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A B S T R A C T   

The monitoring of cities’ wastewaters for the detection of potentially pathogenic viruses and bacteria has been 
considered a priority during the COVID-19 pandemic to monitor public health in urban environments. The 
methodological approaches frequently used for this purpose include deoxyribonucleic acid (DNA)/Ribonucleic 
acid (RNA) isolation followed by quantitative polymerase chain reaction (qPCR) and reverse transcription (RT)‒ 
qPCR targeting pathogenic genes. More recently, the application of metatranscriptomic has opened opportunities 
to develop broad pathogenic monitoring workflows covering the entire pathogenic community within the 
sample. Nevertheless, the high amount of data generated in the process requires an appropriate analysis to detect 
the pathogenic community from the entire dataset. Here, an implementation of a bioinformatic workflow was 
developed to produce a map of the detected pathogenic bacteria and viruses in wastewater samples by analysing 
metatranscriptomic data. The main objectives of this work was the development of a computational methodology 
that can accurately detect both human pathogenic virus and bacteria in wastewater samples. This workflow can 
be easily reproducible with open-source software and uses efficient computational resources. The results showed 
that the used algorithms can predict potential human pathogens presence in the tested samples and that active 
forms of both bacteria and virus can be identified. By comparing the computational method implemented in this 
study to other state-of-the-art workflows, the implementation analysis was faster, while providing higher ac
curacy and sensitivity. Considering these results, the processes and methods to monitor wastewater for potential 
human pathogens can become faster and more accurate. The proposed workflow is available at https://github. 
com/waterpt/watermonitor and can be implemented in currently wastewater monitoring programs to ascertain 
the presence of potential human pathogenic species.   

1. Introduction 

In the advent of infectious disease outbreaks, identifying the infec
tious agents in wastewater can be helpful, but the computational tools 
and software to analyse extreme amounts of data are a bottleneck 
(Garner et al., 2021). Wastewater monitoring traditionally focuses on 
indicator species, with laboratorial methods well-tailored for faecal in
dicator bacteria. Several studies have focused on improving laboratorial 

methods for the identification of specific viral indicators (Crits-Chris
toph et al., 2021; Ekwanzala et al., 2021; Farkas et al., 2020; Sherchan 
et al., 2020; Tomasino et al., 2021a). The concerns related to the re
covery of viral genetic material can be the result of low viral loads, 
which limits the use of next-generation sequencing (NGS) (Huang et al., 
2019). Recently, there has been a growing focus on NGS-based ap
proaches, which include marker gene amplicon sequencing, whole 
genome sequencing, shotgun sequencing of environmental DNA and 
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RNA (Garner et al., 2021). The first approach typically includes 
short-read amplicon sequencing, which limits pathogen taxonomy 
identification. Metagenomes allow the identification of the DNA of vi
ruses and bacteria, but for the latter, the presence of virulence genes 
must be confirmed to identify pathogenic species because of the high 
complexity of samples. Moreover, molecular approaches and meta
genomics can capture RNA viruses and may also detect residual DNA of 
non-living bacteria, but cannot detect infective virions (Bogler et al., 
2020). Metatranscriptomics, on the other hand, can detect RNA viruses 
and only detects the presence of active (expressing) bacteria (Shakya 
et al., 2019). However, metatranscriptomics is challenging because of 
the variable and often very short half-life of RNA and the inhibition of 
RT‒PCR by organic substances expected in wastewater samples (Farkas 
et al., 2020; Garner et al., 2021). For these reasons, some authors defend 
the use of DNA-based viral indicators (Farkas et al., 2020). Identifying 
viruses in wastewater can be inconsistent due to fast degradation of viral 
particles and variability in water volume. Multiple daily sampling events 
are important for monitoring the presence of the virus in the population 
(Ahmed et al., 2020; Foladori et al., 2020). 

Improvements in detection and monitoring of microorganisms in 
wastewater using methods like qPCR and RT-qPCR have allowed for 
consistent analysis. Tracking the SARS-CoV-2 virus in wastewater can 
measure correlations with reported COVID-19 infections (Amereh et al., 
2022; Cervantes-Avilés et al., 2021). Nevertheless, only with the use of 
cutting-edge omics technologies based in NGS-based approaches (e.g., 
metagenomics, metatranscriptomics and metaproteomics) can an accu
rate map of gene expression profiling in wastewater samples be obtained 
(Ekwanzala et al., 2021). Several software tools (Freitas et al., 2015; 
Menzel et al., 2016; Pratas et al., 2018; Tovo et al., 2020; Truong et al., 
2015; Wood et al., 2019; Wood and Salzberg, 2014) have been devel
oped to better understand the data retrieved from these monitoring 
processes and there has been a growth of metatranscriptomics projects 
in public repositories (Shakya et al., 2019). The procedures related to 
the computational detection of potential viral and bacterial pathogens 
on metatranscriptomic data present some bottlenecks. This situation is 
due to the high amount of time needed to analyse the generated data and 
the expensive software and computer workstations needed to compute 
thousands of transcriptomes. Additionally, the advanced technical 
expertise needed for data analysis may hinder its widespread application 
in wastewater treatment plant (WWTP) monitoring programs. Early 
warning system to identify and rapidly mitigate the spread of many 
pathogens, including norovirus, hepatitis viruses and salmonella, and 
more recently SARS-CoV-2, were routinely implemented by wastewater 
monitoring in many regions (“Wastewater monitoring comes of age,” 
2022). Here, a reproducible bioinformatics metatranscriptomic 
approach workflow, optimized for fast computations was built using a 
combination of free tools and in-house algorithms to map the taxonomic 
profiles of human pathogens of WWTP samples using transcriptomes as 
the raw data. The main raised question was: Is it possible to improve 
current computational metatranscriptomic approaches to detect poten
tial human pathogens by circumventing their major drawbacks, which 
includes the incapacity to deal with large number of samples, low 
sensitivity and accuracy of the computational methods, and algorithms 
without optimization? A computational workflow will be implemented 
in this study to circumvent some of the limitations of other computa
tional methods and improve the drawbacks of current metatran
scriptomics approaches. This will be achieved by developing a 
computational workflow that can process each sample with: (1) higher 
accuracy and sensitivity to determine the taxonomic sample profile, (2) 
faster computations with improved performance, (3) a validation by 
several different algorithms using a statistical approach, (4) a repro
ducibility workflow, (5) free tools optimization that can be included in 
current early warning of pathogens monitoring wastewater programs. 

2. Methods 

2.1. Sample collection and RNA sequencing 

A 24-hr composite influent wastewater sample was collected from 
the Sobreiras WWTP (Porto, Portugal) on May 28, 2020. The untreated 
wastewater sample was acidified to a pH of 3.5 using 2.0 N HCl, ac
cording to Ahmed et al. (Ahmed et al., 2020; Warish et al., 2015). 
Twenty milliliters of the acidified wastewater sample was immediately 
filtered through 3 μm + 0.45 μm pore size electronegative membranes 
with 90 mm diameter (SSWP04700 and HAWP04700; Merck Millipore). 
Immediately after filtration, the membranes were added to a 5-mL bead 
tube containing the microbial inactivation reagents and lysis solutions 
(PM1-RNeasy PowerMicrobiome Kit Compone–t - Qiagen, GMBH, Ger
many and β-mercaptoethanol, Sigma). Total RNA was extracted directly 
from the filters with the RNeasy PowerWater kit (Qiagen) for the cell 
lysis steps followed by the PowerMicrobiome kit (Qiagen) for the RNA 
extraction and purification steps, according to the manufacturer’s pro
tocol and previously described methodologies (Tomasino et al., 2021a, 
2021b). In the final step of the extraction kit, RNA was eluted with 100 
μL of elution buffer. Total RNA (151.2 ng/μL) was quantified by Nano
drop and stored at − 80 ◦C before shipping for RNA-Seq. RNA libraries 
and sequencing were performed at BGI-Genomics by using their work
flow. Ribosomal RNA was removed using the Ribo-Zero rRNA Removal 
Kit (BGI). RNA molecules were fragmented into small pieces, and 
first-strand complementary DNA (cDNA) was generated using random 
hexamer-primed reverse transcription, followed by second-strand cDNA 
synthesis with/without dUTP instead of dTTP. The synthesized cDNA 
was then subjected to end-repair and was 3′ adenylated. Adapters were 
ligated to the ends of these 3′ adenylated cDNA fragments and cDNA 
fragments amplified, and the PCR products were purified with Ampure 
XP Beads (AGENCOURT). The double-stranded PCR products were heat 
denatured and circularized by the splint oligo sequence. Single strand 
circle DNA (ssCir DNA) was generated as the final library that was 
amplified with phi 29 to make DNA nanoballs (DNBs). The DNBs were 
then loaded into the patterned nanoarray for PE100 (or PE150) 
sequencing on the DNBseq platform. 

2.2. Bioinformatics analysis of the metatranscriptomes 

2.2.1. Taxonomic profiling 
The bioinformatic workflow to detect viral and bacterial microor

ganisms was done using FALCON-meta (Pratas et al., 2018) and 
GOTTCHA2 (Freitas et al., 2015) in the collected wastewater sample 
(Fig. 1). FALCON-meta with optimized parameters was used to detect 
the presence of viruses and bacteria in the sample using metatran
scriptomic data against an extensive database of complete bacterial and 
viral genomes from NCBI (database reference build in December 2020 
using the toolkit for genomics and proteomics (GTO - https://github.co 
m/cobilab/gto); SARS-CoV-2 virus was added to the FALCON-meta 
database). One sample with SARS-CoV-2 virus (Ricardo Jorge Institute 
sample SAMEA6844883-ERS4572485) was used as a positive control. 
To run FALCON-meta for the wastewater sample retrieved from the 
Sobreiras WWTP and for the control sample, an improved algorithm 
derived from Pratas et al., (2018) and available at https://github.com/w 
aterpt/watermonitor, was used. FALCON-meta uses a cache-hash for the 
deepest context model, where the parameter c enables storing only the 
latest entries up to a certain number of hash collisions in memory. This 
model allows the use of deep context orders with very sparse repre
sentations while removing space constraints and enabling a constant 
maximum peak of RAM. Generally, increasing c renders higher precision 
at the cost of higher RAM. 

A GOTTCHA2 analysis was performed, with a minimum coverage of 
0.005, using the viral and bacterial database (Freitas et al., 2015) of 
complete reference genomes retrieved from NCBI. The workflow for 
GOTTCHA2 calculations was implemented using the Kbase platform 
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(https://www.kbase.us/about/). Trimmomatic (Bolger et al., 2014) and 
FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fast 
qc/) were used to perform quality control for the single-end reads and 
ran the GOTTCHA2 signature-based metagenomic taxonomic profiling 
tool with default parameters. The taxonomic profiling obtained with 
GOTTCHA2 and FALCON-meta was updated to include information on 
the species pathogenic to humans (Shaw et al., 2020). To visualize the 
potential active pathogenic bacteria and RNA viruses identified, the R 
package ggplot 2 and Circos Software (Krzywinski et al., 2009) were 
employed. An in-house algorithm was written to automatically plot the 
final human pathogenic dataset using Circos software for GOTTCHA2 
and FALCON-meta results. The included R scripts and in-house Circos 
algorithm calculate the microbial diversity statistics for each meta
transcriptome, create Circos plots based on the pathogenic organism, 
and create stacked bar graphs for each detected transcript, displaying 
the relative abundance and percentage of similarity. These visualiza
tions illustrate all the species, with special relevance given to the 
pathogenic species (read count, relative abundance and percentage of 
similarity) identified in the final dataset. 

The results of GOTTCHA2 and FALCON-meta were compiled in a 
final dataset using data mining through the R programming language. 
This dataset was built using the following procedure (Fig. 1).  

1. Curation of the dataset for human bacterial and viral pathogens 
(HumanPathogensDB) using the data from Liam P. Shaw et al., 2020 
(Fig. 1-A).  

2. Database creation using R language with information that merges the 
results from GOTTCHA2 and FALCON-meta, considering the infor
mation in HumanPathogensDB. The species name was used as the 
primary key, and the species that were not present in the sample 
were removed (Fig. 1-B and 1-C).  

3. Compilation of the final dataset combining the results for the relative 
abundance (GOTTCHA2 normalized abundance) and percentage of 
similarity (FALCON-Meta) of each human pathogenic species.  

4. Exportation of the results to an optimized and curated Excel sheet 
that was statistically analysed using the occurrence of each taxo
nomic entity (species) in both datasets as criteria. The accuracy of 
each unique result was evaluated considering the species with higher 
values of relative abundance (>0.0001) and conservation scores 
(percentage of similarity >60%). Pearson’s correlation, p values, and 
confidence intervals were calculated using nonparametric correla
tions that follow the z-approximation (Hollander et al., 2015).  

5. The same analysis procedure was performed considering a simulated 
metatranscriptomic dataset (MT1) from the MOSCA software 

pipeline (Sequeira et al., 2019) with known pathogenic species and 
their relative abundance. 

2.2.2. Functional annotation 
The functional annotation of the metatranscriptome assembly was 

achieved by using RASTtk software (Brettin et al., 2015). The virulence 
genes in the sample were analysed to confirm the presence of putative 
human viral and bacterial pathogens. The trimmed single reads file was 
assembled with SPAdes (Bankevich et al., 2012). The parameters to run 
were the default considering the genetic code of most bacteria and vi
ruses. The results were exported from the Kbase platform to a CSV 
format. R scripts and the in-house Circos algorithm were also imple
mented to retrieve the microbial diversity statistics of the annotated 
genes for each metatranscriptome sample. 

3. Results and discussion 

3.1. Metatranscriptome data 

The metatranscriptomic files of the collected wastewater samples 
were analysed, and after the removal of low-quality sequences with 
trimmomatic, 125, 326, 964 reads were obtained from a total of 125, 
874, 982 input reads. FASTQC retrieved 0 sequences flagged as poor 
quality with a sequence length between 36 and 100 nucleotides and 51% 
GC content. The control transcriptome that contained segments of the 
SARS-CoV-2 genome was positive for the presence of this virus when 
using GOTTCHA2 and FALCON-meta analysis. The results allowed to 
confirm that both software tools can detect SARS-CoV-2. 

3.2. GOTTCHA2 detected pathogens 

We determined the presence of potential human pathogens in the 
sample as calculated by GOTTCHA2. The identified human pathogens 
were represented by bacteria, with only one virus detected (Mamas
trovirus 1). The species Laribacter honkongensis (relative abundance of 
0.004), Arcobacter butzleri, Streptococcus suis and Bacteroides uniformis 
presented the highest relative abundance among the human pathogens 
detected, although with a low global read count among the total species 
detected (Fig. 2-a and Fig. 3, Table 1). The total mapped base pairs (bp) 
were in accordance with the relative abundance results, although the 
species Arcobacter butzleri mapped bp was lower than expected from the 
relative abundance results. Proteobacteria pathogenic species showed a 
higher number of reads (504,344 from a total of 4,451,520). The phylum 
Proteobacteria was the most represented among all detected species (n 
= 72), mostly with facultatively anaerobic metabolism species (Fig. 2- 

Fig. 1. Workflow of the methodology used to identify 
the species present in the wastewater sample. 
*A positive control was used for SARS-CoV-2 virus 
identification. 
** SARS-CoV-2 viruses was added to the database and 
records with ambiguous host names discarded. 
*** The species was used as primary key to merge the 
databases that present equal species for each record.   
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b). The phyla Fusobacteria, Firmicutes, Bacteroidetes and Actino
bacteria were also present in the analysed sample. The dataset also 
included mainly gram-negative pathogenic bacteria (n = 72) and only 
12 g-positive bacterial species. The only virus identified with pathoge
nicity potential was Mamastrovirus 1 (Fig. 3). The raw GOTTCHA2 
values combined with the pathogen database are available in Supple
mentary Table S1. 

3.3. FALCON-meta detected pathogens 

To validate the potential human pathogenic species detected the 
FALCON-meta analysis of the metatranscriptomic data was performed. 
The results were in accordance with GOTTCHA2 (Fig. 4, Supplementary 
Table S2), but different strains inside each species were also detected (e. 
g., 32 strains for Escherichia coli). These strains were not detected in 
GOTTCHA2 calculations. The FALCON-meta analysis revealed that 
although some bacterial orders were detected in the GOTTCHA2 cal
culations, it is highly probable that they are not present in the sample 
(Fig. 5). The percentage of similarity in these cases was low (Fig. 6); 
consequently, the FALCON-meta data only included 4 orders from 
GOTTCHA2 detected species data. Furthermore, the species with path
ogenicity potential with the highest similarity percentage was Coma
monas testoteroni (more than 90%), while the other bacterial species had 
similarity percentages in the range of 75%–80% (Fig. 6). In contrast, the 
viral species had the lowest similarity percentage (lower than 10%), 
except for the record with reference AF246940.1, corresponding to the 
human picobirnavirus. All the detected bacteria were gram-negative (23 
species). Within the 4 bacterial orders that were found in the 
GOTTCHA2 and FALCON-meta results data, several species were unique 
to the FALCON-meta data (Fig. 2-c and 2-d). For instance, the sample 
presented 11 potentially human pathogenic species from the order 
Enterobacterales, while the GOTTCHA2 results only presented 3 

potentially Enterobacterales pathogenic species. Of these 11 species, 
Raoultella ornithinolytica, Acinetobacter baumannii and Comamonas 
testosterone presented the highest similarity percentages. The faculta
tively anaerobic bacteria from the genus Klebsiella (n = 43 strains from a 
total of 2061 strains), which included the species Klebsiella pneumoniae, 
showed an average percentage of similarity of 76%. The species 
Escherichia coli (n = 33 strains) was also detected in the sample with an 
average percentage of similarity of 69%. 

Concerning the potential human pathogenic viral species present in 
the sample, the computational workflow detected human picobirnavi
rus, rotavirus A and Mamastrovirus 1. The average percentages of simi
larity (<32%), as calculated by FALCON-meta, were very low for 
Rotavirus A and Mamastrovirus 1, which suggests that these species are 
not actually present in the sample. Only human picobirnavirus was 
detected with a percentage of similarity of approximately 92% for one of 
the detected nucleotide segments. 

3.4. Metatranscriptomic approach final dataset 

To improve the accuracy of the computational metatranscriptomic 
approach a combination of the results from different algorithms was 
performed. The results from the combination of GOTTCHA2 and 
FALCON-meta analysis data detected a large number of viruses and 
bacteria. Nevertheless, the statistical analysis of the dataset showed that 
only a small number of potential pathogenic bacterial and viral species 
were present in the analysed sample. After using the filter criteria 
considering the relative abundance (>0.0001) and percentage of simi
larity (>60%), the final dataset revealed a total of 4 bacterial pathogen 
species, which included a total of 64 strains in the wastewater sample 
(Supplementary Table S3). The potential pathogenic bacterial species 
detected were Escherichia coli, Comamonas testosteroni, Aeromonas ver
onii, and Klebsiella pneumoniae. The species identified were affiliated 

Fig. 2. Fig. 2: a) GOTTCHA2 sum of relative abundance of the Human pathogenic species present in the wastewater sample; b) GOTTCHA2 detected Phyla for the 
Human pathogenic species present in the wastewater sample, considering the metabolic dependence of oxygen; c) FALCON-meta percentage of similarity of the 
Human pathogenic species present in the wastewater sample; d) FALCON-meta number strains of the Human pathogenic species present in the wastewater sample. 
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with different taxonomic groups, which included the orders Aero
monadales, Burkholderiales and Enterobacterales. Durnavirales and 
Stellavirales virus orders were also detected (human picobirnavirus and 
mamastrovirus). The average percentage of similarity for the bacterial 
strains detected was above 69%. The bacterial species with the highest 
average conservation score was Comamonas testosteroni (95.07%). 

Human picobirnavirus was the only viral species that had a high prob
ability of being present in the sample due to the higher values of relative 
abundance (0.00011) and percentage of similarity (91.89%). The final 
database showed a linear positive correlation (Fig. 7, Pear’on’s r cor
relation coefficient = 0.342, p < 0.001) between the relative abundance 
and the percentage of similarity when considering the different species 

Fig. 3. GOTTCHA2 results indicating the potentially pathogenic species, based on a human pathogen database. The total number of sequences (in Log 10 scale) is 
filled with a gradient proportional to relative abundance. 

Table 1 
GOTTCHA2 relative abundance (>0.00004), read count, mapped base pairs and base pair mismatch of human viral and bacterial pathogen species detected in the 
analysed wastewater sample.  

Species RELATIVE ABUNDANCE TOTAL_BP_MAPPED AVERAGE of TOTAL_BP_MISMATCH AVERAGE of READ_COUNT 

Laribacter hongkongensis 0.00373 8,727,449 80,874 118,511 
Arcobacter butzleri 0.00211 970,374 10,441 17,710 
Streptococcus suis 0.00177 2408773 61,726 34,107 
Bacteroides uniformis 0.00069 2476792 16,163 32,494 
Lactobacillus delbrueckii 0.00068 1045996 9305 14,080 
Collinsella aerofaciens 0.00055 1124284 21,490 14,737 
Aeromonas veronii 0.00045 491,222 8340 8473 
Comamonas testosteroni 0.00041 1464441 22,275 23,404 
Streptococcus gallolyticus 0.00031 117,383 1841 1566 
Bacteroides vulgatus 0.00028 411,059 2289 6509 
Klebsiella pneumoniae 0.00027 113,803 570 2211 
Aeromonas salmonicida 0.00025 448,160 5963 6032 
Alistipes putredinis 0.00024 531,016 2088 7236 
Bifidobacterium longum 0.00017 207,064 1013 3097 
Klebsiella variicola 0.00011 24,498 186 468 
Mamastrovirus 1 0.00008 516 20 7 
Streptococcus infantarius 0.00007 25,782 172 459 
Escherichia coli 0.00006 9792 41 153 
Sutterella wadsworthensis 0.00004 90,624 419 1058 
Ochrobactrum anthropi 0.00004 154,480 1424 2024  
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strains. 
To understand which species were present in the studied sample a 

deep analysis was performed and discussed. Species such as Escherichia 
coli were detected in the sample, as observed in other data from 
wastewater pathogen detection methods (Ramírez-Castillo et al., 2015). 
From all Escherichia coli strains with a high probability of occurrence in 
the analysed sample, the Escherichia coli O157:H7 strain was detected, 
which can cause disease in humans by producing Shiga-like toxins 1 and 
2 (Fijalkowski et al., 2014). 

Comamonas testosteroni was also identified in the sample. This 

microorganism was reported to have caused some human infections, 
although with low virulence (Tiwari and Nanda, 2019). Some strains can 
be used for bioremediation processes due to their ability to degrade 
various organic pollutants (Li et al., 2017). Comamonas testosteroni 
strains have been isolated from diverse environments, in accordance 
with the obtained results (Ma et al., 2009). The strain T5-67, identified 
in the sample, was associated with the horizontal spread of integrons 
within the aerobic biofilm bacterial community (Huyan et al., 2020), 
which can have important implications for wastewater treatment. 

Previous studies have already detected Aeromonas veronii in 

Fig. 4. FALCON-meta results showing all species with the highest percentage of similarity, including the pathogenic species. The size and percentage of similarity of 
human viral and bacterial pathogens detected in the sample are shown. 

Fig. 5. Percentage of human pathogenic bacteria present in the analysed wastewater sample, considering the taxonomic rank order, as calculated by the GOTTCHA2 
and FALCON-meta algorithms. 
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wastewater (Skwor et al., 2020). In this context, the Aeromonas veronii 
strain WP8–W19-CRE-03 identified in the analysed sample is antibiotic 
resistant and potentially highly pathogenic due to the multiple antibiotic 
resistance proteins identified in the sample (Supplementary Table S4), 
including the tetracycline resistance regulatory protein. The results 
findings related to antibiotic resistance in this sample are crucial 
considering that even treated wastewater can become a reservoir of 

these resistant bacterial strains (Figueira et al., 2011; Skwor et al., 
2020), with implications for public health. Public health measures can 
be advised considering that some Aeromonas spp. Strains cause several 
types of diseases, including intestinal, blood, skin and soft tissue and 
trauma-related infections (Figueira et al., 2011; Lamy et al., 2009). 

Some types of wastewaters were already associated with hotspots of 
antibiotic resistant bacteria (ARB), including the Klebsiella pneumoniae 

Fig. 6. Circular figure illustrating the potentially pathogenic species identified with GOTTCHA2 and FALCON-meta. The shared species are illustrated with inner 
ribbons. For the FALCON-meta data, the genome size and percentage of similarity are illustrated. For the GOTTCHA2 data, the read count and relative abundance are 
illustrated. 
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detected in the analysed sample (Gatica et al., 2016; Kumar et al., 2020; 
Popa et al., 2021; Rozman et al., 2020). Considering that the bacteria 
Klebsiella pneumoniae can cause high morbidity and mortality rates due 
to human infections (Bassetti et al., 2018), its detection is mandatory in 
light of putative high antibiotic resistance. The tetracycline resistance 
genes were detected and can be associated with the Klebsiella pneumo
niae strains. These strains can survive in different wastewater environ
ments, and studies have demonstrated that after chlorine treatment, 
wastewater samples can present 80% tetracycline resistance genes (Popa 
et al., 2021). 

The opportunistic enteric pathogen human picobirnavirus was 
identified in the wastewater sample. This type of virus was observed in 
other studies, including the human picobirnavirus strain 4-GA-91 
(Bhattacharya et al., 2007; Ghosh and Malik, 2021; Symonds et al., 
2009; Zhang et al., 2015). Human gastroenteritis is often associated with 
this type of virus (Malik et al., 2014), and thus, the identification of 
picobirnavirus should be evaluated in an epidemiological context. This 
matter is of importance for both raw wastewater samples and final 
effluent samples (Symonds et al., 2009) allowing the implementation of 
directed and fast public health measures if needed. The interpretation of 
these results should also be made at light of new existing hypothesis that 
propose that picobirnavirus is not an animal infectious virus but rather 
they may infect evolutionarily microorganisms that live and thrive in the 
gastrointestinal tract (Wang, 2022). 

3.5. RASTtk virulence genes detection 

In order to ascertain if the detected potential pathogenic species still 
have the capacity to infect human host an analysis of the virulence genes 
in the sample was performed. The results of the RASTtk (Supplementary 
Table S4) showed that the putative active forms of RNA detected in the 
wastewater sample were forms of the RNA-directed RNA polymerase 
beta chain. There was also the presence of genes that encode different 
protein forms of thioredoxin, Large subunit (LSU) ribosomal protein L10p 
(P0) and rubrerythrin, with a high gene count. These proteins are related 
to cell division initiation-related clusters, ribosomal proteins, single- 
copy ribosome LSU, bacterial bacterioferritin and proteins with encap
sulation of dye de-colourising peroxidase or ferritin-like protein oligo
mers. Considering the bacterial genes associated with pathogenicity, the 
computational method identified the Bacillus subtilis spore coat staphy
lococcal pathogenicity islands (SaPI) (n = 29), the guanosine mono
phosphate synthetase (GMP) SaPI (n = 17), and the heat shock dnaK 
gene cluster extended SaPI trans-translation by stalled ribosomes. The 
tetracycline resistance regulatory protein (TetR) (n = 2) was detected in 
the sample (Figueira et al., 2011; Igbinosa and Okoh, 2012), which 

putatively is associated with Aeromonas veronii and other 
antibiotic-resistant bacteria. 

Considering the final functional annotation of all the viruses, the 
putative virion core protein (lumpy skin disease virus) was the only viral 
protein identified in the sample. There were no relevant results for other 
RNA forms and protein genes considering the viruses. 

3.6. Simulated dataset control 

The results of the simulated dataset retrieved from the MOSCA 
software pipeline revealed that the methodology developed in this study 
can accurately detect 58% of the bacterial and viral microorganism of 
the MT1 simulated metatranscriptomic file (Table 2). The values for 
relative abundance and percentage of identity for the simulated dataset 
were also calculated by the implemented methodology. Considering the 
obtained values, the species not detected (false negatives) in our 
workflow were a consequence of the accuracy test performed for each 
unique result. The evaluated results for the simulated dataset eliminated 
some species with lower values of relative abundance (<0.0001) and 
conservation scores (percentage of similarity <60%). 

3.7. Example of use 

The procedure to analyse a sample with the computational meta
transcriptomic workflow is straightforward and is explained as follows. 
The R language script code and FALCON-meta algorithm are available at 
https://github.com/waterpt/watermonitor. The MT1 simulated data 
from the MOSCA pipeline in the KBase public workflow was also 
included in the Github project. The following steps should be taken to 
analyse the samples. 

1 Create a profile account at the KBase (https://www.kbase.us/) on
line platform to run the GOTTCHA2 software. The workflow to run 
GOTTCHA2 for the simulated database from MOSCA can be repli
cated using information at https://narrative.kbase.us/narrati 
ve/128450. 

Fig. 7. Scatterplot with correlation between GOTTCHA2 relative abundance 
(REL_ABUNDANCE) and the FALCON-meta percentage of similarity of the 
detected species. Pearson’s r (correlation coefficient) = 0.342, p < 0.001. The 
dotted line represents the confidence intervals (95%) as calculated by JASP. 

Table 2 
Results for the MT1 simulated dataset from the MOSCA software pipeline.  

Taxonomy Simulated 
for MT1 
(%) 

Identified 
in MT1 
MOSCA 
(%) 

Detected 
in 
Workflow 

Relative 
Abundance 

Acinetobacter 0 2.585 Yes 0.00002 
Aeromonas hydrophila 0 0.534 No 0 
Bacteroides 

thetaiotaomicron 
0 1.193 Yes 0.02859 

Chloroflexus 0 0.283 No 0 
Clostridium botulinum 0 0.892 No 0 
Desulfovibrio 7.074 6.394 Yes 0.00003 
Desulfumoronadaceae 3.459 1.237 No 0 
Escherichia 0 8.088 No 0 
Eukaryota 0 0.045 No 0 
Geobacter 1.415 1.167 Yes 0.00002 
Methanobacteriales 0 0 Yes 0.12525 
Methanomicrobiaceae 10.07 2.098 Yes 0.14647 
Methanosarcina 30.94 12.74 Yes 0.14898 
Methanospirillum 6.564 0.783 Yes 0.00146 
Methanothrix 20.59 5.73 Yes 0.24237 
Peptococcaceae 6.288 5.853 No 0 
Pseudomonas 0 4.384 Yes 0.00034 
Spirochaetia 0 4.557 Yes 0.00002 
Staphylococcus 0 17 No 0 
Synergistaceae 0 0.707 No 0 
Syntrophaceae 3.616 2.525 Yes 0 
Syntrophobacteraceae 1.018 0.147 Yes 0.00139 
Syntrophomonadaceae 4.717 9.536 No 0 
Viruses 0 0.024 Yes 0.48681  
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2 Install the FALCON-meta algorithm (https://github.com/cobilab/fal 
con) using ANACONDA (https://www.anaconda.com/, available for 
all operating system platforms). In Windows, the Linux subsystem 
must be installed. All software is open source.  

3 Run the samples with GOTTCHA2 and FALCON-meta and save the 
results. FALCON-meta command should be:"./FALCON -v –F -t 15 -l 
47 -x output_file.txt transcriptome_example.fasta your_refer
ence_database.fasta".  

4 To merge the results from both datasets with the pathogen reference 
file (vertebrates_pathogens.csv), the MERGE_TABLES_GOTTCHA2- 
FALCON script should be run.  

5 One possible illustration (Fig. 6) is generated using circos software 
(circos.ca). To produce the example in Fig. 6, run the script circos. 
conf after producing all the necessary files in the “watermonitor/ 
Circos” directory. To produce those files, the circos_pre_processing R 
script, available in the “watermonitor/Circos” directory, should be 
used. This step is an example tailored for the data presented here, 
and the user should adapt it to its own data. Additional visualization 
examples are made available in the R script. 

6 The CIRCOS R script should be run to generate the graphic repre
sentation of the detected putative pathogenic strains. 

3.8. Performance tests and algorithm improvements 

The accuracy of the new FALCON-meta tool was evaluated using 
different c parameters (c = 30, c = 40, c = 50, c = 60). These results 
showed that FALCON-meta performance, even with the lowest memory 
usage, using an Intel i7 CPU, 16 GB RAM, and 512 SSD workstation, 
allowed the improvement of the results of GOTTCHA2 (Freitas et al., 
2015). FALCON-Meta was tested with a limited number of CPUs and low 
RAM size. These experiments suggest that a minimum of 8 CPUs/8 GB of 
RAM are needed to efficiently process large sequence files from NCBI’s 
nonredundant bacteria database (FASTA file with approximately 700 
GB) and virus database. 

Considering the comparison with other tools, two features of these 
metatranscriptomic approach methodology are important: the auto
matic identification of potential pathogenic microorganisms (e.g., virus, 
bacteria) and the possibility of differentiating species strains (Table 3). 
The differentiation of strains is of major relevance since only with this 
information the prediction of the pathogenicity of the microorganisms 
present in the sample is possible. 

3.9. Computational metatranscriptomic approach limitations 

Considering the final analysis, only one putative pathogenic virus 
was detected, and the number of detected viruses was lower than the 
bacterial species, which can be explained by our filtering criteria. Other 
reasons were outlined before to explain this difference between the 
detected virus and bacteria (Shakya et al., 2019). Additionally, the 
detection of bacteria and viruses can also be influenced by the methods 
used for nucleic acid extraction and sequencing. In this context, other 
studies implemented viral metagenomics separately from bacteria 
metagenomics (Petrovich et al., 2020). Considering this, the metatran
scriptomics workflow implemented here should not be used for routine 
identification of viruses in wastewater until further optimization of both 
the sequencing procedure and the statistical validation using more 
samples. Finally, since the main results were obtained from a single 
sample, interpretation of the conclusions should be careful, although the 
workflow was validated with simulated data and controls. The com
parison of the detected human pathogens should be done with other 
studies when the computational metatranscriptomic approach devel
oped in this study can be tested as part of different monitoring systems. 

3.10. Computational metatranscriptomic approach future perspectives 

The data obtained using this computational metatranscriptomic 

approach can also have direct implications in the development of vac
cines and therapeutic approaches for human pathogens, since early 
detection of new strains of human pathogenic bacteria and viruses is 
possible (“Wastewater monitoring comes of age,” 2022). Furthermore, 
this type of analysis can complement clinical surveillance during human 
pathogens outbreaks showing a comprehensive view of infection burden 
and transmission and information on variants that are circulating in a 
community (Diamond et al., 2022). This high-resolution wastewater 
data can also be combined with information from ecosystems maps 
describing the distribution of habitats and species, including humans, to 
calculate where the impacts of wastewater pressures are highest and by 
this way establish conservation efforts (Tuholske et al., 2021). 

However, this computational methodology also imposes some dis
cussion about the ethical and privacy concerns (Jacobs et al., 2021). 
Currently, the fast analysis of this huge amount of data in almost 
real-time allows the identification and understanding of the population 
viral spread and disease trends. Over this, advances in the high-capacity 
computing resources, machine learning, as well as improved analytical 
chemistry techniques (Baum et al., 2021), can putatively allow the 
deeper knowledge of the transcriptomes and genomes present in 
different types of wastewater samples. Considering this, strategic defi
nition of the objectives of human pathogens detection by monitoring 
programs should be transparent by clearly explaining the future use of 
the recovered information from analysed samples. Measures to protect 
the storage of this kind of information should also be implemented by 
using encryption tools and a feasible data management plan. 

4. Conclusion 

The computational metatranscriptomic approach implemented in 
this study allowed the identification of potential human pathogenic 
bacterial and viral species in a wastewater sample by cross validating the 
metatranscriptomic analysis with a database of reference human path
ogens. The developed approach improved previous used methodologies 
(Sequeira et al., 2019; Westreich et al., 2018) considering that: (1) this 
computational workflow was built using freely available tools, (2) the 
computational tools can process the sample more rapidly and accu
rately, (3) the computations are reproducible, (4) the final detected 
human pathogens are validated by several different algorithms using 
statistical methods, (5) the implementation in current workflows that 
monitor the presence of pathogens in urban wastewater is straightfor
ward. The presented workflow follows the best practices for metatran
scriptomic analysis, including the pre-processing of the FASTQ read files 
and statistical validation of the results using two different tools. The 
features implemented in the developed workflow represent an 
improvement to other tools used in metatranscriptomic analysis, 
including the identification of different strains and the prediction of 
species with putative pathogenicity. The detected pathogen species can 
be used to ascertain some specific metabolic pathways linked to the 
putative active forms of RNA detected in environmental samples. The 
results are even more striking considering that the methodology was 
able to detect several multi resistant bacterial proteins associated with 
some bacterial strains, which can be relevant for the detection of sources 
of multidrug resistance, including ARBs, in wastewater. Finally, the 
developed workflow has a high potential for human pathogens detec
tion, but this computational metatranscriptomic approach should not be 
used routinely to identify the presence of virus until further optimization 
and validation with several wastewater samples. 
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