved with ECG segments of 10 s in [11] and [62],
Djelouat et al. [64] reached an accuracy of 96.66% with only 5 s of acquisition. Thus, it
can be suggested that the optimal duration of acquisition may depend on the conditions
of acquisition. Taking into account that the duration of the acquisition for a biometric
system should be short, the optimally short acquisition time that does not compromise the
performance of the system should be investigated.

4.1.4. Sampling Frequency of Acquisition

In general, to ensure that ECG signals are recorded with sufficient detail and res-
olution, a sampling frequency of at least 500 Hz is commonly used, since it will allow
capturing fast changes in ECG signals [104]. When the sampling rate is lower, more infor-
mation can be lost in the recording and there is a greater change of high-frequency noise
being misinterpreted [5]. According to [105], due to the lack of points available in ECG
signals, signals with low sampling frequency are usually inefficient for ECG matching
purposes when methods such as cross-correlation, percentage root-mean-square deviation,
and wavelet distance measurement are used. As such, the low sampling frequencies used
in old commercial systems (e.g., 128 Hz) usually need a reinterpolation of data [106]. There
are already some studies that developed enhancement techniques to increase the number of
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samples of a given ECG data from low sampling frequency recordings [107]. Nevertheless,
the frequency at which the ECG should be recorded depends on the specific application
and the equipment used for recording [104].

In the past, waves with smaller amplitudes were usually ignored since these were
almost always caused by noise. However, with the advent of high-resolution ECG technol-
ogy, it became possible to detect signals as small as 1 µV through the use of signal averaging
techniques. This advancement has provided new insights and has shown that techniques
to reduce noise are effective in clinical settings. In [106], the authors investigated the effects
of the amplitude resolution of ECG acquisition systems on the P-wave analysis. Results
proved that at lower bit resolutions, the percentage error is higher than 40%, meaning that
almost half of the results are different from the ones obtained with the highest resolution.
They concluded that the high resolution used in modern electrocardiographs was suitable
for ECG analysis.

There is no standard regarding data acquisition hardware information. Different
studies have used various sources, number of leads, and durations of acquisition, making it
difficult to compare results between different datasets. However, by analyzing the literature,
it can be concluded that the preferable solutions for the acquisition hardware of a biometric
system are the following: (1) an off-the-person approach, which is more realistic to a
biometric scenario and easily integrated into a biometric system; (2) a one-lead setup, as it
is the most practical solution due to the reduction of the number of contact points, making
the data acquisition of benefit to user acceptance; (3) a short-term ECG data, since such data
would be faster to acquire and to process, resulting in a user-friendly biometric system.

4.2. Acquisition Protocol
4.2.1. Number of Subjects

There is an expected trend for a performance drop with an increase in the number
of subjects; several studies have confirmed this expectation by testing the system with a
different number of subjects and registering a decrease in performance when increasing
the number of subjects [53,59]. However, a biometric system should be able to accurately
identify and authenticate many subjects. Although the vast majority of studies have tested
their models with small databases, Carreiras et al. [52], for example, used a database with
618 subjects, achieving promising results both on authentication and identification (EER
of 9.01% and EI of 15.4%). Thus, larger databases, as well as subsets of those databases,
should be used in biometric systems to assess their behavior according to the number of
subjects considered.

4.2.2. Time Stability

Multi-session ECG authentication, with enrollment and authentication signals cap-
tured across two or more different sessions, has become a more relevant problem of late,
primarily because of its similarity to real-world use cases. Error rates calculated using
multi-session datasets have been reported to be significantly worse than those using sin-
gle sessions. Two acquisition sessions in a dataset may differ in several different ways,
e.g., signals may be captured under different postures or heart-rate, different hydration
levels, or may be captured on different days [108]. Performance degradation might arise
from the morphological changes in the heartbeats from one session to another due to
variations in physical or physiological states of these subjects [45]. Ramos et al. [11] found
a decrease in the performance over time, except when the signal is collected on the fingers,
with the chest-ECG being the one that obtained the greatest decrease in performance over
time. Thus, off-the-person approaches, which are the most user-friendly, may not suffer
significant degradation over time.

4.3. Sources of Variability

The ECG signals could be affected by three major sources of variability, namely inter-subject
and intra-subject variability and artefact and noise, which will be individually described.
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4.3.1. Inter-Subject Variability

Inter-subject variability is the variability between ECGs from different individuals.
The ECG signal uniqueness can be assumed to be acquired mainly from the uniqueness of
DNA, besides other physical factors such as age, ethnicity, and gender, which contribute to
the different ECG variations. Since the ECG signal is universal, stable, and unique, the inter-
subject variability can be affected by the orientation of heart mass and the conductivity
of cardiac muscle. Despite this inter-subject variability, the ECG signal should remain
sufficiently stable over time to enable ECG-based biometric authentication. The main
reasons for inter-subject variability of ECG morphology are the heart geometry and the
individual attributes.

• Heart Geometry: Heart size, cardiac muscle thickness, and the overall shape of the
heart dictate the paths the electrical current follows inside the heart, the number
of muscle cells that depolarize, and the time it takes to depolarize the whole heart.
Athletes, due to their high levels of physical training, commonly have larger hearts
with thicker myocardia, which affects the ECG with higher voltages in the QRS
complex and results in lower basal heart rates [109,110].

• Individual Attributes: Age, weight, and pregnancy are some of the individual at-
tributes that can cause shifts in the heart position and/or orientation. These shifts
will change the orientation of the electrical current conduction vectors along the heart,
meaning the electrodes will detect the signal from a different perspective, thus altering
the ECG waveform. For instance, the QRS complex amplitude tends to increase from
birth to adolescence and then gradually begins to decrease afterward [8]. The authors
in [111] also find that the PR interval increases slightly with increasing age. Studies
have shown that the amplitude of the S wave in ECG signals is lower in women than
in men between the age interval of 18–40 [112]. While gender differences in ECG
signal parameters are more evident in young adulthood, they are known to decrease
their effect afterward.

4.3.2. Intra-Subject Variability

The intra-subject variability refers to the differences in ECG signals from the same
individual or within a single ECG signal. It is important for a biometric modality to have
low intra-subject variability, as well as high inter-subject variability and stability over time.
There are several sources of intra-individual variability such as chest electrode position
and respiration. While the former induces variation between ECGs of the same individual,
the latter induces variability within a particular ECG. Moreover, besides these two factors,
intra-subject variability may also be induced by many other factors [8]:

• Physical Exercise: The duration of and the intervals between the different deflections of
the heartbeats in an ECG signal vary with the heart rate. These changes are especially
visible in the interval between the QRS complex and the T wave in situations of
tachycardia (higher heart rates) or brachycardia (lower heart rates). Changes in
the heart rate caused by physical exercise or meditation can, effectively, affect the
electrocardiogram. While Lee at al. [69] showed that the ECG cycle became shorter
after 10 min of physical exercise, running, and holding the breath for a certain period
on different dates, Komeili et al. [54] also demonstrated that if, during feature selection,
one investigates the features that are less affected by physical exercise, one can still
achieve great biometric performance while exercising. Lee et al. [69] also investigated
the ECG patterns of smokers, finding that there was also a minimal change in the ECG
signal before and after smoking.

• Cardiac Conditions: Medical conditions of the heart can also interfere with the dy-
namics of the electrical pulse conduction and generate variability. In the scope of
biometrics, many databases consisting of ECG signals from patients with cardiac
conditions have been used. One of the most studied conditions is arrhythmia, which
causes wide variations in the heart rate across time. Chiu et al. [82] mentioned that
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the low accuracies can be justified by unstable QRS-complexes, causing extracted
features to change. However, Becerra et al. [78] stated that even though cardiac
conditions affect the performance of the system, accuracies can be higher for some
classifiers. Moreover, Ghazarian et al. [83] achieved different accuracies for different
heart conditions, meaning that feature selection and classification optimization should
be performed considering different cardiac conditions.

• Posture: Postures like standing or lying down differ widely on the position and shape
of internal organs. The heart is also affected by this, and changes its position in the
thorax, and thus its position in reference with the electrode placement, which causes
variations in the collected ECG signal. The vast majority of the ECG acquisitions are
performed with the subject lying down at rest. However, Porée et al. [47] stated that
there is no requirement or advantage to compare only ECG shapes in supine resting
conditions. Moreover, Raj et al. [16] presented more accurate performances while
standing (which is a more realistic biometric scenario) than while sitting. Furthermore,
Wahabi et al. [72] proved that the performance degrades if the training and testing
signals are not from the same position, meaning that the enrollment task should be
performed in different positions.

• Emotions: The sympathetic and parasympathetic systems of the autonomous nervous
system work to increase or reduce the heart rate, respectively. These systems are under
the direct influence of psychological states and thus, under stress, fear, and other strong
emotions, fatigue, or drowsiness, the heart rate and the ECG signal can be affected.
Even though some researchers still achieved good performances with different levels
of stress and anxiety (91% and 97% for [18,73], respectively), some others proved
a slightly negative impact of emotions on the performance of a biometric system.
As mentioned above, Zhang et al. [75] found a reduction of the true positive rate with
ECG signals acquired during high pressure and lack of sleeping situations, whereas
the eating and health status did not affect the system. Thus, since there is still no
consensus on whether emotions (stress, anxiety, levels of sleeping, levels of thirst
and eating, etc.) negatively impact the performance of a biometric system or not,
researchers should further investigate these conditions within their systems. However,
we must note that it is difficult to design an experimental setup that can induce the
same emotion in every subject, as different characters, varying moods, and the inability
to accurately self-report an emotional experience may significantly affect the outcome
of such a study.

4.3.3. Artefacts and Noise

• Electrode Material: The most used electrodes are silver/silver–chloride coated elec-
trodes with well known frequency-band characteristics and temperature stability.
However, different materials can have different characteristics affecting the recording:
temperature drift can cause variation of the baseline (low frequency oscillations) while
frequency-band modifications can cause attenuation of high frequencies [52].

• hlSensor Location: In the biometric scenario, it is common to use single ECG recording
with only two electrodes placed in non-standard locations which can lead to different
morphology of the ECG recording with respect to the standard recordings [73].

• Power-line Interference: Capacitive coupling with power lines can induce a superim-
posed (distorted) harmonic signal whose amplitude can obscure the morphological
characteristics of ECG: notch filtering is usually used to remove this interference [52].

• Baseline Drift: Respiration causes changes in thorax volume/electrical impedance,
therefore causing the isoelectric level to change slowly (in low frequencies ranges):
this artefact is usually removed via low pass filtering [52].

• Movement Artefacts: The contact interface between skin/electrode is subjected to
electrochemical reactions of ionic chemical species under the electrode inducing half-
cell potentials of the order of 1V or less. However, patient movements can change the
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electrode position and the chemical concentrations of these species can vary leading to
different half-cell potentials and therefore different iso-electrical (baseline) levels [52].

5. Conclusions

There are several challenges that must be addressed in order to effectively use ECG as
a biometric trait. While many studies have been conducted in reviewing the most popular
ECG feature sets and in highlighting similarities and differences among features and classi-
fication techniques, there is a lack of research on the data acquisition protocol [113], which
is the focus of this work. Regarding the population size, the majority of the studies have
been conducted on a small population (a few tens of subjects). Therefore, the applicability
of ECG biometric recognition on a large scale was not yet proven. Moreover, almost all
studies ignored the variability of the ECG during life span (i.e., variability induced by
work, ageing, sport activity, etc.); besides, only a few studies considered the applicability of
these techniques when subjects suffer from pathological conditions. ECG recognition in
pathological subjects is another aspect worth additional investigation. Finally, it must be
emphasized that, while guidelines are available for ECG acquisition in the clinical scenario,
there is still a lack of standardization on ECG acquisition (number of leads and their posi-
tioning, sampling frequency, number of bits, filtering, type of electrodes, etc.) for biometric
applications. However, ECG databases for biometric recognition should, ideally, include
recordings at a given sampling frequency and condition from the same subjects in different
circumstances (e.g., relaxed, during and after physical training) and for a period of several
years [114].

Despite the potential of the ECG to be used as one of the main biometric traits, there are
still some challenges that need to be solved, especially regarding the acquisition. Quality
research is key to addressing the open issues, taking the advantage of current oppor-
tunities and proposing increasingly competitive and applicable ECG biometric systems.
Furthermore, this research presents a valuable contribution to the field, emphasizing the
importance of ECG data acquisition conditions, not only for biometric recognition, but also
for other research topics such as disease detection.
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