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Abstract

Since the development of liquid-phase microextoac{LPME), different LPME modes
depending on the experimental set-up to carry loaiteixtraction have been described.
Dispersive liquid-liquid microextraction (DLLME),ni which a small amount of the
water-insoluble extraction solvent is dispersedha sample, is the most successful
mode in terms of number of applications reportedvaxces within DLLME have been
mainly shifted to the incorporation of green, smantl tunable materials as extraction
solvents to improve the sustainability and efficierof the method. In this sense,
hydrophilic media represent a promising alternasiveee the water-miscibility of these
substances increases the mass transfer of theesmtdythe extraction media, leading to
higher extraction efficiencies. Considering theietyr of hydrophilic media that have
been incorporated in LPME approaches resembling NDEL this review aims to
classify these methods in order to clarify the osifg terminology used for some of
the strategies. Hydrophilic media covered in th@giew comprise surfactants, polar
organic solvents, deep eutectic solvents, ioniaidig, water-miscible polymers, and
switchable solvents. Different physicochemical natbms of phase separation are
discussed for each LPME method, including the coat®n phenomena and other
driving forces, such as pH, temperature, salting-®ffect, metathesis reaction and
organic solvents. LPME modes are classified (irudtpoint extraction, coacervative
extraction, aqueous biphasic systems, and diffdpeitME modes depending on the
extraction medium) according to both the naturéhefwater-miscible extraction phase
and the driving force of the separation. In additithe main advances and analytical
applications of these methods in the last threesya@e described.

Keywords: liquid-phase microextraction, agueous biphasic esgstsurfactant, deep
eutectic solvent, ionic liquid, switchable solvent
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1. Introduction

Liquid-phase microextraction (LPME) undoubtedly stitutes one of the most
exploited strategies within modern analytical mextwaction methods [1]. It emerged
as a miniaturized version of the conventional kigligquid extraction, based on the
isolation of analytes from the sample matrix toeatracting micro-liquid phase. In this
sense, LPME entails a non-exhaustive extractiortga® [2] if considering the low
volume of extraction solvent involved in the progesl (few microliters, < 100 pL), but
quantitative recoveries can be achieved underinectanditions. The use of such low
volumes of extraction solvent together with largemple volumes leads to high
preconcentration factors, which allow the determamaof trace amounts of analytes,
being this one of the key aspects justifying itscgess. Other interesting features of
LPME include low consumption of extraction solvgand thus low generation of
laboratory wastes), simplicity, low cost, low enempnsumption, and negligible carry-
over, while making possible (in most cases) thesdlirinjection of the solvent
containing the extracted and preconcentrated taxapounds in the analytical system
[1].

There is not a single mode of LPME; indeed, marffedint modes have been
developed [1,3]. Existing LPME methods can be diassin three main categories
depending on the experimental set-up to carry dw extraction: single-drop
microextraction (SDME) — which requires a dropletigroliters) of extraction solvent
suspended in the sample —, membrane-based LPMEding hollow fiber LPME —
HF-LPME —, and electro-driven separations) — whiefjuires an inert membrane to
stabilize relatively higher amounts of extractiaivent (still in the microliters range) —,

and dispersive liquid-liquid microextraction (DLLME- which requires proper
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dispersion of the extraction solvent (microlitersp the sample. Other classifications
are also possible, but this simple division singdifthe overview on LPME.

DLLME, which was introduced by Rezaee al. in 2006 [4], has become the
most widely utilized LPME approach among all thesategies due to its simplicity,
efficiency, and fastness. The conventional modBIdfME bases on the dispersion of
the extraction solvent in the sample with the did dispersive solvent. The operational
mode of this method involves the use of a mixturthe extraction solvent, immiscible
with the sample, and the dispersion solvent, misatath both the extraction solvent
and the sample. The latter allows the formatiorsmofll microdroplets of extraction
solvent through the sample, which increases thesnassfer of the analytes and
therefore improves the extraction efficiency [Shi mode of operation overcomes the
drawbacks of SDME associated to the stability @ mhicrodroplet, and those of HF-
LPME related to the slow diffusion of the analyteshe extraction phase located in the
pores or in the lumen of the hollow fiber. Figuresdiows a general scheme of the
conventional DLLME procedure, together with a sumynaf the main variations to
improve the operational of this LPME method.

Since the incorporation of the Green Analytical Qistry (GAC) guidelines in
the sample preparation stage, the search of nexgrgslwith the aim of improving the
environmentally friendliness of DLLME (and other ME methods) is one of the most
important research lines in the field [6]. Therefoefforts focus on the design of green,
smart, and tunable solvents as an alternative dactimventional, toxic and expensive
organic solvents commonly used in DLLME [7] whileeeking not only the
development of sustainable procedures but alsatsateand more efficient approaches.
Within this trend, the use of hydrophilic media leen one of the explored strategies.

The resulting methods take advantage of the hydliojy of the solvent/material to
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increase the mass transfer and extraction effigi@c¢he target compounds, thanks to
the enhanced dispersion of the extraction mediuespide the water-miscibility of
these extraction media, all the LPME methods resermih LME but including an
additional insolubilization step to separate thenalfi phase with the
extracted/preconcentrated analytes from the remgirsample and non-extracted
components.

Considering the variety of emerged hydrophilic naeaind their incorporation in
different LPME approaches resembling DLLME, wahpriori important similarities
among all methods, and with confusing terminolagyséveral cases, this review aims
to classify all reported LPME methods using watésaible media. This classification
takes into account both the nature of the mediuchtha driving force responsible for
the phase separation, as summarized in Figure @ci@pattention is paid to the
mechanisms that take place during the insolubibmaprocess. The advances within
these strategies reported in the last three yéan® 2017 to 2019) are also described,

together with a summary of the most relevant arelyapplications.

2. Coacervation phenomena-based liquid-phase micregaction methods

LPME methods with hydrophilic media driven by theacervation phenomena
deserve special mention due to the impressive numbapplications. Clearly, it is
essential to define several concepts related ttidal chemistry with the aim of
establishing the physicochemical mechanisms ineblve the phase separation
phenomena of the different coacervation-based LipMEhods.

Coacervation-based LPME methods require the foomaif colloids. A colloidal
dispersion is a homogeneous mixture in which oratsacomposed of microscopic

particles (1 nm — 1 um) is dispersed into a comtrsuphase, generally a liquid (the
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liquid dispersion) [8]. The coacervation phenomensnobserved when a specific
environmental condition of the colloidal dispersisnmodified. Thus, coacervation is
the self-assembly or association between colloidsich generates a new insoluble
phase rich in colloids that can be separated frioenliquid dispersion [9]. The final

insoluble phase after coacervation is a nano-stredt liquid, also termed

supramolecular solvent since it is made up of suptacular aggregates.

In general, the first step of coacervation-basedlEPmethods occurs when a
homogeneous solution becomes a colloidal disperalmwve the critical aggregation
concentration (CAC) of the extraction medium [100he second step is the
coacervation, which leads to the formation of asolable supramolecular aggregate
containing the extracted analytes, which can be #esily separated from the initial
agueous phase.

Among all extraction media useful for coacervatmsed LPME methods,
surfactants are the most known substances abtertodupramolecular aggregates after
coacervation. Surfactants are amphiphilic compouiedsied by a hydrophobic tail
(usually a hydrocarbon chain) and a hydrophilicchéa polar or an ionic group). The
use of surfactants in extraction schemes has beems#vely reported in Analytical
Chemistry due to their ability to form micelles a&pbahe critical micelle concentration
(CMC) [11,12]. More recently, other types of compds have also been found to form
supramolecular aggregates, such as long chain @fcgh3], long chain carboxylic
acids [14], and primary amines [15]

This section will cover only coacervation-based LFPMechniques that use
hydrophilic media to form a colloid dispersion prito coacervation. The different
techniques are classified according to the typleydfophilic medium involved and the

driving force responsible of the coacervation. s tsense, two techniques will be
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reviewed: cloud point extraction (CPE), using nonit¢ or zwitterionic surfactants; and
conventional coacervative extraction (CAE), witmim surfactants. The use of long
chain alcohols and long chain carboxylic acids n-gonventional coacervation
phenomena-based LPME [16] are out of the scophki®fréview since these substances

are hydrophobic, but they will be briefly discussed

2.1. Cloud point extraction

CPE was introduced for the first time by Watanaeal in 1976 [17] as a
promising green extraction technique. CPE is basedhe coacervation that occurs
when the aqueous solution of a non-ionic or zwitdc surfactant (used at a
concentration higher than its CMC) is heated alibeecloud point temperature (CPT)
of the surfactant. The CPT depends on the surfastaucture and concentration, and it
is affected by the presence of additives [18]. &fare, the coacervation is induced by
temperature in CPE, which leads to a reversiblesitaicaggregation of the surfactant.
Under the appropriate conditions, the polar masetié the surfactant are dehydrated,
leading to a decrease of inter-micelle repulsiams the formation of a water-insoluble
surfactant-rich phase [19]. Furthermore, there ixompetition between different
physicochemical parameters that affect the CPE armesim: enthalpy, entropy, and
miscibility of the micelles in the aqueous mediutR][

The conventional procedure of CPE involves firstig formation of micelles by
adding the surfactant to the aqueous medium (ewguwifinal concentration of the
surfactant above its CMC). Then, the mixture isulbvated at a temperature above the
CPT during a certain time until a cloudy solutianformed. Centrifugation is then
usually applied to promote the separation, leadinthe formation of two coexisting

phases: a water-rich phase and a water-insolubfacsant rich-phase containing the
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extracted analytes, as shown schematically in Eigu(A). The water-rich phase is
discarded, whereas the surfactant-rich phase jg&el to the analytical determination
[19].

One of the main disadvantages of CPE may be thedugsumption of energy to
reach the desirable temperature for the phase at@paragainst GAC requirements).
Thus, recent trends focus on developing modificestiof the conventional CPE method
to decrease the CPT [18]. Moreover, the high visgas the resulting surfactant-rich
phase has also hampered the application of thieadesince the sensitivity is reduced
due to the required dilution of the final extract énsure compatibility with the
analytical determination technique.

At this point, it is important to mention that camtional CPE was not initially
considered a microextraction method. However, nmresent CPE applications are
indeed micro-CPE methods, if considering for exarplat a high number of studies
report the use of low volumes of surfactant sohgi¢~pL). In all these works, a high-
concentrated surfactant solution is added to tmepks so that the CMC is reached
despite the use of low volumes of surfactant sofuff0—-43]. Furthermore, a high value
of the aqueous sample to final extract volume rai@btained in many cases, thus
leading to the development of preconcentration owthbased on CPE [28,30-
32,35,40,42,44-57].

In any case, non-ionic or zwitterionic surfactaméed in CPE approaches must be
carefully selected to ensure the separation with tiinimum energy consumption
possible. Therefore, surfactants with a CPT arotowim temperature and with low
CMC values are preferred [11,12]. Triton X-114 Heeen the most used non-ionic
surfactant in CPE approaches given its low CPT imelatively wide range of

concentrations [21-24,27,29-32,35-40,42,45,50-3%285%4]. In fact, the cloud point-
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concentration curve of this surfactant in watenveh&PT values ranging from 27 to 30
°C for concentrations between 0% (w/v) and 9% (W76). This explains why most of
the recent CPE methods report concentrations aodriX-114 below 5% (w/v)
[27,30,31,35-38,41,50,55,58,61,62,67,68,70,72]. sThisurfactant belongs to
polyethylene oxide-derived family of surfactantshieh are commercially available,
stable, cheap, and non-volatile, thus favoring rthese in environmental-friendly
extraction strategies. Given these interesting ufeat Triton X-100
[28,33,34,41,44,46,76—-82] and Triton X-45 [43,88yve also been used in recent CPE
applications. Other surfactants have been commaaported, like nonylphenol
ethoxylate-based surfactants (Tergitol) [48,49,83&6], which provide versatile
solubility characteristics, and other less commariastants are PEG 6000 [56,87,88],
Brij-35 [47,54], Tween 80 [89], and PONPE-20 [90].

Mixed-micellar media have been also successfuldus CPE methods since the
combination of ionic and non-ionic surfactants keam a synergistic effect that
improves the extraction efficiency of the entireogedure. The use of non-ionic
polyethylene oxide-derived surfactants (mainly dmitX-114 and Triton X-100) is
frequently reported in combination with differentonic surfactants, being
cetyltrimethylammonium bromide (CTAB) [26,57,91,92$0dium dodecyl sulfate
(SDS) [20,91], and cetylpyridinium bromide (CPBB]2he most commonly used in the
recent years.

With respect to the effect of the ionic strengthe taddition of inorganic
electrolytes is quite important in CPE since thagghseparation is improved due to the
preferential hydration of the salt ionsrsusthe surfactant (salting-out effect), leading
to a decrease in the CPT [18]. Therefore, the mudiof salts has been a common

strategy in CPE applications [21,26,27,29,32,38838,44-46,49,50,52-57,59,61—
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64,67,68,70,71,76,78,80,84,86—-89,91-93], with NaCl
[26,27,37,44,46,53,54,59,68,70,80] and,®@; [45,50,52,57,84,86-88] as the most
common salts reported.

Incubation temperature and time are closely intamected parameters, which
directly depend on the CPT of the surfactant. Qiereng that several analytes can
undergo thermal degradation, incubation temperatuust be carefully optimized. In
general, temperatures 15-20 °C above the CPT ack insmost cases to ensure the
formation of the cloudy solution after a certamei[19]. Room temperature is the most
desirable temperature for incubation, allowing fFegformance of the CPE method
without any additional energy consumption. Thusesa studies have focused on the
addition of different substances to decrease tbgbation temperature to 25 °C, mainly
organic acids and alcohols. These substances learedelected due to their ability to
establish hydrogen-bond interactions with wateustfavoring the dehydration of the
surfactant and speeding up the phase separatidrowitany heating process. The
addition of salicylic acid [78] and ascorbic ac&b] has been reported to perform the
extraction at room temperature using surfactanisnigeng to the Triton family (Triton
X-100 and Triton X-114). More recently, acetondrihas been incorporated in a CPE
method to decrease the CPT of PEG 6000 [88]. Fumibre, it has also been described
the use of a surfactant combined with an alcoheleL al. reported the use of Triton X-
114 combined with octanol [66], while Xat al.[79] and Cheret al.[47] proposed the
incorporation of hexafluoroisopropanol (HFIP) aslitide to decrease de CPT.

With respect to the incubation time, 10 min is Ulsuanough to reach the cloud
point. In fact, times between 5 and 15 min are thest common reported
[21,23,25,28,30,32,34,36,38,40,41,43,45,49,54-564657,71—

73,80,82,83,85,86,88,89,92-94].
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The incubation process has been commonly perfoimedwvater bath. Recently,
the use of ultrasounds to reach the desired termyserhas been reported, leading to the
development of ultrasound-assisted CPE (US-CPE),3890,53,54,56,60,61,64—
67,71,80,83,89,94]. US-CPE applications intend txrease the incubation time
required to form the cloudy solution, thus favorthg fastness and effectiveness of the
method.

In CPE, complete phase separation is usually eetidy centrifugation, but
most of the recent studies have reported an additgtep of cooling. This increases the
viscosity of the surfactant-rich phase and allowscatding the water-rich phase by
simple decantation. In general, cooling is perfatme an ice water bath for few
minutes [20,21,23,30,31,33,37,41,42,51,54,55,56/45689,71-74,76,77,90,92].

It is interesting to mention dual-cloud point exdion (d-CPE), an alternative
mode of CPE, reported for the first time by Weal.in 2008 [95]. d-CPE involves two
consecutive CPE steps: a conventional CPE followedhe back-extraction of the
analytes from the surfactant-rich phase by andfi&E procedure using a new aqueous
solution. In the last three years, different d-QR&thods have been reported, using as
back-extracting reagents acidic solutions (HN&@ HCI) [36,58,64,72], or alkaline

solutions (NaOH) [39].

2.2. Conventional coacervative extraction

CAE is based on a procedure similar to CPE butgusinionic or cationic
surfactants as extractants. While in CPE the sépars induced by the temperature, in
CAE the coacervation occurs due to the salting-efteéct or in response to other

parameters, such as the addition of an organiesbler changes in the pH, as shown

11
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schematically in Figure 3 (B) [96]. Surfactants s added to the aqueous solution in
a concentration above their respective CMC, asdtis in CPE.

It is important to highlight that micelles of iongurfactants suffer electrostatic
repulsions between them that can negatively affieelr aggregation [96]. For this
reason, CAE method must be carefully optimized ridep to guarantee proper inter-
micelle interactions, thus ensuring the formatiérihe supramolecular aggregate. The
surfactant structure, mainly its hydrophobic chgutays an important role in the
extraction process. Moreover, the nature of théastant (anionic or cationic) is often
related with the experimental parameter that induttee coacervation [12]. Thus,
cationic surfactants with a long hydrophobic chaia preferred due to the presence of
stronger hydrophobic interactions between their effes, which minimizes the
electrostatic repulsion effect. Furthermore, catorsurfactants can experience
coacervation in the presence of a salt [12]. Is 8ense, CAE methods using cationic
surfactants reported in the recent literature heesalting-out effect as the driving force
to induce the separation. Gissawastgal. reported the use of a mixture of two long-
tailed cationic surfactants [97], while Salareatal used a mixture of a cationic and an
anionic surfactant [98], both with NaCl, to induttee coacervation. Dodecyltrimethyl
ammonium bromide [97] and dodecylmethyl imidazolibnomide [98] are the most
representative cationic surfactants used in CAEGgghes.

In anionic micellar media, the phase separation mainly induced by
modifications of the pH [12]. Recent CAE applicaareport the use of SDS as a single
anionic surfactant [99], or include a mixed micellaedium together with a cationic
surfactant to take advantage of the characteristicdboth surfactants [100-102].

Nevertheless, in these studies the coacervatinati;xduced by pH, since other driving

12
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forces prevail: the addition of an organic solventa coacervation-inducing agent,
depending on the case.

Several studies describe the use of alcohols aanmrgsolvents to induce
coacervation. Specifically, HFIP [100,101] and @opl [103] have been used to
coacervate solutions of tetraalkylammonium-type fastants. Alcohols establish
hydrogen-bond interactions with water, thus dehyadga ionic surfactants and
promoting the coacervation.

Recent studies have reported a CAE method thatpocates a coprecipitation
agent as a coacervation-inducing agent rather thsing the salting-out effect,
modifying pH or adding organic solvents as it isgiuently reported. Furthermore,
Mammanaet al. reported a coprecipitation-assisted CAE using $0,); as precursor
of the coprecipitation agent for SDS [99], whileCA has also been used to promote the
coacervation in a mixed-micellar medium compose&bf and tetrabutylammonium
bromide (TBAB) [102].

As it happens with CPE, it is important to mentithiat recent applications of
CAE were developed with preconcentration purpogeen the low volume obtained of
the coacervative phase (~puL) [99,104] compared thi¢ghvolume of the initial aqueous

sample (J10 mL) [99-101].

2.3. Non-conventional coacervative extraction

Apart from surfactants, in 2007, Rul®b al demonstrated that other amphiphilic
compounds were able to form supramolecular aggeegatkanols and alkanoic acids
with long chains [13,14]. These compounds form #owb dispersion of reverse
micelles in protic and aprotic solvents (e.qg.,aeydrofuran (THF) or acetonitrile) at

concentrations higher than their respective CACe Tloacervation and subsequent

13
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formation of the hydrophobic supramolecular solvisninduced with the addition of
water, as shown schematically in Figure 3 (C). fnienomenon has been exploited for
the development of a LPME method, termed supramtdec solvent-based
microextraction (SUPRAS). The alcohols and carbioxgcids used in this LPME
method are water-insoluble and, indeed, they haeenbused as solvents in
conventional DLLME applications [105]. However, thddition of the protic or aprotic
solvent favors the formation of self-assembled eggtes, which exhibit higher
solvation characteristics and consequently, betigraction performance [14]. Given
the hydrophobicity of alkanols and alkanoic acidsedi as extraction solvents in
SUPRAS, this review will not cover this highly inésting mode of microextraction
[106-108].

More recently, in 2020, Bogdanoea al [15] also demonstrated the formation of
supramolecular aggregates of primary amines witlg loydrocarbon chains when using
monoterpenoids as coacervation-inducing agent. darhmes form positively charged
amphiphiles when dissolved in water due to theidrbyon and dissociation.
Terpenoids, negatively charged once added to thesee aqueous solutions, interact
with the amphiphiles and induce the coacervatioenpmenon. Thus, authors used the
spontaneous formation of a coacervate of 1-decylanmhen adding thymol for the
development of a SUPRAS method for the extractibautfonamides from biological

fluids.

3. Additional hydrophilic media-based liquid-phasemicroextraction methods
In the recent years there has been an increasocugpioration of new solvents
iInLPME methods to substitute halogenated organiests [6,7]. With respect to new

hydrophilic media, deep eutectic solvents (DESs)jd liquids (ILs), and switchable
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solvents (SSs) have been explored. Moreover, waiseible organic solvents have also
been used in these LPME methods in which the eidracnedium is directly added to
the aqueous sample. Traditionally, these methodge hibeen included within
homogeneous liquid-liquid microextraction [109]. wiver, this classification is very
general and the comprehension on the phenomenansabfe of phase separation has
been neglected. Therefore, it is essential to pieown insight into the unique set of
physicochemical characteristics of these mediaaio @ better understanding on the
variables affecting the phase separation proces$schwfurther helps in finding a
rationale on their classification. In this sectiotme LPME methods using these
hydrophilic media that do not experiment coaceoratwill be described. They are
classified consideringboth the separation mechamisththe nature of the hydrophilic
medium used as extraction solvent since the phegsaration for the same medium can
be accomplished by different strategies, leadinglifterent LPME methods. Thus,
DLLME using hydrophilic DESs, ILs and SSs, and ARS&g different media (i.e. ILs

and DESs) will be reviewed.

3.1. Hydrophilic deep eutectic solvent-based dispgwve liquid-liquid
microextraction

Deep eutectic solvents (DESs) are a group of welgtinew solvents formed by
the combination of a hydrogen bond donor (HBD) andhydrogen bond acceptor
(HBA) at different ratios [110]. These mixtures wiat follow an ideal solid-liquid phase
behavior and present melting points significantiyér than the melting temperature of
the individual initial components. The resulting ®Erom such mixtures does not
require any additional purification step. Main fgas of these solvents, if properly

designed, may include low toxicity and high biodetability, and they are cheap and
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easy to prepare. These solvents are also versagleause their physicochemical
properties can be tuned by selecting the adequatghioation of HBD and HBA
species [7,110,111].

Given these characteristics, it is not surprisimg impressive increase in the use
of hydrophobic DESs in LPME, particularly in DLLMBethods, in the recent years
[111-113]. More recently, in 2015, Khezeadt al. developed for the first time a
microextraction strategy based on the use of a rwaiscible DES (formed by
cholinium chloride and phenol) as initial extraatimedium [114], which resembled a
combination of DLLME and CAE. The method, termeddsS-DLLME in the current
review, requires the addition of the hydrophilic ®E&s extraction solvent to the
agueous sample, obtaining a homogeneous solutiotiid case, the formation of the
final insoluble phase is induced by the additiormpifotic solvents. After centrifugation,
the water-immiscible phase is obtained containihg target analytes as shown
schematically in Figure 3 (D).

It has been suggested that, hydrogen bonding and charge transfer interactions
among DES components are the main responsiblethfeir self-assembly and
consequent insolubilization. Despite the commonlization of terms such as
supramolecular aggregates and emulsification wieéerring to hydrophilic DESs in
these methods, it is the opinion of the authothefcurrent review that more studies are
required to ensure the presence of the coacervgimmomena when using these
solvents. Indeed, a recent study has reportedhiibdDES formed by cholinium chloride
and phenol suffers decomposition once it is dissblin aqueous media due to the
destruction of the hydrogen bonds between its corapis (i.e. the starting components
will be preferentially hydrated by water) [115]. & Bddition of the aprotic solvent (THF

in this case) to the aqueous sample containinghtygrophilic DES leads to the
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insolubilization of an organic phase mainly commgbs# phenol, THF and water.
Therefore, this study demonstrates that the DE#&ddr by cholinium chloride and
phenol has been wrongly termed as extraction soivethese DES-DLLME methods.
It also highlights the need for evaluating the #itgtof DESs in water to elucidate the
mechanism in these methods when using other hydiomht “quasy-hydrophobic”
DESs [113]

Despite this recent breakthrough, this review wdler all hydrophilic DESs-
based DLLME methods, even those with the DES coeubby cholinium chloride and
phenol. After all, the extraction phase used irs¢hmethods is added to the aqueous
sample as a DES, and the decomposition only talees pvhen it interacts with water.
In fact, after reporting this study, same authorktadvantage of the decomposition of
DESs to improve the dispersion of the extractiowesd into the aqueous medium and
simplify the extraction procedure [116]. The methoohsists in an effervescence-
assisted DLLME using the DES formed by menthol ératsoluble) and formic acid
(hydrophilic) as initial extraction solvent. Whehis added to the aqueous sample
containing sodium carbonate, the DES decomposés individual components. The
reaction between the carbonate and formic acidrgégee carbon dioxide, which leads
to the effervescence that enhances the dispersithe ovater-insoluble menthol. In this
case, the menthol acts as extraction phase, lsuiniportant to point out that it is added
to the sample in the form of a DES combined withmic acid. Even though the
decomposition of the DESs occurs, the use of hydliocpor DESs increases the mass
transfer of the analytes to the extraction mediwe tb its enhanced dispersion in the
aqueous sample in comparison with hydrophobic DE&svever, it is important to
point out that in both cases the addition of a watescible organic solvent is required

for the separation and dispersion of the extragtioaise, respectively.
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Many applications of hydrophilic DESs in this DESIIME method have been
reported since the first published work in 20154[LIDESs composed of cholinium
chloride as HBA and phenol as HBD have been thet mmsm[on [117-131]. Other
alcohols and carboxylic acids have been used assHBRombination with cholinium
chloride, such as 2-chlorophenol [132], oxalic &3], p-cresol [134], glycerol [135],
and 5,6,7,8-tetrahydro-5,5,8,8-tetramethylnaphthdi®l [136]. The use of the
hydrophilic DESs obtained after the mixture of aeutylammonium chloride as HBA
and decanoic acid as HBD has also been reported-1B®]. Depending on the
composition of the DES, the water-insoluble phasebtained as the upper or the
bottom phase after the separation.

Following current trends within the preparation ofaterials with higher
biodegradability [140], natural DESs (NADESSs) swtized by using natural products
have also been used in this LPME method [141-1¢8]example NADESs prepared
with sucrose as HBA and citric acid as HBD [14Thamg others.

As abovementioned, the synthesis of DESs is quitels, implying a mixture of
both components, followed by stirring at temperaguap to the mixture melting. It is
interesting to mention that, in general, the optimuDESs to perform the
microextraction procedure were those obtained waithigher content of HBD, with
common HBA:HBD molar ratios of 1:2 and 1:4. Thisymae related to the higher
hydrophobicity of the HBDs and the viscosity of thesulting DESs with higher
concentrations of HBD. The amount of hydrophilic &Eused in these studies ranged
between 50 [134] and 1000 uL [128], while the vodsnof aqueous sample analyzed
were high enough to ensure preconcentration.

In the vast majority of the studies, THF was emptbyas agent to induce the

phase separation [117-133,136-139,141,143,144].eMeny the use of acetonitrile
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[135,142], and acetone [134], has also been regoliteis also quite common the
application of ultrasounds immediately after thdiadn of the organic solvent, with the
aim of facilitating the insolubilization while enhe@ng the dispersion of the
hydrophobic phase formed [117,118,124,126-131,834;139,141-143].

Another common strategy to favor the insolubiliaatand increase the extraction
efficiency is the incorporation of agitation cycléghis has been carried out by the
aspiration and ejection of the mixture using argyei[120,123-125,135,136]. As a step
forward, the research group of Bulatov describexl davelopment of automated flow
air-assisted DES-DLLME methods by using an eight-palve connected to: a
peristaltic pump, a mixing chamber where the exiwacis accomplished, a syringe
pump for the air-assistance, the analytical insauirto perform the on-line analytical
determination, and the containers of the solvent$ sample [120,135]. In order to
avoid the tedious centrifugation steps, kt al incorporated ferrite magnetic
nanoparticles (MNPs) to the mixture after the additof THF to insolubilize the
extraction medium [123]. The formed microdropletsrgvadsorbed on the surface of the
MNPs due to hydrophobic interactions, which allowteeé separation of the water-
immiscible-phase containing the analytes by usih@ro external magnet. The only
drawback of this approach is the necessity of aitiadal back-extraction step in the

procedure to desorb the analytes from the composite

3.2.1n situ ionic liquid-based dispersive liquid-liquid microextraction

lonic liquids (ILs) undoubtedly merit highlightingmong the new solvents
explored as extraction solvents in DLLME applicaio[145]. Indeed, it is the
microextraction strategy (IL-DLLME) in which ILs kia been most successfully used in

recent years [146]. ILs are a group of salts witklting points below 100], mainly
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formed by the combination of a bulky asymmetricamig cation and an organic or
inorganic anion. They present negligible vapor gues at room temperature, high
conductivity, and high thermal and electrochemistdbilities. The most attractive
feature of ILs is their impressive synthetic veilggtand tuneability, which leads to
drastic changes in their physicochemical properbgssmall modifications in their
structure and composition. Thus, viscosity, soltihiland solvation properties of ILs
can be easily tuned by properly selecting the eabfithe cation and the anion [147].
Depending on the characteristics of the ILs andadsestance during the DLLME
procedure by using materials with specific progsrtior specific instrumentation,
different IL-DLLME modes can be distinguished [1889]. This classification includes
temperature-controlled IL-DLLME, vortex or ultrasus-assisted IL-DLLME,
magnetic IL-DLLME, among others. In 2009, Baghdatid Shemirani [150] took
advantage of the tuneability of ILs to describe ld.ME mode exclusively applicable
when ILs are used as extraction solvent, termedtlynas situ IL-DLLME. In this
approach, a hydrophilic IL is used. Then, an am@®ohRange reagent is added to the
agueous sample containing the water-soluble ILs Teagent promotes a metathesis
reaction in which the anion moiety of the IL is baoged to obtain a hydrophobic IL, as
it is schematically shown in Figure 3 (E).Due te tmiscibility of the initial IL with
water, the generated water-insoluble IL is dispkaé over the sample, leading to the
formation of an emulsion (turbid solution). Finallgs in the conventional DLLME
strategy, the mixture is centrifuged to obtain arodroplet of the hydrophobic IL
containing the analytes. In the study reported by #nd Anderson also in 2009 [151],
authors demonstrated the superiority of ithesitu IL-DLLME approach compared to

conventional IL-DLLME and IL-SDME. By using this rategy, the method is
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simplified, the extraction time is shortened, almel éxtraction efficiencies are increased
due to the enhanced dispersion of IL in agqueaospte in the initial stage.

The most common ILs used as extraction solvents situ IL-DLLME contain
dialkylimidazolium cations, paired with chlorideromide or tetrafluoroborate anions
[152-170]. Hydrophilic ILs with other cations haveeen reported, such as
alkylguanidinium of low cytotoxicity [157,171,172}etraalkylammonium [173,174],
and tetraalkylphosphonium [175]. Structurally tun#ds, incorporating functional
groups in the cation, have also been assessedsimtbroextraction approach for the
extraction of specific analytes. In this sense, With imidazolium cations containing
hydroxyl and/or benzyl groups demonstrated goodlyéioal performance for the
determination of polychlorinated biphenyls (PCBgHd acrylamide in food samples
[167]. Sadeghi and Sarrafi [160] reported the usk tbe 1-chloroethyl-
methylimidazolium chloride IL functionalized with-l8/droxyquinoline, which serves
simultaneously as extraction solvent and as cloglagagent for the selective extraction
of Cd(ll) in complex samples. It is also interegtito mention the use of a hydrophilic
acidic IL composed of an imidazolium cation and fiegen sulfate anion, which acts as
both extraction solvent and reagent to generateocadioxide during the extraction to
assist the dispersion [153]. In all cases, the amotilL used in the method was of a
few pL or mg, which compared with the relativelyglmivolume of initial sample,
complies with typical high preconcentration factoeshieved within DLLME
applications.

With respect to the anion-exchange reagent, saltsith w
bis(trifluoromethanesulfonyl)imide ([N%f]) [152,155,157,159,161,167,169,171,176]
and hexafluorophosphate anions [153,154,156,159,686166,170,174] are the most

common. With the aim of avoiding the use of thegghlly toxic salts, fluorine-free
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alternatives have emerged to promote the anionasgshreaction, such as dicyanamide
[175] and perchlorate salts [172,173].

The incorporation of magnetic ILs (MILS) in tie situ IL-DLLME procedure (n
situ MIL-DLLME) is the most recent improvement withimis method [177-179].
Hydrophobic MILs have been previously used in ILDME, in which the typical
centrifugation step is avoided since the paramagpetperties of the extraction solvent
allow its separation from the sample with the dicduwm external magnet [149,180]. The
MILs initially reported were not suitable for thre situ IL-DLLME approach since they
were prepared using paramagnetic anions, which dvds@ exchanged during the
metathesis reaction thus losing the MIL. In 2018yjillo-Rodriguezet al. [177-179]
proposed a new generation of hydrophilic MILs camtay paramagnetic cations, which
can undergo insolubilization by exchanging the animoiety. The MILs were
composed of cations with Ni(ll) or Co(ll) centersoedinated with four ligands dfl-
alkylimidazole and chloride anions, while Li-NWas used as anion-exchange reagent.
In this case, after the addition of the metathesagent in then situ IL-DLLME
procedure, the solution was vortexed to accompghghreaction and the hydrophobic
MIL was collected using a magnet. The water-insi@duIL formed by this method
was also collected using a rod magnet previousgeried in the sample, which
resembled to stir bar sorptive dispersive micraetion [178]. In this case, the magnet
also served as stirring device to assist the mesethreaction. Once the stirring was
stopped, thein situ formed MIL was settled in the rod magnet, whichswen
transferred to another vial to perform the therdedorption of the analytes.

In general, then situ IL-DLLME mode does not require a dispersive sotvien
contrast to conventional IL-DLLME, due to the iaitimiscibility of the IL with the

aqueous sample. However, given the viscosity ofrthetu generated hydrophobic IL,

22



566

567

568

569

570

571

572

573

574

575

576

o177

578

579

580

581

582

583

584

585

586

587

588

589

590

the addition of organic solvents (methanol, acet@oetonitrile, or THF of has been
reported to favor its dispersion [157,166]. Thigpaticularly necessary when dealing
with thein situ MIL-DLLME [177-179]. This drawback has also beereccome using
a non-ionic surfactant as both anti-sticking agend dispersive solvent, such as Triton
X-114 [160], or sodium bicarbonate as effervesaagnt [153]. Another interesting
study was reported by St al. [170] with an imidazolium-based hydrophobic IL dse
as extraction solvent in a microwave-assisted IU-BIE method, and with a
hydrophilic IL added as dispersive agent. Authds® @erformed a metathesis reaction
to transform the IL used as dispersive solvent iatowvater-immiscible IL thus
improving the recovery of the IL phase, with botls participating in the extraction of
the analytes.

One of the main operational disadvantages ofirirgtu IL-DLLME approach is
the requirement of centrifugation steps, togetheth wihe sampling of the IL
microdroplet, which normally settles at the bottofrthe sample container. In order to
simplify these steps, MNPs have been incorporatetiein situ IL-DLLME procedure
[154,155,169,173,175]. The MNPs can be added befoadter the metathesis reaction.
Once the reaction is accomplished, the water-ifdellL containing the analytes covers
the surface of the MNPs due to hydrophobic andtrelstatic interactions. In 2018, Wu
et al. described the preparation of magnetic effervestaiets, which contained the
MNPs, the effervescent agent and the hydrophilil®4]. Instead of MNPs, Wangf
al. proposed the use of magnetic hollow fibers toembithe hydrophobic IL preparéa
situ in the sample solution [163]. In this case, thdldwo fiber pieces (containing a
stainless steel wire) were added to the sample takemetathesis reaction, and then the
water-immiscible IL impregnated the pores of theefs after stirring. Despite the use of

an external magnet enormously facilitates the seijoar of the IL phase from the

23



591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

sample, the main drawback of these magnetic-adsrsgtu IL-DLLME methods is the
tedious back-extraction step. This step must begnated into the procedure to desorb
the analytes from the magnetic composite, whichinaigareases the total analysis time.
In this sense, thén situ MIL-DLLME method turns up to be the most promising
strategy.

Other strategies have been reported to simplifyirthsitu IL-DLLME method,
such as the solidification of the formed hydropleoli by the synergetic effect of
cooling the mixture and the addition of NaCl [17M[Cl is a widely used salting-out
agent due to its high affinity towards water. ThNaCl induces the dehydration of the
IL, which improves its separation from the aquea@#nple and its subsequent
solidification after placing the mixture in an ibath. In this study, the whole extraction
procedure was also performed in a syringe. A nommopolypropylene sheet was
introduced in the syringe needle as a filter tdemlthe solidified IL-phase and discard
the aqueous sample. In a similar way, Molae¢ial [165] presented an on-line
separation of the IL-phase from the sample by pgdsie cloudy solution obtained after
the metathesis reaction through a PTFE filter, Whiaas placed in a six-port valve
coupled to a peristaltic pump. The hydrophobic laswsolated in the filter, and the
analyte was then desorbed by using an organic splf@lowed by its injection in the

analytical system.

3.3. Agueous biphasic systems

Aqueous biphasic systems (ABSs) were first propdisedlbertsson in the 50’s
as more biocompatible separation alternatives aditional liquid-liquid extraction
techniques involving volatile organic solvents [L8Given their biocompatible and

eco-friendly nature, the application of ABSs rapidivolved not only in the extraction
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and purification of a plethora of (bio)moleculesrfr the most diverse sources [182,183]
but also as sample cleanup and preconcentratidmitpees for analytical purposes
[184-217].

ABSs are water-rich liquid-liquid extraction systgnwhose genesis builds up
on the formation of two coexisting phases whereast two incompatible solutes (e.g.,
polymers, salts, sugars, amino acids, ILs, DESwrprganic solvents, among others)
are mixed in aqueous medium above given concemtiaind under specific conditions
(e.g., temperature, pH). The molecular-level memas behind the formation of ABSs
are highly contingent on the pair of phase-fornsogiponents used [218,219].

Under the scope of the present review, the mostntemvestigated pairs of
ABSs phase-forming components are polymer/saltarpofganic solvent/salt, polar
organic solvent/sugars, IL/salt, IL/polymer, IL/&agatant, IL/salt/surfactant, DES/salt,
DES/polymer, DES/polyol, DES/amino acid and DES/OE84-217]. In these cases,
the liquid-liquid demixing is driven by a “saltirgut” effect, where the creation of
complexes between water and the salts/ILs/DESs irmhsces the dehydration of the
remaining ABSs components [218,219]. Each coexggtihase is enriched in each one
of the solutes, so that ABSs are formed by two wath layers with different
properties, as sketched in Figure 3 (F). Thus fassible to finely tune the properties
and affinities of the ABSs phases by the cautioeiecsion of ABS phase-forming
components and operational conditions. In this wiays possible to develop efficient
liquid-phase microextraction strategies and to satteompatibility with analytical
equipment. For most common ABSs, i.e. those beanmgporganic salt as a salting-out
agent, the bottom (denser) phase is commonly isaltwhile the top phase is enriched

in the other solute (e.g., polymer, IL, DES, pataganic solvent). It should thus be
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mentioned that most often, because of the saltutigetfect, the phase containing the
preconcentrated analytes is the top phase, as sindwgure 3.

To apply ABSs in liquid-phase microextraction, agiden that they are ternary
systems, it is vital to gather previous knowledgeboth ABSs ternary phase diagrams
and partitioning behavior of target analytes amtrgy coexisting phases. ABS phase
diagrams allow identifying mixture compositions ttifarm two-phases. Each phase
diagram entails two major components, as shown iguré 4 in an orthogonal
representation (where the amount of water corredpdo that required to reach 100
wt% for a given mixture composition): (i) the costence binodal curve (green full
line), and (ii) the tie-lines (TLs, orange dashe@s). The binodal curve corresponds to
the boundary between the monophasic and biphagiilmes and it is usually established
using the cloud-point titration method (related enimental data represented by green
diamonds). TLs indicate the composition of eachsph@t the endpoints that intersect
the binodal curve, orange circles) for a speciffjghbsic mixture composition (orange
diamonds). The TL length (TLL) denotes the distarm®ween the two phases
composition. Any mixture composition lying on thange TL has the same phases’
composition, whereas the volumetric or mass rabiesveen the coexisting phases
varies. This possibility allows thus to tailor th@xture composition to reach target
enrichment factors, which can be carried out byapplication of the lever-arm rule,
being the most relevant aspect in the developmiegptezoncentration techniques using
ABSs (cf.CF,, CF, andCF; in Figure 4) [184,186,197,201,206].

Having the biphasic zone defined, mixture composgi yielding two-phases
can be used to address the partitioning behavidheotarget analytes and to carry out
optimization studies [182]. Mixtures are prepargdaldding the appropriate amounts of

phase-forming components, vigorously stirred arfidtéeequilibrate and/or centrifuged
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to achieve the equilibrium. After, the phases apasated and collected to analytical
guantification, where extraction of the target st@ltowards one phase is aimed. By
balancing the properties of the ABSs components @nthe target analytes, it is

possible to shed light on the interactions governpartition, therefore enabling a

rational design of efficient extraction and precemication methods based on ABSs.

A wide range of polymers and salts have been usetha development of
liquid-phase microextraction strategies based orS&BConventionally, even though
polyethylene glycols (PEGSs) bearing distinct molacweights are the most recurrently
used polymers [184-186], others such as PEG-blotkjmropylene glycol)-block-PEG
(Pluronics®) [187] and polyoxyethylene cetyl etliBrij®, POELE20) [188] have also
been considered. These have been combined witkeretttganic (e.g., citrates and
tartrates) and inorganic (e.g., phosphates anatsslf salts to form ABSs [184-188].
The ABS operational conditions, namely the natur¢he polymer and the salt, TL,
temperature, pH, extractant addition and phasefinwetric ratio, were shown to
significantly impact on the partitioning behavidr the target analytes [184-188]. As
such, a cautious optimization of the ABS operati@moaditions is usually necessary to
obtain the quantitative extraction to a single ghdisshould be remarked that although
being of utmost importance to develop efficient phlan pretreatment and
preconcentration techniques, the optimization otubation times as well as
minimization of the ABS components quantities wesllom addressed [185-188].

Conventional ABSs may afford appropriate analyterichment factors
[184,186,188] as well as compatibility with anatgl equipment (e.g., ICP-OES, LC-
UV and UV-Vis) [185-188] and point-of-use microffiic immunoassays [184]. It
should be however remarked that these advantageshden the ABS phase-forming

components used, mixture compositions, target énalyd respective concentration and
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dilutions/solvent employed before proceeding foalgincal quantification. So far, the
quantitative extraction to a given ABS phase is sloow limited and/or dependent on
the use of additional extractants [185,187] anddéermination of enrichment factors
has been often neglected [185,187]. Moreover, tiae vapplication of these more
conventional ABSs, i.e. mainly polymer-based, immpared by: (i) the high viscosity of
the polymer-rich phase, (ii) the low speed of tHeages’ separation and (iii) the
unbalanced polarity difference between the coexgsfihases which limits selectivity.
Aiming to surpass these shortcomings, several egfied have been outlined by
implementing polar organic solvents [189-196], [1L87—-212] and DESs [213-217] as
ABS phase-forming components.

The substitution of polymers by polar organic satgecan overwhelm viscosity,
increase phase separation velocity and polaritygearWithin this framework, the
development of this type of alternative ABSs hasstiyorelied on the use of salts
combined with short-chain alcohols, such as ethaud/or propanol [189-194].
Additionally, combinations of glycerol/salts [19%nd tetrahydrofuran/sugars [196]
have also been reported. As with polymeric ABSdjigh influence is exerted by
operational conditions on the partition patternstiog¢ target analytes [189-196].
Particularly, the incubation time was optimized $3894], with minimum values of 8
min being achievable by integrating microwave-dsdisextraction with ABS [189].
Overall, these systems provide efficient extrac@snwell as good compatibility with
analytical equipment, mostly with LC coupled withrious detectors [189-196]. Even
though concentration factors remain an underexg@lpggameter, a maximum 200-fold
was reported with tetrahydrofuran/fructose ABS [[196

Disclosed by Rogerst al. in 2003 [220], evolution of IL-based ABS concept

has led to significant progress in extraction aadasation fields [219]. By virtue of

28



715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

their “designer solvent” character [221], ILs amedeed the ABSs components of
election in the development of sample cleanup amdgmcentration techniques. IL-
based ABSs entail mostly IL/salts [197—207], bsbalL/polymers [208], IL/surfactants
[209,210], and IL/salts/surfactants [211,212]. das IL cation-anion combinations
have been covered to appraise the role of the rlictstre on the partition of target
analytes: (i) cations bearing distinct alkyl chalesgths or functionalization based on
either nitrogen-based cyclic (e.g., imidazolium rpidinium and piperidinium) or
acyclic (e.g., quaternary ammonium, phosphoniumanglinium and cholinium)
compounds; (ii) anions of multiple nature, rangingm the most common chloride,
bromide, tetrafluoroborate, trifluoromethanesulfiepa dicyanamide, thiocyanate,
TEMPO-sulfate and alkylsulfates to the ones deriyemin natural sources (e.g.,
alkanoates, aminoates, salicylates, acesulfamadle sancharinate) [197-212]. Like
polymer- and polar-organic-solvent-based ABSs, atibpity with analytical
equipment, mostly LC with different detectors, niag enabled with IL-based ABSs
[197-212]. Also, the design of efficient extracti@amd preconcentration processes
highly counts on the proper optimization of opemaéil variables, namely the nature and
mass of the phase-forming agents, water ratio, Tteimperature, pH, time, phases’
volumetric ratio and ultrasound-assistance [197;2W8+209,211,212]. Some authors
further reinforced the key role played by the llkusture in providing quantitative
extraction of the target analytes towards the thri  phase
[197,198,201,202,204,211,212]. Additionally, therect selection of the phase-forming
components may lead to suitable preconcentratictorf® where strong salting-out
species, such as 3RO, CiHsK30; K HPQ,, and NaCO;, should be prioritized
[197,199-201,203,204,206]. Remarkably, using lowoants of ILs, i.e. typically <5

wt% in ABSs, concentration factors over 20000-faldre estimated to be achievable
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with ABSs formed by ILs and salts, which in somsesaare well-beyond the values
needed [197,199-201,203,204,206]. The major adgartaIL-based ABSs is the high
solvation capacity afforded by the IL-rich phase&yiding the phase saturation with the
target analyte. On the other hand, when combiniisgand salts in ABSs, there is a
strong salting-out effect exerted by the salt, ilegqdo the quantitative extraction of the
target analyte to the IL-rich phase. Furthermorkemever required, ILs can be easily
recovered and reused in subsequent extractionsfrentration steps, thus decreasing
the cost of the overall technology [197]. It shoddd further highlighted that the
“designer solvent” status of ILs further allowedetlsynthesis of MILs and their
incorporation in ABSs, which speeds up extractionl dacilitates phase separation
[199]. By simply employing a magnetic external dieMIL-based ABSs shorten the
time required to achieve equilibrium and dismissrteed for a centrifugation step.

In 2014, DESs were for the first time considerddrakhtive ABS phase-forming
components by Zenet al [222]. As with ILs, this was triggered by the DEfeatures:
(i) high degree of structural diversity afforded ttne plethora of starting materials and
stoichiometric ratios that can be used for the@paration; and (ii) cost-effectiveness as
their preparation mostly relies on cheap and nlyucacurring starting materials, not
requiring reaction and purification steps [223,2Z3pposing to the hype with IL-based
ABSs within the scope of liquid-phase microextractistrategies, the application of
DES-based ABSs has seldom been addressed [213-&1Tar, ABSs formulated by
DESs/salts, DESs/polymers, DESs/amino acids, DE&afs, DESs/amino acids and
DESs/DESs were covered [213-217]. Various HBD-HB#irp have been studied
regarding the influence of DESs components on titipn of target analytes: (i)
ammonium salts (e.g., cholinium chloride and taitglammonium halides) and amino

acids (e.g., lysine and proline) as HBA and (ii)ypts (e.g., glycerol, 1,4-butanediol,
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ethylene glycol, propylene glycol, xylitol and sadb, monosaccharides (e.g, glucose),
organic acids (e.g., acetic, glycolic, lactic, rma#ind citric acids) and phenols (e.qg.,
phenol, pyrocathecol, resorcinol and phloroglugirad the HBD [213-217]. As with
polymer-, polar organic solvent- and IL-based AB&anpatibility with LC and UV-
Vis analytical equipment was demonstrated [213-2THE extraction efficiency was
shown to be contingent on the operational condstisach as amount and nature of both
DESs and remaining phase-forming agent, phasesmatfic ratio, temperature, pH,
ultrasound time, separation time and addition dfeegalt [213-217]. As revealed with
ILs, most authors disclosed the impact of the DH8®-HBA pair on the partition of
target analytes [213,214,216,217]. Furthermore,esaathors highlighted how the ABS
phase-forming pair selection drives the extractguccess [215,216]. Among the
available options, i.e. ABSs composed of DESs/sBIESs/amino acids, DESs/sugars,
DESs/amino acids and DESs/DESs, those entailingngtisalting-out agents (e.g.
NaCO; and NaS(Qy), are generally the most efficient [215]. Yet, BHSESS and
DESs/polyols exhibited high capacity to simultarspuextract target analytes of
distinct nature, as shown with three proteins [2Ejen though no enrichment factors
were reported [213-217], volumes of DESs as lov2@® pL allowed the successful
extraction and quantification of the target anayf{@l14]. Remarkably, DES-based
ABSs were shown to outperform the extraction egficy of either DLLME with
hydrophobic DESs [2]4and polymer/salt-based ABSs [215].

Based on the exposed, and if properly designed, sAB8in high
extraction/preconcentration efficiency, compattgilivith analytical equipment and low
environmental impact. Given the major accomplishismevithin the ABS domain, IL-
based approaches seem to be the most encouragesgtorbe followed since they

allow: (i) fast separation and low viscosity of therich phase [205]; (ii) use of low
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amounts of IL (in the order of pL) [206]; (iii)) Higpreconcentration factors [201]; (iv)
alternatives to speed up and facilitate phase agpafcollection can be applied [199];
(v) high solvation ability of the IL-rich phase thallows the complete extraction of the
target analyte from the sample (with no lossess tiiven more accurate results); (vi)
and saturation of the IL-rich phase is difficulthchieved at the levels that target
analytes are being analyzed within an analyticedective.

The same rational used for ILs can be followed &labnsidering DES-based
ABSs as useful routes for the extraction and preeotration of target analytes.
However, it should be kept in mind that the DE®gnity may be compromised during
ABS formation, as hydrogen-bonding between the ¢ammponents is destroyed [225].
From an analytical viewpoint, this phenomenon mamipromise quantification
accuracy and the compatibility with analytical gauent. Since an adequate choice of
the DESs and the remaining-phase forming compon®aly overcome such

disintegration issues [226], authors should apprBIESs integrity in their studies.

3.4. Switchable solvents-based dispersive liquidjliid microextraction

Switchable solvents (SSs) are water-insoluble med& can be easily and
reversibly transformed to a water-miscible solvbyta simple change in the system
under mild conditions [227].

The first description of these solvents in 2005oimed the use of a water-
insoluble mixture of 1,8-diazabicyclo-[5.4.0]-undé&ne (DBU) and 1-hexanol [228].
After the exposure to gaseous £& room temperature and atmospheric pressure, the
mixture rapidly changed its polarity and a homogersesolution was obtained. This
change in miscibility was due to an acid-base reacin which the DBU was

protonated and the hydrophilic carbonate salt efaltohol was obtained. The reaction
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could be easily reversed by evacuation of ,Cfiom the mixture, leading to
insolubilization. Since then, different compoun@wé been identified as SSs, including
amidine and ternary amines of low polarity [227 R2@&d fatty acids [230].

In the case of amines (insoluble in aqueous saigjiahe hydrophilic carbonate
protonated form of the amine is obtained when,@Oadded. This change in the
polarity can be easily reversed by increasing tHewghich leads to deprotonation of the
amine. In some cases, this phenomenon is alsowdsserithout the addition of CO
because the switching between the protonated apt@ated form of the amine is
accomplished by modifying the pH. Fatty acids {athly water-insoluble) generate the
hydrophilic form when ionized (as salt, or as tlagbonate when CQs used) at high
pH values. Thus, acidic pH values solubilize amied basic pH values solubilize fatty
acids.

In 2015, Lasarte-Aragonést al were the first to propose the use of SSs in
microextraction, in a procedure quite similar to LME [231]. In this approach, an
aqueous solution of the carbonate protonated a@hNié-dimethylcyclohexylamine) is
prepared by adding dry ice until a homogeneouselsasbtained. This mixture is used
as extraction media, which is easily insolubilizbg increasing the pH (with a
concentrated NaOH solution). Once formed the emn)sthe upper deprotonated
amine-rich phase easily separates from the aqussouple as it is schematically shown
in Figure 3 (G). Since this first application of im@based SSs in LPME (SS-DLLME),
different methods have been described following same strategy. The original SS,
composed of the mixture of DBU and an alcohol, esn used in this microextraction
strategy by dissolving them in aqueous sampla@sgnce of C@®(as dry ice or gas),
followed by the insolubilization with an increasé the pH [232,233]. Carbonate

protonated amines have been the most explored &85-257]. In all cases, the
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hydrophilic amine is previously obtained using drg, but some studies reported the
bubbling of gaseous GOnstead [234,258]. Among all the amines that haeen used,
N,N-dimethylbenzylamine  [236,238-241,245,251,259,260]and triethylamine
[244,247-250,255,261] are the most common ones, indess extentN,N-
dimethylcyclohexylamine [237,246,252\l,N-dipropylamine has been mainly used as
SS by changing from the protonated and deprotorfated without adding CQ[262—
264]. In this case, the hydrophilic amine is ob¢dim situ by simultaneously adding
the amine and HCI to the aqueous sample solubigi-dimethylcyclohexylamine was
also used following the same strategy [265], buthis case the amine was previously
mixed with an aqueous acidic solution to obtainwater-miscible phase. In all above-
mentioned studies, concentrated NaOH solutions weszl to increase the pH and
induce the phase separation. More receil|i-dipropylamine has also been used in a
temperature-controlled SS-DLLME method [266]. Inisthapproach, the initial
hydrophobic tertiary amine was solubilized in tlgu@ous sample by decreasing the
temperature due to the strong hydrogen bondingdatiens between the amine and
water molecules at 5, which was reversed to obtain the phase separayiamcreasing
the temperature to 25. Therefore, the miscibility in water of the amiceuld be tuned
without requiring protonation and deprotonationugthfacilitating the experimental
procedure.

With respect to the use of long chain fatty acwlsS5-DLLME, hexanoic acid
[267-269], nonanoic acid [270,271], and decanoid f72,273] have been used. Two
different approaches have been proposed when dealth this type of SS: the use of
hydrophilic solutions of the fatty acid salt (ioatz form) as extraction solvent
[267,269,272,273], or the use of carbonates as &ifthvescent reagent and as a basic

medium to ionize the acidic form with the purpog$eobtaining the hydrophilic phase
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[268,270,271]. In the first case, sodium saltshaf tarboxylic acids were dissolved in
the agueous sample or NaOH was added to ionizesandilize the fatty acid. When
dealing with effervescent-assisted methods, théocatic acid and NgO; are
simultaneously added to the aqueous sample to horaitu the miscible solvent and
thus increasing the dispersion (due to the effeemasy caused by the carbonate)
[268,270]. Shishowet al described the preparation of an effervescentetatalking
advantage of the solid nature of all the reagentslved in the microextraction process.
The tablet included the carbonate salt as effeerd@seagent, the sodium salt of the
fatty acid as extraction solvent, and oxalic acisl the agent to promote the
insolubilization [271]. Therefore, the SS-DLLME @gntequired the addition of two
tablets to the aqueous sample, thus enormouslyliffmg the whole procedure. In the
remaining cases using this type of SS, concentreg&0D, solutions were used to
switch the solvent to their respective water-inbtduorms.

In some cases, DLLME methods are assisted by vostexing [235,238-
241,243,249,251-254,258,261,264,270], or ultrassuig33,244,250,257,260,269],
once the hydrophilic solvent was switched to itdemdnsoluble form. These strong
stirring media favor the dispersion and increase d@htraction efficiency. It has also
been reported the incorporation of ionic surfacdetg. Aliquat 336 and SDS) with the
purpose of forming an ion-pair complex with the rgjeal analytes - due to low extreme
pH conditions used in the switching process -,mdtely improving the extraction
performance of the method [247,249,250]. Some o$lrategies have been proposed
with the aim of simplifying the extraction procedwand facilitating the collection of the
formed hydrophobic phase. As examples, the salatibn of the SS by cooling the
mixture [235,270], or the use of a syringe to perfadhe entire SS-DLLME method

[272,274]. The performance in a syringe device banalso performed in a fully
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automated strategy with a syringe pump, as repdije@ochivalovet al [274]. It is
also interesting to mention the stir membrane aewecently reported by Lebedinets

al. [267]. The stir disk required placing an iron wibetween two poly(vinylidene
fluoride-co-tetrafluoroethylene) membranes, whicé then glued to close the device.
The disk was added to the sample before switchiegsblvent to its water-insoluble
form. Thanks to the iron wire, the disk could béated and assisted the dispersion of
the solvent, while at the same time due to the gitraand hydrophobicity of the
membrane disk, the SS was retained on its surfaoally, the analytes were desorbed
by immersing the membrane in methanol.

In all the reported applications, the amounts @ ‘threcursors” of the SS (the
pure amine added to an acidic aqueous sample, ufee fatty acid added to a basic
agueous sample, the acidic agueous solution ddrtiiee, the basic aqueous solution of
the fatty acid, or the mixture water+amine+dry ie€¢ low enough to ensure a final
switchable hydrophobic phase of a few pL. Thistediigh preconcentration factors if

considering the relatively high volumes of sample(nd 5-10 mL).

4. Analytical applications

LPME methods reviewed in this article have beenelidused in different
analytical applications within the last three yedfggure 5 shows the number of
publications for each method in the period betw2@h7 and 2019. Among the different
LPME methods with hydrophilic media, it is inteniagtto highlight the increase in the
number of studies that incorporate newer and grekydrophilic media. Indeed, the
number of applications of hydrophilic DES-DLLME a&&-DLLME has significantly
increased in the last year. This may be relatetthécfacile synthesis, low toxicity and

impressive tuneability of DESs, together with tieresting features of SSs, which
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simplify the microextraction procedure and imprawe sustainability. Furthermore,

despite CPE is a well-known steady technique,ilit mtesents the higher number of
applications in the recent years. With respect B58, their use as a LPME approach
with different hydrophilic components has been pesgively extended in the last three
years, thus increasing the analytical applicatmiitbese ternary systems.

Figure 5 also includes a summary of the naturehefdanalytes extracted using
hydrophilic media, as well as the type of samplesyzed, with environmental waters
as the most common sample matrix. In those apmitatdealing with more complex
samples, in general, authors dilute the matricéls ulirapure water prior to the LPME
method, while previous extraction or digestion stape required when analyzing solid
samples. It is important to highlight that theres m®t been found a rationale between
the nature of the target analytes and the charstitsrand properties of the selected
hydrophilic extraction media. Indeed, the same bpgtidic media have been
successfully used for the extraction of totallyfeliént analytes: metal ions, polar
analytes and even highly hydrophobic organic compsuTherefore, despite the wide
variety of extraction media and the tunable propsrof some of them (i.e. ILs and
DESSs), in general, the most common and well-knowedimn have been applied in
different applications. Thus, poor attention hasrbepaid to the design of the
hydrophilic extraction phase, while the selectiwfythe analysis has been mainly based
on the analytical separation instrumentation.

Moreover, it is important to highlight some comm@sues amongst all the
methods that limit their real application: (i) teearce number of applications using LC
coupled to mass spectrometry (MS), which may betdube low compatibility of the
final extraction-phase with the MS system in theization interface; and (ii) the tricky

collection of the final extraction phase, which uggs particular expertise of the
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940 operator due to its small volume and high viscositynost cases. In this section, the
941 analytical applications in which these methodolsdiave found practical utility will be
942 discussed below for each method, with emphasishasea hydrophilic media and
943 techniques with higher number of applications, ehilable 1 includes some

944  representative examples for each method.

945
946 4.1. CPE
947 With respect to CPE, it has been developed foretkteaction of both organic

948 compounds and heavy metals, with the determinatbrmetal species the most
949 successful application as shown in Figure 5. Thiprobably related to the fact that
950 most nonionic surfactants absorb UV-Vis radiatittrus generating interfering signals
951 in chromatograms when LC-UV-Vis is used for organic

952 V(IV) [32,61] and V(V) [32,61,67] , U(VI) [26,57,683], Cu(ll) [21,82,84],
953  Hg(ll) [34,58,64,94] and [CkHQ]" [58,64,94] are some of the heavy metals determined
954 in the recent years. In these cases, the addifiancbelating agent is necessary to form
955 an extractable heavy metal ion complex prior to@RE procedure [19]. This justifies
956 that the pH of the aqueous sample is the main fdaotde carefully optimized in the
957 procedure.

958 A wide variety of organic compounds has also begtmaeted using a CPE
959 method, including phenols [54,59,60,86,88], vitagn[d9,56,80] and pharmaceuticals
960 [24,44,46].

961 CPE has been mainly devoted to the extraction afytas from environmental
962 samples, with water the most studied matrix. Nénadesss, the development of CPE in
963 complex matrices has also been reported in thentegears, including biological

964 samples (mainly urine) [21,23,39,46,53,74,77,80] d anfood samples
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[45,49,60,61,72,87,89,92,94]. d-CPE has been eapesuccessful for the speciation
of metals, such as Hg species [58,64] and As(i &s(V) [36], and even for the
determination of selenium in food samples [72]

The analytical technique employed after CPE dependbie analyte and it is also
conditioned by the compatibility of the surfactaihh phase with the analytical
instrument. Thus, UV-Vis spectrophotometric applamas prevails in these years
[21,23,26-28,34,41,45,48,51,52,54,57,59,61,62,6,716P4,76,78,83,92,94,275] while
LC is also quite common [24,38,39,44,46,49,50,55650,70,79,86-88]. Only a
recent work has reported the coupling of the CPEhatewith GC by an ultrasound-
assisted back extraction with isooctane [38]. Itisdhety coupled plasma (ICP) has also
been successfully used in some of the applicatadn€PE for the determination of
heavy metals, in combination with optical emissgpectroscopy (OES) [20,36,93] or
MS [22,77,91]. Prior to the analytical determinat&fter CPE, the surfactant-rich phase
is often pretreated to ensure the compatibilityhwite instrument. Given the high
viscosity of the surfactant-rich phase, organicveols are commonly selected to
dissolve it or to minimize its viscosity, with eti@, methanol and acetonitrile the most
frequently used [21,23,24,27,34,44-46,48,50,52-568,71,79,80,82,83,85-87,93].
Several (few) studies intended for the determimatb metal species also reported the
use of HNQ solutions [20,33,35,36] or even a mixture of matliaand HNQ solutions
in this dilution step of the surfactant-rich ph&40,42,51,57,73]. In some cases, the
direct injection of the surfactant-rich phase ia #nalytical system without the addition

of any solvent after filtration has been reportg®,47,65,81,88].

4.2. Conventional CAE
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With respect to conventional CAE, as observed iguf@ 5, most of the
applications in the last three years focused ord#termination of organic compounds
in water [99,102,203,276], food samples [97,98,1@hH biological samples [104],
using LC with UV-Vis detection [97-99,101-104,276AE has also been used for the
extraction of proteins. Specifically, Xet al. have reported the extraction of lysozyme
using a CAE-assisted method with HFIP in combimatith capillary electrophoresis
(CE) [100]. The resulting supramolecular aggregdtiained after the CAE is generally
filtered or dissolved in methanol to reduce thecessty prior to the analytical

determination [99,104].

4.3. DES-DLLME

Hydrophilic DESs in DLLME have been used for theragtion of metals as
often as for the extraction of organic compoundssteown in Figure 5.

Among the metal species determined, Pb(ll) [124132141], Cd(ll)
[119,127,141], Hg species [117,142], As(lll) [1383], and Se(IV,VI) [143,129] have
been the most common ones, present in environmeatigrs or in food samples. The
determination was accomplished either using UV-sfisctrophotometry [118,142,144]
or atomic absorption spectroscopy (AAS) techniqueth different atomization
methods, mainly electrothermal (ETAAS) [117,1224P729] and flame AAS (FAAS)
[119,132,137,141]. In general, the formed DES-mpitase after the microextraction
method is directly injected in the instrument dutid with an acidic aqueous solution
of ethanol or methanol.

With respect to the determination of organic aredywith DES-DLLME, the
extraction of drugs and pharmaceuticals from waaeis biological fluids has been the

main field of application [120,125,131,135,136],exemples: antibiotics in river waters
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[131], methadone in plasma and urine [136], anddeyressant drugs in plasma and
pharmaceutical wastewaters [125]. Other contam@ndrdve been extracted from
environmental water samples using DES-DLLME methalsh as dyes [130,139],
pesticides [121], and phenols [134]. Analyticatedmination has been accomplished
mainly using LC with UV-Vis detection [120,121,1235,131] or spectrophotometric
techniques [126,130,135,138,139] after the diluttdrthe DES-rich phase due to its
high viscosity. It is interesting to highlight that those applications in which the
microextraction method was performed in combinatigth GC, the DES-rich phase is
directly injected in the GC system without requiriany evaporation and reconstitution

step or dilution [134,136].

44.Insitu IL-DLLME
Most of thein situ IL-DLLME methods have been proposed for the exinacof

organic compounds (Figure 5), including a high etyri of pesticides from
environmental waters [155,159,163,169,175] and fosaimples [153,170,174];
persistent and emerging pollutants (UV filters asidsticizers) from environmental
waters [161,167,177,178]; and pharmaceuticals [1&64 biomarkers [172] from
biological fluids. These methods have been maimypted with LC and different
detectors depending on the nature of the analyt83-{156,158,163-175,177], with
only one application using MS as detection techaifpu the determination of alkaloids
in plants [168]. In some of those cases where t¥aphobic IL (or diluted with an
organic solvent) was directly injected in the LCsteyn, the compatibility with the
mobile phase and the chromatographic column wasireds[171,172,177]. When

dealing with GC coupled with different detectorsainly MS, the analytes were
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thermally desorbed from the hydrophobic IL usingemdspace sampler [161,167,178]
or a thermal desorption unit [159].

It is interesting to highlight the application dfetin situ MIL-DLLME method
proposed by Bowerst al for the extraction of different sized fragmentDNA [179].

In this case, the amount of extracted DNA was eudly determined (by injecting in the
LC system or by measurement in the spectrofluorentée supernatant obtained after
the extraction procedure) leading to extractiorcefhcies between 42 and 99%.

With respect to the determination of metalgrbgitu IL-DLLME, representative
examples include Cd(Il) and Cu(ll) from water [1852,166] and food samples [160];
cobalt [164], mercury [165], uranium [152], and ket and zinc [166], mainly in
environmental samples. In general, all these metlaod coupled with FAAS after the
dilution of the hydrophobic IL with an organic sett (to reduce the viscosity of the IL

and facilitate the aspiration of the extract irite instrument).

4.5. ABSs

Concerning the application of ABSs and as sketcimedrigure 5, organic
compounds represent the most explored type of easlfollowed by metals, proteins,
and bacteria (one work). Among the organic compewadtiressed, pharmaceuticals are
the most studied, due to either their emergence eagironmental pollutants
[185,186,188,190,191,195,197,199-201,214] and tmodaminants [211] or due to the
need of screening drug quality [200] and conceiatnatevels in biological fluids
[200,212]. Other applications envisioned the debeation of mycotoxins [184],
carcinogens [192] and dyes [207,209,215] in foaskdf and drinks, of pesticides in
either environmental and food samples [194,1962(88208,210], of polycyclic

aromatic hydrocarbons (PAHSs) in tap water [206¢ ahflavonoids [189], ginsenosides
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[213] and alkaloids [193,202] in biomass. Enviromtad samples, including water (e.g.,
river, lake, tap water, wastewater treatment pl@dWTP) effluents) and soil-based
matrices, are the most focused matrices
[187,188,190,191,196,197,199,201,203,204,206,21flowed by food samples
[184,192,194,207-209,211,217], biological fluid€0(2204,212] and others such as
biomass [189,193], pharmaceutical formulations [208] and porcine crude extract
[216]. However, it should be remarked that a sigarit amount of studies resort to
synthetic samples, failing to address real caseasimes where the matrix effect on both
analyte extraction and guantification plays a ot role
[185,186,195,198,202,205,210,215].

Regardless the ABS constitution, LC has been teeped analytical technique
for the quantification of organic compounds. Depegdon the target analyte nature
and/or limits of detection needed, UV, DAD, FD oEMetectors have been used [188—
191,193,196-201,203,206-208,210-214]. Other apalytitechniques have been
additionally adopted, namely UV-Vis spectroscop§4,186,195,202,209,215], GC-MS
[192], 2D-LC [194] and immunoassays [184,205]. Givéhe remarkable ABSs
compatibility with analytical equipment, the direahalysis of the analyte-enriched
phase, either undiluted or diluted in an approprstlvent, is usually enabled [184—
186,188-203,205—-215]. Similarly, ABSs, if propedgsigned, assure compatibility
with analytical techniques for metal ions (e.g.,-H&x® OES and DPASV) [187,204]
and proteins (UV-Vis) [216,217] determination.

It should be finally highlighted that ABSs can bged with microfluidic and
lateral flow immunoassays providing sensitive ampid results for organic compounds,
proteins and bacteria determination, which reprissansteppingstone to off-site and

point-of-care analysis [184,205].
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4.6. SSDLLME

The variety of analytes extracted using SS-DLLMEmsler considering the
higher number of publications with this method camga with the remaining
methodologies, except for CPE (see Figure 5).

With regards to metal ions, Ni(ll) [254,255,257,26Q0(ll) [242,253,257,259],
Cd(Il) [245,248,257], Pd(ll) [241,252], and Pb(l[235,257] have been the most
commonly determined in a wide variety of samplesicluding foods
[235,242,248,253,254,257,259,261,272,277] cigaadb3,254], waters from different
sources [241,245,252,255,257,261], and urine [257].

Most applications of SS-DLLME have been shiftedh® determination of drugs
and pharmaceuticals from biological fluids (mainlyrine) [243,249,258,263—
265,267,274] or environmental samples [237,270} €ktraction of dyes from food
[247,269], pesticides from waters or food sampk338[240,244,260], and disrupting
compounds from environmental waters, including lten[236,239,246,251],
hormones [236,251,260,271], PAHs [273], and phthetid esters [266] have also been
reported. The analytical determination in all cages accomplished either by LC or
GC techniques, depending on the nature of the tasafnd the sensitivity required.

In most cases, the resulting hydrophobic phasediastly injected in the LC,
GC, ASS or spectrophoto/fluoro-metric systems [238,238—
240,243,247,249,251,256,258,260,264,266,268-27],2B8t the dilution of the
switchable phase with an adequate solvent has b&sn a common strategy
[142,237,241,242,245,248,252—-254,259,261,271,242127].

Some studies also reported the evaporation of tBe f@lowed by the

reconstitution with a solvent more compatible witlthe analytical system
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[244,246,250,255,257,262,263,265]. It is intergstim mention the studies reported by
Afridi et al, in which the extracted metal ions were desorbvech fthe hydrophobic

phase, which allowed the reusability of the SSaup times [232,234].

5. Conclusions and future perspectives

The incorporation of hydrophilic media within LPMBEethods undoubtedly
constitutes a step forward to improve the efficierend sustainability of these
technigues. Hydrophilic media enhance the dispersiothe extraction phase into the
sample, thus leading to an enhancement of the rrassfer of the analytes in
comparison with the use of water-insoluble extmaciphases, thus justifying the high
number and variety of applications appearing inghst years.

In this particular research topic within LPME, adeas in the last years have
been mainly shifted to the design of new hydrophihiaterials to develop greener and
more efficient LPME modes. Due to the wide varietly exploited water-soluble
materials (as alternative to conventional extracphases) and the different pathways
that may be followed for their insolubilization jgireview articles aimed to establish a
classification to avoid confusions in the scientiferminology. This classification is
based on an understanding of the physicochemicahamesm that takes place during
the phase separation, which is also useful forrdeteng the main parameters that have
a major influence in the performance of the met{aodl therefore should be optimized).
The proposed classification of LPME methods usipdrbphilic media considers both
the nature of the water-soluble material and theirdy force responsible of the phase
separation. Thus, methods based on coacervatignm €@PE and CAE) and other
phenomena, including dehydration of the componént., ABSs and DES-DLLME)

and structural changes on the extraction mateeal.,(in situ IL-DLLME and SS-
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DLLME), have been developed. This classificatiomed to improve the scientific
criteria for a reasonable use of emerging hydrapliaterials, such as ILs, DESs and
SSs, while pointing out some features about wetivkm materials that are still widely
used, like surfactants.

Among the reviewed hydrophilic media within LPMEpapaches, surfactants
are still quite successful in coacervation-basedMEP methods, mainly for the
extraction of metals. Besides, specific conditibmsnduce the phase separation when
using surfactants are mild, particularly if theye atcompared with the parameters
responsible for the separation in other strategiash as extreme pH values in SS-
DLLME and high amounts of salting-out agent in soofeABSs applications. In
addition to conventional inorganic salts/electresythat are commonly used to decrease
or tailor the cloud point temperature, there acen¢ evidences that ILs can be used for
such a purpose, although not investigated up te dathin the analytical chemistry
perspective. Accordingly, the introduction of Ilay, even DESs, as new “electrolytes”
in coacervation-based LPME methods deserves tousstigated in more detail given
their tunability. Furthermore, it is important taghlight the easily operational of SS-
DLLME, which only requires the modification of tipéd of the sample (using common
basic or acid solutions) to achieve the phase ag@par

In the case of ABSs, and although less investigaii#iin analytical chemistry
applications, their remarkable extraction capaaitgd enrichment factors should not be
discarded and more investigations in this field aneouraged. In particular, ABSs
involving ILs and inorganic salts have been regbids the most promising, in which
high extraction efficiencies are afforded by bdtk salting-out effect of the inorganic
salts and high solvation ability of ILs. AlthouglEBs have been also reported as ABS

phase-forming components, special caution shoulglaeed when dealing with such
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mixtures since hydrogen-bonding interactions betwise HBD and HBA species are
broken and the concept of DES is lost. This dodsmean that they will not work in
this field or that should not be applied; only dabgtial attention should be given to the
DES definition and it should be taken into accothat at least quaternary ABSs are
being applied in these examples. Independentlhyhefpghase-forming components, to
successfully apply ABSs as preconcentration teclasqit is of major relevance to
determine the respective phase diagrams and applylever-arm rule, which will
provide an estimate of the appropriate mixture cositpn for a given enrichment
factor.

With respect to ILs and DESs, their tuneability stitates their most useful
feature, since it leads to the design of more sekand sustainable hydrophilic
extraction phases. Particularly for ILs, their higlolvation ability is the main
responsible for the high enrichment factors andraetibn efficiencies reported.
Furthermore, it is interesting to mention the prafian and use of hydrophilic MILs,
which enormously facilitates the complex samplifithe water-insoluble phase prior to
the analytical determination. In any case, funalmed ILs or ILs with safer
toxicological profiles should be incorporated inese methods. In the case of
hydrophilic DESs, it is important to take into agob the possible decomposition of
these solvents when they are dissolved in aque@asamas it was highlighted before.
Thus, the composition of the DES and the charaagon of the initial and final
extraction-phases is essential to understand teeqvhena that take place in the LPME
method, which would help in selecting the best @B&position while determining the
main variables to optimize to obtain better eximacperformance.

In conclusion, the rising use of all these watesaiille materials in LPME

methods together with the understanding of the ipbghemical driving forces of phase
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separation can contribute to the rational developgnod effective LPME methods,
opening a wide range of analytical applicationdl st be exploited. Future studies
should also focus on improving the design and sele®f the hydrophilic media to
improve the performance for target analytical aggilons. Furthermore, the sustainable
character of the methods applied should be cayeadknowledged, particularly when
considering the necessity of incorporating addalosrganic solvents in the procedure
for inducing the phase separation or diluting thelfphase to ensure compatibility with

the analytical instrument.
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[C10GUT] decylguanidinium

[C4Calm’] dibutylimidazolium

[C4GU'] butylguanidinium

[CsMImT] butylmethylimidazolium

[CsMIm™] pentylmethylimidazolium

[Chol'] cholinium

[N4sas ] tetrabutylammonium

[Ni(Belm)4*"] tetrafN-benzylimidazolium)nickelate(ll)
[Ni(C4lm)4*1] tetraN-butylimidazolium)nickelate(ll)
[NTf2] bis(trifluoromethanesulfonyl)imide
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[Sac]
[Sal
ABS(s)
CAE
CPB
CPE
CPT
CTAB
DBU
DES(s)

DES-DLLME

diDDAB
DLLME
DPASV
DTAB

Er

FD

GAC
GFAAS
HBA

HBD
HF-LPME
HFIP
IL(S)
IL-DLLME
LPME
MIL

MNP
NADES(s)
OH-PAHSs
PAHs
PCBs
RSDiax
SDME
SS(s)
SS-DLLME
SUPRAS
TBAB
TEMPO
TL

TLL

TNO
WWTP

saccharinate

salicylate

aqueous biphasic system(s)
coacervative extraction
cetylpyridinium bromide

cloud point extraction

cloud point temperature
cetyltrimethylammonium bromide
1,8-diazabicyclo-[5.4.0]-undec-7-ene
deep eutectic solvent(s)

deep eutectic solvent-based dispersuyeidi-liquid microextraction

didodecyldimethylammonium bromide
dispersive liquid-liquid microextraction
differential pulse anodic stripping voltammyet
dodecyltrimethylammonium bromide
enrichment factor
fluorescence detection
green analytical chemistry
graphite furnace atomic absorption spectrpgco
hydrogen bond acceptor
hydrogen bond donor
hollow fiber liquid-phase microextraction
hexafluoroisopropanol
ionic liquid(s)
lonic liquid-based dispersive liquid-ligdimicroextraction
liquid-phase microextraction
magnetic ionic liquid
magnetic nanoparticles
natural deep eutectic solvent(s)
monohydroxylated polycyclic aromatic hydadwons
polycyclic aromatic hydrocarbons
polychlorinated biphenyls
maximum relative standard deviation value
single-drop microextraction
switchable solvent(s)

switchable solvents-based dispersive tegiquid microextraction

supramolecular solvent-based microextraction
tetrabutylammonium bromide
2,2,6,6-tetramethylpiperidine-1-oxyl
tie-line
tie-line length
5,6,7,8-tetrahydro-5,5,8,8-tetramethylnaphth&leol
wastewater treatment plant
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Table 1 Representative analytical applications of diffedeydrophilic media-based LPME methods, from 2@ilZ019.

Extraction medium Driving Assistance LOD RSD Maxi Ref.
(amount) force max  Mum
pretreatment (%, Er
conce
ntrati
on)
CPE
Triton X-114 (400 temperature centrifugatio As(lll) and snow water 3.5 n.r. [36]
pL) (45°C/ 15 (10
min) dilution with nolL”
)
Triton X-114 (105 temperature centrifugatio sulfonamides  urine and 10.35 nur. [39]
ML) (40°C/20 water (10 mL) (5-10
min & 60 °C mgL”
/ 10 min) b
Triton X-114 (1 mL) temperature centrifugatio  Sb(lll) and  water (10 mL) 5.9 12 [73]
(50°C /15 (10
min) nolL”

D)



Triton X-100 (400
ML)

Triton X-114 (1 mL)

Triton X-100 (1 mL)

Triton X-114 + SDS
(250 pL)

NaSQ,

salicylic

acid

temperature  vortex / Bi(ll1) water and UV-Vis
(70°C /10 centrifugatio roadside soill
min) n (20 mL,
dilution with
water)

temperature centrifugatio  quercetin onion, tomato, UV-Vis

(40°C/10 n apple and
min) orange juice
(20 mL, food
was digested
by MW)
temperature centrifugatio Mo(IV) water, rose hip UV-Vis
(25°C/n.r.) n and
pharmaceutica
Is (10 mL,
dilution with
water)
temperature us/ Sb, Sn, Tl carrot, ICP-OES
(55°C/17.5 centrifugatio species potatoes,
min) n beetroot,

72

286 242
ugL™ (60
' opgl
Y
2.2 2.8
ugl™ (30
' opgl
Y
50 3.8
pgL™ (0.24
! and
0.72
HgL’
Y
7-10 55 (5
ngL”~ and
! 50

40

n.r.

160

[28]

[45]

[78]

[20]



Tergitol 15-S-7 (2
mL)

PEG 6000 (2 mL)

Brij-35
(300 pL)

Nap,SOy

ACN/
NapSOy

HFIP

canned beans,
spinach and

water (10 mL,
food was

digested)

temperature centrifugatio phenols (12) water (10 mL)

(50 °C / 10

min)

n

temperature centrifugatio alkylphenols water (10 mL)

(25°C /5

min)

temperature

(25°C /n.r.) centrifugatio

n

vortex /

n

(9)

parabens (6)

ol

LC-FD  0.03 4.2

water and LC-DAD 42— 7.9

pharmaceutica
Is (10 mL,

dilution with

-85 (2-
pgL™ 450
' pol
)
LC-FD  170- 4.98
390 (50
ngL”~ and
! 150
oL
)
167 (0.3-
ngL™ 200

Y opgl

n.r.

5.0

193

[86]

[88]

[47]



water)

Conventional CAE

SDS (700 pL) - coprecipitati  vortex organophosp water (9 mL) LC-Uuv 0.7- 8 n.r. [99]
on agent: horus 25 (50—
Alx(SOy)3 pesticides (5) pugl™ 250
(80 pL) ©opgL
)
DTAB + diDDAB - ionic vortex / tetracyclines milks,eggs LC-UV 0.7- 7.85 198 [97]
(50 pL) strength:  centrifugatio (5) and honeys 34 (5-30
NaCl (2.5 g) n (20 mL, milk ugL™ pgl”
was ! D)
deproteinized)
SDS + DTAB (n.r.) - coacervate- centrifugatio  lysozyme water (5 mL) CE-UV 2.2 nur. n.r. [100]
inducing n ngl”
agent: HFIP !
(5mL)
DES-DLLME
Cholinium - THF (100 us/ sulfonamides river water LC-UV 12— 426 n.r. [131]
chloride:phenol (193 ML) centrifugatio (4) (2.5 mL) 23 (0.1,
uL, 1:2) n pgL™ land
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mg-L
)
Cholinium - THF (100 air-assisted/ methadone water, urine  GC-FID 0.7 9.1 270  [136]
chloride:TNO (100 ML) centrifugatio and plasma pgL™ (100
uL, 1:2) n (10 mL, ! and
dilution with 200
water) Mgl
)
TBAB:decanoic acid - THF (200 us/ E155 dye water,artificial UV-Vis  0.23 n.r. 37.5 [138]
(200 pL, 1:2) ML) centrifugatio urine and cake mg-L
n (10 mL, !
dilution with
water)
Cholinium - THF (800  air-assisted / Pb(I1) lake, river, sea GFAAS 0.6 29 60 [124]
chloride:phenol (600 ML) centrifugatio and ng-L (1, 2,
uL, 1:4) n wastewater, 13, and
and 5
mushroom (30 ngl”
mL, food was D)
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digested by

MW)
Sucrose:citric acid THF (350 us/ Cu(In, honey (150 FAAS 0.23- 5.2 80— [141]
(400 pL, 3:2) ML) centrifugatio Cd(ll), Pb(ll)  mL, dilution 0.87 (10— 105
n with acidic pgkg 250
water) 1 ngkg
1
Insitu IL-DLLME
[CsMIMT][CIT] (35 anion- centrifugatio pesticides (9) water (10 mL) TD-GC-5-16 9.7(1 n.r. [159]
mg) exchange: n MS ng-L pglL
Li-NTf, (240 ! D)
uL, 1 M)
[CsMIm™][Br7] (100 anion- vortex / Cu(ln water (5 mL, FAAS 012 4.1 70 [162]
mq) exchange: centrifugatio dilution with pgL™ (50
NH4PFs (50 n acidic water) L gl
mg) Y
[C1oGU'][CIT] (20 anion- vortex / OH-PAHSs urine (10 mL, LC-FD 1-2 17 47.4  [172]
ML) exchange: centrifugatio dilution with ng-L (0.08,
NaClO, (500 n water) ! 0.5
puL, 100% and
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wi/v) 0.8
gl
)
LC-UV 0.74- 11.32 247 [155]

[C4CaIm’][CIT] (~26 MNPs anion- vortex / fungicides water (10 mL)
mg) exchange: magnetic 4) 1.44 (10,
Li-NTf, (500 separation pgL™ 50
uL, 0.2 M) ! and
100
ol
)
[Ni(C4lm)*]2[CIT] acetone anion- vortex / disrupting  tap, lake and LC-DAD 0.13- 14 44.3  [177]
(20 mg) (dispersant exchange: magnetic compounds pool water (5 5.2 (81
) Li-NTf> separation (20) mL) pgL™  and
(42.8 uL, 0.4 ! 300
g-LY uglL’
)
[Ni(Belm)s2J2[CIT]  acetonitrile anion- vortex / disrupting  tap, lake and LC-DAD 0.012 16 55.1 [177]
(30 mg) (dispersant exchange: magnetic compounds pool water (5 -16 (81
) Li-NTf> separation (20) mL) pgL™  and
! 300

(53.5 L, 0.4
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g-Lh ngl

ABSs

PEG 8000 (75 puL, at
50 wt%)

THF (2.24 Wt%)

[Chol'][Sac] (0.6 g,
at 50 wt% )

)
CsHsNagOy vortex / mycotoxins corn, soy, microflui 4.6- 53.1 104
(1200 pL, centrifugatio (3) chickpea and dic 129.7 (LOD
at1l5 wt%) n sunflower  immunoa ng g* )
(spiked, 400 ssays
mg, finely
powdered)
fructose mixing / diuron and river water LC-TOF 25g nur. 200
(83.7 Wt%)  centrifugatio its (14.06 Wt%, Lt
n degradation filtration)

products (2)

N&CO; (4.0 vortex / galantamine tablets (10 LC-UV 0.005 1.3 153
Q) centrifugatio mg, finely ugL™  (spike
n powdered and ! d
dissolved in urine,
9.0 g of water) 0.98
and urine Mol
(spiked with D)
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[184]

[196]

[200]



[N44as][CIT] (1.18
wit%)

[C4GU[CIT] (0.75
Wt%, 73.1uL)

[C.MIm™][SalT]
(0.06 mL)

CeHsK307

(49.85 wt %)

KsPO, (37.7
wit%)

KsPOy (27.1
wit%)

mixing

vortex /
centrifugatio

n

vortex /
centrifugatio

n

0.98 pgL™,
9.009)
WWTP

el luent

caffeine and LC-UV
carbamazepi
ne (spiked with
116G gL,
48.98 wt%,
filtration)
PAHs (5) Wastewater, LC-FD
sea water and
tap water
(non-spiked
and/or spiked
with 12 ng-L
! 61.55 wt%,
filtration)
Cu(ll Tap water, DPASV
wastewater
and urine (2

mL)
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0.1- nur
1.0
gL™
0.03- 14
2ng (12
LY ngL
)
8ng 7.8
LY (analy
sis of
real

50

97.3

54

[201]

[206]

[204]



sampl

es)
Cholinium KoHPO, (0.2 vortex / sulfonamides Lake and river LC-UV  0.003 3.1 n.r. [214]
chloride:phenol (200 g mL?) centrifugatio 4) water (spiked - (0.2,
puL, 2:1) n with 2 pg mL 0.006 2, and
1 200 pL, Hg 20 ug
filtration) mL* mL?)
SS-DLLME
N,N- pH: - Co(l) tea and FAAS 3.1 156 107 [259]
dimethylbenzylamin concentrated vitamin B12 ugl™ (250,
e + dry ice (1 mL) NaOH (1.8 (8 mL, ! 500
mL) extraction and
with water) 1000
ol
)
N,N- pH: vortex / phenols (4) tap and GC-MS 0.13- 13(5, n.r. [239]
dimethylbenzylamin concentrated centrifugatio wastewater 054 50
e +dryice (1.5 mL) NaOH (1 n and migration pugLl™ and
mL) from plastics ! 100
containers to Mol

80



water (8 mL) Y

N,N- - pH: centrifugatio Cd(n lake and FAAS 0.7 127 nur. [245]
dimethylbenzylamin concentrated n wastewater (8 pugl™ (10,
e +dryice (1 mL) NaOH (2 mL) 20
mL) and
30
oL
)
triethylamine + dry - pH: vortex / Ni(Il) water and FAAS 3 1.1 70 [261]
ice (900 pL) concentrated centrifugatio vegetables (15 pgL™ (200
NaOH (1.8 n mL, food was L gl
mL) digested) D)
N,N- - pH: centrifugatio  drugs (11) urine 2 mL, GC-MS 0.35- 13,5 n.r. [265]
dimethylcyclohexyla concentrated n n.r.) 125 (20-
mine + HCI (400 NaOH (400 ugL™ 50
uL) uL) Y opgl
)
sodium hexanoate - pH: magnetic  tetracyclines urine (1 mL, LC-UV 30 8(0.1 nur. [267]
(200 pL, 3.2 M) concentrated stir- (3) dilution with pugLl™  and
HCI (20 uL) membrane water) ! 100

81



hexanoic acid + - pH: effervescenc azo dyes (3) spices (6 mL, LC-UV
NaCOs3 (130 pL + concentrated y dilution with
500 uL, 2 M) H,SO, (620 acidic water

ML) and methanol)

mg-L

1-5 7.8
ugLl™ (15
and
30
HGO
)

65

[268]

For the definition of the abbreviations, pleaseréd the list of abbreviations.
n.r.. not reported.
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Extraction solvent Dispersive solvent
(water-immiscible) / (water-miscible)
low volume versus

aqueous sample
volume

Vortex-assisted DLLIME - Ultrasound-assisted DLLME

Effervescence-assisted DLLME Air-assisted DLLME

. Surfactant-assisted DLLME Heating-assisted DLLME
Separation
—_— or
Simple decantation Centrifugation | Freezing
Aqueous sample Emulsion Microdroplet of water- i : : ; : ; ; i
(microdroplets of immiscible extraction Magnetic separation (magnetic solvents or adding magnetic materials)

extraction solvent) solvent



CPE

CAE

DES-DLLME

In situ IL-DLLME

ABS

SS-DLLME

Hydrophilic media

Driving forces

Aqueous sample

Surfactants ILs

Polar organic
solvents

DESs

Polymers

Switchable
solvents

(
Addition of water-

miscible medium '

—

Colloidal dispersion
or
Homogeneous solution

Temperature

Organic
solvent

Metathesis
reaction

Salting-out

Insolubilization

step :

Phase separation




General scheme of coacervation phenomena-based LPME strategies

General scheme of other hydrophilic media-based LPME strategies

Sample M (;olloi(:!al Lngforceb Phasg W Homogeneous Driyinelforce Phase
P dispersion separation Sample Selistem separation
D) DES-DLLME
A) CPE
Hydrophilic DES Organic solvent | ]
> > ori. !

Non-ionic or
zwitterionic

Water

surfactant p | Temperature
; 7 i“x

Water Colloidal dispersion
(normal micelles)

B) Conventional CAE

PH, salting-out or
coacervation-

Ionic surfactant | inducing agent
1

Water Colloidal dispersion
(normal micelles)
C) SUPRAS*  *Water-immiscible medium
Long chain
alcohol or
carboxylic acid | Water H
" % =i
Organic Colloidal dispersion
solvent (reverse micelles)

E) In situIL-DLLME

Hydrophilic IL

Homogeneous solution

Metathesis
reaction

\4

Water
F) ABS
Polymer, polar
organic solvent,
IL or DES
- 5
Water

G) SS**-DLLME

Switchable solvent
(hydrophilic form)
_

Water

Homogeneous solution

Homogeneous solution

Homogeneous solution

CA

Water-immiscible phase

Hydrophobic IL

Salting-out i

|

Polymer, polar organic

solvent, IL or DES-rich phase

**Ternary amines or fatty acids

pH modification }
>

|

Switchable solvent

(hydrophobic form)



Phase-forming component 1 | (Wt%)

Biphasic region

Monophasic region




Number of publications for each method in 2017 - 2019
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Highlights

- Dispersive LPME methods with hydrophilic media as extraction phase are classified
- Hydrophilic medium & driving force for separation are criteriafor classification

- Physicochemical mechanisms of phase separation are critically discussed

- Main advances within each LPME method in the last three years are described

- Analytical applications of each LPME method in the |ast three years are reviewed
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