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Abstract 16 

Endocrine disrupting chemicals (EDCs) include a wide array of pollutants, such as some 17 

metals and other toxic elements, which may cause changes in hormonal homeostasis. In 18 

addition to affecting physiology of individuals directly, EDCs may alter the transfer of 19 

maternal hormones to offspring, i.e. causing transgenerational endocrine disruption. 20 

However, such effects have been rarely studied, especially in wild populations. We studied 21 

the associations between environmental elemental pollution (As, Cd, Cu, Ni, Pb) and 22 

maternally-derived egg thyroid hormones (THs) as well as nestling THs in great tits (Parus 23 

major) using extensive sampling of four pairs of polluted and reference populations across 24 

Europe (Finland, Belgium, Hungary, Portugal). Previous studies in these populations showed 25 

that breeding success, nestling growth and adult and nestling physiology were altered in 26 

polluted zones compared to reference zones. We sampled non-incubated eggs to measure 27 

maternally-derived egg THs, measured nestling plasma THs and used nestling faeces for 28 

assessing local elemental exposure. We also studied whether the effect of elemental pollution 29 

on endocrine traits is dependent on calcium (Ca) availability (faecal Ca as a proxy) as low Ca 30 

increases toxicity of some elements. Birds in the polluted zones were exposed to markedly 31 

higher levels of toxic elements than in reference zones at the populations in Finland, Belgium 32 

and Hungary. In contrast to our predictions, we did not find any associations between overall 33 

elemental pollution, or individual element concentrations and egg TH and nestling plasma 34 

TH levels. However, we found some indication that the effect of metals (Cd and Cu) on egg 35 

THs is dependent on Ca availability. In summary, our results suggest that elemental pollution 36 

at the studied populations is unlikely to cause overall TH disruption and affect breeding via 37 

altered egg or nestling TH levels with the current elemental pollution loads. Associations 38 

with Ca availability should be further studied. 39 

Keywords: endocrine disruption, elemental pollution, tri-iodothyronine, prohormone 40 

thyroxine, great tits, transgenerational effects, wild bird populations 41 

  42 
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 43 

Introduction 44 

Endocrine disrupting chemicals (EDCs) include a wide array of pollutants, such as 45 

organophosphates, -chlorines and –bromines, some metals and other toxic elements, which 46 

may cause changes in the hormonal homeostasis, for example steroid, estradiol or thyroid 47 

hormones (Matthiessen et al. 2018, Norris & Carr 2006). However, the effect of pollutants 48 

may not be only restricted to adults given that various pollutants can have transgenerational 49 

effects via direct maternal transfer of chemicals through placenta or into eggs (Colborn et al. 50 

1993; Dauwe et al. 2005; Marshall & Uller 2007; Ruuskanen et al. 2014). EDCs transferred 51 

to eggs and embryos can have various detrimental consequences on offspring development, 52 

physiology and even survival (Colborn et al. 1993, León-Olea et al. 2014). Pollutant-53 

associated alteration of various aspects of female physiology may further affect for example 54 

gene expression via DNA methylation patterns, or alter the transfer of essential micro- and 55 

macronutrients to eggs and embryos, potentially causing transgenerational effects (Espín et 56 

al. 2016, Hargitai et al. 2016, Skinner et al. 2010, Windsor et al. 2018).  57 

 Moreover, disruption in female hormonal status via EDCs may alter the transfer of 58 

maternal hormones to offspring: this phenomenon is called transgenerational endocrine 59 

disruption. Hormones transferred from the mother to embryos and eggs are known to 60 

profoundly influence offspring development, physiology, morphology, behavior and even 61 

survival across taxa (Dantzer et al. 2013, McCormick 1999, Ruuskanen 2015, Ruuskanen & 62 

Hsu 2018, Uller et al. 2007, von Engelhardt &  Groothuis 2011). Thus, alteration of the early-63 

life hormonal environment via maternal exposure to EDCs, i.e. transgenerational endocrine 64 

disruption, could have detrimental consequences on offspring development and phenotype. 65 

The potential for transgenerational endocrine disruption depends on the interdependence of 66 

plasma hormone levels and hormones transferred to eggs and embryos (Groothuis & Schwabl 67 
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2008, Ruuskanen & Hsu 2018). Metals such as cadmium (Cd) have been been found affect 68 

the production of human placental hormones (leptin and progesterone) (Stasenko et al. 2010). 69 

In a rare example from a wild reptile population, eggs from polluted populations (incl. 70 

organochlorines, metals, agricultural runoff) had lower progesterone and estradiol levels than 71 

reference populations (Hamlin et al. 2010). However such effects of EDCs on maternally-72 

derived hormone levels in the egg and embryo have rarely been studied. 73 

 Thyroid hormones (THs; prohormone thyroxine T4, and biologically active tri-74 

iodothyronine, T3) are a key class of hormones that control and regulate vital biological 75 

processes such as thermogenesis, growth, and metamorphosis (Norris & Carr 2013). Plasma 76 

TH levels are determined by production/secretion from the thyroid gland, conversion of T4 to 77 

T3 in tissues by deiodinase enzymes as well as TH degradation (McNabb 2007). Recent 78 

studies suggest that maternal THs transferred to eggs and embryos are important for offspring 79 

development across vertebrates and can also affect offspring TH axis function (Brown et al. 80 

2014, Hsu et al. 2017, Patel et al. 2011, Ruuskanen et al. 2016a, Ruuskanen & Hsu 2018, 81 

Vulsma et al. 1989). Some elements, for example, cadmium (Cd), lead (Pb), chromium (Cr), 82 

copper (Cu) and arsenic (As) have been shown to disrupt TH homeostasis via binding to 83 

receptor thiol groups and disturbing TH signalling (Norris & Carr 2006, Sun et al. 2016). 84 

Negative relationships have been reported between Pb exposure and plasma TH levels in 85 

many epidemiological and animal studies (Rana 2014). Cd and As toxicity has been 86 

repeatedly found to decrease serum T4 levels in captive model species (Sun et al. 2016). In a 87 

recent experimental study in zebrafish (Danio rerio), chronic maternal exposure to Pb at an 88 

environmentally relevant range of concentrations decreased egg T3 and T4, along with 89 

similar decreases in female plasma TH levels (Chen et al. 2017). However, to our knowledge 90 

the effects of TH disrupting agents on maternally-derived TH levels in the eggs have not been 91 

explored in other vertebrates, including in birds. Surprisingly, even the direct effects of 92 
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dietary elemental pollution on circulating TH levels in nestling and adult birds in wild 93 

populations are poorly studied (Baos et al. 2006). 94 

Toxicity of elements and their potential role as EDCs may further depend on calcium 95 

(Ca) availability: low Ca availability has been shown to increase absorption, accumulation 96 

and mobility of metals (Scheuhammer 1996). Due to structural similarity, elements such as 97 

Pb, can compete with Ca for its binding sites (in calcium channels, Ca-binding proteins and 98 

second messenger Ca receptors; Scheuhammer 1996, Goyer 1997). Experimental studies 99 

showed that dietary Ca availability affected especially the level of Pb-associated oxidative 100 

stress, immune function and brain monoamines (Espín et al. 2017, Prasanthi et al. 2010, 101 

Prasanthi et al. 2005, Snoeijs et al. 2005), but not corticosterone levels (Snoeijs et al. 2005). 102 

Ca ingestion and overall nutritional quality have also been found to be lower in polluted 103 

compared to unpolluted sites (e.g. Eeva et al. 1997, Eeva and Lehikoinen 1998, 2004, Jones 104 

& Paine 2006, Sillanpää et al. 2008), which could contribute to the effects of toxic elements 105 

on endocrine as well as other physiological traits. To our knowledge, Ca-dependent effects of 106 

pollutants on circulating THs or THs transferred to offspring have not been studied up to 107 

date. 108 

We studied the association between elemental pollution and egg TH and nestling 109 

plasma TH levels in wild bird populations. The great tit (Parus major) was selected as our 110 

study species as it is considered a good bioindicator of elemental pollution: it is a resident, 111 

insectivorous species that occupies a mid-trophic position in the food chain, and forages in 112 

small home ranges reflecting local contamination. We used extensive sampling across four 113 

countries in Europe (Finland, Belgium, Hungary, Portugal): in each country data were 114 

collected from both a polluted and a reference zone. These study populations show wide 115 

variation in elemental pollution levels (Costa et al. 2012, Eeva & Lehikoinen 1996, Geens et 116 

al. 2010, Hargitai et al. 2016). Previous studies from these populations showed that breeding 117 
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success, nestling growth, nestling and adult health (e.g. changes in haematological 118 

parameters) and plumage carotenoid coloration were lower in polluted compared to reference 119 

zones (Eeva et al. 2009, Eeva et al. 1998, Janssens et al. 2003, but see Costa et al. 2012). 120 

Also egg quality, such as egg size and shell thickness (Eeva & Lehikoinen 1995) and 121 

antioxidant composition of eggs (Espín et al. 2016, Hargitai et al. 2016), were altered in 122 

polluted compared to reference zones. We sampled non-incubated eggs for maternally-123 

derived egg TH measurements, measured nestling plasma THs and used nestling faeces from 124 

the same nests to assess dietary elemental exposure of arsenic (As), cadmium (Cd), copper 125 

(Cu), nickel (Ni) and lead (Pb) in the four populations in polluted and reference zones. To 126 

study the potential Ca-dependent effects of elemental toxicity on endocrine traits, we also 127 

measured Ca levels in nestling faeces as a proxy for Ca availability.  128 

We hypothesised that elemental pollution would decrease egg and nestling TH 129 

concentrations. Altered maternal TH transfer to eggs may have carry-over effects, modifying 130 

nestling TH axis function and thus nestling plasma TH levels. Alternatively, nestling TH 131 

function may be disrupted by maternally-derived toxic element load in the egg, or more 132 

directly due to nestling dietary exposure to elemental pollution. We further predicted that 133 

elemental pollution may have stronger negative effects on THs when Ca availability is poor. 134 

 135 

Methods 136 

The study was conducted in polluted environments (industrial/urban sites) and respective 137 

non-polluted reference areas in four European countries, i.e. Finland, Belgium, Hungary and 138 

Portugal, in populations of great tits using nest boxes in 2016.  Thus, the study setup consists 139 

of four pairs of polluted and reference zones. In each country, polluted and reference zones 140 

were selected to represent similar habitats. In Finland the populations are located in 141 
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Harjavalta (61°20’N, 22°10’E): the polluted zone is located at ca 1 km distance from a Cu-Ni 142 

smelter with a reference zone at a distance of ca 7 km (Eeva & Lehikoinen 1996). The main 143 

pollutants in Harjavalta are As, Cu, Ni, Pb and Zn (Eeva et al. 2012). In Belgium, the 144 

populations are located in Antwerp (51°13’N, 4°24’E): the polluted zone is located next to a 145 

non-ferrous metallurgical plant with a reference zone at a 6 km distance (Eens et al. 1999). 146 

The main pollutants in Antwerp are As, Cd, Cu, Pb and Zn (Janssens et al. 2001). In 147 

Hungary, the polluted site is an urban park in Budapest (47°28’N, 19°02’E) with a reference 148 

zone at ca 27 km distance. The main pollutants in Budapest are As, Cu, Ni, Pb and Zn 149 

(Hargitai et al. 2016). In Portugal the populations are located in Figueira da Foz (40°02′N, 150 

8°52′W): the polluted zone is located at a 1 km distance from a pulp factory with a reference 151 

zone 20 km away. The main pollutants in Figueira da Foz are As, Cd, Cu, Hg, Ni, Pb, Se and 152 

Zn (Costa et al. 2012, Costa et al. 2011). 153 

 The nest boxes were checked periodically to monitor the development of nest building 154 

and record the laying date (date of laying the 1st egg), clutch size, hatching date, brood size, 155 

and number of fledglings. In total we monitored 153 great tit nests (50 in Belgium, 33 in 156 

Finland, 38 in Hungary and 32 in Portugal), see final sample sizes in Fig 2. The 4th egg was 157 

collected on the day of laying, replaced by a plasticine egg, and frozen at –20 °C for later TH 158 

analyses (see details below). Faecal samples of nestlings were collected from 141 of the 153 159 

nests for element analyses (see details below). Elemental concentrations in nestling faeces are 160 

a common indicator for local pollution levels (Dauwe et al. 2004, Eeva et al. 2014, Espín et 161 

al. 2016). Faecal calcium levels have been found to correlate with calcium availability in the 162 

diet (estimated as amount of snail shells in the nest, their primary source of calcium) in 163 

another similar-sized passerine, the pied flycatcher (Ficedula hypoleuca) in Harjavalta 164 

(Finland) study area (Eeva and Lehikoinen 2004). Also in adults, elemental levels measured 165 

during breeding reflect recent exposure (within 2 weeks), and thus very local pollution load at 166 
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the feeding range of the individual (Berglund et al. 2011). Unfortunately, the egg elemental 167 

levels could not be directly measured due to resource constraints. 168 

 Nestling blood samples (ca 60 µl) were collected from 14-day old nestlings into 169 

heparinised capillaries from the brachial vein. One nestling per nest was randomly sampled. 170 

Nestling plasma THs were only analysed from the Belgian population due to resource 171 

constraints. This population shows the highest elemental pollution loads of the studied 172 

populations (Janssens et al. 2001 and results of this study).  The sample size was 23 nests 173 

from the polluted zone and 18 nests from the reference zone. Blood samples were stored in a 174 

cooler and centrifuged (4400 g, 5 min) later each day to separate plasma and red blood cells. 175 

Samples were stored at –80°C until analysis.  176 

 All samples were collected under appropriate licenses from local authorities in each 177 

study population, as following: Finland: The experiment was conducted under licenses from 178 

the Animal Experiment Committee of the State Provincial Office of Southern Finland 179 

(license number ESAVI/11579/04.10.07/2014) and the Centre for Economic Development, 180 

Transport and the Environment, ELY Centre Southwest Finland (license number 181 

VARELY/593/2015). All applicable institutional and/or national guidelines for the care and 182 

use of animals were followed. Belgium: The Flemish Agency ‘Natuur en Bos’ provided 183 

permission for this study (ANB BL FF V16-00105-VB). Hungary: The Middle-Danube-184 

Valley Inspectorate for Environmental Protection, Nature Conservation and Water 185 

Management (PE/EA1432-6/2016), the Pest County Government Office of the National Food 186 

Chain Safety Office (PE/KTF 8988-5/2016) and the Mayor’s Office of Budapest 187 

(FPH061/1829-3/2016) provided permissions for this study. Portugal: All animals were 188 

handled according to current Portuguese law and following the license number 217, issued by 189 

ICNF – Institute for Nature Conservation and Forest.  190 

 191 
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Thyroid hormone analyses  192 

The egg and plasma samples were analysed for T3 and T4 at the University of Turku. LC-193 

MS/MS was conducted at the facilities of Turku Center for Biotechnology. In the egg 194 

samples, yolk and albumen were separated after thawing. Yolk was weighed (0.01 g 195 

accuracy) and mixed with milli-Q water (1:1) and vortexed thoroughly. T4 and T3 were 196 

extracted from yolk and plasma following previously published methods (de Escobar et al. 197 

1985, Ruuskanen et al. 2018). In short, yolk-water mixture (ca 150 mg of pure yolk) or 198 

plasma (25 µl) was homogenized in methanol. As an internal recovery tracer, a known 199 

amount of 13C12-T4 (Larodan) was added to each sample. This allowed us to control for the 200 

variation in recovery (i.e. extraction efficiency) for each sample. Chloroform was then added 201 

and after centrifugation (15 min, 1900 g, +4°C), the supernatant was collected and the pellet 202 

was re-extracted in a mixture of chloroform and methanol (2:1). Back-extraction into an 203 

aqueous phase (0.05% CaCl2) was followed by a re-extraction with a mixture of 204 

chloroform:methanol: 0.05% CaCl2 (3:49:48) and this phase was further purified on Bio-Rad 205 

AG 1-X2 resin columns. The iodothyronines were eluted with 70% acetic acid, and 206 

evaporated to dryness under vacuum overnight. Blanks (plain reagents without any sample) 207 

were analysed in each extraction batch to detect any contamination. Yolk samples from 208 

different populations were equally distributed across five extraction batches, and extraction 209 

batch was used as a random intercept in the statistical models to control for any differences 210 

among the batches. Nestling plasma THs were extracted in a single extraction batch. T3 and 211 

T4 were quantified using a nanoflow liquid chromatography-mass spectrometry (nano-LC-212 

MS/MS) method, developed and validated in Ruuskanen et al. (2018). Briefly, before the 213 

analysis, the dry samples were diluted in ammonium (NH3). Internal standards 13C6-T3 and 214 

13C6-T4 (Sigma) were added to each sample to identify and quantify the THs. A triple 215 

quadrupole mass spectrometer (TSQ Vantage, Thermo Scientific, San Jose, CA) was used to 216 
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analyse the samples. For the chromatographic separation of hormones, a nanoflow HPLC 217 

system Easy-nLC (Thermo Scientific) was applied. On-column quantification limits were 218 

10.6 amol for T4 and 17.9 amol for T3. MS data was acquired automatically using Thermo 219 

Xcalibur software (Thermo Fisher Scientific) and analysed using Skyline (MacLean et al. 220 

2010). For the analyses, peak area ratios of sample to internal standard were calculated. TH 221 

concentrations are expressed as pg/mg fresh yolk and as pmol/ml plasma. 222 

 223 

Element analyses 224 

Nestling faecal samples were used for all element analyses. Faecal samples were collected 225 

from nestlings when 7–9 days old, placed into Eppendorf tubes and frozen at −20°C. Samples 226 

of the same nest were combined to analyse brood level element concentrations. Samples were 227 

dried for 72 h at 45 °C and analysed at the University of Murcia, Spain. Before the analysis, 228 

the faecal samples were placed in digestion tubes with 4 ml of HNO3 (70%) and 1 ml of H2O2 229 

(33%) (Espín et al. 2016). After that, the samples were heated in a microwave and diluted in 230 

ultrapure water. The accuracy of the analysis was tested beforehand by determining the 231 

recovery of metals in a reference material (TORT-2, lobster hepatopancreas, National 232 

Research Council Canada). The recoveries of the metals from 15 replicates of the reference 233 

material were between 74 and 120 %. Also, a coefficient of variation (CV) was calculated to 234 

estimate repeatability and it was under 20 %. An inductively coupled plasma optical emission 235 

spectrometer (ICP-OES) was used to analyse the concentrations of As, Cd, Cu, Ni, Pb and Ca 236 

with a quantification limit of 1 ppm for Ca and 0.01 ppm for the others. Element 237 

concentrations were expressed as µg/g dry weight (d.w), except for Ca concentration as mg/g 238 

(d.w). 239 

 240 
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Statistical analysis 241 

Statistical analyses were performed with SAS 9.4 statistical package. Yolk T3 and T4 242 

concentrations (pg/mg), T3 and T4 content (ng/yolk) and T3:T4 ratio were log-transformed to 243 

reach normality. Also plasma T3 and T4 concentrations (pmol/ml) were log-transformed. 244 

Both yolk TH content and concentration were analysed because both are important for 245 

offspring development and endocrine disruption may differentially affect them. In turn, 246 

altered T3:T4 ratio may reflect changes in the peripheral deiodination of T4 (i.e. conversion 247 

of T4 to T3 in tissues by deiodinase enzymes, McNabb 2007). All element concentrations 248 

from faecal samples were log-transformed to reach normality. In the element data, there were 249 

24 values in As that were very close or below detection limit (16% of the data: 18 samples in 250 

Hungary, 4 in Finland, 1 in Belgium, 1 in Portugal), 4 values for Cd (1 in each study 251 

population) and 3 for Ni (all in Portugal). As suggested in the literature (Croghan & Egeghy 252 

2003), we replaced these values with LOD/sqrt(2), where LOD refers to lowest detection 253 

limit that was set to 0.05, to improve the distribution. This resulted in a normal distribution.  254 

 Differences among polluted and reference zones in the elemental concentrations were 255 

analysed using linear models (LM) with fixed factors zone (polluted/reference), country 256 

(Finland, Belgium, Hungary, Portugal) and their interaction. Pairwise comparisons within 257 

each country were conducted using Tukey post-hoc tests to study the differences among 258 

polluted and reference zones in a given country. One observation from polluted zone in 259 

Finland was excluded as an outlier, as it had extremely high values (10 to 100 times higher 260 

than in other samples) in most elements. 261 

 We then analysed the effect of general pollution load on egg THs using linear mixed 262 

models (LMM). The fixed factors in these models included zone (polluted/reference), country 263 

(Finland, Belgium, Hungary, Portugal) and their interaction. We included yolk TH analysis 264 

batch as a random intercept to control for potential variation among the hormone extraction 265 
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batches (samples from all countries and populations were equally distributed across the 266 

batches). Laying date (centred for each population to study at relative differences among 267 

early and late breeders) and clutch size were included as covariates to control for potential 268 

differences in individual quality, resource availability or reproductive investment.  269 

We analysed the combined load of toxic elements by performing a principal 270 

component analysis for the metals Cd, Ni, Cu, Pb and metalloid As (log-transformed and 271 

LOD corrected values). PC1 fitted the data relatively well as the eigenvalue was 2.75, the 272 

vector explained 55% of the variation. Loadings of all elements were positive (Pb = 0.71; As 273 

= 0.81, Cd = 0.84, Cu = 0.61, Ni = 0.70). We then analysed the association between PC1 and 274 

yolk T4 and T3 concentration and content using LMM. Given that the elemental toxicity is 275 

often affected by Ca availability, we also included Ca concentration (log-transformed) and 276 

the interaction between PC1 and Ca as fixed factors. Country and extraction batch were 277 

included as random intercepts given the non-independence of data in each study population. 278 

Population-centred laying date and clutch size were included as covariates. We found that in 279 

Portugal, the elemental levels tended to be higher in reference than polluted zone. We thus 280 

rerun all models excluding Portugal but as the results remained qualitatively the same, we 281 

report analyses including all populations. 282 

Subsequently, we analysed the association between yolk THs and individual elements 283 

(As, Cd, Cu, Ni and Pb) and their interaction with Ca in separate models. The literature points 284 

especially to the specific TH-disrupting effects of As, Cd, Pb and to some extent Cu (Rana 285 

2014, Sun et al. 2016). The models used were similar as for PC1 of elements (see above). 286 

We studied the covariation between egg T4 and T3 and the potential differences in 287 

this covariation among polluted and reference zone, and in relation to total toxic element 288 

exposure (PC1). Such a difference in covariation might indicate altered thyroid function, 289 
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either production/secretion or altered deiodination (conversion of T4 to T3 or to inactive 290 

forms such as T2) in tissues. We performed LMMs with egg T4 as the dependent and egg T3 291 

as the independent factor, together with zone and their interaction, and PC1 and its interaction 292 

with T3. Country and extraction batch were included as random intercepts. 293 

For analysing the associations between elemental pollution and nestling plasma T3 294 

and T4 concentrations, a PC1 of element load was also constructed for the Belgian population 295 

(PC1 eigenvalue 3.68, explained 73% of the variation). The effect of pollution zone on 296 

nestling plasma THs was tested with linear models as samples originated only from one 297 

population. Body mass at the age of 14 days and laying date were included as covariates. 298 

Pearson correlations were used to analyse the associations between PC1, individual elements 299 

and nestling plasma THs.  300 

Models were reduced by removing non-significant factors (α = 0.05). Degrees of 301 

freedom were estimated with Kenward-Rogers estimation method. Zone, PC1 or element 302 

concentrations were retained in the models as these variables were of main interest. Removed 303 

fixed effects and covariates were re-introduced individually to the reduced model and 304 

statistics from the reintroductions are reported.  305 

 306 

Results  307 

Elemental pollution across polluted and reference zones 308 

The results of the comparisons of element levels between polluted and reference zones across 309 

and within the four study populations are reported in Table 1. Elemental levels varied 310 

markedly across countries and showed different patterns across polluted and reference zones 311 

in different study populations (Table 1, country × zone interaction, p <0.001). Arsenic 312 

concentrations were higher in polluted than reference zones in Finland, Belgium and Hungary 313 
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(Tukey post-hoc tests for polluted vs reference zone within a country, t–values >9.5, p 314 

<0.001) but not in Portugal. Cd and Pb concentrations were higher in polluted zones than 315 

reference zones in Finland and Belgium (Tukey post-hoc tests, t>5.1, p<0.001), but not in 316 

Hungary and Portugal. Cu concentrations were generally higher in polluted than reference 317 

zones across all countries (Table 1). Ni concentrations were higher in polluted than reference 318 

zones in Finland and Hungary (Tukey post-hoc tests, t>3.0, p<0.01), but not in Belgium and 319 

Portugal. Ca concentrations were higher in the polluted than reference zone in Hungary (t = 320 

4.3, p<0.001), but did not differ among polluted and reference zones in the other populations 321 

(Table 1). 322 

The PC1 of elements (As, Cd, Cu, Ni, Pb) showed different patterns across polluted 323 

and reference zones in different study populations (country × zone interaction F3,137 = 30.66, 324 

p<0.001, Fig 1): in Finland, Belgium and Hungary toxic element levels were higher in 325 

polluted compared to reference zones (Tukey post-hoc tests for polluted vs reference zone 326 

within a country, Belgium t = 10.8, p<0.001: Finland t = 7.6, p <0.001; Hungary t = 3.3, p = 327 

0.03), while in Portugal a tendency for higher elemental pollution levels in the reference zone 328 

(t = −3.08, p = 0.054). 329 

 330 

Association between egg thyroid hormones and elemental pollution 331 

We did not find statistically significant differences in egg T3 or T4 concentration, total 332 

content or T3:T4 ratio between polluted and reference zones at any of the study populations 333 

(no statistically significant country × zone interaction nor main effect of zone, Table 2, Fig 334 

2a, b). There was no statistically significant correlation between PC1 of elements and egg T3 335 

or T4 concentration or content (Table 3, Fig 3a, b). Furthermore, the association between PC1 336 

and egg THs was not dependent on the availability of Ca (Table 3). However, the association 337 
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between Cd, Cu and egg T4 concentration was dependent on Ca availability: when faecal Ca 338 

concentrations were low, there was a positive correlation between egg T4 and Cd and egg T4 339 

and Cu (in the lowest quartile, Ca values < 4.6 mg/kg; Cd vs egg T4: r = 0.33, p = 0.05; Cu vs 340 

egg T4: r = 0.34, p = 0.048, Fig 4a, Fig 5a), but no association was found when Ca levels 341 

were higher (Ca > 4.6 mg/kg, Cd vs egg T4: r –0.01 to –0.05, p>0.70; Cu vs egg T4: r –0.09 342 

to 0.16; Table 4, Figs 4b–d, Figs 5b–d). Faecal As, Pb and Ni concentrations were not 343 

associated with egg TH concentrations or content, nor in interaction with Ca (Table 4). 344 

Egg T3 concentration and content were negatively correlated with clutch size 345 

(estimate±SE: T3 concentration −0.0177 ± 0.009; T3 content −0.0242 ± 0.009, Table 3). 346 

Laying date was not associated with egg T3 or T4 concentration or content (Tables 2, 3). 347 

There was a positive correlation between egg T3 and T4 concentration and T3 and T4 content 348 

(estimate ± SE: hormone concentrations 0.37 ± 0.05; F1,138 = 69.3, p <0.001, hormone 349 

contents 0.38 ± 0.04; F1,133 = 71.1, p <0.001), but covariation between egg T3 and T4 did not 350 

differ between polluted and reference zones, nor in association with PC1 (F<0.12, p>0.48), 351 

suggesting no effect of elemental pollution on peripheral TH deiodination. 352 

 353 

Association between nestling plasma thyroid hormones and elemental pollution  354 

In Belgium, nestling plasma T3 or T4 concentrations did not differ between the polluted and 355 

reference zone (T3: F = 0.06, p = 0.81, T4: F = 0.02, p = 0.88, N = 41, see Fig 6). Nestling 356 

plasma T3 and T4 concentrations were further not associated with total elemental load (PC1 357 

of elements vs T3: r = –0.12, p = 0.43; T4: r = –0.05, p = 0.73) or concentrations of 358 

individual elements (As, Cd, Cu, Ni and Pb; –0.15 < r <0.18, p > 0.34). 359 

 360 

Discussion 361 
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Birds at the polluted zones were exposed to markedly higher levels of toxic elements (As, Cd, 362 

Cu, Ni and Pb) than in reference zones at the study populations in Finland, Belgium and 363 

Hungary, but not in Portugal. These results are in accordance with previous studies from the 364 

study populations: As, Cd, Cu, Ni and Pb concentrations were reported higher in polluted 365 

than reference zones in great tit faeces/feathers in Belgium and in Finland while there was no 366 

difference in Ca across the zones (Eeva et al. 2009, Janssens et al. 2001). In Hungary, a 367 

previous study from the same population also reported higher As, Cu, Ni, Pb (but not Cd) and 368 

Ca in soil samples of urban (polluted) than a reference zone (Hargitai et al. 2016). Parallel to 369 

our results, in a previous study in the Portuguese populations, the analysed elements (Cd, Cu, 370 

Pb, with the exception of As) were not higher in the vicinity of a pulp-paper mill compared to 371 

a reference zone. The Portuguese reference zone is surrounded by agricultural fields, and thus 372 

pesticides and herbicides may explain somewhat elevated pollution load at the reference zone 373 

(Costa et al. 2012). However, mercury was higher in the polluted compared to the reference 374 

zone (Costa et al. 2012). 375 

In contrast to our predictions, we did not find any associations between overall 376 

elemental pollution and egg T4 or T3 levels or nestling plasma TH levels. The lack of overall 377 

association between toxic element exposure and THs is surprising because metals like Pb and 378 

Cd have been found to affect plasma TH concentrations negatively in other taxa (Rana 2014), 379 

in particular in other bird species (hen chicks and adult cockerels: e.g. Chaurasia et al. 1995, 380 

Gupta & Kar 1999) as well as egg THs in fish (Chen et al. 2017). However, Baos et al. 381 

(2006) did not find associations between toxic elements (Pb, Zn, Cu, Cd, As) and THs in 382 

plasma of nestlings or adults of another wild bird population (white storks, Ciconia ciconia), 383 

whereas steroid hormones were negatively correlated with elemental pollution levels. Finally, 384 

our study did not investigate for example the effect of mercury (Hg) on THs, while it has 385 
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previously been linked with TH disruption in another passerine bird, the tree swallow 386 

(Tachycineta bicolor) (Wada et al. 2009).  387 

We found some support for the prediction that the effect of toxic elements on THs 388 

would be altered with low dietary Ca availability. At very low Ca levels, egg T4 389 

concentrations increased with increasing Cd and Cu concentrations. The trend is contrary to 390 

expected as in previous studies increased metal and other pollutant exposure (As, Cd, Cr, Cu, 391 

Pb, Hg) was generally associated with decreased plasma THs (especially T3, but often also 392 

T4) across taxa (Rana 2014, Sun et al. 2016, Wada et al. 2009). However, in these studies Ca 393 

availability was not taken into account. We also have to note that we used faecal calcium as a 394 

proxy for calcium intake (i.e. availability in the diet), following Eeva et al. (2004) and 395 

Hargitai et al (2016). However, if faecal calcium concentration would be more influenced by 396 

intestinal calcium uptake, low faecal calcium concentrations would actually reflect high 397 

uptake and less metal-associated burden. The influence of calcium- and element-induced 398 

variation in egg THs on offspring development and fitness needs to be studied. Interestingly, 399 

in our previous study where egg TH levels were experimentally manipulated via injections of 400 

T4 and T3 into non-incubated eggs, the dose causing positive effects on growth (Ruuskanen 401 

et al. 2016a) was similar to the upper range of variation measured in the current study. This 402 

may suggest that metal-induced variation in egg THs in poor Ca conditions could be 403 

biologically relevant on offspring development and growth. Definitely, more studies on both 404 

THs vs Ca and Ca-modified toxic element vs TH interactions are needed.  405 

 The lack of a general association between toxic elements and egg and nestling plasma 406 

THs could be explained by several, mutually non-exclusive hypotheses: (1) the low exposure 407 

load; (2) no effect of elemental pollution on female plasma THs, and thus no effect on 408 

maternal transfer to the egg; (3) an effect of elemental pollution female plasma THs, but 409 

compensatory TH transfer to eggs. Also, (4) species differences in sensitivity to toxic element 410 
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pollution could explain the contrasting results in our study compared to other studies (e.g. 411 

Chaurasia et al. 1995, Gupta & Kar 1999, Baos et al. 2006).  412 

 First, the pollutant exposure levels across studies should be critically evaluated 413 

(hypothesis 1). In our study, the levels of pollutants were markedly higher in polluted 414 

compared to reference zones especially in Belgian and Finnish populations (As 415 

concentrations were 10 times higher in polluted than reference zones, Cd 5–10 times higher, 416 

Cu 2–5 times higher, Ni 2–15 times higher and Pb 5–10 times higher, respectively). 417 

However, the levels measured in our study are somewhat lower than in previous studies from 418 

the same populations, which reported detrimental effects on reproductive parameters and 419 

female and chick physiology. For example Janssens et al. (2003, Table 1) reported for the 420 

Belgian population (sampled in 1999) 5 times higher As concentrations, 10 times higher Ni 421 

concentration and 2 times higher Cu concentrations (but similar or lower Cd and Pb), 422 

compared to our data (sampled in 2016 from the exact same sites). In a previous experimental 423 

study on metal-associated TH disruption in birds, Gupta & Kar (1999) dosed hen chicks daily 424 

with 2.5µg Pb/ g tissue and found a decrease in plasma THs. Interestingly, in the study 425 

populations in Finland and Belgium, estimated daily Pb intake ranged between 2.2−8.5 µg 426 

Pb/g tissue (Eeva et al. 2014). Thus Pb exposure levels in our wild populations could be 427 

rather similar as in experiments with captive chicks, while no association between elemental 428 

levels and THs was found in our study. Therefore, the lack of effect of toxic elements on THs 429 

may be not only due to low exposure levels, but potentially species differences (hypothesis 430 

4). 431 

 Second, we did not measure female plasma TH levels in this study due to practical 432 

limitations. It is thus possible that toxic elements may not have caused TH disruption in the 433 

female circulation, leading to no transgenerational TH disruption (hypothesis 2). The fact that 434 

nestling plasma TH was not associated with elemental pollution load supports this 435 
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hypothesis. Alternatively, female plasma TH levels may have been affected, but due 436 

independent regulation of plasma and egg TH levels, females compensated by transferring 437 

proportionally more THs into the eggs to avoid detrimental effects on offspring (hypothesis 438 

3). This could lead to no differences in egg TH levels. The molecular transfer and regulatory 439 

mechanisms of THs from circulation to egg yolk are currently not well understood 440 

(Ruuskanen & Hsu 2018). Indirect evidence suggests somewhat contrasting patterns in 441 

plasma and yolk THs (Hsu et al. 2016, Van Herck et al. 2013, Wilson & McNabb 1997). If 442 

such regulatory mechanism(s) are present, an independent effect of endocrine disruption on 443 

plasma THs but not egg THs is possible.  444 

 Finally, it needs to be noted that species may differ in their sensitivity to 445 

elemental pollution (hypothesis 4). In a recent large-scale study comparing urbanized and 446 

rural sites in 199 populations across Europe it was concluded that urbanization decreased 447 

clutch size in collared and pied flycatchers (Ficedula albicollis, F. hypoleuca), but not in 448 

great tits and blue tits (Cyanistes caeruelus) (Vaugoyeau et al. 2016). Using pollution 449 

gradients, it was also reported that great tits respond less to pollution than other passerines 450 

(Eeva & Lehikoinen 2004), potentially due to species-specific differences in Ca-associated 451 

metal toxicity. Thus, great tits may be not especially sensitive to endocrine disruption caused 452 

by toxic elements. In summary, our results suggest that pollution at these populations is 453 

unlikely to cause transgenerational TH disruption or affect nestling plasma THs directly via 454 

dietary exposure to elemental pollution. Thus, maternally‐deposited THs in eggs do not 455 

appear to be an additional mechanism that may cause detrimental effects on breeding birds in 456 

these populations, but the interactions with Ca should be further studied. 457 

 Interestingly, we found negative correlations between clutch size and egg THs. Given 458 

that the molecular structure of THs requires iodine, which organisms cannot produce 459 

themselves, females may face a trade-off between allocating THs (and associated iodine) to 460 
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eggs versus themselves (Ruuskanen & Hsu 2018). This trade-off could be accentuated in 461 

large clutches, leading to decreased TH concentrations. Recent studies across vertebrates egg 462 

THs show substantial intra-specific variation both among and within females (Ruuskanen & 463 

Hsu 2018), which is associated with key environmental and ecological factors, such as food 464 

(Hsu et al. 2016) and temperature (Ruuskanen et al. 2016b), but previous studies did not 465 

reveal any association with clutch size. Together, these results suggest that egg THs can be an 466 

important plastic, hormonal mechanism underlying variation in offspring phenotype. 467 

 Conclusions 468 

In our European-wide study on transgenerational endocrine disruption across four pairs of 469 

polluted and reference zones, we found that great tits at the polluted zones were exposed to 470 

markedly higher levels of toxic elements than in reference zones. However, in contrast to our 471 

expectations, we did not find any association between overall elemental pollution and egg TH 472 

levels or nestling TH levels at any of the populations. We found some indication (for Cd and 473 

Cu) that the effect of metals on egg THs is dependent on Ca availability. In summary, our 474 

results suggest that the elemental pollution experienced by these populations is unlikely to 475 

cause transgenerational TH disruption or disrupt nestling TH function with the current 476 

pollution load, but the interactions with Ca availability should be further studied. Thus, TH 477 

disruption may not be an additional mechanism that causes detrimental effects on breeding 478 

birds in the studied populations. 479 
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Table 1. Faecal element concentrations (back-transformed marginal means with asymmetrical SEs) in polluted and reference zones of 686 

great tit nestlings at the four study locations and associated statistics from linear models. Element concentrations are presented in µg/g 687 

dry weight, except Ca in mg/g. Results are from GLMs where log-transformed values were used. Different letters (a and b) denote a 688 

statistically significant (Tukey post-hoc, p<0.05) differences between polluted and reference zones within a country. FI = Finland; BE 689 

= Belgium, HU = Hungary, PT = Portugal. Poll = polluted zone, Ref = reference zone. Arsenic (As), cadmium (Cd), copper (Cu), 690 

nickel (Ni), lead (Pb), calcium (Ca). 691 

Population As Cd Cu Ni Pb Ca 

FI Poll (N = 17) 7.25 (5.7-9.2)a 3.54 (2.8-4.4)a 145.6 (128.2-165.6)a 19.78 (16.5-23.7)a 2.86 (2.4-3.4)a 13.3 (11.0-16.1)a 

FI Ref (N = 16) 0.22 (0.2-0.3)b 0.78 (0.6-1.0)b 63.5 (55.8-72.2)b 3.10 (2.6-3.7)b 1.22 (1.0-1.5)b 6.8 (5.5-8.2)a 

BE Poll (N = 25) 13.68 (11.3-16.6)a 8.47 (7.1-10.1)a 66.3 (59.9-73.5)a 2.90 (2.5-3.3)a 61.77 (53.3-71.5)a 5.6 (4.8-6.5)a 

BE Ref (N = 24) 0.99 (0.8-1.3)b 1.17(1.0-1.4)b 33.2(29.8-36.8)b 1.83 (1.6-2.1)a 6.52 (5.6-7.6)5b 5.1 (4.3-5.9)a 

HU Poll (N = 15) 1.01 (0.8-1.3)a 0.58 (0.5-0.7)a 66.3 (58.1-75.7)a 3.67 (3.0-4.4)a 4.56 (3.9-5.6)a 12.3 (10.0-15.0)a 

HU Ref (N = 16) 0.04 (0.03-0.05)b 0.69 (0.6-0.8)a 33.6 (30.0-37.5)b 1.36 (1.2-1.6)b 3.97 (3.4-4.7)a 4.0 (3.3-4.7)b 

PT Poll (N =14) 0.39 (0.3-0.5)a 1.23 (1.0-1.5)a 107.0 (93.3-122.6)a 0.29 (0.2-0.4)a 0.65(0.5-0.8)a 11.2(9.1-13.7)a 

PT Ref (N = 14) 1.03 (0.8-1.3)a 1.30 (1.0-1.6)a 76.1 (66.3-87.2)a 0.52 (0.4-0.6)a 0.95 (0.8-1.1)a 15.5 (12.6-19.1)a 

692  Fdf p Fdf p Fdf p Fdf p Fdf p Fdf p 

Pollution zone 167.001,137 <0.001 30.031,137 <0.001 53.351,137 <0.001 31.131.137 <0.001 55.581,137 <0.001 9.061,138 0.01 

Country 66.393,137 <0.001 23.783,137 <0.001 21.043,137 <0.001 87.353,137 <0.001 136.963,137 <0.001 9.163.138 <0.001 

Zone x country 34.943,137 <0.001 14.773,137 <0.001 1.223,137 0.43 15.213,137 <0.001 23.993,137 <0.001 5.613,138 0.01 
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Table 2. Linear models of the effects of zone (polluted or reference) and country on egg thyroid 693 

hormones. T4 = thyroxine, T3 = triiodothyronine. Reduced model is shown in bold. Statistics 694 

from other factors are from models where the factor was reintroduced to the reduced model. TH 695 

extraction batch was used as a random intercept. N = 141 for T3 and T4 concentrations and 696 

T3:T4 ratio, and N = 139 for T3 and T4 content. 697 

Response Zone Country 
Zone × 
country 

Laying 
date 

Clutch 
size 

Fddf p Fddf p Fddf p Fddf p Fddf p 

T4 conc (pg/mg) 0.00136 0.98 0.76133 0.51 0.60128 0.61 1.59138 0.21 0.99137 0.32 

T3 conc (pg/mg) 0.63134 0.42 0.65129 0.59 0.15126 0.93 0.01136 0.91 4.80135 0.03 

T4 cont (ng/yolk) 0.04135 0.84 2.25134 0.09 0.5131 0.62 1.17134 0.28 3.98136 0.048 

T3 cont (ng/yolk) 1.23132 0.28 0.19128 0.90 0.09124 0.96 0.04134 0.84 7.9133 0.009 

T3:T4 ratio 0.16133 0.69 0.95131 0.42 0.65126 0.58 0.66135 0.42 1.49124 0.22 
 698 

  699 
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 700 

Table 3. Linear mixed models on the association between element concentrations (PC1 of As, 701 

Cd, Cu, Ni, Pb; measured from nestling faeces), calcium (Ca) concentration and their interaction 702 

on egg thyroid hormones (THs) in great tits. T4 = thyroxine, T3=triiodothyronine. Country and 703 

TH extraction batch were included as random intercepts. Reduced model is shown in bold. 704 

Statistics from the other factors are from models where the factor was reintroduced to the 705 

reduced model. N = 136 for T3 and T4 concentrations, and N = 134 for T3 and T4 content and 706 

T3:T4 ratio. 707 

 708 

Response 
PC1 of 
elements Ca PC1×Ca Laying date Clutch size 

Fddf p Fddf p Fddf p Fddf p Fddf p 

T4 conc (pg/mg) 0.00135 0.95 0.84134 0.36 0.40132 0.53 0.53132 0.22 0.85133 0.36 

T3 conc (pg/mg) 1.18132 0.27 0.00130 0.97 0.21128  0.65 0.11132 0.74 4.74131 0.03 

T4 cont (ng/yolk) 0.0125 0.98 0.6573 0.42 0.08114 0.77 1.23123 0.22 2.66101 0.10 

T3 cont (ng/yolk) 1.99131 0.16 0.19129 0.66 0.03127 0.86 0.04129 0.84 6.94130 0.009 

T3:T4 ratio 1.376.75 0.16 0.0182.4 0.90 0.1868 0.67 0.51128 0.47 1.23130 0.26 
  709 
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Table 4. Linear mixed models on the association between arsenic (As), cadmium (Cd), copper 710 

(Cu), nickel (Ni), lead (Pb) and calcium (Ca) concentration and their interaction on egg thyroid 711 

hormones (THs) in great tits. Elements were measured from nestling faeces. T4 = thyroxine, T3 712 

= triiodothyronine. Country and TH extraction batch were included as random intercepts. 713 

Reduced model is shown in bold. Statistics from the other factors are from models where the 714 

factor was reintroduced to the reduced model. Ndf=1. N = 136 for T3 and T4 concentrations, and 715 

N =134 for T3 and T4 content and T3:T4 ratio. 716 

Response As Ca As×Ca 

Fddf p Fddf p Fdfd p 

T4 conc (pg/mg) 0.13134 0.71 0.75133 0.78 2.80130 0.16 

T3 conc (pg/mg) 0.0516.3 0.82 0.0850.7 0.77 0.1881.8  0.67 

T4 content (ng/yolk) 0.0551.5 0.91 0.4391 0.51 1.00118 0.32 

T3 content (ng/yolk) 0.14130 0.70 0.20129 0.88 0.08126 0.78 

Cd Ca  Cd×Ca 

Fddf p Fddf p Fddf p 

T4 conc (pg/mg) 0.02132 0.88 0.57132 0.45 4.88132 0.02 

T3 conc (pg/mg) 0.17131 0.67 0.0962 0.76 2.74128  0.10 

T4 content (ng/yolk) 0.0681 0.80 0.46104 0.51 2.29130 0.13 

T3 content (ng/yolk) 0.12129 0.73 0.04129 0.84 1.75129 0.19 

Cu Ca  Cu×Ca 

Fddf p Fddf p Fddf p 

T4 conc (pg/mg) 0.0734.2 0.79 6.6798.2 0.01 5.9579.7 0.017 

T3 conc (pg/mg) 1.52128 0.22 5.00128 0.02 4.67127  0.03 

T4 content (ng/yolk) 0.1797.3 0.67 4.31130 0.03 3.91130 0.05 

T3 content (ng/yolk) 0.12129 0.73 0.04129 0.84 3.68125 0.06 

 Ni  Ca   NI×Ca  

 Fddf p Fddf p Fddf p 

T4 conc (pg/mg) 0.2734 0.60 0.87133 0.58 0.40131 0.52 

T3 conc (pg/mg) 1.08131 0.30 0.17131 0.68 2.30129  0.13 

T4 content (ng/yolk) 0.0022 0.94 0.45102 0.50 0.54130 0.46 

T3 content (ng/yolk) 0.27130 0.60 0.85129 0.29 2.53127 0.11 

 Pb  Ca   Pb×Ca  

 Fddf p Fddf p Fddf p 

T4 conc (pg/mg) 0.01134 0.94 0.84133 0.35 0.01129 0.93 

T3 conc (pg/mg) 0.365.6 0.57 0.20113 0.65 0.1798  0.62 

T4 content (ng/yolk) 0.1414.8 0.71 0.48118 0.48 0.26124 0.61 

T3 content (ng/yolk) 0.70130 0.70 0.09129 0.76 0.02125 0.88 
  717 
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Figure legends  718 

Fig 1. Averages (±SE) of the 1st principal component of elements (As, Cd, Cu, Ni, Pb) across the 719 

four study populations in polluted (black bars), and reference (white bars) zones. Elements were 720 

analysed from great tit nestling (age of 7-9 days) faeces, one measurement for each brood. 721 

Sample size (number of nests) is indicated above the bars. 722 

Fig 2. Yolk thyroxine, T4 (a) and triiodothyronine, T3 (b) concentrations (back-transformed 723 

marginal means ±SE, pg/mg) across four different great tit study populations (Finland, Belgium, 724 

Hungary, Portugal) in polluted (black circles) and reference (white circles) zones. Sample sizes 725 

are indicated above the bars. 726 

Fig 3. Association between the first principal component (PC1) of elements (As, Cd, Ni, Cu, Pb), 727 

i.e. total element load, and egg (a) thyroxine (T4) and (b) triiodothyronine (T3) concentration 728 

(pg/mg) in great tits. N = 136 and 134 respectively 729 

Fig 4. Association between faecal cadmium (Cd) (log-transformed, µg/mg, dry weight) and egg 730 

thyroxine (T4, pg/mg) in relation to calcium (Ca) availability (in faecal matter, classified in 731 

quartiles):  a) samples with lowest 25% of Ca concentrations, b) 25-50%; c) 50-75%, d) 75-732 

100%, i.e. samples with highest Ca concentrations. N = 35 per category.  733 

Fig 5. Association between faecal copper (Cu) (log-transformed, µg/mg, dry weight) and egg 734 

thyroxine (T4, pg/mg) in relation to calcium (Ca) availability (in faecal matter, classified in 735 

quartiles):  a) samples with lowest 25% of Ca concentrations, b) 25-50%; c) 50-75%, d) 75-736 

100%, i.e. samples with highest Ca concentrations. N = 35 per category. 737 

Fig 6. Thyroxine (T4) and triiodothyronine (T3) concentrations (average±SE, pmol/ml) in 738 

plasma of 14-day old great tit nestlings in polluted (black bars, N = 23) and reference (grey bars, 739 

N = 18) zones in the Belgian population.  740 

  741 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

31 

 

 742 

 743 
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Fig 2.  748 
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Fig 3.  755 
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Fig 4.  761 
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Fig 5.  765 
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Fig 6.  769 
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Highlights: Ruuskanen et al.  

 

• We studied element-associated transgenerational endocrine disruption in wild 
populations  

• We sampled four pairs of metal-polluted and reference sites across Europe 
• Eggs of Parus major were analysed for maternal thyroid hormones, nestling plasma 

for thyroid hormones and nestling faeces for toxic elements 
• We found no general association between toxic element exposure, egg and nestling 

plasma thyroid hormones 
• The effect of cadmium and copper on egg thyroid hormones depended on calcium 

availability 
 


