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Abstract 11 

Forest fires are a well-known source of polycyclic aromatic hydrocarbons (PAHs), playing an 12 

important role on their formation and redistribution across the terrestrial and aquatic 13 

compartments. Fire-induced inputs of PAHs to the environment are of major concern due to 14 

their toxicity, high persistence and tendency to bioaccumulate. This paper presents a synthesis 15 

of the most important work on the role of wildfires and time since fire in the production and 16 

mobilization of PAHs on soil and water. Furthermore, it also assesses their toxic effects on 17 

aquatic species. The post-fire PAHs fluxes vary depending on a variety of factors, such as 18 

vegetation composition and plant’s part burnt, fire severity and post-fire hydrological 19 

conditions. In general, off-site effects are particularly notorious during the initial post-fire 20 

period, although not necessarily limited to it. This review highlights the role of forest fires in 21 

the production and mobilization of PAHs, acting thus as a diffuse source of PAHs 22 

contamination to the terrestrial and aquatic systems, thus warning to the need to be 23 

considered in future monitoring/management programs on the environmental impacts of 24 

wildfires. 25 

 26 

1. Introduction 27 

Wildfires are recognized as a natural and beneficial phenomenon and even an important 28 

evolutionary driver of forest ecosystems playing an important role to keep and shape the 29 

ecosystem dynamics, promoting biodiversity and productivity [1,2]. However, under the 30 

changing climate conditions due to global warming and driven by human land-use change, the 31 

current and future wildfire regimes have been causing widespread concerns due to their socio-32 

economic and environmental impacts such as loss of lives and properties, costs of suppression, 33 

and damages to ecosystems and the services they provide [3-5]. 34 
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The major impacts of wildfires range from the on-site effects as the destruction of vegetation 35 

and organic matter, changes in soil structure, physical, chemical and biological properties and 36 

geomorphological and hydrological responses [6-11] to off-site effects as the contamination of 37 

fire-affected watersheds [12-16]. Arguably, the effects of the fire-induced production and 38 

mobilization of ubiquitous polycyclic aromatic hydrocarbons (PAHs) [17-23] assumes particular 39 

attention and raise environmental and biological concerns due to their toxic, mutagenic, 40 

carcinogenic and teratogenic potential, persistence within ecosystems and tendency to 41 

bioaccumulate [24-27]. For this reason, USEPA (US Environmental Protection Agency) has 42 

listed sixteen PAHs as priority pollutants: naphthalene (NAP), acenaphthylene (ACY), 43 

acenaphthene (ACE), fluorene (FLU), phenanthrene (PHE), anthracene (ANT), fluoranthene 44 

(FLT), pyrene (PYR), benzo(a)anthracene (BaA), chrysene (CHR), benzo(a)pyrene (BaP), 45 

benzo(b)fluoranthene (BbF), benzo(k)fluoranthene (BkF), indeno(1,2,3-cd)pyrene (IND), 46 

dibenzo(a,h)anthracene (DBA) and benzo(g,h,i)perylene (BGP). Naphthalene, ANT, FLT, BbF, 47 

BaP, IND and BghiP are also included in the list of priority substances of the European 48 

Commission [26]. Since PAHs produced during combustion in wildfires are emitted into the 49 

atmosphere, they can be redistributed between the vapor and particulate phases and are 50 

subsequently transported away over long distances and/or deposited to the terrestrial and 51 

aquatic environments, through dry or wet deposition [28] as well as mobilized between those 52 

compartments (Fig. 1). They can be deposit onto the soil surface, either directly by combustion 53 

of vegetation or mineralization of organic matter, or indirectly through interactions of ashes 54 

with the underlying soil, and by litter fall. Furthermore, they can be leached into soil profile or 55 

transported by overland flow, impacting surface and groundwater bodies. These post-fire 56 

pollutant fluxes will vary depending on a variety of factors such as soil type, topographic 57 

conditions of the terrain, vegetation composition, fire intensity, and post-fire climate 58 

conditions, such as timing, wind and intensity of precipitation events [8-10,14-15,17-19,21,39]. 59 

Although PAHs are strongly adsorbed to organic particles they can volatilize and degraded by 60 

abiotic and biotic processes [29]. Therefore, it is important to consider the risks of PAHs 61 

contamination posed by wildfire to the environment.  62 

The present review tackles the role of wildfires as a potential source of PAHs contamination to 63 

the terrestrial and aquatic ecosystems, highlighting the current research on this topic. 64 

 65 

Figure 1: Transport of polycyclic aromatic hydrocarbons (PAHs). (Modified from [58]) 66 

 67 

Jo
urn

al 
Pre-

pro
of



2. Effects of wildfires on the production and mobilization of PAHs in forest 68 

ecosystems 69 

2.1. Wildfires impacts on the terrestrial ecosystems 70 

An important consequence of wildfires with hydrological, geomorphological and ecological 71 

implications is the deposition of a layer of ash on the soil surface [30]. Although ash properties 72 

change according to the fire severity, type and part of burnt vegetation, temperature and time 73 

of contact a [30-32], they are mostly composed of oxides, hydroxides and carbonates; the 74 

main inorganic components are magnesium (Mg), silicon (Si), potassium (K ) and calcium (Ca), 75 

and, to a lower extent by sodium (Na), phosphorous (P), sulphur (S), and other elements 76 

aluminum (Al), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel 77 

(Ni), copper (Cu), zinc (Zn), arsenic (As), cadmium (Cd), mercury (Hg) and lead (Pb) [9,16,31,33-78 

38]. In addition, wildfire ashes may also contain organic compounds, such as polycyclic 79 

aromatic hydrocarbons (PAHs) and occasionally polychlorinated dibenzodioxins, dibenzofurans 80 

(PCDD/Fs) and polychlorinated biphenyls (PCBs) [17-19, 34-35]. 81 

Worth stressing to this respect is that the ash layer is typically very prone to post-fire 82 

mobilization and export by wind and water, leading to the leaching of those compounds into 83 

the soil and groundwater as well as to their transport by overland flow to water bodies. 84 

Likewise, the presence of ash after a fire can have huge impacts on terrestrial and freshwater 85 

ecosystems [30-31]. 86 

Indeed, several authors [17-19, 34-35] reported significant amounts of the ∑16 PAHs, ranging 87 

from 458 ngg-1 to 14078 ngg-1, in wildfires ashes from different geographical regions, 88 

vegetation types and fire severity. After the 2017 Thomas Fire in southern California Wang et 89 

al. [34] reported levels of ∑16PAHs in ashes from orchads between 2840 ngg-1 to 4450 ngg-1. 90 

Campos et al. [18] in a study conducted in Portugal, in eucalypt and pine forest reported a 91 

temporal decrease 15 months after the fire on the ∑15PAHs from 458 ngg-1 to 275 ngg-1 and 92 

from 695 ngg-1 to 285 ngg-1, respectively. A similar trend (from 11007 ngg-1 to 1169 ngg-1) was 93 

reported by Simon et al [17] in the levels of ∑16PAHs in ash from pine forest collected in South 94 

Korea 19 and 492 days after the forest fire. In a study conducted by Harper et al. [36] in ashes 95 

from six wildfires types [different species, fire severities and countries: Australia (AUS), United 96 

Sates of America, Canada, Spain and United Kingdom (UK)] found significant variations in the 97 

concentration of ∑16PAHs, ranging from 1155 to 14078 ngg-1, the highest total being found in 98 

the moderate severity fire in the UK and the lowest in the moderate to high severity fire in the 99 

AUS. Campos et al [18] also found that ash contents showed a clear tendency to be lower 100 

(eucalypt: 315 ngg-1; pine: 429 ngg-1) following a high severity fire than following a moderate 101 
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severity fire (eucalypt: 458 ngg-1; pine: 695 ngg-1). Fire severity seems to play some role in the 102 

total ash PAHs concentrations. Important to note that in, general, ashes were dominated by of 103 

2-3 ring (NAP, PHE, FLU, ACY) PAHs followed by 4-ring (FLT, PYR) [17-19,35]. In contrast, Wan 104 

et al. [34] found a considerable amount of higher ringed PAHs (≥ 4 rings) which can be due to 105 

the combustion of irrigation pipes in orchards. 106 

The incorporation of ash into the soil profile has been referred in many studies as the main 107 

cause of changes in soil physical and chemistry properties [18,30,34]. Indeed, increases in 108 

PAHs in soils after ash deposition have been reported in several studies [18,21,34,39,40]. 109 

Despite wildfires being identified as a major source of PAHs, with the smoke of biomass 110 

burning revealing high PAH levels [28,41], their recognition as a source of diffuse 111 

contamination to terrestrial ecosystems has received less attention [17,18,20,21,34,39,42,43]. 112 

Overall, the former studies suggest that wildfires leads to the deposition of PAHs on the soil 113 

surface, bounded to ash and charcoal particles, and in an increase of PAHs contents of the 114 

topsoil, bound to soil organic matter. Indeed, PAHs concentrations in burnt soil immediately 115 

after the fire were markedly higher than unburnt soil concentrations, as reported by Tsibart et 116 

al. [42] and Abakumov et al. [43] in soils of drained peatlands in Moscow, Russia and sandy 117 

podzol soils of Nadym, Russia, respectively. Campos et al. [18] in a study conducted in eucalypt 118 

forest in Portugal and Choi [40] in a pine forest in South Korea, also reported enrichment in 119 

burnt soils of approximately 5 times relatively to the unburnt soils 1 month after the fire. Chen 120 

et al. [39] assessed that the levels of PAHs of unburnt soil (247±58 ngg-1) < white ash/burnt soil 121 

(515±333 ngg-1) < black ash/burnt soil (893±285 ngg-1). In line with the former authors, Campo 122 

et al. [20] and Rey-Salgueiro et al. [21] in studies conducted in recently burnt forests in Spain 123 

also reported increased levels of PAHs in burnt soils compared to unburnt sites. The implied 124 

substantial wildfire-increased in PAHs contents is supported by the formation of PAHs by 125 

combustion of plant biomass during wildfires [44,45]. Possibly, the PAHs of the topsoil 126 

originated, at least in part, from the ash layer, itself. Namely, PAHs concentrations on ashes 127 

immediately after the fire (as described early) were markedly higher than topsoil 128 

concentration [17,18,34,39]. For example, Campos et al. [18] reported values of ∑PAHs: 458 vs. 129 

148 ngg-1 (eucalypt) and 695 vs. 242 ngg-1 (pine), for ashes and burnt topsoil, respectively, 130 

while Simon et al. [17] found values of 11007 vs. 294 ngg-1, respectively. In contrast, Simon et 131 

al. [17] and Wan et al. [34] reported similar values between the unburnt and burnt soils. 132 

However, with time since fire (especially after the first rainfalls), PAHs contents tend to 133 

decrease especially due to soil erosion by wind and water, and by leaching from the ash layer 134 

into the soil and to the groundwater as well as the vaporization and degradation of 2-3 ring 135 

PAHs [17,18,40]. As in the case of ashes, fire severity can influence the levels of PAHs in burnt 136 
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soils. For instance, in the study conducted by Campos et al. [18] values tended to be lower 137 

after a high severity fire than after a moderate severity fire, both in the case of eucalypts sites 138 

(-10%) and of the pines sites (-30%). Chen et al. [39] also reported the same trend. 139 

Similar to the ash profile, burnt soils were characterize by the dominance of 2-4 ring PAHs 140 

(NAP, PHE, FLU, FLT and PYR) [17,18,20,21,39,40], which is in accordance with the most 141 

produced aromatic compounds during wildfires [28,41] and by pinewood and needles 142 

combustion [45]. For example, Campos et al. [18] observed a temporal decreased (from 69% to 143 

44% over the first 4 months) in the contribution of the 3-ring PAHs mainly PHE and FLU) to the 144 

total PAHs while the 4-ring (FLT) increased. In general, this pattern was in line with other 145 

authors, who also reported a decreasing trend in the fraction of 2-3 rings PAHs (NAP, PHE) and 146 

an increase in the fraction of 4-ring PAHs over time [17,40]. 147 

In spite of this decrease with time since fire, post-fire PAHs loads can pose a long/term threat 148 

to the environment implying a degradation of the land. Clearly, the results from the former 149 

studies consistently indicate that forest fires can be a significant non-point diffuse source of 150 

PAHs to the terrestrial systems. 151 

 152 

2.2. Wildfires impacts on the aquatic ecosystems 153 

The risks of post-fire contamination are not limited to the burnt soils but can also affect 154 

surface and groundwater bodies within and downstream of the burnt area. Transport of PAHs 155 

from soil to water by surface runoff, either in dissolved or particulate form is likely to be 156 

significant in recently burnt areas, as fire typically enhances overland flow generation and the 157 

associated transport of ash and soil particles to downstream surface water bodies [10,12-16], 158 

impacting their water quality [22,45-51]. Furthermore, PAHs deposited in the bottom 159 

sediments of water bodies can resuspending periodically, leading to lasting water quality 160 

issues [52]. These contaminants can also be leached into the soil profile impacting 161 

groundwater [22,53,54]. 162 

In the surface water, PAHs can volatilize, photodegrade, oxidize, biodegrade by aquatic 163 

organism, bind to particulates or accumulate in aquatic organisms (see Fig.1), depending on 164 

their physicochemical properties. Because of their low solubility and high affinity for organic 165 

carbon, PAHs in aquatic systems are primarily found sorbed to particles that either settles to 166 

the bottom or as suspended in the water column [56]. In sediments, PAHs can biodegrade or 167 

accumulated in benthic organisms [56]. 168 

Although the importance of considering the impacts of the inputs of PAHs to freshwater 169 

systems, only few studies have been addressing this issue. Olivella et al. [46] and Vila-Escalé et 170 

al. [47] observed an increased in post-fire inputs of PAHs to streams one month after a fire in 171 
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Catalonia, Spain, although, in the first case was attributed to atmospheric deposition of ashes 172 

(in absence or low rain after the fire) and in the second, to post-fire erosion. In both studies, 173 

the 3-ring (PHE) and 4-ring (PYR) were the dominant PAHs in water samples. Furthermore, the 174 

total concentrations of the PAHs decreased with time since fire, approaching the background 175 

levels. Worth stressing is that the concentrations of PAHs measured remain within the 176 

European drinking water limits and never reached levels of toxicological concern. In line with 177 

the previous studies, Schäfer et al. [49] monitored the levels of PAHs in 9 streams in Victoria, 178 

Australia following a wildfire and found that compounds with 3-ring PHE and FLU) and 4-ring 179 

(PYR) were the predominant (levels of PAHs ranged from 0.1 to 9 ngL-1). In a study conducted 180 

by Stein et al. [48] in Southern California it was observed that the PAHs flux was 4 times 181 

greater from burned areas than from adjacent unburnt areas. 182 

A study conducted by Mansilha et al. [22] in Caramulo Mountain, Portugal during 19 months, 183 

showed increases of 1.2-4.0 times higher than in the unburnt control samples, with the 2-ring 184 

(NAP) and 5-6 ring (BbF, BaP, BkF, BghiP and IND) as the most detected PAHs. The decay 185 

process of PAHs with time since fire was also observed in this study getting closer to the ones 186 

of the control samples by the end of the first year. Mansilha et al. [22,53,54] also determine 187 

the influence of wildfires on PAHs levels in groundwaters in Estrela and Gerês Mountains and 188 

Braga, in Portugal and found increases of 1-to 6-fold higher in systems within the burnt area 189 

than in the control sites, and a temporal reduction over time after intense precipitation 190 

conditions. These studies corroborate that wildfires can affect water quality and can threaten 191 

downstream drinking water supplies. Despite this, the detrimental impacts of the post-fire 192 

inputs of PAHs to the freshwater communities have been vaguely explored.  193 

First steps to overcome this research gap were given by Campos et al. [50] and Vera et al. [35], 194 

whose studies demonstrate that PAHs released or mobilized by wildfires were capable of 195 

exerting significant toxicity to the bacteria Vibrio fischeri, the microalgae Raphidocelis 196 

subcapitata and the macrophyte Lemna minor. By contrast, no significant effects were found 197 

towards the cladoceran Daphnia magna. In contrast, Harper et al. [19] found effects on the 198 

immobilisation of D. magna when exposed to 3 of the 6 ash types. Furthermore, Nunes et al. 199 

[51] used a biomarker approach to find early warning signs of toxicity triggered by the 200 

exposure of the fish Gambusia holbrooki to aqueous runoff and stream water collected from a 201 

burnt catchment in Portugal. Pro-oxidative modifications involved in glutathione metabolism 202 

were the most relevant deleterious effects found, while no signs of neurotoxicity were 203 

observed. More recently, and in the same water samples as Nunes et al. [51], Carvalho et al. 204 

[56] showed the adverse effects on microbial communities and invertebrates in stream detrital 205 

food webs and they observed that the chemical composition and source of runoff explained 206 
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the different effects observed. In this overall context, Pradhan et al. [57] investigated the leaf 207 

consumption behaviour and the responses of oxidative and neuronal stress enzymatic 208 

biomarkers in the freshwater invertebrate shredder Allogamus ligonifer, after short-term 209 

exposure. The shredding activity was severely inhibited, and the enzymatic activity suggested 210 

oxidative and neuronal stress in the shredders upon exposure to post-wildfire runoffs. These 211 

results suggest that post-fire contamination can induce sublethal effects on invertebrate 212 

shredders with impacts on key ecological processes in streams. 213 

All the reported findings, appear to justify concerns around the impacts of wildfires inputs of 214 

PAHs on water quality and aquatic biota,  emphasizing the need to better understand their 215 

potential toxicity. 216 

 217 

Final Remarks and Conclusions 218 

It has been unequivocally demonstrated that forest fires are important non-point diffuse 219 

source of PAHs to the terrestrial and aquatic ecosystems as well as their numerous 220 

ecotoxicological effects over multiple aquatic organisms. However, despite the recognized 221 

risks that the ubiquity of PAHs in the forest ecosystems poses not only to the environment (soil 222 

and water ecosystems), but potentially also to human health, several research gaps remain in 223 

understanding their  terrestrial and aquatic impacts.  224 

A major challenge is to understand the transport and fate of PAHs in forest ecosystems and 225 

accordingly, which mechanisms are in stake. Fire induced PAHs loads can affect soil quality, 226 

fertility and productivity, especially when wildfires occur with a frequency or severity outside 227 

of the historic range of variation. Due to the persistence of PAHs in the environment, they can 228 

pose a long-term threat, which may lead to severe damage and land degradation that may not 229 

be identified until it is well advanced. This way, long-term studies are critical to better 230 

understand the delayed and persistent effects of fire on PAHs fate and mobilization in the 231 

terrestrial compartment. Furthermore, there is often a lack of connection between PAHs 232 

delivery from the land surface and within stream transport processes. This is of major concern, 233 

since contamination with PAHs represents a serious threat when they are transported and 234 

reach the aquatic systems such as rivers and water supplies reservoirs. In this regard, it is 235 

important to assess the fate and the medium- to long- term impacts of PAHs in the quality of 236 

waterbodies, mainly due to the problem associated with the resuspension of sediments as well 237 

as to assess the effectiveness of post-fire management techniques in mitigating post-fire PAHs.  238 
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Notwithstanding, for an adequate assessment, monitoring and predicting of the fire-induced 239 

pollution risks, it is necessary to increase the knowledge on the impacts of post-fire PAHs on 240 

the terrestrial and aquatic systems under several possible risk scenarios. 241 
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Figure 1: Transport of polycyclic aromatic hydrocarbons (PAHs). (Modified from [58])
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