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Highlights 11 

1. The tested nanoparticles caused dissimilar toxicity mechanisms to zebrafish 12 
embryos. 13 

2. Vanadium nanoparticles induced metabolic, neurotransmission, and behavior 14 

impairments. 15 

                  



2 
 

3. Boron nanoparticles affected swimming pattern and induced erratic 16 

swimming in larvae. 17 

4. Both nanoparticles induced malformations, such as edemas and spinal 18 

malformation. 19 

5. Vanadium and boron nanoparticles may have a negative impact on the 20 

aquatic ecosystem. 21 

 22 

 23 

 24 

Abstract 25 

Engineered nanoparticles (NPs) are emerging contaminants of concern 26 

and it is important to understand their environmental behavior and ecological 27 

risks to exposed organisms. Despite their ubiquitous presence in the 28 

environment, there is little information about the hazards of certain NPs, such 29 

as boron (BNPs) and vanadium (VNPs). The aim of the present research was to 30 

investigate the effects of commercial BNPs and VNPs (80 to 100 nm) to 31 

zebrafish embryos, at different levels of biological organization. A range of 32 

nominal concentrations for both NPs (0, 0.01, 0.1, 1, and 10 mg/L) was tested. 33 

Due to the presence of triton X-100 in the NPs’ stock dispersions, an additional 34 

control group was included (0.001% triton X-100). Survival, hatching, and 35 

malformations of embryos were assessed for 96 hours (h) exposure. Locomotor 36 

behavior was evaluated at 120 h. Furthermore, embryos were exposed to 0, 1, 37 

and 10 mg/L of NPs to evaluate a set of biomarker responses after 96 h: 38 

cholinesterase (ChE) and glutathione S-transferase (GST) activities, total 39 

glutathione (TG) and energy budgets levels. VNPs induced malformations (10 40 

mg/L), hyperactivity (10 mg/L), erratic swimming (0.01 mg/L), altered swimming 41 

pattern (>0.01 mg/L), delayed hatching (10 mg/L) and altered biochemical 42 
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responses involved in antioxidant defense (GST and TG at >1 mg/L), 43 

neurotransmission (ChE at 10 mg/L) and energy metabolism (lipids at >1 mg/L 44 

and carbohydrates at 10 mg/L). BNPs caused malformations (10 mg/L), 45 

affected swimming pattern (>0.01 mg/L), induced erratic swimming (10 mg/L) 46 

and decreased TG content and GST activity (>1 mg/L). At the same 47 

concentrations, VNPs affected a greater number of endpoints than BNPs, 48 

demonstrating a greater toxicity to zebrafish embryos. The present study shows 49 

that BNPs and VNPs may affect aquatic organisms, albeit at relatively great 50 

non-environmentally relevant concentrations, reinforcing the importance of the 51 

risk assessment of different NPs. 52 

Keywords 53 

nanotoxicity; engineered nanomaterials; multi-endpoint approach; zebrafish; risk 54 

evaluation; alternative testing 55 

1. Introduction 56 

The nanotechnology revolution has led to an array of applications for 57 

nanoparticles (NPs), resulting in their continuous release into the environment 58 

(Bakshi, 2020). Therefore, the development of such novel materials should 59 

always be coupled with ecotoxicity studies to assess the risk of NPs to the 60 

environment and human health (Almeida et al., 2019; Haque and Ward, 2018). 61 

Due to their unique physicochemical properties, metal and metalloid-62 

based NPs, such as vanadium (VNPs) and boron (BNPs), are among the most 63 

commonly used (Aksakal and Ciltas, 2019). BNPs are a potential fuel source for 64 

liquid fuel engines (Ojha and Karmakar, 2018) and have been applied in 65 
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medical research (Strigul et al., 2009). VNPs can be applied in catalysis, 66 

electrochromic and optical switching devices, electrochemical capacitors, and 67 

windows for solar cells (Aliyu et al., 2017). NPs may be discharged, released, 68 

and consequently, accumulated in aquatic ecosystems during synthesis, 69 

manufacturing, or use of NP-containing products. Despite the growing interest 70 

in their use and applications, little is known about the toxicity of VNPs and BNPs 71 

to aquatic organisms. Concerning BNPs, a previous study with Daphnia magna 72 

showed 100% of mortality for concentrations above 80 mg/L after 24 hours (h) 73 

exposure (Strigul et al., 2009). Ecotoxicological studies assessing the effects of 74 

VNPs to aquatic organisms were not found. 75 

Elemental boron is present at concentrations 0.5 mg/L in surface 76 

freshwaters (Çöl and Çöl, 2003) and is considered an essential micronutrient in 77 

plants as well as nutritionally important for animals. In fact, the lack of boron in 78 

water medium has been shown to adversely affect the embryonic development 79 

of some fish species, including Danio rerio (Öz et al., 2020). At concentrations 80 

below 20 mg/L, boron reduced the adverse effects of oxidative stress in fish via 81 

strengthening tissue antioxidant defenses, i. e. by increasing the activities of 82 

antioxidant enzymes (Alak et al., 2021, 2020). However, at high concentrations, 83 

boron was shown to be toxic and adverse effects have been reported (such as 84 

DNA damage, histopathological changes, oxidative stress, growth rate, and 85 

feed intake impairments) to different fish species, in particular to D. rerio (Alak 86 

et al., 2021, 2020; Gülsoy et al., 2015), Onchorhyncus mykiss (Alak et al., 2019; 87 

Öz et al., 2020), and Cirrhinus mrigala (Adhikari and Mohanty, 2012). 88 

Elemental vanadium has been detected at concentrations between 0.010 89 

and 68 μg/L in surface waters (Vasseghian et al., 2021). Vanadium was shown 90 
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to induce mortality and malformations in D. rerio embryos, namely delayed 91 

growth and pericardial edemas (Kim and Lee, 2021). Like other toxic metals, 92 

vanadium has the ability to induce the production of reactive oxygen species 93 

(ROS), resulting in antioxidant enzyme inhibition and lipid peroxidation 94 

(Aureliano et al., 2002). This effect was reported for several fish species 95 

including O. mykiss (Gillio Meina et al., 2020), Halobatrachus didactylus 96 

(Aureliano et al., 2002; Soares et al., 2008), and Clarias batrachus (Bishayee 97 

and Chatterjee, 1994). Other effects on fishes were also described including 98 

inhibited growth, damage to the neurological system and to specific organs 99 

(kidney, liver, and heart), as well as changes in hematological, reproductive, 100 

and respiratory systems (Borges et al., 2003; Fazio et al., 2019). 101 

The zebrafish (Danio rerio) has been widely used as a ecotoxicological 102 

model organism because of several favorable characteristics (Bai and Tang, 103 

2020). These include a short life-cycle, easy culture in the laboratory, 104 

transparency of embryos, rapid development ex utero, high fecundity, 105 

availability of extensive genomic information, and genetic homology to higher 106 

vertebrates, including humans (Bai and Tang, 2020; Pereira et al., 2019). 107 

Besides, the Fish Embryo Acute Toxicity (FET) test is considered as an 108 

alternative to animal experimentation according to European Union legislation 109 

for the protection of animals used for scientific purposes (Embry et al., 2010; 110 

Scholz et al., 2008). 111 

Zebrafish were previously employed to assess the toxicity of several 112 

NPs, including metal-based NPs containing gold (Au), silver (Ag), copper (Cu), 113 

titanium dioxide (TiO2), aluminum trioxide (Al2O3), copper oxide (CuO), nickel 114 

oxide (NiO), and zinc oxide (ZnO) (Bai and Tang, 2020; Haque and Ward, 115 
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2018). NPs may accumulate in zebrafish embryos, mainly in the region of the 116 

chorion and can then be transported to different organs, mostly the 117 

gastrointestinal system, heart, brain, yolk, and liver (Pereira et al., 2019). The 118 

toxicity of NPs depends on, among other factors, the  physicochemical 119 

properties of the NPs, including size, shape, charge, and surface coating 120 

(Mendoza and Brown, 2019). In general, NPs have been show to induce ROS 121 

formation, oxidative stress, damage to lipids, proteins, and DNA in exposed 122 

zebrafish (Mendoza and Brown, 2019; Pereira et al., 2019). 123 

The present study aimed to identify and elucidate the effects of BNPs 124 

and VNPs on zebrafish embryos across different organizational levels. For a 125 

more complete assessment of the effects of these two NPs, a multilevel 126 

approach was applied contributing to an in-depth hazard assessment in the 127 

ecotoxicological model organism zebrafish. Individual level endpoints that were 128 

considered included survival, behavior (based on larvae locomotion), and 129 

morphology (based on embryo development). Furthermore, several sub-130 

organismal endpoints were also included such as biomarkers of antioxidant 131 

response (enzymatic and non-enzymatic), neurotransmission, and energy 132 

budgets. 133 

2. Material and Methods 134 

2.1. Test organism 135 

Zebrafish (D. rerio) eggs were obtained from a culture maintained at the 136 

Department of Biology, University of Aveiro, Portugal. Zebrafish adults were 137 

kept in a recirculating system with reverse osmosis and activated carbon filtered 138 

tap water, complemented with instant ocean synthetic salt automatically 139 
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adjusted for pH and conductivity. The fish were maintained at 26 ± 1ºC, under a 140 

12:12 h light/ dark photoperiod cycle, with conductivity at 750 ± 50 µS/cm, pH at 141 

7.5 ± 0.5, salinity at 0.35, and dissolved oxygen at 95% saturation. Adult fish 142 

were fed daily with commercially artificial diet Gemma Micro 500 (Skretting®, 143 

Spain). 144 

Reproduction groups were placed in an aquarium with marbles at the 145 

bottom, in the afternoon of the day before eggs were collected. Two hours after 146 

the start of illumination, in the next morning, the eggs were collected and 147 

cleaned from residues. Zebrafish eggs (4 hours post-fertilization) with normal 148 

development were selected (using a Stereoscopic Zoom Microscope – SMZ 149 

1500, Nikon) for the test. Unfertilized, irregular, or injured eggs were discarded. 150 

2.2. Test nanomaterials and characterization  151 

Commercial BNPs and VNPs (concentration: 20 g/L; purity: 99.9%; CAS 152 

number: 7440-42-8 and 7440-62-2, respectively) were acquired from Nanoshel 153 

UK Limited. According to the supplier, NPs have a mean diameter of 80 to 154 

100 nm and they were dispersed in ultrapure water containing the surfactant 155 

triton X-100 (at 2%). Although it was not provided by the manufacturer, we 156 

estimated the mass of each element within a single particle and obtained the 157 

values 4.1 x 10-15 g and 5.2 x 10-16 g for boron and vanadium, respectively. 158 

From the commercial NPs dispersions, we performed a 100 times dilution in 159 

ultrapure water to obtain a working dispersion at 0.2 g/L of NPs (0.02% of triton 160 

X-100). Afterwards, the working dispersions of BNPs and VNPs were used to 161 

obtain the final test concentrations. Both NPs (in both working dispersions and 162 

experimental media) were characterized by hydrodynamic size assessed by 163 

dynamic light scattering (DLS; Zetasizer Nano ZS, Malvern) and by zeta 164 
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potential (ZP) evaluated by electrophoretic light scattering (Zetasizer Nano ZS, 165 

Malvern), at 0 and 96 h (test start and end, respectively). 166 

2.3. Quantification of boron and vanadium  167 

The determination of boron (B) and vanadium (V) in the experimental 168 

media was performed by inductively coupled plasma mass spectrometry (ICP-169 

MS) using an iCAP™ Q ICP-MS equipment at 0 and 96 h (Thermo Fisher 170 

Scientific). Experimental media was diluted with 2% (v/v) nitric acid (HNO3) 171 

containing scandium (Sc) for internal standardization. The elemental isotopes 172 

11B and 51V were monitored for analytical determination; 45Sc was used as 173 

internal standard. 174 

2.4. Fish Embryo Acute Toxicity (FET) Test  175 

The FET test was based on the OECD guideline number 236 (OECD, 176 

2013). Zebrafish embryos were exposed to 0, 0.01, 0.1, 1, and 10 mg/L of BNPs 177 

and VNPs, and kept at 26 ± 1°C. Each experimental condition consisted of one 178 

microplate in which eggs were placed individually into wells containing 2 mL test 179 

solution (n=20).The NPs concentration range was based on 10-fold increases, 180 

starting with 0.01 mg/L, considered a predicted environmental concentration 181 

(Giese et al., 2018). Due to the presence of triton X-100 on the NPs 182 

dispersions, an additional experimental condition was included, a surfactant 183 

control group (triton X-100 at 0.001%). The concentration 0.001% of triton X-184 

100 used at surfactant control group corresponds to the maximum 185 

concentration of triton X-100 used in the assays (for the highest NPs tested 186 

concentration: 10 mg/L). The used triton X-100 concentration was ten times 187 

lower than the maximum value recommended by the guidelines for most of the 188 
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commonly used solvents (0.01%) (OECD, 2017, 2013). Although the available 189 

data about the toxicity of surfactants are sparse, previous studies already 190 

evaluated the toxicity of triton X-100 for different organisms (including zebrafish 191 

embryos and adults). They reported adverse effects of triton X-100 at much 192 

higher concentrations (Dayeh et al., 2004; Jang et al., 2007; Kovriznych and 193 

Urbancikova, 2001; Oleszczuk et al., 2015) than the ones used in the current 194 

study. Oleszczuk et al. (2015) tested the toxicity of various surfactants to D. 195 

magna and triton X-100 was characterized by the lowest toxicity. The FET test 196 

lasted 96 h and embryos were daily observed using a Stereoscopic Zoom 197 

Microscope (SMZ 1500, Nikon) to assess mortality, hatching, and the 198 

appearance of malformations. 199 

2.5. Locomotor behavior assay 200 

The FET test exposure was extended until 120 h, and larval locomotor 201 

behavior was analyzed using the Zebrabox tracking system (Viewpoint Life 202 

Sciences, Lyon, France) over a period of 12 minutes (min). Dead larvae or 203 

larvae exhibiting malformations were not included in the behavior assay. Ten 204 

replicates (individual larvae) per experimental condition were used. The 205 

temperature was maintained at 26 ± 1°C and larvae movement was stimulated 206 

by alternating light and dark periods. The test consisted of a cycle with two 207 

periods: 6 min light and 6 min dark. Total time swimming and total distance 208 

swimming by larvae in each period was recorded. In order to measure effects 209 

on swimming pattern, total distance, and total time swimming were also 210 

recorded in two distinct areas: internal and external zones of the well. Larvae 211 

path angle was calculated through the vector of fish swimming direction and the 212 

turn path performed by larvae. The angles of movements were grouped in 4 213 
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classes, as described by Zhang et al. (2017): class 1 includes large amplitude 214 

angles (90-180º), classes 2 and 3 include medium amplitude angles (30-90º 215 

and 10-30º, respectively), and class 4 includes small amplitude angles (0-10º) – 216 

Figure 1. Three types of movements were considered: low velocity for 217 

movements below 8 mm/s; medium velocity for movements between 8 and 40 218 

mm/s, and high velocity for movements above 40 mm/s. 219 

 220 

Figure 1 – Schematic representation of larvae path angles and grouped classes (Cl. 1, Cl. 2, Cl. 221 

3, and Cl. 4) considered on the locomotor behavior assay. The angles of figure are not at scale. 222 

2.6. Biochemical endpoints 223 

Based on the results from FET test, embryos were exposed to one 224 

concentration with phenotypical effects (10 mg/L) and another without 225 

phenotypical effects (1 mg/L) of BNPs and VNPs. A surfactant control group 226 

(triton X-100 at 0.001%) was also included in the assay. Seven replicates of 15 227 

embryos each were used per experimental condition, and embryos were kept in 228 

Petri dishes at 26 ± 1°C. After 96 h exposure, the embryos were frozen in liquid 229 

nitrogen and stored at -80°C, until further analyses. 230 
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Samples were homogenized in ultrapure water, on ice, using a sonic 231 

homogenizer (Sonifier 250, Branson sonicator). The homogenates were divided 232 

for the biochemical analyses: total glutathione (TG) content, glutathione S-233 

transferase (GST) activity, cholinesterase (ChE) activity, protein quantification 234 

and energy budgets. Phosphate buffer (0.2 M; pH 7.4) was added to the 235 

homogenates aliquots reserved for TG, GST and ChE analyses. Then, the 236 

aliquots were centrifuged (10 000 g; 20 min; 4°C) to obtain the post-237 

mitochondrial supernatant. A Labsystem Multiskan EX microplate reader was 238 

used for the biochemical determinations. 239 

Biochemical markers were selected based on, in general, the available 240 

information about the mechanisms of toxicity of NPs. We selected biomarkers of 241 

the antioxidant system response since one of the most accepted mechanism of 242 

toxicity for NPs is the induction of ROS, leading to oxidative stress and/or 243 

damage (Mendoza and Brown, 2019). To understand if behavioral alterations 244 

are related with the neurotransmission system, the assessment of the activity of 245 

ChE was considered. Moreover, previous studies with zebrafish have shown the 246 

inhibition of this enzyme after the exposure to metals (Richetti et al., 2011). 247 

Energy metabolism biomarkers were studied because they may be related to 248 

embryonic morphological alterations. In addition, previous studies have shown 249 

the potential of NPs to affect energy metabolic pathways (Wang et al., 2019).  250 

2.6.1. Total glutathione content 251 

TG content was determined based on absorbance at 412 nm following 252 

the method of Tietze (1969). The formula of Beer-Lambert was applied to 253 

quantify TG content expressed as pmol/min/mg protein, using ε=14.1x103 254 

M−1.cm−1. 255 
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2.6.2. Glutathione S-transferase activity 256 

GST activity was measured photometrically at 340 nm following the 257 

method of Habig et al. (1974). The formula of Beer-Lambert was applied to 258 

quantify GST activity expressed as nmol/min/mg protein, using ε=9.6x103 259 

M−1.cm−1. 260 

2.6.3. Cholinesterase activity 261 

The measurement of ChE activity was done following the protocol 262 

defined by Ellman et al. (1961), and adapted to a microplate format by 263 

Guilhermino et al. (1996). The absorbance was read at 414 nm. The formula of 264 

Beer-Lambert was applied to quantify the ChE activity expressed as 265 

nmol/min/mg protein, using ε=13.6x103 M−1.cm−1. 266 

2.6.4. Protein quantification 267 

The quantification of the protein was done following the Bradford method 268 

(Bradford, 1976), adapted to 96-well plates, using bovine γ- globuline as the 269 

standard. The absorbance was read at 600 nm. 270 

2.6.5. Energy reserve levels 271 

Energy budgets were assessed following the method of De Coen and 272 

Janssen (1997), with slight modifications for microplate reading described by 273 

Rodrigues et al. (2015) and listed below.  274 

For lipid level measurements, 500 μL of chloroform and 500 μl of 275 

methanol were added to each sample, followed by centrifugation (1000 x g; 5 276 

min; 20ºC). Then 500 μL of sulphuric acid (H2SO4) were added to the organic 277 

phase of each sample and incubated at 200°C for 15 min. After cooling down to 278 

room temperature, 1500 μL of ultrapure water were added, and the absorbance 279 
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was measured at 375 nm. Tripalmitin was used as a lipid standard. For the 280 

carbohydrate and protein level evaluations, 100 µl of 15% trichloroacetic acid 281 

(TCA) were added to each sample, followed by an incubation for 10 min at -282 

20°C. After centrifugation (1000 g; 10 min; 4°C), 200 μL of 5% phenol, and 800 283 

μL of H2SO4 were added to the supernatant. Glucose was used as the 284 

standard, and the absorbance was read at 492 nm. For protein measurements, 285 

the pellets were resuspended in 500 μL of sodium hydroxide (NaOH), incubated 286 

(30 min; 60°C), and neutralized with 280 μL of hydrochloric acid (HCl). 287 

Bradford's method (Bradford, 1976) was used, and absorbance was measured 288 

after 30 min incubation in the microplate at 520 nm. For the lipid, carbohydrate, 289 

and protein level measurements, absorbance was read at 375, 492, and 290 

600 nm, respectively. The corresponding enthalpy of combustion (39 500 mJ/g 291 

lipid, 17 500 mJ/g glycogen, and 24 000 mJ/g protein) was used for conversions 292 

into the respective energetic equivalent values that were expressed as 293 

mJ/embryo.  294 

2.7. Data analysis 295 

Graphics and statistical analyses were performed using the Sigma Plot 296 

12.5 software package. The data from the FET experiments and locomotor 297 

behavior assay were statistically analyzed by considering each well as an 298 

independent replicate. Shapiro-Wilk and Levene’s tests were done to assess 299 

the normality and homoscedasticity of data, respectively. Differences between 300 

control and surfactant control were assessed using a Student’s t-test. One-way 301 

analysis of variance (ANOVA) followed by Dunnett’s multiple comparison post 302 

hoc test was used to assess differences between surfactant control and 303 

treatments. When data failed the normality and/or homoscedasticity tests, a 304 
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non-parametric Kruskal-Wallis’ test was performed. Significant differences were 305 

accepted for p<0.05. 306 

3. Results 307 

3.1.  Characterization of the test nanomaterials 308 

BNPs and VNPs in the working dispersions revealed mean 309 

hydrodynamic sizes of 150 and 100 nm, respectively, maintaining the mean 310 

sizes over the entire 96 h exposure period (Table S1, Supplementary Data). 311 

However, in the experimental media, the mean hydrodynamic size of both NPs 312 

(at 10 mg/L) increased when compared with their hydrodynamic sizes in the 313 

working dispersions (Table S1). ZP values were negative for both NPs (Table 314 

S1). At concentrations ≤1 mg/L, it was not possible to characterize the NPs due 315 

to the detection limits of the techniques used. 316 

3.2. Quantification of boron and vanadium 317 

Considering all NP treatments, the difference between the nominal and 318 

measured concentrations was more evident for vanadium (Table S2, 319 

Supplementary Data). Unexpectedly, very low vanadium concentrations were 320 

detected (<98% of the nominal concentrations), while boron was measured at 321 

higher than nominal levels, in particular, for the two highest nominal 322 

concentrations 1 (140%) and 10 mg/L (115%). Comparing 0 and 96 h, a 323 

concentration decrease for both elements (boron and vanadium) was found with 324 

increasing exposure time (Table S2, Supplementary Data).  325 

 326 

3.3. Fish Embryo Acute Toxicity Test  327 
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There were no significant differences, considering all the endpoints 328 

assessed during the FET test, between the medium only control and surfactant 329 

control (p>0.05). Differences were assessed between the NP treatments and 330 

surfactant control. BNPs caused no effects on survival and hatching of embryos 331 

(P=0.553 and 0.548; Figures 2A and B). However, significant induction of 332 

malformations was detected at 10 mg/L (p<0.001; Figures 2C and S1). VNPs 333 

caused no effects on survival of embryos (p=0.652; Figure 2A). However, a 334 

delay in hatching and an induction of malformations were detected at 10 mg/L 335 

(p=0.001 and <0.001, respectively; Figures 2B-C and S1). 336 

 337 

Figure 2 – Effects of 96 h exposure to boron (BNPs) and vanadium (VNPs) nanoparticles on 338 

zebrafish embryos in terms of: survival (A), hatching (B), and occurrence of malformations (C). 339 

Results are expressed as average values ± standard errors. (*) Significant differences relative to 340 

surfactant control (p<0.05). Due to the overlap of some of the values between BNPs and VNPs 341 

experiments, only one symbol appears represented in the graph in a few cases. 342 

3.4. Locomotor behavior assay 343 

Zebrafish larvae typically present low levels of activity during light and 344 

increase their locomotor activity upon a sudden switch to darkness. This was 345 

observed in the current study; therefore, only the data obtained during the 6 min 346 

dark period is shown. Indeed, significant effects of NPs on larvae locomotion 347 

A B C 

* * 
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were observed during the dark period (Figures 3, 4 and 5). There were no 348 

significant differences (p>0.05) between the medium only control and surfactant 349 

control for the assessed endpoints during the locomotor behavior assay, with 350 

exception of zebrafish larvae path angle frequency in the class 4 angle 351 

category. Therefore, differences were assessed between the NPs treatments 352 

and surfactant control. 353 

BNPs did not change the total distance swam by zebrafish larvae 354 

(p>0.05; Figure 3A). However, 10 mg/L VNPs increased the total swimming 355 

distance of larvae (p=0.003; Figure 3A). No effects of BNPs or VNPs were 356 

detected on total swimming time of organisms (p>0.05; Figure 3B). However, a 357 

decrease in time and distance swimming on external zone of well was detected 358 

at all tested concentrations for both NPs (Figures 3C-D). 359 
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 360 

Figure 3 – Effects of 120 h exposure to boron (BNPs) and vanadium (VNPs) nanoparticles on 361 

zebrafish larvae in terms of: total swimming distance (A) and time (B); swimming distance (C) 362 

and time (D) in external zone. Results are expressed as average values ± standard errors. (*) 363 

Significant differences relative to surfactant control (p<0.05).  364 

BNPs, at 10 mg/L, increased the frequency of class 1 angles (p=0.027) and 365 

decreased the frequency of class 4 angles at 1 and 10 mg/L (p=0.044 and 366 

0.005, respectively; Figure 4A). VNPs also increased the frequency of class 1 367 

angles at 0.01and 10 mg/L (p<0.001) and the frequency of class 2 angles at 368 

0.01 mg/L (p=0.021); Figure 4B). A decrease of class 4 angles frequency was 369 

also detected at 0.01 mg/L (p=0.036) as well as a decrease of class 3 angles 370 

frequency at 10 mg/L (p<0.001; Figure 4B). 371 

* A B 

* * * * 

C D 

* * * * 
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 372 

 373 

 374 

 375 

 376 

 377 

Figure 4 – Effects of 120 h exposure to boron (BNPs) (A) and vanadium (VNPs) (B) 378 

nanoparticles on zebrafish larvae path angle frequency. Class 1 includes big amplitude angles 379 

(90-180º), classes 2 and 3 include medium amplitude angles (30-90º and 10-30º, respectively), 380 

and class 4 includes small amplitude angles (0-10º). Results are expressed as average values ± 381 

standard errors. * Significant differences relative to surfactant control (p<0.05). 382 

BNPs did not affect the frequency of the three types of movements 383 

considered (p>0.05) (Figure 5). However, 10 mg/L VNPs decreased medium 384 

(p<0.001) velocity movements and increased high (p<0.001) velocity 385 

movements of zebrafish larvae (Figure 5). 386 

 387 

 388 

 389 

 390 

A B 

* * 
* * * 

* 
* * 
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 391 

Figure 5 – Effects of 120 h exposure to boron (BNPs) and vanadium (VNPs) nanoparticles on 392 

the frequency of low (A), medium (B), and high (C) velocity movements of zebrafish larvae. Low 393 

velocity includes movements below 8 mm/s; medium velocity for movements between 8; and 394 

40 mm/s, and high velocity consists of movements above 40 mm/s. Results are expressed as 395 

average values ± standard errors. (*) Significant differences relative to surfactant control 396 

(p<0.05). Due to the overlap of some of the values between BNPs and VNPs experiments, only 397 

one symbol appears represented in the graph in a few cases.  398 

3.4. Biochemical markers assessment 399 

There were no significant differences (p>0.05) between the medium only 400 

control and surfactant control for the assessed biochemical markers. 401 

Differences were assessed between the NPs treatments (1 and 10 mg/L NPs) 402 

and surfactant control. 403 

BNPs caused no effects on lipid, carbohydrate and protein contents or ChE 404 

activities (p>0.05; Figures 6A-D). Only a decrease in TG content (p=0.028 and 405 

<0.001) and GST activity (p=0.044 and 0.025) was detected at both 406 

concentrations of BNPs (Figures 6E-F). In contrast, VNPs affected almost all 407 

biochemical markers analyzed, except for protein content (p>0.05; Figure 6C). 408 

Both concentrations of VNPs increased the lipid content (p=0.001 and <0.001, 409 

respectively; Figure 6A). At 10 mg/L VNPs, a decrease in carbohydrate content 410 

* * 

A B C 
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was detected (p=0.009; Figure 6B). ChE activity decreased at 10 mg/L VNPs 411 

(p=0.005; Figure 6D). Both concentrations of VNPs decreased TG content 412 

(p<0.001; Figure 6F) and GST activity (p<0.001 and p=0.028; Figure 6E). 413 

 414 

Figure 6 – Effects of 96 h exposure to boron (BNPs) and vanadium (VNPs) nanoparticles on 415 

zebrafish larvae in terms of: lipid (A), carbohydrate (B), and protein (C) contents; cholinesterase 416 

(ChE) (D) and glutathione S-transferase (GST) (E) activities; and total glutathione (TG) content 417 

(F). Results are expressed as average values ± standard errors. (*) Significant differences 418 

relative to surfactant control (p<0.05). 419 

4. Discussion 420 

Dissimilar effects, i.e. phenotypical, biochemical and behavioral were 421 

found on the development of zebrafish embryos when exposed to BNPs or 422 

VNPs. Both NPs were not lethal at concentrations ≤10 mg/L. BNPs affected few 423 

biological endpoints. At the organism level, BNPs induced larvae malformations 424 

and impaired their swimming behavior, which was reflected by erratic swimming 425 

and swimming pattern alteration. At the biochemical level, a drop in the content 426 

of glutathione (substrate and enzyme) occurred showing an imbalance of the 427 
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antioxidant system. In addition to the organism level effects found in zebrafish 428 

larvae exposed to BNPs, VNPs also caused delayed hatching and hyperactivity. 429 

Furthermore, ChE activity decreased, which may be associated with the 430 

observed locomotion impairment. Similarly to BNPs, VNPs also reduced the 431 

levels and activity of antioxidant substances (linked to glutathione). Energetic-432 

spending functions were also impaired by VNPs as demonstrated by the 433 

increase in lipid content and a decrease in carbohydrate content. The inhibition 434 

of lipid depletion in zebrafish larvae caused by VNPs may be related to the 435 

occurrence of yolk sac edemas. The zebrafish responses assessed at different 436 

hierarchical levels, i.e. from the apical to the biochemical, seem to be 437 

interconnected and dependent of the NPs nature, size and concentration.  438 

The interaction of NPs with the environmental media may affect their 439 

initial physicochemical properties, and thus, their fate and ecotoxicity (Tourinho 440 

et al., 2012). No alterations in surface charge (ZP) were found between 0 and 441 

96 h for both NPs, (-30 mV), hence colloidal stability was expected in the 442 

experimental medium (Jiang et al., 2009). A similar stability in terms of ZP 443 

values during 96 h exposure was also reported by Liu et al. (2019) for Ag NPs 444 

in zebrafish medium. Although both NPs maintained their hydrodynamic sizes 445 

during the 96 h exposure time in the working dispersions, there was a size 446 

increase relative to working dispersions when NPs were in experimental 447 

medium, suggesting aggregation/agglomeration may have occurred. Changes 448 

of pH and ionic strength or the presence of biomolecules, particularly proteins, 449 

can modify the physiochemical properties of NPs (e. g. size and surface 450 

charge), leading to the loss of colloidal stability and formation of 451 

agglomerates/aggregates (Halamoda-Kenzaoui et al., 2017). These 452 
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agglomeration/aggregation processes may result in increased NPs 453 

hydrodynamic sizes, as observed in our study (at the experimental media), and 454 

may affect the NPs bioavailability, uptake, bioaccumulation, and toxicity 455 

(Albanese and Chan, 2011; Corsi et al., 2020). In zebrafish medium, previous 456 

studies also showed the aggregation/agglomeration of other NPs, such as 457 

silicon dioxide (SiO2), Ag, and CuO (Liu et al., 2019; Thit et al., 2017; Zhu et al., 458 

2019). Liu et al. (2019) described that zebrafish medium contains 459 

chloride/sulfate anions and divalent cations, which may induce agglomeration, 460 

regardless of the primary size of the particles, reducing the surface area and 461 

dissolution of NPs. A single study that characterized BNP suspensions also 462 

showed a fast aggregation of particles (increased sizes) after 48 h of exposure 463 

to Daphnia magna (Strigul et al., 2009). Furthermore, BNPs presented a 464 

hydrodynamic size greater than that of VNPs at 0 h (361 versus 181 nm) and at 465 

96 h (527 versus 290 nm). Both NPs suffered processes of 466 

aggregation/agglomeration in the test medium; however, the BNP 467 

aggregates/agglomerates were bigger than VNP aggregates/agglomerates. The 468 

detected difference in terms of NP aggregation/agglomeration processes (BNPs 469 

aggregates/agglomerates > VNPs aggregates/agglomerates) may be explained 470 

by their differences in terms of the initial hydrodynamic size of theNPs (in 471 

working dispersion, BNPs: around 150 nm; VNPs: around 100 nm) and ZP (in 472 

working dispersion, ZP BNPs more negative than ZP VNPs). Hence, the 473 

presence of agglomerates/aggregates may affect the degree of uptake and 474 

bioavailability and may reduce the dissolution of NPs, leading to differential 475 

toxicity (Albanese and Chan, 2011; Corsi et al., 2020).  476 
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Measured concentrations of vanadium in exposure medium were very 477 

low, compared with the nominal concentrations. The obtained results may be 478 

explained by the agglomeration/aggregation of VNPs and subsequent 479 

sedimentation, leading to less particles in suspension in the aqueous media, as 480 

already found for other metallic NPs (Barreto et al., 2019). The final test 481 

concentrations were obtained from serial dilutions of the working dispersion. 482 

Since the VNPs aggregated/agglomerated, this affected the accuracy of the 483 

dilution and consequently, the nominal concentrations were not reflected in the 484 

measured concentrations. BNPs also suffered agglomeration/aggregation 485 

processes in the zebrafish experimental medium and the hydrodynamic sizes of 486 

the resultant agglomerates/aggregates were bigger than 487 

aggregates/agglomerates of VNPs. Therefore, it was expected that the 488 

measured concentrations of boron would be even less, compared with the 489 

nominal concentrations. However, the measured concentrations of boron were 490 

higher (at the two highest concentrations) than expected. This may be due to 491 

the presence of boron in the filtered tap water since the conventional water 492 

treatment processes can be inefficient in its removal (Bhagyaraj et al., 2021). 493 

Furthermore, boron is essential for zebrafish development (Rowe and Eckhert, 494 

1999) naturally occurring in zebrafish medium. Therefore, its ―basal‖ occurrence 495 

may explain (at least partially) the data obtained in terms of boron 496 

quantification, including the presence of boron in the controls (where no BNPs 497 

where added). Nevertheless, the higher values found in the two highest 498 

concentrations may not be explained only based on the ―basal‖ levels in the 499 

zebrafish water. Higher aggregation/agglomeration occurred in the working 500 

dispersion and experimental media, which may have resulted in pipetting 501 
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greater NP mass from the bottom of the dispersion (due to NPs sedimentation) 502 

during preparation of the two highest test concentrations (10 and 1 mg/L). 503 

Physicochemical characteristics and the intrinsic processes (such as 504 

aggregation/agglomeration) of each element that occurred in the zebrafish 505 

water, may explain the differences found in terms of boron and vanadium 506 

quantification in the experimental media. 507 

Since zebrafish chorion pore size is 600-700 nm, the used NPs (80-100 508 

nm were expected to penetrate the chorion, even when 509 

agglomerated/aggregated (<527 nm). However, at the tested concentrations, 510 

exposure to NPs for 96h did not induce mortality to zebrafish embryos. Few 511 

studies reported no effects on survival of zebrafish embryos after exposure to 512 

similar concentrations of other NPs, e. g. 10 mg/L of TiO2 (25-40 nm) (Tang et 513 

al., 2019); 0.1, 1, and 10 mg/L of Ag (20-40 nm, 10 and 100 nm) (González et 514 

al., 2018; Liu et al., 2019); and 12.5 mg/L of SiO2 (25 and 115 nm) (Vranic et 515 

al., 2019; Zhu et al., 2019). However, the single ecotoxicity study previously 516 

conducted with BNPs reported a lethal concentration at which 50% of the test 517 

population died (LC50) at 6.7 mg/L for D. magna after 48 h of exposure, 518 

suggesting higher sensitivity of this species compared with zebrafish (Strigul et 519 

al., 2009). The different results may also be explained by the dissimilar 520 

characteristics of BNPs (mean diameter: 10-20 nm in D. magna study versus 521 

80-100 nm in the present study). NP toxicity is dependent on a variety of 522 

factors, namely size, agglomeration state, dissolution rate, concentration, and 523 

coating (Aksakal and Ciltas, 2019).  524 

Despite being non-lethal, 10 mg/L of both NPs significantly induced 525 

malformations (e. g. spinal malformation, yolk-sac, and pericardial edemas) in 526 
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zebrafish embryos. Similar malformations were induced in zebrafish embryos by 527 

other NPs: ≥1 mg/L of zirconia (ZrO) (15-20 nm) (Karthiga et al., 2019); 1.925 528 

mg/L of Ag (4 nm) (Qiang et al., 2020); ≥50 mg/L of SiO2 (15 and 30 nm) (Zhu 529 

et al., 2019); and ≥0.5 mg/L of CuO (≤50 nm) (Aksakal and Ciltas, 2019). Boron 530 

is considered an essential element for zebrafish development (Rowe and 531 

Eckhert, 1999), with a safe range of 0.0022 to 99.5 mg/L (Rowe et al., 1998). 532 

The teratogenic effects of BNPs reported in the present study show that boron 533 

might be more toxic in nanoparticle form than in its ionic/elemental form. For 534 

vanadium compounds, such as sodium metavanadate, vanadium pentoxide, 535 

and oxovanadium sulfate, previous studies have reported the ability to induce 536 

teratogenic effects (at 10 mg/L), namely yolk-sac edemas and pericardial 537 

edemas in zebrafish embryos after 96 h exposure (Bittencourt et al., 2018). 538 

Inorganic vanadium compounds were also shown to be toxic to mammals, 539 

causing neurobehavioral injuries, impairment in development and reproduction 540 

as well as morphological and functional lesions in organs (Ghosh et al., 2015). 541 

In the present study, in addition to inducing malformations, 10 mg/L 542 

VNPs also delayed hatching of embryos. Other authors also reported impaired 543 

hatching at ≥0.5 mg/L of CuO (≤50 nm) (Aksakal and Ciltas, 2019), ≥0.1 mg/L 544 

ZnO (10-12 nm) (Morgalev et al., 2018), and ≥1 mg/L of ZrO (15-20 nm) NPs 545 

(Karthiga et al., 2019). Delaying hatching may be due to blockage of the 546 

secretory function of hatching gland cells, inactivation of chorionase (hatching 547 

enzyme), suppression of embryogenesis, and an impaired ability of the larvae to 548 

break the chorion due to the presence of malformations (Aksakal and Ciltas, 549 

2019; Morgalev et al., 2018).  550 
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Exposure of zebrafish larvae to both NPs resulted in differential effects 551 

on swimming behavior in the light:dark assay. Larvae exposed to 10 mg/L VNPs 552 

increased the total distance moved, particularly the frequency of high velocity 553 

movements, suggesting hyperactivity. Moreover, the trend to decrease 554 

straightforward movements (as low amplitude angles – class 4, at 0.01 mg/L 555 

VNPs) and the increase in zigzag movements or movements with changes of 556 

direction (as large amplitude angles – class 1, at 0.01 and 10 mg/L), suggests 557 

erratic swimming behavior (Almeida et al., 2019). Additionally, with increasing 558 

VNPs concentrations, larvae spent less time in the external area of the well, 559 

which suggests an alteration in the swimming pattern probably related to the 560 

zigzagging behavior observed. These results demonstrate that VNPs may 561 

disrupt locomotor behavior at concentrations that caused no mortality (although 562 

at relatively high and not environmentally relevant concentrations), which is 563 

consistent with the finding that behavior is among the most sensitive endpoints 564 

in zebrafish toxicity screening (González et al., 2018). On the other hand, BNPs 565 

did not affect the total distance swam by larvae or the frequency of the different 566 

types of movements. BNPs (as VNPs) induced erratic swimming (zigzagging 567 

behavior) in zebrafish larvae, with decrease of low amplitude angles at 1 and 10 568 

mg/L, and accompanied by an increase of large amplitude angles at 10 mg/L as 569 

well as an alteration in the swimming pattern (similarly to VNPs). González et al. 570 

(2018) reported hyperactivity of zebrafish larvae after exposure to 0.3, 1, and 3 571 

mg/L of Ag NPs (20-40 nm).. However, Powers et al., (2011) concluded that 572 

smaller Ag NPs decreased larvae locomotor activity whereas the larger ones 573 

caused hyperactivity, i.e. a size dependent effect. Chen et al. (2011) obtained 574 

different effects depending on NP concentrations: at low levels of TiO2 NPs, a 575 
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decrease in the velocity/activity levels and an increase in burst velocity were 576 

detected, but the effects were not significant at the higher tested concentrations. 577 

Meanwhile Thit et al. (2017) reported no effect for 0.5 to 200 µM of CuO NPs (6 578 

nm) on the total distance swam by zebrafish larvae. The effects on behavior 579 

described by this study, and by previous studies with zebrafish larvae, suggest 580 

that behavior alterations are different depending on the NPs used, which we 581 

hypothesize to be a function of the type, size and concentration of the NPs. 582 

Lipids are the first energy source mobilized when organisms are 583 

exposed to contaminants, and along with carbohydrates, they are quickly 584 

mobilized to supply a sudden energy demand. Proteins are the last choice of 585 

energy source, being mobilized only under severe conditions (Abe et al., 2018). 586 

Contaminants might be able to impair the total energy available that initiates 587 

compensatory adjustments in the energy metabolism of organisms to maintain 588 

physiological homeostasis (Abe et al., 2018). In the present study, VNP 589 

exposed larvae exhibited higher lipid content and lower carbohydrate content, 590 

while protein content remained similar to control larvae. This may be caused by 591 

an inhibition of lipid depletion in zebrafish larvae triggered by VNP exposure, 592 

which may be related to the observation of embryos exhibiting yolk sac edemas 593 

caused by inhibition of yolk sac resorption, suggesting that energetic-spending 594 

functions might be impaired (Abe et al., 2018). Moreover, these effects on 595 

energy metabolism may compromise other physiological functions, such as 596 

growth, reproduction, development, and locomotor activity. Verma et al. (2018) 597 

showed accumulation of neutral lipids in zebrafish embryos exposed to 50 and 598 

250 mg/L of TiO2 NPs (85 nm). In contrast, BNP exposure did not affect energy 599 

reserves contents. However, exposed embryos also exhibited yolk sac edemas. 600 
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These edemas were not caused by distended yolk content resulting from 601 

inhibition of lipid depletion since the levels of lipids remained similar to control 602 

larvae. However, yolk sac edemas may also be caused by impaired 603 

maintenance of the osmotic gradient resulting in excessive water uptake (Sant 604 

and Timme-Laragy, 2018). Although both NPs caused yolk sac edemas, 605 

different mode of actions may be involved regarding the observed effect. 606 

GST is a family of enzymes involved in phase II of the detoxification 607 

process, while TG is very important in non-enzymatic antioxidant defense 608 

through direct interaction of its sulfhydryl (SH) group with ROS (Almeida et al., 609 

2019). Decreased TG content and GST activity by both NPs may be interpreted 610 

as a sign of cytotoxicity due to an over-production of ROS, suggesting an 611 

impairment of conjugation and antioxidant processes that ultimately can lead to 612 

oxidative damage (Meireles et al., 2018; Zhu et al., 2019). However, levels of 613 

ROS needed to be quantified in order to confirm this hypothesis. In vivo and in 614 

vitro studies applying different biological matrixes have demonstrated oxidative 615 

stress caused by VNPs. Wistar rats exposed to VO2 NPs induced higher levels 616 

of malondialdehyde and reduced glutathione (Kulkarni et al., 2014). In lung cell 617 

line A549 VNP exposure was found to cause elevated ROS generation 618 

(membrane damage and apoptosis)(Xi et al., 2019). Moreover, ROS generation 619 

was reported as the toxic mechanism of VO2 particles (Fickl et al., 2006; 620 

Kulkarni et al., 2014; Wörle-Knirsch et al., 2007; Xi et al., 2019) and it was 621 

associated with the dissolution of VO2 from NPs, i.e., could be explained by 622 

both oxidation state and size (Wörle-Knirsch et al., 2007; Xi et al., 2019). 623 

Regarding BNPs, a study has shown that boron nitride (BN) NPs increased 624 

oxidative stress levels in Caenorhabditis elegans by promoting ROS production 625 
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(Wang et al., 2017). Daglıoglu and Ozturk (2018) also concluded that 626 

considering ROS analysis, boron particles induced oxidative stress on the algae 627 

Chodatodesmus mucronulatus.Tang et al. (2019) found decreased superoxide 628 

dismutase (SOD), catalase (CAT), and GST activities in adult zebrafish after 629 

exposure to 100 mg/L of TiO2 NPs (25-40 nm). Similarly, 100 mg/L of SiO2 NPs 630 

(15 nm) also induced oxidative damage in zebrafish larvae, with increased ROS 631 

and malondialdehyde (MDA) content, decreased SOD activity and reduced 632 

glutathione (GSH) content (Zhu et al., 2019). 633 

ChE is essential for the normal function of the zebrafish nervous system 634 

and any functional disturbance in this enzyme may cause adverse effects on 635 

the locomotor behavior of zebrafish larvae, such as erratic movements and 636 

hyperactivity (Gaaied et al., 2020). VNPs inhibited ChE activity at 10 mg/L. This 637 

inhibition may result in the accumulation of acetylcholine in the synaptic cleft 638 

and leads to a disruption of nervous system function (Almeida et al., 2019). 639 

Hence, VNPs can alter the cholinergic system by affecting ChE activity, which 640 

may be involved in the locomotion impairment observed for the exposed larvae, 641 

specifically the hyperactivity observed. In contrast, the locomotor behavior 642 

alterations detected in larvae exposed to BNPs seem not be related to 643 

cholinergic damage (specifically ChE activity) since the activity of this enzyme 644 

was not altered at any tested concentration of BNPs. 645 

The tested NPs induced dissimilar effects to zebrafish embryos, with 646 

VNPs affecting more endpoints than BNPs at the same concentrations, 647 

indicating the greater toxicity of VNPs. The different chemical nature of these 648 

nanomaterials may imply differential modes of action in zebrafish embryonic 649 

development and larvae locomotion, emphasising the importance of evaluating 650 
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the effects of different types of NPs. On the other hand, despite both NPs 651 

undergoing aggregation/agglomeration in zebrafish medium, BNPs 652 

aggregates/agglomerates were bigger than VNPs aggregates/agglomerates. 653 

This difference in terms of aggregates/agglomerates sizes may also explain the 654 

lower toxicity of BNPs to zebrafish embryos, compared with VNPs. When 655 

aggregates/agglomerates become too large for direct transport across the cell 656 

membrane, uptake may be reduced and less effects to the organisms are 657 

expected (Vale et al., 2016).  658 

Overall, the current study demonstrated that BNPs and VNPs affects 659 

zebrafish embryos at relatively great concentrations, reinforcing the importance 660 

of NPs environmental risk assessment. Despite being non-lethal, both tested 661 

NPs induced significant effects on several endpoints, from the biochemical to 662 

the organism level, highlighting the relevance of a multi-endpoint 663 

ecotoxicological evaluation, at different levels of biological organization, to 664 

screen the potential toxic effects of NPs. Moreover, the effects of the tested 665 

NPs reported in this study occurred at concentrations that were greater than 666 

those commonly found in the environment, making it difficult to elaborate any 667 

predictions regarding ecological effects, resulting in the need for studies with 668 

lower environmentally relevant concentrations (e. g. < 0.01 mg/L), to 669 

understand if the toxic effects are maintained, especially at the biochemical 670 

level. Additionally, further studies evaluating other parameters, such as those 671 

involved in oxidative stress/damage (e. g. lipid peroxidation levels), other 672 

antioxidant system, as enzymes (e. g. CAT and SOD activities) and substrates 673 

(e. g. metallothioneins), genotoxicity, as well as,  gene expression (e. g. genes 674 
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related with oxidative stress and neurotransmission) are needed for a more 675 

complete understanding about the modes of action of BNPs and VNPs.  676 
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