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Abstract: The adequate characterization of pain is critical in diagnosis and therapy selection, and
currently is subjectively assessed by patient communication and self-evaluation. Thus, pain recog-
nition and assessment have been a target of study in past years due to the importance of objective
measurement. The goal of this work is the analysis of the electrocardiogram (ECG) under emotional
contexts and reasoning on the physiological classification of pain under neutral and fear conditions.
Using data from both contexts for pain classification, a balanced accuracy of up to 97.4% was obtained.
Using an emotionally independent approach and using data from one emotional context to learn
pain and data from the other to evaluate the models, a balanced accuracy of up to 97.7% was reached.
These similar results seem to support that the physiological response to pain was maintained despite
the different emotional contexts. Attempting a participant-independent approach for pain classifica-
tion and using a leave-one-out cross-validation strategy, data from the fear context were used to train
pain classification models, and data from the neutral context were used to evaluate the performance,
achieving a balanced accuracy of up to 94.9%. Moreover, across the different learning strategies,
Random Forest outperformed the remaining models. These results show the feasibility of identifying
pain through physiological characteristics of the ECG response despite the presence of autonomic
nervous system perturbations.
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1. Introduction

Everyone in today’s world has experienced suffering at some point in their lives. Since
pain is a varied experience for each individual due to many various factors, it is difficult
for health practitioners to grasp the pain felt by the patient [1].

Pain is a vital nervous system signal that suggests something is wrong within or
outside the human body and is an aggravating and confusing sensation that disturbs and
makes people uncomfortable. Pain is impacted by many various elements, such as age
and gender, and it manifests itself in a variety of forms and intensities, such as burns,
ashes, or pricks in a specific place of the human body [1]. When we are in pain, we
undergo considerable autonomic alterations, which leads to increased sympathetic outflow.
Similarly, pain alters the autonomic regulation of the heart, which may be assessed with a
Heart Rate Variability (HRV) analysis to determine the sympathetic and parasympathetic
tone [2].

Currently, there is no easy or automatic way to objectively measure pain. Thus, pain
evaluation necessitates reliance on patients’ quantitative and/or qualitative descriptions
of painful feelings and relies on self-reporting through scales, namely the Visual Analog
Scale (VAS) or the Numeric Rating Scale (NRS). The main idea behind these scales is to
ask the patient to choose the pain level from 0 to 10, where 0 represents no pain and
10 represents the worst pain imaginable. The issue with these measurements is their
reliance on patient knowledge, communication, and pain experience. As a result, it will
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not operate in circumstances such as unconscious adults or newborns, among others.
Therefore, more accurate methods of assessing pain intensity, such as automated pain
intensity recognition, must be developed.

Furthermore, emotions can alter the severity of pain perceived, either decreasing or
increasing it. For example, if the patient is joyful, the severity of the pain is reduced; if
the patient is unhappy, the intensity is enhanced [3]. Thus, when investigating pain, it is
advised to consider the patient’s emotional condition.

There are several hurdles in the development of automatic pain identification systems,
including (1) the availability of data, which are difficult to obtain; (2) interindividual
variances, which frequently account for more variation than the signal of interest, and
in a clinical setting, a baseline-only calibration appears to be the most realistic, though
group-specific models may be an option; (3) measuring low-intensity pain, which only
yields low amplitude responses; (4) dealing with interfering factors and artifacts, such as
motion during data collection; and (5) the systems must assess pain and accompanying
emotional states concurrently, due to the influence of the latter on pain.

Although several studies have focused on the human body’s response to pain in recent
years, namely undertaking the identification of pain based on physiological characteristics,
few investigations have addressed the impact of emotions and their involvement in the
sense of pain.

As a result, there is a critical need to advance quantification techniques that should be
simple, direct, cost effective, relevant regardless of the circumstance, and takes into account
the emotions felt during measurement.

This work is organized as follows: Section 2 presents the background on pain induction
and related works on the assessment of pain using physiological signals. Section 3 describes
the implemented protocol for data collection, along with the materials and methods used
in this study. In addition, it also presents data preprocessing and processing techniques,
a description of the extracted features, and the machine learning methods employed.
Sections 4 and 4.2.4 present the obtained results and a discussion of these, respectively.
Finally, the key findings and future work are exposed in Section 6.

Challenges and Goals

This work intends to go further in pain classification, aiming at analyzing the physio-
logical response to pain under different emotional contexts and the stability of the physi-
ological response when pain is induced at different time periods. To attain these goals, a
pain-inducing protocol with emotion elicitation was implemented at different time periods
for the same participants, and several training and testing approaches were proposed.

The first challenge was the construction of a dataset with physiological signals col-
lected during pain induction and under emotional contexts at different time periods,
allowing the reasoning on the elements that have the most influence on pain recognition,
and contributing to the development of a system that can recognize pain taking the time
and the emotional correlates into account.

In addition to the construction of the database, this study aims to analyze the electro-
cardiogram (ECG) signal during pain induction under different emotional contexts. The
main hypothesis is that although different elicited emotions may alter the pain perception
of the participants, the physiological response to pain should remain the same. Moreover,
most of the existing studies attain the recognition of pain through a multimodal perspective,
considering the combination of characteristics extracted from different physiological signals.
Thus, grounded only on the most widely used physiological signal, the second challenge is
how to derive pain recognition models by relying solely on information conveyed by the
ECG and taking into consideration the effect of time span and emotional conditions. This
was attained by proposing a session-independent approach to predict pain, which allows
us to reason about the stability of the physiological response to recognizing pain.

Finally, the last challenge derives from the fact that the literature provides few pain
recognition models using a participant-independent approach. For these, the performance
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of models is evaluated in data from participants that were not present in the training
process. In this work, this goal is accomplished by advancing pain recognition models
trained in a leave-one-out procedure with data from both sessions.

2. Background and Related Works

To generate and evaluate pain in a controlled environment, three essential parameters
are required: a noxious stimulus, a protocol or technique of stimulus delivery, and a
standardized way of measuring the response to noxious stimulation [4].

The Cold Pressor Task (CPT) is an example of a method of thermal stimulation,
whereby the participant places their hand and forearm in cold water for as long as they
can handle, and a slow and gradual pain is induced that dispels quickly after the removal
of the limb from the tank [5]. This procedure usually employs water with a temperature
between 5 ◦C and 15 ◦C, and the lower the temperature the more pain is induced. The use
of 10 ◦C water is very common with children and 6 ◦C with adults [5,6]. This technique has
various advantages, including the absence of elements that might induce weariness, nausea,
and unpleasant medical procedures in clinical practice. Furthermore, this procedure
is safe, interesting, and efficient, and it allows for control over the position, duration,
and strength of the produced stimulation. Additionally, it takes little training to utilize,
owing to the nonthreatening character of cold-induced discomfort. However, it has certain
drawbacks, such as high methodological heterogeneity in task utilization and pain outcome
measurement between research teams and studies [6].

2.1. Related Work

Considering the alterations that pain incites in autonomic reactivity, the ECG is the
most explored signal in the literature. The ECG is a sort of graph that depicts the electrical
activity of the heart, offering a time–voltage chart of the heartbeat. As a result, the ECG is
separated into sections based on the electrical activity of the heart, such as the P wave, QRS
complex, and T wave [7].

Concerning the physiological analysis of pain, several works in the literature make use
of the BioVid Heat Pain Database [8], a multimodal database in which pain was induced
at different degrees, as well as emotion elicitation using the dimensional and discrete
paradigm. The study’s major goal was to identify the elements and feature patterns that
lead to the highest identification rate for pain perception, quantification, and emotional
dissociation [8]. There are 90 participants in this database, ranging in age from eighteen to
thirty-five years old, thirty-six to fifty years old, and fifty-one to sixty-five years old, with
half being men and the other half being women, and each age group had 30 participants.
The Skin Conductance Level (SCL), ECG, electromyogram (EMG), and electroencephalogra-
phy (EEG) were the biosignals acquired using a Nexus-32 amplifier. The pain was induced
with a thermode inserted in the right arm, and the participants were seated in a chair with
their arms resting on a desk in front of them during the protocol. It is conceivable to evoke
quantifiable pain under high control conditions with this technology without producing
skin burns. The pain was stimulated for around 25 min, with four different individual
pain levels being randomly selected and stimulated 20 times each. Participants expressed
happiness, sorrow, rage, fear, disgust, and pain during the procedure. Images and movies
were utilized to induce these feelings.

The BioVid Database was utilized in [9], and features were extracted from videos and
biosignals. The features were then used to train a Random Forest (RF) classifier. Using
just the biosignals, the accuracy in classifying between the baseline and each pain level
ranged between 49.1% and 75.6%, with the greatest pain level having the best accuracy
and the lowest pain level having the lowest accuracy. These findings are not surprising
given that the majority of the participants did not show responses to the low pain stimuli
at all. Higher levels of pain result in greater behavioral and physiological responses, which
are more easily detected, while the lowest pain stimulus was almost undetectable in their
system. In the lowest level of pain, the responses are either too slight to detect from noise,
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or they are absent entirely. Moreover, except for the lowest intensity level, person-specific
models outperformed generic ones in general.

Another study that used this database is [10], retrieving ECG and EMG features,
obtained from amplitude (related to the amplitude of the signal waves), frequency (related
to the number of occurrences of repeating events per unit of time), stationary (reflecting
some form of stable equilibrium), entropy (measuring the disorder of the system), linearity
(measuring the proportionality of changes in parameters), and variability (describing the
dispersion) before being fed into support vector machines (SVM). However, in this study,
pain levels were compared rather than all levels to the baseline. The accuracy varied
depending on the type of feature selection used; however, with forward selection, the
accuracy was greater than 88%. They also determined that the properties in the categories
of linearity, stationarity, variability, and frequency may only be considered good when they
are deemed to have more relevance in terms of the length or form of pain. Furthermore,
the EMG characteristics appeared to contribute significantly to pain measurement.

Additionally using the BioVida Dataset, the work of [2] advanced a regression algo-
rithm based on recurrent neural networks for the continuous estimation of pain intensity,
using Skin Conductance (SC) and HRV measures. Using undersampling to counteract the
original imbalanced data, after balancing the different classes of pain levels, the authors
reached a MAE of 1.05.

In [11], the authors compared the capacity of a combination of numerous autonomic
measures and each parameter alone to discriminate between four levels of pain severity.
In this study, 55 healthy participants, comprising 21 women and 34 men ranging in age
from 20 to 37 years old, were required to remain supine and avoid any movements for this
purpose. During the experiment, four heat intensity levels were randomly delivered for
one minute each, with 10 to 15 min intervals between the stimuli. In addition to the pain-
inducing techniques, respondents verbally assessed the felt pain intensity every 10 s during
the stimulation time, and physiological data such as ECG, photoplethysmography (PPG),
and SCL were gathered. The findings of this study showed that all five examined indicators
correctly distinguished between no pain and all other pain categories. However, none of the
criteria distinguished between the three pain categories. The linear combination of factors,
on the other hand, distinguished not only between pain and no pain, but also between
all pain categories. Furthermore, while individual autonomic markers do correspond to
some extent with various pain intensities, their linear combination differentiates across
pain categories better than each parameter alone.

Another work [12] utilized physiologic signals, such as SCL, Blood Volume Pulse
(BVP), and ECG, and focused on feature processing. Then, these were placed in a genetic
algorithm (GA) to reduce the number of features used by detecting the redundant ones.
Posteriorly, the features were transformed into linearly uncorrelated space via Principal
Component Analysis (PCA). To classify the data, SVM, linear discriminant analysis (LDA),
and k-nearest neighbor (kNN) algorithms were utilized and were evaluated for different
datasets, single-signal datasets, and multisignal datasets, as well as for multisubject datasets
and multiday datasets.

The authors of [1] proposed data augmentation before the pain classification stage. For
this purpose, the authors generated data using Least Square Generative Adversarial Net-
works. With multibiosignals (EMG, SCL, ECG) for different levels of pain from 85 healthy
participants, and by extracting 159 physiological features, the authors also performed
feature selection prior to training an SVM-rbf model (SVM with Radial Basis Function
kernel), achieving an accuracy of 82.8% for the multiclassification of pain levels.

Going beyond the pain recognition, the work of [13] proposes a framework for feature
extraction methods allowing for a fair comparison of the performances of feature extraction
and feature learning approaches. The authors concluded that simple feature engineering
approaches, relying on features extracted from the signals based on expert knowledge,
lead to better performances than deep learning approaches, and that more complex deep
learning architectures do not necessarily outperform simpler ones. Moreover, according
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to the survey used in [14], the works that rely on neural network architectures for pain
recognition used features extracted from video or audio content. On the other hand,
when attaining pain recognition through physiological modalities, several authors rely on
machine learning algorithms such as SVM, LDA, kNN, regression, Decision Trees (DT),
and tree ensembles.

3. Materials and Methods

This chapter details the protocol’s related aspects, as well as the methods used for
data analysis.

3.1. Experimental Protocol for Data Collection

This research was undertaken to measure the effects of emotional contexts, where
individuals were subjected to pain while different emotions were elicited, to determine the
differences in the physiological responses to pain. Thus, a specific experimental protocol
was designed with the goal of discovering which changes pain causes in human bodies
and how emotional contexts affect these.

It is important to point out that this procedure was performed during the SARS-CoV-2
pandemic, which meant that adjustments had to be made to diminish the risk of infection
for the participants and researchers conducting the study, such as the use of protective
equipment and disinfection of the space and hands.

3.1.1. Inclusion and Exclusion Criteria

Volunteer participants were sought from the university students’ community accord-
ing to the following criteria: (1) age superior to 18 years and inferior to 50 years; (2) not
displaying severe mental illness or neurological diseases; (3) not suffering from any ailment
which causes chronic pain; (4) ability to interpret and answer the self-report measures; and
(5) willing to offer informed consent and participate in this study.

Due to the CPT procedure, participants having a history of cardiovascular illness and
Raynaud’s disease, seizures, frostbite, cuts, sores, or fractures on the hand and/or on the
forearm to be immersed were disqualified. After the selection, all the participants were
submitted to psychological evaluation accompanied by numerous questionnaires (adapted
and validated to the Portuguese language) assessing personality, stress, anxiety, and health.

3.1.2. Ethical Considerations

The CPT is recommended for this purpose and is considered ethical to use as it is
a valid way to attain the established goals, does not cause collateral damage such as
tissue damage from psychological trauma, and the stimulation is considered very low. To
determine if this procedure is ethical or not, one must carefully analyze the benefits and
the risks. Even though the CPT causes pain, the participant is completely in control over
the procedure, since the participant can withdraw their forearm whenever he/she wants.
Furthermore, the pain is not caused instantly, that is, it grows slowly, and the process can
stop before the pain becomes severe [5]. Moreover, the participant was free to quit this
study at any time without any kind of prejudice. Thus, although pain is caused by this
method, the findings can have a very high contribution to improving pain management
and has no collateral physical or psychological effects. Nonetheless, there was a need to
establish exclusion criteria [5].

It is of extreme importance to point out that all recommendations for data protection
were followed, and that the integrity of the participants was guaranteed.

This study was approved by the Ethics and Deontological Council of the University of
Aveiro (CED-UA-24-CED/2021).

3.1.3. Experimental Procedure

Before starting the pain-inducing technique, the procedure was explained to the
participants, and after removing the remaining doubts, an informed consent form was
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signed. Afterward, the individuals had to answer questions that addressed their personality
attributes, health state, depression, and anxiety.

During the whole procedure, the individual had to watch two kinds of videos that
would provoke either fear or neutral emotions, which were classified by a research team
of psychologists based on the emotion they elicit. In the first section of the protocol, a
five-minute baseline was recorded, and while a film provoking a neutral feeling was shown,
the participant had to be sat in a comfortable position, with their arm close to their body.
Afterward, they were requested to put their nondominant hand and forearm in the warm
water tank, as shown in Figure 1, for a period of two minutes, in order to assure that all the
participants started the CPT with equal skin temperatures of 37 ◦C ± 1 ◦C.
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Figure 1. A participant has his left hand immersed in a tank containing circulating cold water.

In this part, the movie showed was fear-inducing or neutral-feeling-inducing, accord-
ing to the first or second session, respectively. Approximately at the one minute and thirty
seconds mark, their Blood Pulse (BP) was taken, and they were also asked to report their
pain level using an NRS ranging from 0 to 10. After, the participants dipped their nondomi-
nant forearm in the cold water tank, with a temperature of approximately 7 ◦C ± 1 ◦C, and
hence, the CPT commenced. Participants were asked to hold on as long as they could, with
a time limit of two minutes. If they were not able to tolerate the pain, they were encouraged
to inform the researchers of their desire to withdraw their forearm from the tank and, before
doing so, to report their pain level. In the case that the participant was able to keep their
hand in the tank for the complete duration, the maximum pain experienced was reported
around the two minutes mark.

After the removal of the forearm from the cold water tank, the participant’s BP level
was also assessed. The movie presented during the CPT depended on the session. In the
first session, the video was fear inducing, and in the second session, the video was neutral
feeling inducing. In the second session, the neutral videos were different from the first
session, and the neutral videos during the CPT were also distinct from the video that played
while the participants had their arm in the warm tank. Before the end of the protocol, the
last segment took place where, at rest, the participant had to watch a five-minute neutral
video while sitting in a comfortable position, without the forearm immersed. After two
and a half minutes, their BP level was again monitored, and they were asked to report their
pain level. The scheme of this experimental protocol can be observed in Figure 2.
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3.1.4. Data Collection Setup

The apparatus can be categorized into two sorts, the equipment to induce pain by
exposure to cold water and the device to gather physiological data.

CPT Tank System

The apparatus utilized in studies that involve the CPT can be custom made, maintain-
ing an approximately constant water temperature and a flow of water over the hand. In
this case, the equipment was composed of two tanks, one had warm water and the other
had cold water. Both tanks were isolated to avoid heat transfer between the warm or cold
water and the environment. These tanks allowed us to have control over the variation in
the temperature as there was a microcontroller to revert losses and keep the water tank’s
temperature stabilized and a circulating water pump to avoid heating/cooling of the water
and to guarantee that the water in touch with the participant was at the same temperature.

The purpose of the first specified tank was to ensure that every participant started the
procedure under similar conditions, which prevented possible bias, while the second was
used to induce pain in the participant.

This system was developed in the scope of an Integrated Master’s in Electronic and
Telecommunications Engineering at the Department of Electronics, Telecommunications
and Informatics (DETI), University of Aveiro.

Physiological Signal Collection

The device used to gather data was the Biosignalsplux Explorer tool kit, with a
sampling frequency of 1000 Hz. This is a 4-channel toolbox that allows for wireless and
high-quality acquisitions. This toolkit enables the simultaneous collection of data from
4 sensors, up to approximately 10 h of signal streaming at up to a 3000 Hz sampling rate
and 16-bit resolution per channel. In this data protocol collection, two synchronized kits
were used with seven sensors for EMG, ECG, EDA, and BP, and the signals were recorded
at 1000 Hz. Figure 3 shows the placement of the sensors to record: (A) ECG, (B) EMG in the
trapezius and triceps, (C) EDA, and (D) EMG in the corrugator and frontalis.
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3.1.5. Subjects

For this study, there was a total of 37 participants; in total, 14 were male, and the
ages ranged from 19 to 25 years old (average age of 21.36 y.o. and standard deviation
of 1.27 y.o). However, one of the individuals was removed owing to an equipment fault
whereby it was not possible to perform the second session of the protocol, resulting in
a total of 36 participants with valid data collected. The volunteers were recruited from
the university student’s community and had to follow the inclusion criteria outlined in
Section 2.1.

3.2. Methods for Data Analysis

After acquiring the data, the raw ECG had to be preprocessed for further analysis.
The data processing and analysis were performed using Spyder version 5.1.5, with

SciPy version 1.6.0 [15], Neurokit2 version 0.2.1 [16], scikit-learn version 1.1.3 [17], and
seaborn version 0.12.1 [18].

After acquiring the raw ECG, EMG, and EDA signals, they had to be preprocessed.

3.2.1. ECG Filtering

The raw ECG signals were preprocessed before further analysis. There were several
types of filters that could have been used to filter the signals, yet the infinite impulse
response (IIR) was chosen due to its simplicity of construction and efficiency. Before
filtering, the ECG signal was centered (i.e., the mean was subtracted from the signal).

The ECG was filtered to remove the artifacts caused by the baseline wander and high
frequencies that did not contribute to the detection of the QRS complexes. The analysis of
the ECG signals in the frequency domain showed that the frequency components of interest
of most of the ECG signals were between 0.5 Hz and 40 Hz. Therefore, different orders of
Butterworth bandpass filters, with these cutoff frequencies, were used to process the signals.
Despite being an infinite impulse response filter, the Butterworth filter was chosen due to
the insurance of a frequency response that is as flat as possible in the passband. Moreover,
the nonlinear phase distortion was eliminated by processing all the entire ECG signals in
both the forward and reverse directions. Thus, according to the mean absolute error and
mean squared error that were computed from raw and filtered signals, the ECG signals
were filtered with a band pass, cutting frequencies of 0.5 Hz and 40 Hz, a Butterworth filter
of order 4, and the following transfer function:

H(z) =
0.0131 − 0.0261z−2 + 0.0131z−4

1 − 3.6504z−1 + 5.0050z−2 − 3.0586z−3 + 0.7040z−4

An example of the result of the filter is shown in Figure 4. As can be seen in this figure,
there was a significant difference in noise between the ECG raw and the filtered ECG.
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The data were then processed using the Neurokit2, a user-friendly program that pro-
vides easy access to complex biosignal processing methods [15]. The “ecg_process” method
was used, returning the filtered signal; the completion of the auricular and ventricular
phases; the positions of the peaks of the P, R, S, and T waves; as well as the onsets and
offsets from the P, R, and T waves. Furthermore, this method can be used to calculate HRV
features for time, frequency, and nonlinear domains.

Following signal processing, each signal was separated into five distinct epochs based
on the triggers gathered during the experimental protocol, as illustrated in Figure 2. As
a result, the signal was divided into a five-minute baseline recording, two minutes of
the nondominant forearm in the warm water tank, the CPT, another two minutes of the
nondominant forearm in the warm water tank, and the last five minutes of rest period.

3.2.2. Feature Extraction and Normalization

The features used to train and test the machine learning models were extracted using
sliding windows of 20 s periods with a 75% overlay. After identifying the positions of the
peaks of the P, R, S, and T waves, as well as the onsets and offsets from the P, R, and T
waves, shown in Figure 5, the following features were computed from the ECG signals:

• Ppeaks, Rpeaks, Speaks, Tpeaks: the number of peaks in the waves in each window;
• Pamplitude, Ramplitude, Samplitude, Tamplitude: the average of the amplitude of the corre-

spondent peak in the waves (which is given by the amplitude value of the ECG wave
at the correspondent peak) in each window;

• Pdistance, Rdistance, Sdistance, Tdistance: the average of the distance (in samples) between
consecutive peaks in each window (these distances are computed based on the sample
of each peak);

• Ponsetamp, Ronsetamp, Tonsetamp: the average of the amplitude of the correspondent peak
onsets in the waves (which is given by the amplitude value of the ECG wave at the
correspondent peak onset) in each window;

• Poffsetamp, Roffsetamp, Toffsetamp: the average of the amplitude of the correspondent peak
offsets in the waves (which is given by the amplitude value of the ECG wave at the
correspondent peak offset) in each window;

• Ponoffdist, Ronoffdist, Tonoffdist: the average of the distance (in samples) between consecu-
tive peak onsets and peak offsets in each window (these distances are computed based
on the sample of each consecutive peak onset and peak offset).
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Prior to proceeding with the data analysis, the collected features were all normalized
by dividing each epoch by the mean of the baseline.

3.2.3. Classification Approaches

As the focus of interest relies on identifying the pain-inducing period from the baseline
state, only ECG features from the baseline and the CPT epochs were used. Thus, the
positive class (the class of interest) was considered to be the CPT epoch and the negative
class corresponds to the baseline.

Furthermore, with regard to the training and testing strategy, the following approaches,
illustrated in Figure 6, were considered:

1. Dependent approach: using all the data from both sessions, the models were trained
and evaluated with 5 repetitions of a 2-fold cross-validation strategy. In this approach,
data from the same participant in the same session can be shared between the training
and test sets (although, the same data are not shared by both). In this approach, the
training dataset had 2830 samples and the test dataset had 2831.

2. Session-independent approach: considering an analysis across both sessions, the
training set consisted of data from all participants from the first session, whereas the
test set consisted of data from all participants from the second session. Although in
this approach, the data from different sessions are not shared between the training
and test sets, and data from the same participants, in different sessions, are shared.
Thus, this approach is not entirely participant independent, as the participants were
the same in both sessions. In this approach, the training dataset had 2771 samples and
the test dataset had 2890.

3. Participant-independent approach: In this approach, data from participants in the
training set are not shared with the test set, not even from different sessions. Using
the leave-one-out cross-validation (LOOCV) strategy, the training data was composed
of the data from the first session of all participants except one, i.e., a model was built
for each participant with their data from the second session serving as the test set. In
this approach, the training dataset had, on average, around 2694 samples and the test
dataset had, on average, approximately 80 samples.
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3.2.4. Machine Learning Algorithms

In order to classify pain, eight distinct machine learning algorithms were used to
analyze the data from various perspectives, namely AdaBoost, DT, kNN, LDA, Logistic
Regression (LR), RF, and SVM (with a linear kernel and a Radial Basis Function kernel),
using the default parameters as shown in Table 1.

A DT is a machine learning algorithm for classification and regression, where the data
are used to deduce if–then–else rules. These rules grow more complicated as the depth of
the tree increases. Thus, a classification DT structure can be visualized as an inverted tree,
starting at the root, with internal nodes and branches, and ending in leaves with a target
class. The advantages of DT include their straightforward understanding of rules, lack of
data normalization requirements, lower processing cost, and handling of numerical as well
as categorical data [19,20].

An RF is an ensemble of randomized DT, each of them grown using a bootstrap sample
of the original data and using a randomized subset of features to choose the best split at
each node. Thus, the forest is composed of several different DT, and, in a classification
problem, the outcome consists of a majority vote [19,20].

AdaBoost, also an ensemble of models, is a strategy for repeatedly applying new
data to weak estimators. This includes raising weights for incorrectly predicted training
observations and reducing weights for correctly predicted training observations. As a
result, with each successive iteration, to raise the performance, the estimator focuses on
training observations that had incorrect predictions in the prior iteration [20].

The kNN approach is based on computing distances from neighbors, and the main
principle is to locate a specified k number of training observations that are closest to the
new observation and then use these nearest neighbors to determine the target for this new
observation [19,20].

Another model that was trained was LDA, which tries to maximize class separability
by learning linear decision boundaries. It is computationally efficient with no need for
hyperparameter adjustments [21]. Likewise, with low computational complexity, LR is
also a linear model for classification with the ability to provide probabilities describing the
possible outcomes and is less sensitive to outliers [19,20].

SVM is an algorithm that tries to optimize a margin between two classes. SVM’s key
merits include its efficacy on high-dimensional data and datasets with more features than
observations, as well as its low memory consumption due to the usage of support vectors.
When the data are not linearly separable, they are mapped into a higher dimensional space
before the optimization of the decision boundary, and a broad range of kernel functions
can be used to achieve this transformation [19,20].
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Table 1. Default parameters, in scikit-learn’s implementation, of the machine learning algo-
rithms used.

Default Parameters (in Scikit-Learn’s Implementation)

AdaBoost base estimator: DecisionTreeClassifier, n_estimators: 50, learning_rate: 1.0,
algorithm: real boosting algorithm.

DT

criterion: gini, splitter: best, max_depth: None (DT is expanded until all
leaves are pure or until all leaves contain less than min_samples_split
samples), min_samples_split: 2, min_samples_leaf: 1,
min_weight_fraction_leaf: 0.0, max_features: None (consider all features
when searching the best split).

kNN
n_neighbors: 5, radius: 1.0, algorithm: ‘auto’ (attempt to decide the most
appropriate algorithm based on the values passed to fit method), metric:
‘minkowski’, p: 2 (using the Euclidean distance as metric).

LDA

solver: ‘svd’, shrinkage: None, priors: None, n_components: None
(minimum between NumberOfClasses-1 and NumberOf Features),
tol: 1.0 × 10−4 (absolute threshold for a singular value of the data matrix
to be considered significant).

LR

penalty: ‘l2’, dual: False (uses the primal formulation), tol: 1 × 10−4

(tolerance for stopping criteria), C: 1.0 (inverse of regularization strength),
fit_intercept: True (adds a constant to the decision function),
intercept_scaling: 1, class_weight: None (all classes have weight one),
solver: ‘lbfgs’, max_iter: 100 (maximum number of iterations taken for the
solvers to converge), multi_class: ‘auto’, warm_start: False.

RF

n_estimators: 100, criterion: ‘gini’, max_depth: None, min_samples_split: 2,
min_samples_leaf: 1, min_weight_fraction_leaf: 0.0 (the minimum
weighted fraction of the sum total of weights required to be at a leaf node),
max_features: ‘sqrt’ (the number of features to consider when looking for
the best split), max_leaf_nodes: None (unlimited number of leaf nodes),
min_impurity_decrease: 0.0, bootstrap: True, oob_score: False (do not use
the out-of-bag samples to estimate the generalization score), warm_start:
False, class_weight: None, ccp_alpha: 0.0, max_samples: None (considers
bootstrap samples of the size of the data matrix).

SVM-lin and
SVM-rbf

C: 1.0 (regularization parameter, the strength of the regularization is
inversely proportional to C), kernel: ‘linear’ and ‘rbf’ (for SVM-lin and
SVM-rbg, respectively), gamma: ‘scale’, shrinking: True, probability: False
(disables probability estimates), tol: 1 × 10−3 (tolerance for stopping
criterion), cache_size: 200, class_weight: None, max_iter: −1 (no limit on
iterations within solver), decision_function_shape: ‘ovr’, break_ties: False
(the first class among the tied classes is returned).

3.2.5. Evaluation Metrics

Six evaluation metrics were used to assess the performance of each model: the accuracy
score, the balanced accuracy score, the F1 score, the Matthews correlation coefficient, the
precision score, and, lastly, the recall score. The accuracy score calculates the percentage
of right predictions out of the total number of guesses. When the data are imbalanced,
however, the accuracy might be misled, and the balanced accuracy score allows this problem
to be avoided by computing the average of recall and specificity. The precision score is
the percentage of correct positive predictions out of all positive forecasts. The recall score
indicates how many positive predictions were retrieved. The F1 score is a balance between
the two most recent metrics, and it allows for the avoidance of an erroneous prediction
accuracy and works better with imbalanced classification data. Finally, the Matthews
correlation coefficient (MCC) considers all four values in the confusion matrix, and a high
value indicates that both classes are well predicted, even if one class is disproportionately
under- or overrepresented.
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4. Results

The purpose of this study was to analyze the physiological changes conveyed by the
ECG caused by pain induction in autonomic reactivity with different emotion elicitation.
The hypothesis is that the different emotional contexts should alter the pain perception of
the participants, while the physiological response remains the same.

The majority of the participants participated in the CPT for more than one minute, with
only ten participants not holding for the entire time. The participants in the first session
held their arm in the tank for a mean time of one minute and fifty-three seconds, and the
participants in the second session held it for a mean time of one minute and forty seconds.

4.1. Perception of Pain under Different Emotional Contexts

As previously stated, participants were required to report their level of pain at three
different stages. Prior to being subjected to the CPT, none of the participants reported pain
during the initial evaluation. The level of pain was assessed again before the end of the CPT
as the subjects were required to report their current pain. In the first session, the average
value reported was 7.39 ± 1.64 (mean ± standard deviation (SD)) and the median was
seven, and in the second session, the average value reported was 7.80 ± 1.60 (mean ± SD)
and the median was eight. For both sessions, the average value reported was 7.58 ± 1.63
(mean ± SD) and the median was eight. Most participants felt an immediate improvement
in their pain levels after removing their arm from the cold water. Participants reported
their current level of pain on the last pain assessment, and the values dropped significantly.
The distribution of pain levels reported by patients before the end of the CPT is depicted in
Figure 7.
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Figure 7. Pain levels reported by participants before the end of the CPT for both sessions.

The implemented protocol varied depending on the CPT session: the video shown
during the CPT in the first session was designed to elicit fear, whereas the video shown
in the second session was designed to elicit a neutral emotion. According to the reported
pain level before the end of the CPT and comparing the boxplots in Figure 7, the difference
seemed to be minimal. A paired t-test with pain levels reported from both sessions returned
a p-value of 0.280, revealing that there was no indication of statistical difference between
both sessions.

4.2. Physiological Response of Pain under Different Emotional Contexts

Taking into consideration the three approaches proposed, different classifiers were
trained with the different data organization methods with the purpose of analyzing the
participant and session dependency influence in the classification results.

4.2.1. Dependent Approach

Table 2 shows the performance metrics of the models trained with this approach.
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Table 2. Metrics for performance evaluation of the dependent approach (for each metric, the best
performance results are identified in bold).

AdaBoost DT kNN LDA LR RF SVM-lin SVM-rbf

ACCURACY 0.977 0.972 0.870 0.865 0.856 0.984 0.873 0.899

BALANCED
ACCURACY 0.966 0.964 0.880 0.745 0.720 0.974 0.762 0.815

F1 0.954 0.944 0.850 0.651 0.608 0.967 0.679 0.761

MCC 0.939 0.925 0.910 0.613 0.586 0.957 0.637 0.717

PRECISION 0.963 0.941 0.940 0.907 0.936 0.981 0.907 0.920

RECALL 0.944 0.947 0.810 0.508 0.451 0.953 0.543 0.649

According to the performance of each model, the results may be divided into three
groups. To begin, the model with the worst results was LR, which had an accuracy of
87% and a recall score of 45%. This indicates that 55% of the CPT samples remained to be
predicted; however, a total of 94% of the CPT predictions made by this model were correct,
suggesting a high capability in classifying the negative samples (from the baseline) but a
poor ability to classify the class of interest, which was fewer samples. The MCC was the
lowest, with a value of 0.59, indicating that the predictions had a slight correlation with the
true class.

Second, the models that presented an average overall performance were the LDA,
SVM-lin, and SVM-rbf, which had an accuracy of 87% to 90%. Aside from that, these
models correctly predicted slightly more than half of the CPT data, ranging from 51% to
65%. Furthermore, the MCC ranged between 0.61 and 0.72, which was greater than the LR,
indicating a correlation between the anticipated and genuine data.

Finally, AdaBoost, DT, kNN, and RF yielded the best outcomes. The accuracies of
these models ranged between 87% and 98%, with kNN having the lowest value and the RF
having the highest. These models predicted almost all of the CPT data, between 81% and
95%, whereas the models were correct between 94% and 98% of the time. Additionally, the
MCC ranged between 0.91 and 0.97, suggesting that these were the techniques with the
strongest correlation between the real and expected data.

Ultimately, these models, trained and evaluated with five repetitions of a stratified
two-fold cross-validation strategy, were able to recognize pain for the binary classification
between the baseline and the CPT, as can be observed in Figure 8.
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4.2.2. Session-Independent Approach

Table 3 provides the performance metrics for the models trained using this approach.

Table 3. Metrics for performance evaluation of the session-independent approach (for each metric,
the best performance results are identified in bold).

AdaBoost DT kNN LDA LR RF SVM-lin SVM-rbf

ACCURACY 0.959 0.914 0.720 0.849 0.853 0.971 0.844 0.928

BALANCED
ACCURACY 0.971 0.900 0.760 0.749 0.746 0.977 0.746 0.950

F1 0.928 0.842 0.710 0.652 0.650 0.947 0.644 0.879

MCC 0.904 0.784 0.610 0.583 0.594 0.928 0.566 0.841

PRECISION 0.867 0.813 0.670 0.831 0.866 0.906 0.800 0.788

RECALL 0.997 0.872 0.680 0.536 0.520 0.991 0.539 0.995

Taking an overview, the models that were best suited to the data were AdaBoost, RF,
DT, and SVM-rbf, with an accuracy ranging from 91% to 97%. The recall score of these
four approaches was quite high, and in AdaBoost, RF, and SVM-rbf, it was very near to
one, indicating that they could predict nearly all of the CPT data. The precision of these
approaches was not as great as the recall, with values ranging from 79% to 90%, which
means that these models correctly predicted at least 79% of all pain (positive) predictions.
To summarize these methodologies, the MCC produced revealed a very high correlation
between the real class and the predicted data, with the lowest value being 0.784 and the
greatest being 0.928.

In terms of performance, the other approaches were relatively comparable but not as
good as the ones stated above. Their overall performance was acceptable, with an accuracy
range of 72% to 84.4%. However, these results mask the true performance since the recall
score was only between 52% and 68%, implying that about half of the CPT data were
incorrectly predicted. However, their precision in predicting the CPT data was higher,
ranging between 67% and 80%. Aside from that, the predicted data showed only a little
connection with the real class, as the MCC was between 0.566 and 0.61.

To summarize, the highest performing models based on this session-independent
approach were able to discriminate between the baseline and pain, as shown in Figure 9.
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4.2.3. Participant-Independent Approach

In this approach, one model per participant was trained with data from the first session
from the remaining participants, and the performance was evaluated with data from the
participant in the second session. Therefore, the average performance of all participants is
shown in Table 4.

Table 4. Metrics for performance evaluation of the session-independent approach (for each metric,
the best performance results are identified in bold).

AdaBoost DT kNN LDA LR RF SVM-lin SVM-rbf

ACCURACY 0.967 0.935 0.630 0.841 0.839 0.970 0.853 0.863

BALANCED
ACCURACY 0.950 0.917 0.680 0.699 0.685 0.949 0.723 0.763

F1 0.928 0.864 0.690 0.516 0.480 0.932 0.556 0.632

MCC 0.913 0.832 0.700 0.500 0.473 0.921 0.530 0.600

PRECISION 0.957 0.874 0.740 0.818 0.773 0.980 0.787 0.833

RECALL 0.914 0.879 0.650 0.422 0.385 0.904 0.471 0.570

The LDA, kNN, LR, SVM-lin, and SVM-rbf models produced the worst results. Al-
though these models had over 80% accuracy, except kNN with 63%, and precision scores
ranged from 74% to 83%, implying that at least 74% of all the CPT predictions were cor-
rect, and the recall score only ranged from 39% to 65%, implying that in almost all these
methods, at least half of the CPT data were incorrectly predicted. However, there was
a slight correlation between the predicted data and the class of interest, since the MCC
ranged between 0.47 and 0.7. From these models, the SVM-rbf and kNN presented the best
performance metrics.

On the other hand, AdaBoost, DT, and RF had high performances in classifying pain,
with an accuracy of over 93%, and predicted at least 87% of the class of interest. Furthermore,
87% to 97% of all the predictions were correct, and these had a high correlation with the
true classes, as the MCC was at least 0.86.

Figure 10 presents the computed metrics for evaluating the performance of the models
trained with this approach.
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4.2.4. Feature Importance

Depending on the model, the importance of each feature was determined with different
methods. LDA and LR are models that employ a set of coefficients in the weighted sum to
generate a prediction, and these coefficients can be used as their feature relevance score.
The importance scores provided by RF, Adaboost, and DT are based on a decrease in the
criterion used to choose the best split at each node, which in this context is gini. Finally, the
relevance of features for SVM and kNN was determined by feature evaluation based on
the permutation of features (using the scikit learn function permutation_importance).

Thus, for each model, it was possible to deliver a list with the score assigned to each
feature depending on how effective they were in predicting each sample. However, due to
the approach to derive the scores of the features, the lists were not comparable across all
models. As a result, the values were normalized for all of them to be between 0 and 1.

f eaturescaled =
f eature − f eaturemin

f eaturemax − f eaturemin

Dependent Approach

Figure 11 exposes the scores of each feature provided by each model, showing that
the most relevant features for this approach were (1) Samplitude (the amplitude of the
S peaks), (2) Toffsetamp (the amplitude of the Toffset), (3) Rpeaks (the number of the R peaks),
(4) Tamplitude (the amplitude of the T peaks), and (5) Ramplitude (the amplitude of the R
peaks). These five features were the ones with the best scores for RF and AdaBoost, which
were models with very good performances. However, regarding the top five features, LDA
gave more importance to other features, such as the distance between the R peaks (Rdistance)
and the distance between the consecutive onset and offset of the P wave (Ponoffdist), which
may have been the cause for poor performance.
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Session-Independent Approach

Figure 12 shows the ratings of each feature provided by each model, exposing that the
most valued features for this approach, across all models, were (1) Samplitude (the amplitude
of the S peaks), (2) Tamplitude (the amplitude of the T peaks), (3) Toffsetamp (the amplitude
of the Toffset), (4) Ramplitude (the amplitude of the R peaks), and (5) Pdistance (the distance
between the consecutive P peaks). For RF and AdaBoost, which were models with excellent
performance, these five features remained the best. However, for the top five features, LR
and LDA, which had poor outcomes, scored higher than for other features, such as Rdistance
and Sdistance.
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Participant-Independent Approach

Figure 13 presents the scores of each feature provided by each model in this approach,
revealing that the most important features, across all models, were (1) Samplitude (the ampli-
tude of the S peaks), (2) Toffsetamp (the amplitude of the Toffset), (3) Tamplitude (the amplitude
of the T peaks), (4) Rpeaks (the number of R peaks), and (5) Ramplitude (the amplitude of the
R peaks). For RF and AdaBoost, which were models with high performances, these five
features continued to have the highest scores. However, the top five features for LR and
LDA, which had poor outcomes, also included Rdistance and Sdistance.

In general, the five most valued features were relatively similar across all approaches.
The feature with the most relevance for all methods was Samplitude, whereas Tamplitude,
Toffsetamp, and Ramplitude remained in the top five.
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5. Discussion

Concerning the role of emotional conditions on pain perception, the average level of
pain in the first session was lower than in the second session: in the first session, it was
7.39, and in the second session, it was 7.80 (on a scale from 0 to 10), as shown in Figure 7.
These similar results, with only a 0.41 difference and with the statistical test revealing no
differences in the pain score between both sessions, support the notion that pain perception
was not influenced by the different emotional contexts. These results may indicate that
emotions were not adequately elicited, which could be due to two factors: the participant
was focused on the pain felt and thus did not pay enough attention to the video, or the
participant already knew the video and thus it was unable to elicit fear. Indeed, several
participants indicated that they were unable to view the emotion elicitation video during
the CPT as they were more focused on dealing with the pain than on being attentive, and
some also reported knowing the video shown. Based on these statements and the equality
of pain perception, it was assumed that emotion elicitation was not achieved.

With respect to the physiology of pain under different emotional contexts, with the
dependent approach, a balanced accuracy of up to 97.4% was obtained, and with the
session-independent approach, a balanced accuracy of up to 97.7% was reached. These
results support that the physiological response conveyed by the several analyzed ECG
features remained similar across different emotional contexts.

Moreover, considering the session-independent approach outlined in Section 4.2.2
and looking at the high performance of each model in Table 3 and Figure 9, it is possible
to conclude that, despite the fact that not all models performed well, AdaBoost and RF
presented a high performance in classifying pain. This was evidenced by a recall score
close to one, indicating that these models correctly predicted almost all the CPT samples,
and a precision score between 87% and 90%, indicating that only about 10% of the CPT
predictions made were incorrect.
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Considering the participant-independent approach, the findings of which are provided
in Section 4.2.3, it was feasible to verify that pain could be appropriately classified regardless
of the availability of the participant’s information. As previously indicated, data from a
participant in the second session were used to assess the performance of the corresponding
model, trained with data from the first session of all the participants except the participant
being tested. As a result, as shown in Table 4 and Figure 10, some models performed far
better than others. These were the AdaBoost and RF, which did not correctly predict about
10% of the CPT data and were correct in 95.7% to 98% of the predicted CPT data. These
findings support the notion that there is no requirement for participant input during the
training phase, and hence these trained models might be utilized to categorize the existence
of pain in subjects who are not present in the training phase.

Figure 14 shows the overall performance of the models for the three approaches.
Since F1 reflects both recall and precision scores, and balanced accuracy is more suit-
able for unbalanced datasets than accuracy, these metrics were chosen to compare the
models’ performance.
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Figure 14. Obtained F1 (top) and balanced accuracy (bottom) from all models using the three
different approaches.

When the performance of each model across the three approaches was evaluated,
it was possible to conclude that the dependent strategy gave the best results. However,
this slightly increased performance may have been due to the cross-validation strategy.
Accordingly, the model that provided the best results was RF, suggesting that it could
reliably identify almost all the CPT data across the different approaches.

The findings achieved with the different models using the three approaches were all
fairly comparable. The model with the best results for the session-independent method was
also RF, with a recall score of 99.1% and a precision of 90.6%. Furthermore, the model with
the highest results for the participant-independent method was RF, with a recall score of
90.4% and a precision of 98%. Although the RF model was the best for the three approaches,
AdaBoost’s metrics were also extremely excellent, and in some situations, they were even
higher than those of RF. As a result, in all three approaches, RF and AdaBoost were the
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models that could best classify pain, which may be supported by the importance that both
give to the top five features among all the extracted features.

With regards to the execution time, it must be stressed that although the LDA and
LR models had the worst performance results for pain recognition for the three machine
learning approaches, they had lower execution times: 0.34 s, 0.06 s, and 0.83 s; and 0.78 s,
0.09 s, and 2.78 s, respectively. DT, AdaBoost, and RF presented intermediate runtimes:
0.79 s, 0.09 s, and 2.25 s; 5.74 s, 0.62 s, and 15.79 s; and 11.23 s, 1.28 s, and 32.15 s, respectively,
whereas SVM and kNN presented higher execution times with the three approaches.

6. Conclusions and Further Work

This work showed the implementation of a protocol for data collection, with the
primary goal of creating a database with different physiological signals, frontal video,
and self-report questionnaires of participants who were subjected to two sessions of a
pain-inducing task while different emotional states were being elicited. It was feasible
to establish a modest database, with 36 participants but with a lot of varied data, that
allowed for the analysis of the influence of pain in the human body, as well as the impact
emotions have on the perception of pain felt using the aforementioned procedure. However,
it was likely not viable to identify the emotional effect, or even the emotion itself, because,
according to several participant reports, they were unable to pay close attention to the
exhibited movies during the CPT. Additionally, the analysis of the pain scores acquired
during the CPT in both sessions supported the idea that the elicitation of emotions was not
achieved successfully, as the statistical test on the pain perception between sessions did
not reveal significant differences. This leads to the need for further reasoning for better
emotional elicitation while inducing pain.

Despite failing in the emotion elicitation, it was feasible to build machine learning
models that are able to recognize pain based on physiological information from the ECG,
regardless of the cultural variations, given the participants came from various cities around
the country. Moreover, in this regard, it is also possible to derive interesting implications
from the examination of each evaluation strategy. It was possible to identify and separate
the CPT data from the baseline using the dependent approach, in which the data were
split using stratified cross-validation, with five repetitions of two folds, indicating that the
trained models were successful at detecting pain. This approach served the purpose of
comparison with the independent approaches.

The results from the session-independent approach allowed us to confirm that there
seemed to be no difference in the physiological response of ECG between the sessions
because when data from the first session were used to train the models and the data from
the second session were utilized for testing, a similar performance was achieved by the
top models (RF, DT, and AdaBoost). Finally, the results with the participant-independent
method showed that there was no need for the participants’ information since the models
correctly identified pain.

Several topics can be tested and improved in future development. As previously
stated, the emotion elicitation was unsuccessful since participants indicated that they were
unable to pay attention to the fear-inducing videos as they were focused on the pain they
were experiencing. As a result, the protocol’s design should be altered to isolate emotion
elicitation from the pain-inducing activity, for example, the video inciting fear should be
played prior to the CPT.

Longer CPT signals are also necessary to analyze HRV measures that require longer
durations to be meaningful, as well as contribute to a less unbalanced dataset. Given this, a
larger number of participants is also advisable.

The collected database can also be used to perform a more complete study, such as the
study of psychophysiological correlates on pain, leading to a better and more comprehen-
sive understanding of pain mechanisms. Moreover, this database also supports multimodal
approaches, taking into account the physiological response of the other collected signals,
allowing one to analyze and compare the performance with the recognition of pain based
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solely on information conveyed by the ECG. Other data mining approaches, such as feature
selection and feature normalization, can also be used before providing input to each model.
In this study, feature normalization was applied to the data, and different approaches could
be employed to allow for a comparison between the performance of the trained models.

Finally, hyperparameter optimization and the development of individual models
adapted to each participant should also be taken into consideration to enhance the recogni-
tion of pain, and it may provide a step further to personalized medicine.
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