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• Covalent organic polymer TpPa-COOH 
for the efficient adsorption of saxitoxin 
(STX). 

• Fast adsorption of STX with equilibrium 
reached within 1 h. 

• Calculated maximum adsorption capac
ity of 5.69 mg g− 1 outperforms reported 
materials. 

• Good reusability and high recovery rates 
for STX in natural freshwater.  
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A B S T R A C T   

Saxitoxin (STX), the most widely distributed neurotoxin in marine waters and emerging cyanotoxin of concern in 
freshwaters, causes paralytic shellfish poisoning in humans upon consumption of contaminated shellfish. To 
allow for the efficient monitoring of this biotoxin, it is of high importance to find high-affinity materials for its 
adsorption. Herein, we report the design and synthesis of a covalent organic polymer for the efficient adsorption 
of STX. Two β-keto-enamine-based materials were prepared by self-assembly of 2,4,6-triformylphloroglucinol 
(Tp) with 2,5-diaminobenzoic acid (Pa-COOH) to give TpPa-COOH and with 2,5-diaminotoluene (Pa-CH3) to 
give TpPa-CH3. The carboxylic acid functionalized TpPa-COOH outperformed the methyl-bearing counterpart 
TpPa-CH3 by an order of magnitude despite the higher long-range order and surface area of the latter. The 
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adsorption of STX by TpPa-COOH was fast with equilibrium reached within 1 h, and the Langmuir adsorption 
model gave a calculated maximum adsorption capacity, Qm, of 5.69 mg g− 1, making this material the best re
ported adsorbent for this toxin. More importantly, the prepared TpPa-COOH also showed good reusability and 
high recovery rates for STX in natural freshwater, thereby highlighting the material as a good candidate for the 
extraction and pre-concentration of STX from aquatic environments.   

1. Introduction 

Saxitoxin (STX) is one of the most lethal biotoxins known with an 
oral LD50 value of 5.7 μg kg− 1 for humans [27]. It is produced by cya
nobacteria and dinoflagellates during (cyanobacterial) harmful algal 
blooms ((cyano)HABs), massive proliferation of dinoflagellates or cya
nobacteria occurring with increasing frequency [17,24] in many fresh 
and marine waters due to climate change, water hypertrophication, and 
other effects stemming from human activity. STX and its documented 58 
congeners, also known as paralytic shellfish toxins (PSTs), typically 
accumulate in filter-feeding bivalves and fishes [13,32,48], potentially 
leading to seafood poisoning outbreaks through the marine food chain 
[9,28]. In freshwaters, 15 STX-producing species of freshwater cyano
bacteria have been identified and many surveillance studies indicate 
that STX-producing species are very commonly present in stagnant 
surface freshwater for drinking water or recreational uses [6]. There
fore, to prevent the occurrence of toxic outbreaks, it is of high impor
tance to develop materials that allow for the efficient monitoring of 
these toxins [30,31]. 

For trace or ultra-trace analysis of organic contaminants from water 
samples, pretreatment and pre-concentration are often required prior to 
the quantification [56], and extraction techniques such as solid-phase 
extraction (SPE) [25], magnetic solid-phase extraction (MSPE) [11, 
18], and solid-phase microextraction (SPME)[4] have been developed 
for the concentration of STX. On the other hand, for saxitoxin removal, 
the most common method is based on adsorption using granular acti
vated carbon (GAC) [34], although other adsorbent materials have also 
been reported, such as polymeric resins [36], mineral residues [3,12], 
oyster shell powder [26], and algal polysaccharide gels [29]. However, 
complicated implementation procedures, low specificity and adsorption 
capacity, and poor reusability of the reported adsorbents prompt the 
development of novel highly efficient and recyclable materials for STX 
adsorption [21,25,36]. 

Covalent organic polymers (COPs) are a class of porous organic 
nanomaterials constructed from organic units via covalent bonding [54, 
57]. Given their interesting characteristics such as light density, facile 
preparation, and high structural stability [1,40,50], COPs represent a 
promising class of adsorbent materials for water contaminants, and they 
have been reported to efficiently capture rare-earth elements [35,41], 
radioactive elements [54], organic dyes [15,22], and pesticides [14,20]. 
In addition, their chemical selectivity and adsorption capacity can be 
tailored through the incorporation of functionalities into the COP 
building units [49]. 

Herein, we report the synthesis of novel COP materials for the 
adsorption of STX from water. Two β-keto-enamine-based materials 
were obtained by reaction of 2,4,6-triformylphloroglucinol (Tp) with 
2,5-diaminobenzoic acid (Pa-COOH) yielding TpPa-COOH and with 2,5- 
diaminotoluene (Pa-CH3) yielding TpPa-CH3. Carboxyl-functionalized 
TpPa-COOH was found to be > 10 times more efficient than the meth
ylated control COP TpPa-CH3. Further insight into the adsorption ca
pacity of TpPa-COOH was gained through kinetics, adsorption isotherm, 
and equilibrium studies, and the material was found to feature adsorp
tion capacity of over seven times higher than the best-performing re
ported adsorbents for STX. This, added to the reusability of the material 
and its high adsorption capacity for STX from natural water samples, 
establishes TpPa-COOH as a potential adsorbent for the monitoring of 
STX. 

2. Experimental section 

2.1. Synthesis of TpPa-COOH 

TpPa-COOH was synthesized modifying a previously reported pro
cedure [7]. Briefly, triformylphloroglucinol (Tp) (63 mg, 0.3 mmol, 1.0 
equiv.), 2,5-diaminobenzoic acid (Pa-COOH) (136.9 mg, 0.9 mmol, 3.0 
equiv.), and a mixture of dimethylacetamide (DMAc) and 1,4-dioxane 
(9:1, 3 mL) were added to a 10 mL ampoule, and the mixture was ho
mogenized by ultrasonication at r.t. for 5 min. Then, aq. 6 M acetic acid 
(AcOH) (0.5 mL, 6.0 mmol, 10.0 equiv.) was added and the suspension 
was sonicated at r.t. for 5 min to obtain a homogenous dispersion. The 
reaction mixture was flash frozen in a liquid N2 bath, the ampoule was 
sealed under vacuum, and heated in the oven at 120 ℃ for 3 d. After 
cooling to r.t., the solid was collected by filtration and washed sequen
tially with tetrahydrofuran (THF), N,N-dimethylformamide (DMF), ul
trapure water, and acetone until a colorless filtrate was observed. The 
resulting solid was dried at 90 ℃ under nitrogen for 24 h to yield 
TpPa-COOH (89 mg, 77%) as dark-red-colored powder. 

2.2. Synthesis of TpPa-CH3 

In a 10 mL ampoule, Tp (31.5 mg, 0.15 mmol, 1.0 equiv.) and 2,5- 
diaminotoluene (Pa-CH3) (27.5 mg, 0.23 mmol, 1.5 equiv.) were 
dispersed in a mixture of mesitylene and 1,4-dioxane (1:1, 1.8 mL), and 
the mixture was homogenized by ultrasonication at r.t. for 10 min. Then, 
aq. 6 M acetic acid (0.25 mL, 1.5 mmol, 10.0 equiv.) was added and the 
suspension was sonicated at r.t. for 5 min to obtain a homogenous 
dispersion. The reaction mixture was flash frozen in a liquid N2 bath, the 
ampoule was sealed under vacuum, and heated in the oven at 120 ℃ for 
3 d. After cooling to r.t., the solid was collected by filtration and washed 
sequentially with THF, ultrapure water, and dichloromethane until a 
colorless filtrate was observed. The resulting solid was dried at 90 ℃ 
under nitrogen for 24 h to yield TpPa-CH3 (41 mg, 81%) as red-brown 
powder. 

2.3. Saxitoxin and decarbamoylsaxitoxin quantification 

STX and decarbamoylsaxitoxin (dcSTX) quantification assays were 
conducted at a final volume of 200 μL in wells of flat-bottom opaque 96- 
well microplates following a literature-known procedure [52]. First, 50 
μL of sample were added to the wells containing 12 μL of 10% aq. 
hydrogen peroxide and 126 μL aq. 1 M NaOH. The microplate was 
incubated for 2 min at 20 ℃ under constant shaking at 500 rpm. Then, 
10.2 μL of glacial acetic acid were added to stop the oxidation reaction 
followed by a 5 min shaking (500 rpm) at 20 ℃. The fluorescence in
tensity of each well was measured using a multifunctional microplate 
reader at 340 nm excitation/395 nm emission, with the gain of 100 and 
150. 

2.4. Calibration curves for STX or dcSTX quantification 

For the preparation of the calibration curve, STX or dcSTX stock 
solution was serially diluted to 5, 4, 3, 2, 1.5, 1, 0.5 μmol L− 1 with ul
trapure water, river water, lake water, or 0.1% aq. formic acid 
(Fig. S16¡20). The calibration curves in the corresponding solvents 
were prepared using the software Origin 8.5, plotting the known con
centration points of serial dilutions against the corresponding 
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fluorescence. Then, a non-linear pharmacology dose-response or linear 
fitting was applied. 

2.5. Adsorption kinetics 

A sample of 110 μL of a TpPa-COOH dispersion of 1 mg mL− 1 in 
ultrapure water was spiked with a STX to give a final concentration of 10 
μmol L− 1. Mixture was incubated (19 ℃, 1400 rpm) using Thermomixer 
Comfort Eppendorf MTP with a 1.5 mL block. After incubation of 1, 5, 
10, 30 s, and 1, 5, 10, 30, 60, and 120 min, the collection of the su
pernatant was performed by filtration (Millex®-GN, hydrophilic Nylon 
membrane, 0.22 µm). Two-fold dilutions of the collected supernatants 
were quantified using the microplate method. Each time interval was 
performed in duplicate. The experimental kinetics were fitted with the 
pseudo-first-order and the pseudo-second-order kinetic models. 

2.6. Adsorption isotherms at 19 ℃ 

Samples of 110 μL of a 1 mg mL− 1 TpPa-COOH dispersion in ultra
pure water were spiked with a STX concentration of 7, 10, 12, 15 and 30 
μmol L− 1. For low STX concentrations, the volume of samples was 
increased to 1000 μL at 1 and 3 μmol L− 1, and 700 μL at 5 μmol L− 1, 
keeping the COP concentration constant. Mixtures were incubated at 19 
℃ for 45 min under constant shaking at 1400 rpm. The supernatant of 
the samples was collected by centrifugation (15,000 rpm, 19 ℃, 15 
min). The collected supernatants were subjected to dilution or concen
tration by evaporation and then quantified for STX using the microplate 
method. Each sample was performed in duplicate. 

Freundlich and Langmuir models were employed to analyze the 
equilibrium adsorption isotherm. Freundlich equation is as follows [51]: 

lnQe =

(
1
n

)

lnCe+ logKF (1)  

where Qe is the amount of adsorbate adsorbed onto the adsorbent in 
equilibrium (mg g− 1), Ce is the concentration of adsorbate in the equi
librium state (mg L− 1), and n and KF are characteristic constants. KF is an 
indicator of the adsorption capacity in the Freundlich theory. This 
constant is a parameter used to evaluate the strength of the adsorption 
process. 

The maximum adsorption capacity (Qm) can be calculated from the 
following equation: 

Qm = KFC1/n
0 (2)  

where C0 is the initial and highest concentration of the adsorbate in 
solution (mg L− 1). 

The Langmuir equation is expressed as [16]: 

Ce

Qe
=

(
1

Qm

)

Ce + 1
/

(QmKL) (3)  

where KL is the characteristic Langmuir model constant. 
The main characteristics of the Langmuir isotherm can be expressed 

by a dimensionless constant described as the separation factor RL, which 
is an important equilibrium parameter. 

RL = 1/(1+KLC0) (4)  

where RL > 1 indicates the adsorption to be unfavorable, RL = 1 is 
linear, 0 < RL < 1 is favorable, and RL = 0 is irreversible. 

2.7. Adsorption and desorption assays 

For adsorption, two replicates of 110 μL of a TpPa-COOH dispersion 
of 1 mg mL− 1 in ultrapure water or river water were spiked with STX or 
dcSTX to give a final concentration of 10 μmol L− 1. Mixtures were 
incubated at 19 ℃ under constant shaking at 1400 rpm for 1 h. Then, 

the supernatants were collected by centrifugation (15,000 rpm, 19 ℃, 
15 min) for STX quantification. For desorption, the precipitates from the 
adsorption assays were suspended in 150 μL of aqueous 0.1% formic 
acid, sonicated at r.t. for 10 min, and incubated for 12 h at 40 ℃ under 
constant shaking of 14,000 rpm. The samples were then centrifuged at 
15,000 rpm for 15 min at 19 ℃, and the supernatants were analyzed for 
STX quantification. 

2.8. COP recycling 

The pellets obtained from the desorption assays were washed with 
ultrapure water (1 mL) under constant shaking at 1400 rpm for 30 min 
and collected by centrifugation (15,000 rpm, 19 ℃, 60 min). Then, the 
pellets were subjected to two adsorption− desorption− washing cycles, 
maintaining the COP and STX concentration. The recovery of STX for 
cycles 1–3 was compared and evaluated for the reusability of TpPa- 
COOH. 

3. Results and discussion 

3.1. Design, synthesis, and characterizations of COPs 

STX is a tetrahydropurine compound containing two guanidinium 
groups with pKa values of 11.5 and 8.24, respectively (Fig. 1A) [38]. At 
physiological pH, both moieties are positively charged [46]. In order to 
design an efficient adsorbent for STX, we considered the binding of the 
toxin to its natural targets. Saxiphilin, a high-affinity STX-binding pro
tein found in bullfrogs, was found to bind STX through several carbox
ylic groups and cation− π interaction [23,55]. Interestingly, such STX 
recognition pattern is similar to that found in voltage-gated sodium 
(NaV) channels [2,43], where the binding mechanism is mediated by 
electrostatic interactions between the five- and six-membered guanidi
nium rings of STX and carboxyl groups on the NaV channels [8,44]. 
Therefore, we hypothesized that introduction of carboxylic acid moi
eties into the adsorbent material would allow for favorable interactions 
with STX through hydrogen bonds, whereas the aromatic moieties could 
engage in cation− π interactions. 

To gain access to carboxylic-acid-bearing COP, we envisioned the 
synthesis of TpPa-COOH from Tp [5] and commercially available 2, 
5-diaminobenzoic acid (Fig. 1B). After optimization of the conditions, 
the best results in terms of adsorption efficiency (vide infra) were ob
tained with the material synthesized in a mixture of DMAc/1,4-dioxane 
9:1 (v/v) with 10.0 equiv. of 6 M AcOH as catalyst at 120 ℃ for 72 h. As 
a control material without the presence of carboxylic acid moieties, we 
prepared TpPa-CH3 by reaction of Tp and 2,5-diaminotoluene in 
mesitylene/1,4-dioxane 1:1 (v/v) with 10.0 equiv. of 6 M AcOH as 
catalyst at 120 ℃ for 72 h. Fourier-transform infrared (FTIR) spectros
copy featured strong bands at 1614, 1552, and 1230 cm− 1 for 
TpPa-COOH (Fig. 2A), which were assigned to the stretching vibrations 
of C––O, C––C, and C− N of the keto form of Tp, indicating the formation 
of the β-keto-enamine linkage [42]. The bands at 993 and 1691 cm− 1 

stem from O− H and C––O of the carboxylic group, respectively [19]. For 
TpPa-CH3, the strong peaks at 1577 and 1228 cm− 1 were attributed to 
the stretching of C––C and C− N in the keto form (Fig. 2B). Meanwhile, 
the attenuation of the C––O band (1635 cm− 1) and C− H band 
(2923 cm− 1) of Tp as well as the N− H stretching bands of diamine 
building block (3288 and 3377 cm− 1 for TpPa-COOH; 3315 and 
3396 cm− 1 for TpPa-CH3) indicates the complete consumption of the 
starting materials. 

Small-angle X-ray scattering (SAXS) was employed to verify if the 
prepared materials present long-range order. Although TpPa-COOH was 
found to exhibit some crystalline character, with reflections at scattering 
vector q = 3.4 and 6.8 nm− 1, corresponding to distances d = 1.85, and 
0.93 nm, as reported previously [7], disorder in the material is evident 
from the pattern (Fig. S1). Higher order, typical of covalent organic 
framework (COF) materials [33], was found in the case of TpPa-CH3 
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(Fig. S2), with three main reflections at scattering vector q = 3.25, 5.50, 
and 18.9 nm− 1, corresponding to d = 1.91, 1.14, and 0.34 nm. 

Nitrogen sorption measurements at 77 K showed type I sorption 
isotherms for both materials, indicating microporosity (Fig. 2C and D 
and Figs. S3 and 4), as revealed by the sharp increase in N2 uptake at low 
pressures (P/P0 < 0.01) [10]. Brunauer− Emmett− Teller (BET) surface 
areas of 177 and 531 m2 g− 1 were calculated for TpPa-COOH and 
TpPa-CH3, respectively, the former in good agreement with the previous 
report [7]. The pore size distribution calculated using quenched-solid 

density functional theory (QSDFT) showed maxima at 2.3 and 5.0 nm 
as well as contributions from a mixture of larger pores for TpPa-COOH, 
further evidencing the lack of long-range order in the material. On the 
other hand, TpPa-CH3 showed a more defined pore size at 1.6 nm. 

Under nitrogen atmosphere (Fig. S9¡12), thermogravimetric anal
ysis (TGA) data exhibited the onset of weight losses for TpPa-COOH at 
200 and 400 ℃, attributed to decarboxylation and decomposition of the 
material, respectively [58]. Accordingly, TpPa-CH3 only showed one 
weight loss starting at 315 ℃. Scanning electron microscopy (SEM) 

Fig. 1. Chemical structure of STX (A). Schematic illustration of the syntheses of TpPa-COOH and TpPa-CH3 (B). (i) DMAc/1,4-dioxane 9:1, aq. 6 M AcOH; (ii) 
mesitylene/1,4-dioxane 1:1, aq. 6 M AcOH. 

Fig. 2. FT-IR spectra of TpPa-COOH (A) and TpPa-CH3 (B) overlaid with the corresponding monomers Tp, Pa-COOH, and Pa-CH3. N2 adsorption (filled spheres) and 
desorption (hollow spheres) isotherm profiles measured at 77 K of TpPa-COOH (C) and TpPa-CH3 (D). (Insert) Pore size distribution calculated from quenched-solid 
density function theory (QSDFT). 
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images showed TpPa-COOH as micron-sized particles and aggregates 
(Fig. S13), in agreement with the literature [7]. TpPa-CH3 showed 
similar aggregations of numerous micrometer-ranged particles 
(Fig. S14). 

3.2. Saxitoxin adsorption 

To determine the adsorption efficiencies of TpPa-COOH and TpPa- 
CH3 towards saxitoxin, adsorption tests were performed using COP 
dispersions of 1 mg mL− 1 in ultrapure water spiked with a STX con
centration of 5 μmol L− 1. After 4 h of incubation at 19 ℃ under constant 
shaking at 1400 rpm to ensure that equilibrium was reached, the su
pernatant of each sample was analyzed for STX quantification. As shown 
in Fig. 3, the adsorption efficiencies of saxitoxin by TpPa-COOH and 
TpPa-CH3 were 96 ± 0.23% and 8.6 ± 1.31%, respectively, with TpPa- 
COOH outperforming TpPa-CH3 by an order of magnitude despite hav
ing a smaller BET surface area and lower long-range order. 

We postulate that the difference in adsorption efficiency between 
TpPa-COOH and TpPa-CH3 could stem from the carboxylic acid moieties 
in TpPa-COOH, which may undergo favorable hydrogen-bonding in
teractions with the five- and six-membered guanidinium rings in STX, as 

seen in the binding of STX to saxiphilin and NaV channels [8,55]. At the 
studied pH of 6–7, the guanidium moieties of STX, with pKa values of 
8.24 and 11.5 [37], are protonated, thus able to participate in such in
teractions. Of course, STX is highly polar in nature (logD[pH 7.4] =
− 5.49) [53], so the difference in the polarity of the materials could also 
play a role. However, both TpPa-COOH and TpPa-CH3 exhibit similar 
water contact angle of 0◦ (Fig. S15). 

3.3. Adsorption kinetics and test with analog dcSTX 

As TpPa-COOH showed high adsorption efficiency to STX, we next 
carried out kinetic studies in ultrapure water at different contact times 
up to 2 h with a STX concentration of 10 μmol L− 1. This concentration 
was chosen since with 5 μmol L− 1 the measured fluorescence value of the 
collected supernatants was below the linear range of the sigmoidal STX 
calibration curve for contact times over 10 min. As shown in Fig. 4, the 
equilibrium of adsorption was reached at 60 min, showing the adsorbed 
quantity qt of 1.86 mg g− 1 (t = 120 min, c(TpPa-COOH) = 1 mg mL− 1, c 
(STX) = 10 μmol L− 1). The experimental kinetic data were fitted with 
the pseudo-first-order and the pseudo-second-order kinetic models 
(Fig. S21¡22), and the good fit of the latter indicated that this model is 
appropriate to describe the adsorption behavior of TpPa-COOH 
(Table S1), with the calculated Qe of 1.82 mg g− 1 identical to the 
experimental value. Additionally, we investigated the adsorption of a 
STX analog commonly found in natural waters, dcSTX. Very interest
ingly, TpPa-COOH was able to adsorb this analog with an even higher 
efficiency of 91%, reaching 4.1 mg g− 1 of adsorption capacity 
experimentally. 

3.4. Adsorption isotherm 

The adsorption isotherm of STX with TpPa-COOH at 19 ℃ was ob
tained by plotting the amount absorbed in equilibrium, Qe, against the 
remaining concentration of STX at equilibrium, Ce (Fig. 5). With 
increasing Ce, the equilibrium adsorption capacities rose linearly until 
reaching a transient saturation, and then continuing to rise. Langmuir 
and Freundlich isotherm models were employed to fit the experimental 
data (Fig. S23¡24) and the isotherm parameters obtained by linear 
regression of the experimental values are listed in Table S2. The best fit 
of the data points was obtained with the Langmuir isotherm equation 
describing a monolayer adsorption process, with correlation coefficients 

Fig. 3. Adsorption efficiency (%) of saxitoxin by TpPa-COOH and TpPa-CH3 at 
an initial concentration of 5 μmol L− 1 at C0(COP)= 1 mg mL− 1. Experiment 
performed in duplicate at 19 ℃ in ultrapure water at pH 6–7. Error bars 
correspond to the standard deviation of the mean (n = 2). 

Fig. 4. STX adsorption kinetics at 10 μmol L− 1 expressed as quantity adsorbed, 
Qt (mg g− 1) as function of time, 1, 5, 10, 30 s, and 1, 5, 10, 30, 60, 120 min, 
performed in duplicate, at 19 ℃ in ultrapure water [C0(COP) = 1 mg mL− 1]. 
Error bars correspond to the standard deviation of the mean (n = 2). 

Fig. 5. Amount of STX adsorbed in equilibrium (60 min), Qe (mg g− 1), as a 
function of STX concentration in equilibrium, Ce (mg L− 1), at 19 ℃ in ultrapure 
water [C0(COP) = 1 mg mL− 1]. Error bars correspond to the standard deviation 
of the mean (n = 2). 
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close to 1. The values of constant KL and separation factor RL are 0.1852 
and 0.3259, respectively, suggesting a favorable adsorption process of 
STX on TpPa-COOH (0 < RL < 1). Therefore, the Langmuir isotherm 
model can more accurately describe the adsorption of STX by TpPa- 
COOH. The maximum adsorption capacity, Qm, calculated from the 
adsorption isotherm was 5.69 mg g− 1, which matches very well the 
adsorption observed experimentally using 30 µM STX (6.79 mg g− 1). 
Importantly, with this value TpPa-COOH outperforms all reported ad
sorbents for the removal of STX from water (Table 1). In comparison, the 
STX adsorption capacity of TpPa-COOH is at least twice as high as those 
of previously reported materials, making it a potential candidate to be 
used as an efficient adsorbent for STX in the water. 

3.5. Saxitoxin desorption and COP recycling 

Regeneration of used adsorbents is crucial to reduce the costs of toxin 
removal and waste disposal, as well as for the adsorbent to be used as 
pre-concentration materials of STX for further analysis. To investigate 
the reusability of TpPa-COOH for the capture of STX, three consecutive 
adsorption− desorption cycles were performed with a STX concentration 
of 10 μmol L− 1. Prior to STX desorption measurements, we verified the 
elution ability of the alternative desorption solutions includinga mixture 
(pH 9–10) of methanol and ammonia in water, methanol/H2O (1:1, v/v), 
and aqueous 0.1% formic acid (FA) solution. The 0.1% FA solution gave 
a much higher desorption efficiency than other candidates, suggesting 
that the enhanced polarity and acidity of the desorption solution is 
favorable for the elution of STX from TpPa-COOH, which could be due to 
protonation of the carboxylic groups of the COP. As shown in Fig. 6A, 
the adsorbed amount in equilibrium decreased merely from 1.85 to 
1.81 mg g− 1 in the first two cycles, and to 1.60 mg g− 1 after three cycles. 
These results indicate that TpPa-COOH can maintain an acceptable 
performance for practical application at minimum of three consecutive 
uses. For desorption, recovery of adsorbed STX by TpPa-COOH for each 
individual cycle was determined as 86%, 83%, and 78%, respectively 
(Fig. 6B), providing a reliable toxin recovery. Furthermore, SAXS, FTIR, 
and N2 sorption measurements of TpPa-COOH after three consecutive 
adsorption− desorption cycles confirmed that the adsorbent maintains 
its chemical and structural stability (Fig. S1 and Fig. S5¡8), highlighting 
the durability of the material for this application. 

3.6. Extraction of saxitoxin by TpPa-COOH from natural waters 

In order to probe the applicability of TpPa-COOH to adsorb STX from 
natural water, we collected a water sample from Cávado River, in Braga 
municipality, Portugal and a sample of water from Castiñeiras Lake, in 
Marin, Pontevedra, Spain. The pH of the river water sample was deter
mined to be 6.89, very similar to the one from the lake, 6.86. Prior to 
adsorption experiments, the natural water samples were spiked with 
STX at concentrations of 5, 10, and 15 μmol L− 1. Although these con
centrations far exceed actual contamination levels found in natural 
water, with the reported values generally being in the range of ng L− 1 to 
μg L− 1, these experiments were carried out to allow for the comparison 
of the adsorption capacity of TpPa-COOH towards STX in natural water 
and ultrapure water. As shown in Fig. 7, the adsorption efficiency of STX 
by TpPa-COOH reached 99.7% (Test-1 river), 99.4% (Test-2 river) and 
95% (Test-3 lake), all higher than the obtained value (94.9%) in ultra
pure water. With increasing STX concentration, the adsorption effi
ciency showed a similar downward tendency in all water types, 
remaining below 50% at the highest concentration of 15 μmol L− 1. The 
adsorption capacities, Qe, of TpPa-COOH for STX at 5 μmol L− 1 was 
found to be 1.86 (Test-1 river), 1.85 (Test-2 river), 1.77 (Test-3 lake), 
and 1.77 mg g− 1 (ultrapure water), respectively (Table S3). 

In order to test the recovery of STX from the material after adsorption 
from natural water samples, the collected adsorbents obtained from the 
adsorption assay were re-suspended in 150 μL of aqueous 0.1% formic 
acid and incubated for 12 h under constant shaking of 1400 rpm. STX 
was recovered with good efficiency from the natural waters, presenting 
an adsorption recovery efficiency of 79% (Test-1 river), 73% (Test-2 
river), and 59% (Test-3 lake), respectively, corresponding to 79%, 72%, 
and 56% recovery of the spiked amount (Table S4). In all cases, STX was 
efficiently recovered from TpPa-COOH (>59%), suggesting great 
applicability of TpPa-COOH for the extraction of STX from natural water 
for further analysis. 

4. Conclusions 

In summary, we have prepared carboxyl-functionalized TpPa-COOH 
COP with high adsorption efficiency towards STX and its analog, dcSTX. 
The material outperformed its methyl-bearing counterpart despite the 
higher long-range order and surface area of the latter, highlighting the 
importance of the carboxylic acid moieties in the adsorption. Adsorption 
experiments with TpPa-COOH revealed that adsorption equilibrium was 
reached within 60 min and calculated maximum adsorption capacity of 
the prepared material was 5.69 mg g− 1, outperforming all previously 
reported adsorbents for this toxin. Good reusability and high recovery 
efficiency of STX also from freshwater samples are further evidence of 
the great potential TpPa-COOH displays for saxitoxin extraction and pre- 
concentration for analytical applications. 

Environmental Implications 

Saxitoxin (STX), the most widely distributed neurotoxin in marine 
waters and emerging cyanotoxin of concern in freshwaters, causes 
paralytic shellfish poisoning in humans upon consumption of contami
nated shellfish. In order to be able to detect low concentrations of STX in 
waters for analysis or early warning systems, efficient materials for its 
adsorption are needed. Here we report an adsorbent for STX based on a 
covalent organic polymer that, to the best of our knowledge, out
performs all the previously described ones, being able to reach high 
recoveries from natural waters and presenting a good reusability. 

Supporting Information 

Materials and methods, COP synthesis and characterization, details 
of the adsorption and desorption experiments, comparison of results 
with the literature (PDF). 

Table 1 
Comparison of the adsorption capacity of TpPa-COOH with reported adsorbents 
for STX adsorption.  

Sorbent Qm (mg 
g− 1) 

Qe (mg 
g− 1) 

Teq 

(h) 
Sorbent 
reuse 

Ref. 

SP700 0.000016 - - yes [36] 
CDP resins 0.0003 - - yes [36] 
m-Fe3O4@Carbon 0.061 - 1 - [11] 
Oyster shell powder - 0.0004 72 - [26] 
Alginate gels 0.0007 0.00047 3 no [29] 
Semi-refined 

κ-carrageenan gels 
0.0010 0.00048 3 no [29] 

Chitin - 0.0005 72 - [26] 
Refined 

κ-carrageenan gel 
0.0013 0.00067 3 no [29] 

CB1-MW-PAC - 0.081 0.75 no [39] 
- 0.076 1.25 no [39] 

WPH-PAC - 2.43 24 no [45] 
GAC-DD 0.154 

(exp.) 
0.143 48 - [47] 

GAC-CB 0.415 
(exp.) 

0.203 48 - [47] 

GAC-AP 0.418 
(exp.) 

0.239 48 - [47] 

GAC-C8 2.095 
(exp.) 

0.252 48 - [47] 

TpPa-COOH 5.69 (6.8 
exp.) 

1.82 1 yes This 
work  
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