
Journal Pre-proof

Exploring Software Defined Networks for Seamless Handovers in Vehicular Networks

Miguel Silva, Pedro Teixeira, Christian Gomes, Duarte Dias, Miguel Luís et al.

PII: S2214-2096(21)00041-3

DOI: https://doi.org/10.1016/j.vehcom.2021.100372

Reference: VEHCOM 100372

To appear in: Vehicular Communications

Received date: 10 February 2021

Revised date: 15 April 2021

Accepted date: 9 May 2021

Please cite this article as: M. Silva, P. Teixeira, C. Gomes et al., Exploring Software Defined Networks for Seamless Handovers in
Vehicular Networks, Vehicular Communications, 100372, doi: https://doi.org/10.1016/j.vehcom.2021.100372.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and
formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and
review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal
pertain.

© 2021 Published by Elsevier.

https://doi.org/10.1016/j.vehcom.2021.100372
https://doi.org/10.1016/j.vehcom.2021.100372

Exploring Software Defined Networks for Seamless
Handovers in Vehicular Networks

Miguel Silvaa, Pedro Teixeiraa,b, Christian Gomesa, Duarte Diasa,b,
Miguel Luísa,c,∗, Susana Sargentoa,b

aInstituto de Telecomunicações, 3810-193 Aveiro, Portugal
bDepartamento de Eletrónica, Telecomunicações e Informática, Universidade de Aveiro,

3810-193 Aveiro, Portugal
cISEL - Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa,

1959-007 Lisboa, Portugal

Abstract

With the growing interest in autonomous driving, constant connectivity for

vehicles is becoming essential to enable the complete knowledge of the surrounding

area, transmit and receive data that is crucial for the autonomous control. The

vehicle mobility results in frequent service interruptions, and therefore, seamless

handovers are required to mitigate this problem. Several IP-based solutions have

been proposed in the literature, but they require tunneling approaches, which

present excessive signaling and data overhead, service delay, and packet loss.

One of these approaches, the NEMO-enabled Proxy Mobile IPv6 (N-PMIPv6)

architecture, supports transparent handovers and simultaneous multi-homing,

but at the cost of a high complexity and network overhead.

This work explores the flexibility of Software Defined Networks (SDNs) in the

management of a Vehicular Ad-hoc NETwork (VANET). In particular, the SDN

concept is used to provide a seamless horizontal handover for the vehicle and its

end-users. Two different SDN architectures are proposed, evaluating the impact

of the depth of the softwarization environment. Real vehicular hardware and

emulated mobility scenarios are used in the evaluation process where different

application services are exploited. Results show that the lower complexity of the

SDN solution allows for a better performance during a handover in a VANET,

∗Corresponding author

Preprint submitted to Elsevier May 13, 2021

in terms of delays, packet losses and network overhead, making it seamless for

the vehicles and its users.
Keywords: Software-Defined Networks, Vehicular ad-hoc Networks, Mobility

Management, Horizontal Handovers.

1. Introduction

The recent advances in the automotive industries and telecommunication

technologies brought focus on Intelligent Transportation System (ITS), which

are part of the services required for autonomous driving, of which Vehicular

Ad-hoc NETworks (VANETs) gain much more attention. One of the most5

researched topic regarding VANETs tackles the end-to-end connectivity of Vehicle-

to-Infrastructure communication flows [1]. VANETs are highly-dynamic networks

whose connectivity profile is influenced by the speed and direction of its moving

elements, On-Board Units (OBUs) equipped in vehicles, and the profile of the

network infrastructure, where Road Side Units (RSUs) bridge the gap between10

the core network and the moving network entities. Therefore, horizontal handovers

are much more frequent than in traditional Wireless Local Area Networks (WLANs):

an OBU with a connection established with an RSU (also denoted as Point-of-

Attachment (PoA) under this scope) will soon be out of its range and establish

a new connection with a different PoA.15

For many years the Internet Protocol was not prepared to deal with the

mobility of its users, as it was implemented assuming that each element would

be always in the same location. With the mobility becoming the rule, and

not the exception, additional network solutions and mechanisms have been

proposed to improve the IP standard, either IPv4 and IPv6, such as Mobile20

IP (MIP) [2], Network Mobility (NEMO) [3] and NEMO-enabled Proxy Mobile

Internet Protocol (N-PMIP) [4, 5]. Although these solutions create exciting

and practical applications for mobile networks, the handover process is not

optimized, especially for VANETs. When a vehicle moves, and consequently

changes its PoA, the mobile node needs to send a binding update to the Home25

2

Agent (HA) to notify its change of the Care of Address (CoA). Even more

optimized solutions that use the concept of the hierarchy of foreign agents and

mobility anchors present an excessive signaling overhead and service delay [6].

More recently, the distinct features of Software-Defined Networking (SDN),

such as its flexibility, programmability and network abstraction, have set the30

stage for a novel networking paradigm termed as Software-Defined Vehicular

Networks (SDVNs) [7]. The convergence of SDN with VANETs is seen as an

important direction that can address most of the VANET current challenges [8].

In an SDVN data plane entities communicate with the control plane entities for

coordinated and efficient communication. The controller provides an up-to-date35

network view to the application plane that helps it to manage various services

(e.g., security, access control, mobility, and QoS) in the network. The RSUs

share the collected information about the vehicles and the transportation system

to the SDN controller, and execute specific functions that are placed/migrated

upon request of vehicles or from other RSUs. Considering the mobility prediction40

of vehicles, service contents can be migrated to the next visited RSUs to enhance

the overall service quality by reducing service latency [9].

In this work we explore the advantages of the SDN concept with respect

to the horizontal handover process in a VANET. Following two different SDN

architectures, distinguished by the depth of the softwarization environment, a45

new SDN based solution for seamless1 handovers in VANET is presented and

compared to the most sophisticated and updated existing IP-based solution, the

N-PMIPv6 [10]. Performance results obtained with real vehicular equipment

and considering two different application services, namely video streaming and

file download, show that the proposed solutions, even if not yet capable of multi-50

homing, present very promising results, specially in terms of the reduction of

the average delay and packet loss during the handover process. Moreover, this

work shows that SDN solutions are the way forward to decrease the disruption

1The term seamless is used because the handover process is transparent to the end-user, and

not because the service has no interruptions, which will depend on the network connectivity.

3

caused by the handover while increasing the flexibility of the handover detection

process, minimizing service interruptions during autonomous control and driving.55

The main contributions of this work can be summarized as follows:

• An assessment of the vehicular network regarding the management of

horizontal handovers following the SDN concept;

• Two distinguished SDVN architectures, with different depths regarding the

SDN technology, to manage in a seamless way the horizontal handovers60

caused by the vehicle’s movement;

• Deployment, test and evaluation of the proposed SDVN solutions in real

vehicular communication equipment (OBUs and RSUs) addressing realistic

communication profiles;

• Performance comparison against a non-SDN mobility management solution.65

The remaining of this article is organized as follows. Section 2 overviews the

related work. Section 3 details the N-PMIPv6 mobility management process.

Section 4 explains the proposed architecture for our SDN-based mobility management

solution and how handovers are handled. Section 5 overviews the implementation

and deployment of the SDN approaches. Section 6 evaluates the SDN solutions70

and compares them with the N-PMIPv6 approach. Finally, Section 7 presents

valuable remarks about this work and introduces future work.

2. Related Work

In a network-based approach such as Proxy Mobile IPv6 (PMIPv6), the

connectivity suffers from a lengthy handover latency and packet loss during a75

handover process. The work in [11] proposed a solution based on the Neighbour

Discovery used in IPv6 to reduce the latency and packet loss. In [12], the authors

proposed a fast handover scheme using IAPP (Inter-Access Point Protocol).

Moreover, the work in [13] has shown that in a Mobile IP-based handover, the

registration process requires a large number of location updates and excessive80

4

signaling overhead, resulting in a significant service delay. The solution proposed

in [14] presents inter-technology IP-based handovers in a multihoming capable

scenario, i.e. when multiple radio access technologies are available. To mitigate

service interruptions, the authors in [15] have recently proposed a network-

based L2 extension handover scheme for VANETs, reducing the signaling cost85

and handover latency.

On the other hand, SDVNs have witnessed substantial increments from

technical and architectural aspects. With the advances on the 5G network

architecture, the SDN has been explored to manage vertical handovers and boost

the characteristics of VANETs, namely to increase the radio access coverage and90

provide complementary communication paths with the Internet.

SDN-enabled 5G-VANET was proposed to resolve the rising traffic conditions

by promoting the Heterogeneous Network (HetNet) concept [16]. Neighbouring

vehicles are put under the same cluster, depending on the real-time road situations

using SDNs’ global information collection and network control capabilities. Because95

of the segregation of information plane and control plane, 5G-VANET handles

and encourages centralized control over HetNets, by giving a comprehensive

network view. The work in [17] evaluated different strategies to balance the

SDN control plane through the different communication technologies assuming

a trade-off between cost and network control latency. An SDN-enabled social-100

aware clustering algorithm for 5G-VANET was proposed to empower the adaptive

and efficient clustering for communication and information sharing between Base

Stations [18]. The core logic is to build a cluster of nodes that follow similar

social matches, which can possibly have the same future routes. An improved

genetic algorithm has been also proposed to optimize the dynamic network105

changes in VANETs [19]. It includes the solution for adjusting the dynamic

changes often occurring in the network, and also gives the guarantee about

the solution diversity. The main idea is to balance the use of V2V and V2I

traffic to minimize the latency. Fuzzy analytic hierarchy process and multi-

path transmission control protocol are also used to solve the problem of vertical110

handover in heterogeneous wireless networks based on SDN [20].

5

Other authors explore the concept of SDN in vehicular environments by

making use of Fog Computing to enable more efficient vehicular communications [21],

to coordinate the load balancing for inter-domain communication in 5G vehicular

networks [22], or even to leverage the concept of Internet of Vehicles with115

multiple SDN controllers [23].

Regarding the horizontal handover in VANETs, some recent works exploring

the SDN technologies have been proposed. The work in [24] proposed a fast

handover scheme based on the mobility prediction of vehicles. The authors do

not provide any information about the mobility prediction scheme and a single120

architecture is considered where the RSUs are not included in the SDN plane.

Still, two different network domains, with two SDN controllers, are assumed.

The performance evaluation, using a network simulator, is too simplistic since

the handover delay is the only metric under discussion: there are no statistics

about the control overhead, or even the information about the packet loss, delay125

and jitter for a network service.

Following the same rationale, the work in [25] discusses the advantages

of anticipating the handover process aiming to reduce the control signaling

overhead and network congestion. The work proposes the use of a Mobility

Anchor, as used by the IP-based solutions, and duplicates the packets to increase130

the probability of packet delivery, which may overload the network unnecessarily,

even more in scenarios of high mobility and frequent handovers. Regarding the

performance evaluation, and just like the previous work, a network simulator is

used and no specific services, with different traffic profiles, are considered.

The work in [26] follows a different approach as it merges both philosophies:135

the SDN concept with the PMIPv6 architecture. The authors keep both management

entities, the Local Mobility Anchor (LMA) of the PIMIPv6 architecture, and

the SDN controller of the SDVN, which can be seen as a duplication of services,

and introduces one additional step in the handover management increasing the

network overhead: the RSUs communicate with the SDN controller, which then140

communicates with the LMA. Additionally, the LMA in architectures such

as PMIPv6 is the point of concentration of all communications between the

6

vehicular domain and the Internet, due to the tunnels created to handle the

mobility, which may represent a point of overload and a critical point of failure.

Additionally, the performance analysis is limited since the only metric of analysis145

is the latency associated with the handover process.

Contrary to the above-discussed studies, in this work we focus on the advantages

of the SDN management of the horizontal handover when two different SDN

architectures are considered - when the RSUs are inside and outside of the SDN

environment. The behaviour of the SDN controller is highly detailed and both150

solutions are evaluated using real vehicular hardware - a rare evaluation setup

found in the literature - and different and realistic traffic profiles. Furthermore,

a large set of evaluation metrics are considered and compared with N-PMIPv6

[10] solution.

3. Base Work155

This section describes an enhanced version of the N-PMIPv6 mobility approach,

to use it as a baseline for comparison purposes with the SDN-based solution.

Based on the NEMO-enabled Proxy Mobile IPv6 (N-PMIPv6) [4], it has been

added with multihoming support [14, 10, 27]. The main entities used in this

protocol are shortly explained as follows:160

• LMA: the Local Mobility Anchor is the Home Agent (HA) of this architecture.

It manages the binding states of all mobile nodes, it is responsible for the

routing process, and it also stores information about the overall network

status to optimize the traffic balancing distribution;

• MAG: the Mobile Access Gateway is responsible for tracking and notifying165

the LMA about all the mobility-related aspects. The MAGs are RSUs

where the end-devices can connect through wireless interfaces, and serve

as a gateway to the LMA. They behave like a PoA to OBUs;

• mMAG: a mobile MAG acts as a mobile router in a vehicle, being responsible

for providing IP Internet access to the vehicle and its users. The mMAG is170

7

an OBU that connects itself and the end-user with the mobility network;

• CN: the Correspondent Node is a peer node with which a Mobile Node

(the vehicle and its users) wants to communicate. It represents an entity

connected to a global network (such as the Internet). The LMA bridges

the CN specific traffic to the mobile network connected to the LMA.175

Figure 1 illustrates the current N-PMIPv6 approach. It considers an inter-

technology scenario, where the mMAGs (in the OBUs) can be connected to

the infrastructure through the MAGs (RSUs) using IEEE 802.11g/n, IEEE

802.11p/WAVE, LTE, or others. To handle mobility, the traffic is sent in IPv4-

IPv6 and IPv6-IPv6 tunnels, introducing significant overhead.180

LMA

IPv6-IPv6 tunnels

IPv4-IPv6 tunnels

IEEE 802.11g

IEEE 802.11p

MAG1 MAG2

Vehicle

mMAG

Figure 1: Current N-PMIPv6 architecture.

Additionally, the architecture contains a connection manager running in the

OBUs. This entity is responsible for the selection of the best technologies

and connections available. It can also make single and multiple connections

simultaneously, through multihoming, allowing the VANET to have the best

load balancing possible for the traffic that flows through the OBU.185

The control messages exchanged in this approach are Router Solicitation

8

(RS) and Router Advertisement (RA) messages between the OBUs and the

RSUs, and Proxy Binding Update (PBU) and Proxy Binding Acknowledgment

(PBA) messages between the RSUs and the LMA. These messages are customized

to fulfill our needs in diverse functionalities and help in the handover process,190

still complying with the legacy protocol specifications. When the OBU changes

its PoA, it sends an RS message with all the needed information to inform the

LMA about this handover process. At the RSU, this information from the RS is

integrated into the PBU sent to the LMA. After that, the LMA updates its User

Cache Entry, starting the handover process at the LMA side. A PBA and a195

RA message are also sent in the downlink. This process typically happens twice

to assure the correct handover in case of loss of some control messages. As the

control messages piggyback the needed information to perform the handover,

the handover process does not add considerable overhead. On the other hand

this process takes significant time as the handover is just completed after both200

the LMA and the OBU change their routes to use the new PoA after processing

the information that is sent through these messages, and the updated tunnels

supporting the communication between the OBU and the LMA through the

new RSU are established. Moreover, the amount of overhead in the data plane

is significant, due to the successive tunnels (required for the mobility process205

and for the IPv4 services in the vehicles or from its users).

A handover in a VANET happens when an OBU, to which one or more users

can be connected, through a connection manager, understands that the RSU

(or RSUs in the case of multi-homing) that it is connected to does not have

a strong enough signal. Then, the communication path used to communicate210

with the Internet should be updated through a better RSU, if available. This

process should be transparent for the vehicles (OBUs) and the users connected

to the OBU, and should ensure that it is a seamless process by providing the

minimum latency and packets’ loss.

9

4. SDN-Based Handovers215

Software Defined Networking (SDN) is a network paradigm that aims at

splitting the network architecture into control and data planes [28, 29]. In the

control plane, one or more controllers are responsible for creating and managing

rules that are to be applied to the data/forwarding plane equipment, namely

SDN switches.220

Communication between both planes is supported by communication protocols

such as the OpenFlow protocol [30], maintained by the Open Networking Foundation

(ONF)2. The OpenFlow protocol defines the set of messages between controllers

and switches. This set of messages includes the ones responsible for creating and

updating a rule in a switch. The rules are programmable and define the actions225

of the switch, like dropping or forwarding a packet, considering the controller

decision through a user defined criteria, information about the network topology,

performance metrics, and others.

This means that, unlike the IP based solution, the control plane of an SDN

based network can be programmed to detect the occurrence of a handover and230

then act accordingly. For example, it can be performed by changing routes to a

mobile node and updating the information of the location of this node in a data

structure for management or monitoring of the network, without the required

overhead of a solution like N-PMIPv6. Also, unlike N-PMIPv6, the control

plane is decoupled from the traffic forwarding, increasing not only flexibility,235

but also providing the possibility for future extensions of SDN based solutions.

The proposed SDN based mobility solution enables fast mobility for VANETs

through a unified network abstraction. This is performed by creating heterogeneous

wireless devices at the RSUs, giving more flexibility to its use, such as generate

abstraction, and using them as SDN switches with a unified interface. Instead of240

having a LMA as in the N-PMIPv6 approach, responsible for the management

of all communications, with SDN, one or more controllers are responsible for

2https://opennetworking.org/

10

the handover detection and control.

In this work we propose two SDN architectures whose differences lie on the

depth of the softwarized environment. In the first one, RSUs do not present245

SDN capabilities, while in the second one, the SDN environment is extended to

the edge.

4.1. SDN Architecture 1 - Pure reactive solution

Figure 2 illustrates the first approach for a mobility-based SDN solution. In

this first stage, we consider a centralized control plane with a single SDN switch.250

This switch is responsible for establishing the connection between the vehicular

infrastructure - RSUs, OBUs and end users - and an external gateway that has

access to the Internet. The switch allows the processing of packets from and to

the OBUs (and its users) by the control plane.

In this architecture, the controller application detects the handover after255

it has already started: it does that by detecting a change in the source MAC

address of the packets coming from a specific OBU. This change of MAC address

shows that the packet is coming from a different RSU than the one to which the

OBU was previously connected to.

Since the handover detection is based on the analysis of packets, this solution260

requires data traffic between an OBU and another endpoint, so that the handover

can be detected. If no traffic is generated, the handover will not be detected.

For this solution to work, the RSUs need to be connected to at least one SDN

switch, which in turn, needs to be connected to one or more SDN controllers.

For experimental purposes, one SDN switch is considered, but in a real situation,265

several switches would be needed to ensure proper load balancing from the traffic

of many RSUs in a VANET.

Beyond supporting the handover, there are other benefits of using an SDN

switch instead of a regular switch, even without the controller. For example,

one advantage is the possibility to allocate and assign the network resources,270

such as bandwidth, in a dynamic approach.

11

Control Plane

Data Plane

RSU

 Users

RSU

Switch SDNOpenFlow 1.3

SDN Controller
(Ryu)

Vehicles

OBU OBU

e.g.
IEEE 802.1p

(WAVE)

e.g.
Wi-Fi

SDNSDN

Internet

Gateway

Figure 2: SDN mobility network - architecture 1.

12

4.2. SDN Architecture 2 - A step towards a proactive solution

A possible improvement to the SDN based architecture is a more proactive

detection, where the handover is detected immediately when it is happening,

even if there is no traffic. For this purpose, a second architecture is proposed,275

where the RSUs themselves are part of the SDN topology by also being SDN

switches. This way RSUs can communicate to the controller(s) the changes in

the topology, including the handover situation.

Such architecture, where the RSUs are part of the SDN topology, has not

been fully explored previously. Thus, this work will give preliminary insights280

on the advantages of having another layer of SDN switching, and if it presents

a huge impact in the overall performance of the mobility management system.

Figure 3 illustrates this approach. Here, the RSUs are part of the SDN data

plane and abstracted in SDN switches with an unified interface. Enabling the

control plane to manage the network and network resources at the RSUs’ level285

allows for more flexibility for specific V2V applications, not requiring the traffic

to flow through the physical SDN switch.

4.3. The controller role

After detecting a handover, the controller needs to modify the flows in the

switches as needed to ensure a seamless handover. In the proposed solution,290

the controller, after detecting a handover, changes the rules in the affected

switches, i.e. the switch where the OBU was connected and the switch where

it is now connected. These changes ensure that any traffic to the OBU is

forwarded through the new switch, and not the old one. Section 5.1 details

the mechanisms implemented in the controller application so it can properly295

work in such mobility approaches.

5. Implementation and Deployment

The first step towards the implementation and deployment of both architectures

started with building the base topology. This base topology follows the layout

13

Control Plane

Data Plane

RSU

 Users

RSU

Switch SDNOpenFlow 1.3

SDN Controller
(Ryu)

Vehicles

OBU OBU

e.g.
IEEE 802.1p

(WAVE)

e.g.
Wi-Fi

SDNSDN

Internet

Gateway

SDN SDN

Figure 3: SDN mobility network - architecture 2.

14

presented in Figures 2 and 3, and includes several main components, namely:300

OBUs, RSUs, end-users, a gateway, SDN switch(es) and, of course, an SDN

controller.

The deployment of the topology considers several steps: (1) the configuration

of the nodes that make up the vehicle network, that is, the configuration

of network addresses, default routes, network forwarding as well as Network305

Address Translation (NAT) (more specifically, the Source NAT) on each one of

the OBUs, so that a variety of end-users can be represented as the single OBU

in the network; (2) the configuration of the SDN switch (or switches depending

on the topology), which in this case means the configuration of an OpenFlow

switch software [31]; and finally, (3) the configuration of the SDN controller to310

enable the control communication with the SDN switch(es).

Once the topology is deployed and all components are correctly interconnected

and configured, it is possible to start the development of the SDN controller

application.

5.1. SDN Controller Application315

The SDN controller application is the main component of the solution and is

responsible for managing the flow control on each SDN switch. In our approach,

the SDN controller application can be divided into several main processing steps,

as illustrated in Figure 4, which will be discussed next.

5.1.1. Handling unknown packets320

The main method in the controller application is the packet handler, the

entry point of the packets sent by the SDN switch to the SDN controller. The

packet handler is invoked asynchronously, every time a packet arrives at the

SDN switch and it does not have a matching flow. When a packet is received, it

is checked the pertinent information of this packet (e.g. addresses, protocols).325

After the collection of this information, the packet gets processed based on its

protocol (this will be explained in further detail in the sections below). In this

specific controller application, only the ARP and IP packets (including specific

15

New
unknown
packet

Packet
Handler

Create
ARP Reply

Logical Link
Exists?Protocol

Handover?
Update Logical Link

and Send Out
Original Packet

SDN Switch

Packet
to old
RSU?

Send
corrected
packet

Add flows to
switch(es)

Update
flows in
switch(es)

IP

Drop
Packet

Send out
ARP ReplyRequest to

OBU?

ARP

Yes ARP
Reply

Send Out
Original Packet

No

YesYes

No
Create Logical
Link between

RSU and OBU

Ryu SDN
Controller

No

No

Add flows to
switch(es)

Send Out
Original Packet

YesOthers

Figure 4: Simplified SDN controller application architecture.

IP protocols) are processed; any other packets are simply not processed and

therefore dropped.330

Once the original packet has been processed, it reaches its final stage in the

application, where two options exist: the original packet is dropped, i.e. it is

not needed anymore (e.g. ARP Request which the controller replied to), or the

original packet is simply sent out to its original destination.

This last option is also divided in two, depending on whether the application335

knows how to reach the destination of the packet. If the application does not

know where to send the packet, it floods the packet in the network; otherwise,

it sends it to its destination and, in that case, it also adds the required flows

on the SDN switch so that the next packet of that type can simply go through

the switch to its destination. This whole process repeats itself anytime a new340

packet arrives at the SDN controller.

5.1.2. Handling ARP packets

When processing ARP packets, our application only checks each ARP packet

to see if it is an ARP Request for any registered OBU. If that is not the case,

then this processing step is over and the packet is simply sent out as explained in345

16

section 5.1.1. When the ARP packet is indeed an ARP Request for a registered

OBU, the application processes it further.

Anytime there is an ARP Request for a registered OBU, since there is never

a flow that will match that packet on the SDN switch, the controller will always

get and process that packet. When it receives such a packet, it is responsible350

for checking if it is indeed an ARP Request for a registered OBU; if that is the

case, then it creates and sends an ARP Reply to the requesting node. In this

reply, the sender’s MAC address will be the RSU’s MAC address to which the

OBU is connected at the moment, instead of the OBU’s MAC address, so that

any traffic sent from the requesting node to the OBU will now be sent via the355

RSU to which it is currently connected.

5.1.3. Handling IP packets

When the controller application receives any IP packet, the first step it does

is to check if this packet came from any OBU; this is done by checking if the

source IP address of the packet is an address that belongs to the sub network360

that enables the communication between the RSUs and OBUs (this is possible

due to the fact that this information as well as information about all the RSUs

is pre-registered in the controller application). If this packet is originated from

an OBU, the controller registers the OBU using the required information, then

it is also possible to detect which RSU the OBU is connected to. For that, the365

controller application checks if the MAC source address of the packet belongs

to any of the known RSUs; this way, it is possible to create a logical link in

the application between the OBU and the RSU which it is currently connected

to. Once the application knows about this logical link, this process is no longer

carried out, and only the existence of the link itself is verified. This information370

will be important when detecting if a handover has happened.

The last two main processing steps of the IP packets happen on two specific

situations, which are: checking for a handover and checking for packets sent via

a wrong RSU. These situations are explained next, starting by the handover

detection process, and then by the handover process itself when it is detected.375

17

5.1.4. Handover detection

The handover detection in the SDN architecture 1 is straightforward, as

mentioned in 4.1. This process begins by first checking if the packet came

from a registered OBU (via its source address): if that is the case, then the

source MAC address of the packet is extracted and compared against the MAC380

address of the RSU to which the OBU is currently connected to. If the MAC

addresses are not the same, a handover has occurred, since the packet arrived

from a different RSU; on the other hand, if they are the same, no handover

has occurred and the handover checking process is over. Once a handover is

detected, the logical link is updated, meaning that the application updates the385

RSU to which the OBU is now connected to, and removes any flows on the SDN

switch matching the OBU and the old RSU. Once this step is complete, the

handover is now finished.

In the architecture 2, the handover detection can take advantage of the fact

that the RSUs are part of the SDN plane, which allows the controller to know390

about changes in the topology of the VANET at the RSU level, such as the

disconnection or connection of an OBU. In a simulated software environment,

such as Mininet, the handover can be detected when it happens, since the port

change in a RSU means that a OBU was connected and disconnected. However,

in a real situation, this is not viable in a hardware scenario, where wireless395

communications are used.

This means that architecture 2 is not proactive, but a step towards a proactive

solution. Using a set of custom messages - for example extending the OpenFlow

symmetric experiment messages that allow the creation of custom messages, or

the usage of CAMs (Cooperative Awareness Messages defined by ETSI for ITS400

awareness services) - would allow RSUs - part of the SDN environment of the

network only in architecture 2 - to inform the controller about changes in the

OBUs, therefore achieving a proactive solution.

18

5.1.5. Rerouting packets

The last main processing step is to check for packets that were sent to an405

OBU via a wrong RSU (i.e. RSU to which an OBU was previously connected to)

and re-route them. This problem can happen anytime a handover occurs while a

packet from an OBU is outside the vehicular network; when that packet returns,

the gateway might still not know that a handover has occurred, meaning that

it can send the packet via the wrong RSU. Thus, this process was introduced410

to mitigate this problem, and consequently, reduce packet loss.

This process begins by checking if the packet is for a registered OBU (via

its destination address); if this is the case, then the packet’s destination MAC

address is extracted and compared against the MAC address of the RSU to

which the destination OBU is currently connected to. If the MAC addresses415

are the same, this means that the packet was sent via the correct RSU and the

processing is over, and therefore, the packet can move on to the next processing

step. On the other hand, if the MAC addresses are different, we are in the

presence of a packet sent via a wrong RSU. When that happens, a copy of the

original packet is created, the destination MAC address is changed to the MAC420

address of the correct RSU, and finally the packet is sent out to the destination.

Before finishing this processing step, a gratuitous ARP packet is also created

on behalf of the OBU and sent to the network, in order to update the ARP

mappings (mainly of the gateway) and avoid this problem in the future.

Once the packet has been through all the IP processing stages, it moves on425

to the final processing stage mentioned previously in 5.1.1.

6. Evaluation Setup

This section presents the setup and tested scenarios carried out to evaluate

the performance of both SDN architectures against the N-PMIPv6 solution in

a vehicular network environment.430

19

6.1. Evaluation Scenario

In order to test the performance of both solutions, IP and SDN based, a

custom topology, as shown in Figure 5, is designed and deployed. This topology,

implemented in a laboratory, using real vehicular equipment (OBUs and RSUs),

allowed to emulate two real life scenarios.435

RSU3 RSU2 RSU1

OBU OBU OBU

Initial situation
T = 0s

IEEE 802.11p (WAVE)
OBU connected through Ethernet to users’

equipments simulated by Raspberry Pi

Internet
Users watching a

video /
downloading a file

Handover 1
T = 30 s

Handover 2
T = 60 s

Handover detection &
processing (N-PMIPv6 / SDN)

Figure 5: Illustration of the topology used in the test scenarios. In this topology, a vehicle

- represented by an OBU - passes through several RSUs, and the handover detection and

processing systems, based on N-PMIPv6 or SDN, ensure that mobile users can keep using the

Internet, for example to watch a video or downloading a file.

The emulated real life scenario consists of a vehicle equipped with the OBU

(in this instance only the OBU is present given the laboratory topology) passing

by three distinct RSUs. Each time the vehicle moves closer to a new RSU, it

changes the RSU with which it is communicating, thus performing a handover.

In this work we assume disjoint RSUs radio coverage, which means that it is440

not possible for one OBU to be in the range of communication of two RSUs

simultaneously. As the vehicle moves, the end users which are connected to the

vehicle’s OBU might be streaming a video or downloading a file.

20

Since the topology emulates a real life scenario in a laboratory setup, the

handover itself was forced by developing a script to control the behavior of the445

connection manager, as described in Section 6.2. The equipment used in the

experiments is later detailed in Section 6.3.

6.1.1. Scenario 1: video streaming

In this scenario, to emulate a video stream reaching the vehicle through its

OBU, the end user equipment will make a connection to a server running outside450

the network and start receiving data according to a set of specific parameters. To

simulate Variable Bit Rate (VBR) video traffic, the following set of parameters

were considered [32]:

• Constant inter-departure time of 24 packets/s;

• Packet size which follows normal distribution of mean 27791 bytes and455

standard deviation of 6254 bytes.

6.1.2. Scenario 2: file transfer

To emulate a scenario where a file is downloaded to the vehicle, the end user

equipment will also make a connection to a server outside of the network and

start the download according to a set of specific parameters:460

• Constant inter-departure time of 700 packets/s;

• Packet size of a constant size of 1000 bytes.

6.2. Evaluation Methodology

To understand the performance of both solutions, a set of performance

metrics are considered. Having in mind the great differences between the465

previous IP based mobility and the SDN mobility, these indicators are as general

as possible, while also allowing the direct comparison of both approaches. Table 1

lists the considered metrics and how they were evaluated in N-PMIPv6 and SDN

approaches.

21

Table 1: Evaluated metrics.

Metric Evaluation Process

Average delay Measured using D-ITG 3

Jitter Measured using D-ITG

Time per handover By comparing the packet timestamps travelled in the

old and new paths

Overhead N-PMIPv6: Number and size of RS and RA messages 4

SDN: Number and size of OpenFlow messages

Packet loss Measured using D-ITG

A set of tests were executed for both scenarios and network architectures.470

Real network hardware is used during the evaluation process, but the mobility

profile is emulated in the laboratory environment. To be more precise, a script

was developed to control the behavior of the connection manager, i.e. we decided

the exact moment for the handover to occur. Although such behavior does not

represent the uncertainty of a real vehicular environment, it is a fair mechanism475

in order to guarantee the same conditions among all network architectures and

respective tests.

For each scenario, several tests are conducted where different numbers of

handovers are performed (0, 1 or 2), for a total test duration of 90 seconds.

Each test is executed 10 times, using both UDP and TCP traffic with the help480

of the D-ITG software [33], and between a server located outside the network

and the end user equipment, connected to the OBU. The final results represent

the average values and their 95% confidence interval.

It is important to note that the tests for the video streaming scenario using

TCP are considered as important as the ones in UDP, to understand the overall485

performance of the developed approaches, even if most video streaming solutions

rely heavily on UDP or other protocols. The same applies for the file transfer

scenario when using UDP.

3http://traffic.comics.unina.it/software/ITG/
4Router Solicitation and Router Advertisement messages.

22

6.3. Equipment

To run all the required tests, two topologies, like the one illustrated in490

Figure 5, are deployed: one to test the SDN architectures, and another one

to test the N-PMIPv6 solution.

In terms of equipment, for the N-PMIPv6 deployment, the LMA is deployed

on a dedicated machine running Ubuntu as its Operating System (OS), whereas

the RSUs and OBUs are implemented in Single Board Computers (SBCs) denoted495

as NetRiders running a custom OS5, and with both IEEE 802.11/WiFi and

IEEE 802.11p/WAVE (V2V technology).

As for both SDN architectures, the SDN controller is deployed on a dedicated

machine running Ubuntu as its OS, and for the SDN framework, the controller

application is running on Ryu6. This framework was chosen given the fact500

that it is an open-source SDN controller that supports the OpenFlow protocol

and, since it is based on Python, it allows for quick and effective development,

while also providing good performance for small network topologies [34]. As

for the RSUs and OBUs, these are implemented in APU platforms which are

SBCs produced by PC Engines7, containing both IEEE 802.11/WiFi and IEEE505

802.11p/WAVE interfaces.

Finally, when it comes to the end user equipment, these are simulated using

RPis connected directly to the OBUs through their Ethernet interfaces. Table 2

presents the specifications of the equipment used.

7. Results510

This section presents and discusses the most important results for both

scenarios and for all the network architectures. First we will analyze the results

related to the network characteristics, such as packet overhead, packet loss and

time per handover. Then, we will extend the discussion by analyzing the impact

5http://veniam.com
6http://ryu-sdn.org/
7http://pcengines.ch

23

Table 2: Equipment Specifications.

Equipment CPU [MHz] Memory [MB] Linux Kernel OS

LMA 1400 (2 cores) 2048 4.14.3 Ubuntu 16

NetRiders 680 64 3.7.4 VeniamOS 19.2

SDN Controller 3600 (2 cores) 4096 4.15.0 Ubuntu 18.04

APU 1000 (4 cores) 4096 5.7.10 Debian 8

RPi 3 Model B 1200 (4 cores) 1024 4.4.38-v7+ Ubuntu 16.04.6

of the handovers on each of the two scenarios, the video streaming and file515

transfer, when it comes to the average delay time and jitter.

7.1. Packet overhead

Table 3 presents the overhead in terms of the number of control packets

observed during the tests on all the mobility solutions when performing, zero,

one or two handovers. Similarly, Table 4 presents results about the network520

overhead, but in this case it is represented in terms of size (in kbytes). The

control packet overhead should be seen as an indicator to understand the complexity

and cost of each mobility solution.

When comparing the results between the SDN approaches and the baseline

N-PMIPv6, it is not possible to get a clear conclusion on which is the best when525

it comes to the overhead. The SDN architecture 1 has the least amount of

overhead in almost every scenario with the exception of UDP video streaming.

On the other hand, the SDN architecture 2 has the highest overhead values out

of all solutions (mainly in the cases of one or more handovers). Finally, the

N-PMIPv6 solution is better in terms of overhead than the SDN architecture 2530

in the cases where handovers occurred, but loses out to SDN architecture 1 on

almost all scenarios.

Results show a clear difference between the SDN architectures, with the

second architecture, where the RSUs are part of the SDN network, being the

solution with larger overhead, but also with a larger variability. This is explained535

by the fact that, since in the second SDN architecture, the RSUs are also SDN

switches, the overhead - counted as the number of OpenFlow packets - increases

24

Table 3: Control packet overhead [number of packets].

Number of handovers

0 1 2

Video streaming emulation - UDP

N-PMIP 72 ± 1 79 ± 1 89 ± 1

SDN Arch 1 18 ± 1 97 ± 4 155 ± 15

SDN Arch 2 69 ± 4 225 ± 13 268 ± 12

Video streaming emulation - TCP

N-PMIP 71 ± 1 80 ± 1 91 ± 1

SDN Arch 1 17 ± 1 65 ± 10 96 ± 18

SDN Arch 2 62 ± 3 150 ± 14 194 ± 19

File transfer emulation - UDP

N-PMIP 72 ± 1 78 ± 2 90 ± 1

SDN Arch 1 13 ± 1 36 ± 3 60 ± 8

SDN Arch 2 67 ± 3 126 ± 5 162 ± 4

File transfer emulation - TCP

N-PMIP 73 ± 1 81 ± 2 90 ± 2

SDN Arch 1 16 ± 1 35 ± 2 71 ± 8

SDN Arch 2 58 ± 1 109 ± 7 167 ± 11

25

Table 4: Control packet overhead [kbytes].

Number of handovers

0 1 2

Video streaming emulation - UDP

N-PMIP 13.0 ± 0.93 13.3 ± 0.19 15.0 ± 0.20

SDN Arch 1 1.9 ± 0.09 20.3 ± 0.97 30.5 ± 3.08

SDN Arch 2 12.3 ± 0.97 41.1 ± 2.58 48.6 ± 2.79

Video streaming emulation - TCP

N-PMIP 12.8 ± 0.88 13.5 ± 0.16 15.3 ± 0.31

SDN Arch 1 1.97 ± 0.14 12.04 ± 2.02 17.9 ± 2.8

SDN Arch 2 6.4 ± 0.34 26.4 ± 2.84 33.6 ± 3.81

File transfer emulation - UDP

N-PMIP 12.9 ± 0.85 13.1 ± 0.27 15.2 ± 0.37

SDN Arch 1 1.3 ± 0.11 10.4 ± 1.44 21.7 ± 3.22

SDN Arch 2 9.5 ± 1.13 33.2 ± 1.79 44.5 ± 1.56

File transfer emulation - TCP

N-PMIP 13.1 ± 0.88 13.2 ± 0.33 15.1 ± 0.44

SDN Arch 1 2 ± 0.28 6.2 ± 0.36 13.3 ± 1.63

SDN Arch 2 6.3 ± 0.29 17.3 ± 1.49 27.6 ± 2.41

26

substantially. This happens because the OpenFlow messages are now sent to

and from three SDN switches (one on each RSU), thus increasing the control

overhead to around three times when compared with architecture 1.540

In addition, some of the OpenFlow messages that translate into the additional

overhead are messages sent by the switches and are not processed fast enough

by the controller, especially in specific test scenarios like UDP video streaming:

when a handover occurs, there a lot of packets sent by the SDN switch to the

controller in a short period of time.545

The fact that the SDN controller is centralized and without redundancy,

means that it might be a source of such processing delays. This is not a

big problem when the SDN controller is only responsible for one SDN switch,

but this proved to increase the control overhead when more SDN switches are

present. While both SDN architectures are feasible in terms of the costs that550

they mean to the network, when it comes to packet overhead, special caution is

required when scaling the number of SDN switches.

Possible solutions to mitigate this problem would be adding more SDN

controllers in a distributed way, or migrating the controller application to a more

professional one. Considering the SDN switches, these could also be upgraded555

to real SDN switches as opposed to the software SDN switches used in both

SDN architectures.

Another disadvantage of the N-PMIPv6 that should be taken into consideration,

and not visible in the presented results of control overhead, is that this solution,

because of the tunnels it requires (as described in Section 3), also introduces a560

significant data overhead, non-existent in the SDN solutions. This data overhead

results from the existence of the IPv4-to-IPv6 tunnel between the LMA and the

OBUs, and the IPv6-to-IPv6 tunnel between the LMA and the RSUs. Such

mechanisms result in the addition of two IPv6 headers over the original IPv4

data packet, increasing its size and data overhead by 80 bytes in total per data565

packet transmitted.

27

7.2. Handover Time

Table 5 presents the handover time, i.e. the time for the handover process

to be completed, which is a great indicator of the complexity of the handover

process and its impact in the user experience - the increase in the handover time570

also means an increase in the average delay of the packets, and potentially, a

worse user experience.

Table 5: Time per handover [ms].

Video Streaming Emulation

N-PMIPv6 8307.6 ± 57.15

SDN Arch 1 12.9 ± 0.32

SDN Arch 2 13.4 ± 0.30

File Transfer Emulation

N-PMIPv6 6804.9 ± 94.08

SDN Arch 1 9.4 ± 0.48

SDN Arch 2 8.2 ± 0.58

Results show consistently that the SDN architectures have handover times

within tens of milliseconds, while the N-PMIPv6 shows consistent results within

6-8 seconds. This can be explained by the large complexity of the handover575

process in the N-PMIPv6 solution, specially the deletion and creation of tunnels

as described in Section 3 whenever the OBU connects itself to a new RSU. On

the other hand, the simpler handover process in the SDN architectures - which

is the result of the fast packet processing and flow changes by the SDN controller

application, as explained in Section 5.1.4 - enables fast and efficient handovers,580

which results in significantly lower times when compared with the N-PMIPv6

solution.

7.3. Packet loss

Table 6 presents the packet loss percentage of the different solutions. This

metric is evaluated considering two distinct situations: measuring the packets585

lost in a period without handovers, and when handovers are observed. An

28

important conclusion can immediately be taken from the results: the TCP

based tests showed no packet loss. This was the theoretically expected result

since TCP recovers from losses of packets, at the cost of greater complexity when

compared with UDP. In addition, it confirms that both SDN architectures work590

without packet losses in TCP scenarios.

Table 6: Packet loss [%].
No Handover Per Handover

Video Streaming Emulation [UDP]

N-PMIPv6 0.002 ± 0.00 6.673 ± 0.66

SDN Arch 1 0 0

SDN Arch 2 0 0.0 ± 0.04

File Transfer Emulation [UDP]

N-PMIPv6 0 7.298 ± 0.51

SDN Arch 1 0 0.0 ± 0.01

SDN Arch 2 0 0

Both Scenarios [TCP]

All 0 0

In the UDP tests, some packet loss was to be expected in situations where

handovers occurred, given the fact that communication is suspended for a brief

period of time while the handover is processed. In this case the results show

the clear advantage of the SDN architectures in terms of robustness. The595

SDN approaches have only marginal packet losses (0.01% or less), while the

N-PMIPv6 has losses of around 6-8% per handover. This is a clear consequence

of the time it takes to perform a handover, where the longer the handover takes

to complete, the more packets are dropped. As seen in Table 5, the N-PMIPv6

solution has a significantly higher time per handover, which justifies its higher600

packet loss values.

29

7.4. Average Delay Time and Jitter

Figures 6 and 7 present the average delay and the jitter of the data packets,

respectively, for both services and network solutions.

Figure 6: Average delay time.

The average delay results show that the N-PMIPv6 solution presents significantly605

worse values in almost all tested scenarios when compared with the SDN solutions,

with the exception of the video streaming scenario in UDP, where the results

are similar between all solutions. This means that, in most scenarios, the N-

PMIPv6 solution has a greater impact on the time it takes for packets to get

to the end user, which in turn means a worse overall experience for the user.610

As for the SDN solutions, they present very similar values in all of the tested

scenarios, with a slight difference between the two in the file transfer scenario

in UDP.

In the TCP scenarios, it is possible to observe the impact that the handover

time has on the average delay. It is clear that the N-PMIPv6 solution presents615

significantly higher average delay values when compared with both SDN solutions.

30

Figure 7: Average jitter.

This can be explained by the way TCP itself works. Since TCP recovers from

losses, anytime a packet is dropped (in this case due to the handovers), it has to

be re-transmitted, which increases the packet delay. This means that, the longer

the handover process takes, the longer it takes for packets to be re-transmitted,620

which in turn means an increase to the average packet delay. This explains why

the values are higher for the N-PMIPv6 solution, as it takes significantly longer

time to perform a handover when compared with the SDN solutions. Another

important aspect to remark is that the number of handovers seems to affect the

average delay in the N-PMIPv6 solution: the more handovers are performed,625

the higher is the delay. This fact is not observed in the SDN solutions.

In both UDP scenarios, it is possible to observe that the handover time has

no impact on the average packet delay for the video streaming scenario. In this

scenario, the N-PMIPv6 solution does not suffer from the higher handover time

when compared with the SDN solutions, regarding the average delays.630

Another important conclusion that can be drawn from the results is that

31

both SDN architectures present, for all the scenarios, around the same average

delay. This shows that the fact that RSUs are or not a part of the SDN topology

has little to no influence in this metric.

The average jitter, i.e. the variation in the time between data packets635

received, the first evident conclusion is that the N-PMIPv6 presents significantly

worse values in TCP video streaming emulation. However, and unlike in the

average delay, the N-PMIPv6 presents slightly better results in the video streaming

emulation in UDP, and for download scenarios both in TCP and UDP. This can

be a consequence of the single centralized controller architecture. As described640

in Section 7.1, this means that the controller might be a source of processing

delays, therefore introducing some variability to the time it takes for packets to

be processed by the SDN controller.

8. Conclusions

This article explored the use of the SDN concept to optimize the handover645

times in vehicular communications. In this article, two SDN based approaches

were proposed, with different levels of SDN support, in the core or in the edge.

The support of SDN in the edge enables the communication of the topology

changes from the RSUs to the controller, providing the support towards a more

proactive handover.650

These approaches were compared to an existent N-PMIPv6 solution. The

results of SDN based approaches show that they are able to provide much lower

handover times (around 10msec), average delays, more robustness thanks to the

lower packet loss, and higher flexibility thanks to the programmability of the

SDN controller.655

Future improvements concern the evolution towards a fully proactive solution,

inter network communication and eventual scalability issues as a result of the

addition of more SDN-capable entities or fast changing VANETs. The proactive

operation mode can be provided through the usage of information from the

connection manager of an OBU, or through the usage of CAMs ITS messages to660

32

inform the controller about changes in the OBUs, and providing the information

for predictive handovers. Other topics of future research include the integration

of other technologies, such as cellular, including C-V2X, and the extension

to provide and enable multihoming. Such integration leads to new challenges

such as the inter domain handovers, which may involve multi-SDN controller665

environments where the communication between the SDN controllers will be

critical for the seamless handover operation. Hypothetical scalability issues

could be solved by instructing the SDN controller to proactively notify all the

SDN switches involved in a new flow after the first notification arrives at the

controller. Finally, understanding how SDVN environments behave when there670

is no connectivity between the OBU and the infrastructure is also a topic of

future research.

Acknowledgements

This work is funded by FCT/MCTES through national funds under the

project MH-SDVanet (PTDC/EEI-COM/5284/2020).675

References

[1] S. Al-Sultan, M. M. Al-Doori, A. H. Al-Bayatti, H. Zedan, A comprehensive

survey on vehicular Ad Hoc network, Journal of Network and Computer

Applications 37 (2014) 380 – 392.

[2] C. Perkins, IP Mobility Support for IPv4, Revised, RFC 5944, RFC Editor680

(November 2010).

URL https://tools.ietf.org/html/rfc5944

[3] V. Devarapalli, R. Wakikawa, A. Petrescu, P. Thubert, Network Mobility

(NEMO) Basic Support Protocol, RFC 3963, RFC Editor (January 2005).

URL https://tools.ietf.org/html/rfc3963685

[4] I. Soto, C. J. Bernardos, M. Calderon, A. Banchs, A. Azcorra, Nemo-

enabled localized mobility support for internet access in automotive

33

https://tools.ietf.org/html/rfc5944
https://tools.ietf.org/html/rfc5944
https://tools.ietf.org/html/rfc3963
https://tools.ietf.org/html/rfc3963
https://tools.ietf.org/html/rfc3963

scenarios, IEEE Communications Magazine 47 (5) (2009) 152–159. doi:

10.1109/MCOM.2009.4939291.

[5] N. Capela, S. Sargento, An intelligent and optimized multihoming approach690

in real and heterogeneous environments, Wireless Networks 21 (6) (2015)

1935–1955. doi:10.1007/s11276-015-0896-1.

[6] A. Gladisch, R. Daher, D. Tavangarian, Survey on Mobility and

Multihoming in Future Internet, Wireless Pers Commun (74) (2014) 45–81.

doi:10.1007/s11277-012-0898-6.695

[7] Z. He, J. Cao, X. Liu, SDVN: enabling rapid network innovation for

heterogeneous vehicular communication, IEEE Network 30 (4) (2016) 10–

15. doi:10.1109/MNET.2016.7513858.

[8] I. Yaqoob, I. Ahmad, E. Ahmed, A. Gani, M. Imran, N. Guizani,

Overcoming the Key Challenges to Establishing Vehicular Communication:700

Is SDN the Answer?, IEEE Communications Magazine 55 (7) (2017) 128–

134.

[9] J. Santa, J. Ortiz, P. J. Fernandez, M. Luis, C. Gomes, J. Oliveira,

D. Gomes, R. Sanchez-Iborra, S. Sargento, A. F. Skarmeta, MIGRATE:

Mobile Device Virtualisation Through State Transfer, IEEE Access 8 (2020)705

25848–25862.

[10] F. Castro, A. Martins, N. Capela, S. Sargento, Multihoming for uplink

communications in vehicular networks, in: 2017 Wireless Days, 2017, pp.

230–237.

[11] J. Kang, D. Kum, Y. Li, Y. Cho, Seamless Handover Scheme for Proxy710

Mobile IPv6, in: 2008 IEEE International Conference on Wireless and

Mobile Computing, Networking and Communications, 2008, pp. 410–414.

doi:10.1109/WiMob.2008.105.

[12] J. Lee, J. Park, Fast Handover for Proxy Mobile IPv6 based on

802.11 Networks, in: 2008 10th International Conference on Advanced715

34

https://doi.org/10.1109/MCOM.2009.4939291
https://doi.org/10.1109/MCOM.2009.4939291
https://doi.org/10.1007/s11276-015-0896-1
https://doi.org/10.1007/s11277-012-0898-6
https://doi.org/10.1109/MNET.2016.7513858
https://doi.org/10.1109/WiMob.2008.105

Communication Technology, Vol. 2, 2008, pp. 1051–1054. doi:10.1109/

ICACT.2008.4493947.

[13] S. Saha, S. Bhattacharjee, R. N. Bhowmick, A. K. Mukhupadhyay,

D. Nagamalai, Analysis of Hierarchical Mobile IP Based Fast Mobility

Management Schemes, in: 2009 First International Conference on Networks720

Communications, 2009, pp. 338–343.

[14] D. Lopes, S. Sargento, Network mobility for vehicular networks, in: 2014

IEEE Symposium on Computers and Communications (ISCC), 2014, pp.

1–7.

[15] J. Choi, Y. Han, S. Min, A Network-Based Seamless Handover Scheme for725

VANETs, IEEE Access 6 (2018) 56311–56322.

[16] X. Duan, Y. Liu, X. Wang, SDN Enabled 5G-VANET: Adaptive Vehicle

Clustering and Beamformed Transmission for Aggregated Traffic, IEEE

Communications Magazine 55 (7) (2017) 120–127.

[17] H. Li, M. Dong, K. Ota, Control Plane Optimization in Software-Defined730

Vehicular Ad Hoc Networks, IEEE Transactions on Vehicular Technology

65 (10) (2016) 7895–7904.

[18] W. Qi, Q. Song, X. Wang, L. Guo, Z. Ning, SDN-Enabled Social-Aware

Clustering in 5G-VANET Systems, IEEE Access 6 (2018) 28213–28224.

[19] C.-C. Lin, H.-H. Chin, W.-B. Chen, Balancing latency and cost in software-735

defined vehicular networks using genetic algorithm, Journal of Network and

Computer Applications 116 (2018) 35–41.

[20] H. Tong, X. Liu, C. Yin, A FAHP and MPTCP Based Seamless

Handover Method in Heterogeneous SDN Wireless Networks, in: 2019

11th International Conference on Wireless Communications and Signal740

Processing (WCSP), 2019, pp. 1–6.

35

https://doi.org/10.1109/ICACT.2008.4493947
https://doi.org/10.1109/ICACT.2008.4493947

[21] J. C. Nobre, A. M. de Souza, D. Rosário, C. Both, L. A. Villas,

E. Cerqueira, T. Braun, M. Gerla, Vehicular software-defined networking

and fog computing: Integration and design principles, Ad Hoc Networks 82

(2019) 172–181.745

[22] Z. Latif, K. Sharif, F. Li, M. M. Karim, S. Biswas, M. Shahzad, S. P.

Mohanty, DOLPHIN: Dynamically Optimized and Load Balanced PatH

for INter-domain SDN Communication, IEEE Transactions on Network

and Service Management (2020) 1–1doi:10.1109/TNSM.2020.3045725.

[23] T. Yuan, W. d. R. Neto, C. E. Rothenberg, K. Obraczka, C. Barakat,750

T. Turletti, Dynamic controller assignment in software defined internet

of vehicles through multi-agent deep reinforcement learning, IEEE

Transactions on Network and Service Management (2020) 1–1doi:10.

1109/TNSM.2020.3047765.

[24] X. Yin, L. Wang, A Fast Handover Scheme for SDN Based Vehicular755

Network, in: Mobile Ad-hoc and Sensor Networks, Vol. 747, Springer

Singapore, 2018, pp. 293–302.

[25] N. Mouawad, R. Naja, S. Tohme, Fast and Seamless Handover in Software

Defined Vehicular Networks, in: 2019 Eleventh International Conference

on Ubiquitous and Future Networks (ICUFN), 2019, pp. 484–489.760

[26] S. M. Raza, D. S. Kim, H. Choo, Leveraging PMIPv6 with SDN,

in: Proceedings of the 8th International Conference on Ubiquitous

Information Management and Communication, ICUIMC ’14, Association

for Computing Machinery, New York, NY, USA, 2014. doi:10.1145/

2557977.2558056.765

URL https://doi.org/10.1145/2557977.2558056

[27] R. Lopes, M. Luís, S. Sargento, Real-time Video Transmission in

Multihomed Vehicular Networks, in: 2019 IEEE Vehicular Networking

Conference (VNC), 2019, pp. 1–4.

36

https://doi.org/10.1109/TNSM.2020.3045725
https://doi.org/10.1109/TNSM.2020.3047765
https://doi.org/10.1109/TNSM.2020.3047765
https://doi.org/10.1145/2557977.2558056
https://doi.org/10.1145/2557977.2558056
https://doi.org/10.1145/2557977.2558056
https://doi.org/10.1145/2557977.2558056

[28] W. Xia, Y. Wen, C. H. Foh, D. Niyato, H. Xie, A survey on software-defined770

networking, IEEE Communications Surveys & Tutorials 17 (1) (2014) 27–

51.

[29] D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E. Rothenberg,

S. Azodolmolky, S. Uhlig, Software-Defined Networking: A Comprehensive

Survey, Proceedings of the IEEE 103 (1) (2015) 14–76. doi:10.1109/775

JPROC.2014.2371999.

[30] W. Braun, M. Menth, Software-defined networking using OpenFlow:

Protocols, applications and architectural design choices, Future Internet

6 (2) (2014) 302–336.

[31] E. L. Fernandes, E. Rojas, J. Alvarez-Horcajo, Z. L. Kis, D. Sanvito,780

N. Bonelli, C. Cascone, C. E. Rothenberg, The road to BOFUSS: The basic

OpenFlow userspace software switch, Journal of Network and Computer

Applications (2020) 102685.

[32] M. W. Garrett, W. Willinger, Analysis, Modeling and Generation of

Self-Similar VBR Video Traffic, in: Proceedings of the Conference on785

Communications Architectures, Protocols and Applications, SIGCOMM

’94, Association for Computing Machinery, New York, NY, USA, 1994, p.

269–280. doi:10.1145/190314.190339.

[33] A. Botta, A. Dainotti, A. Pescapè, A tool for the generation of realistic

network workload for emerging networking scenarios, Computer Networks790

56 (15) (2012) 3531–3547.

[34] O. Salman, I. H. Elhajj, A. Kayssi, A. Chehab, Sdn controllers:

A comparative study, in: 2016 18th Mediterranean Electrotechnical

Conference (MELECON), 2016, pp. 1–6.

37

https://doi.org/10.1109/JPROC.2014.2371999
https://doi.org/10.1109/JPROC.2014.2371999
https://doi.org/10.1109/JPROC.2014.2371999
https://doi.org/10.1145/190314.190339

Conflict of Interest

Exploring Software Defined Networks for Seamless
Handovers in Vehicular Networks

Dear Prof. Mohammed Atiquzzaman,

We are pleased to submit our work, entitled Exploring Software Defined
Networks for Seamless Handovers in Vehicular Networks, for possible publica-
tion in Vehicular Communications.

We declare that this submission is an original research and is not under re-
vision in any other scientific journal or conference.

Furthermore, the authors declare that there is no conflict of interest.

Best regards,

Miguel Silva, Pedro Teixeira, Christian Gomes, Duarte Dias, Miguel Luı́s 1 ,
Susana Sargento

1 Corresponding author: nmal@av.it.pt

1

Declaration of interests

☒ The authors declare that they have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

☐The authors declare the following financial interests/personal relationships which may be considered
as potential competing interests:

	Introduction
	Related Work
	Base Work
	SDN-Based Handovers
	SDN Architecture 1 - Pure reactive solution
	SDN Architecture 2 - A step towards a proactive solution
	The controller role

	Implementation and Deployment
	SDN Controller Application
	Handling unknown packets
	Handling ARP packets
	Handling IP packets
	Handover detection
	Rerouting packets

	Evaluation Setup
	Evaluation Scenario
	Scenario 1: video streaming
	Scenario 2: file transfer

	Evaluation Methodology
	Equipment

	Results
	Packet overhead
	Handover Time
	Packet loss
	Average Delay Time and Jitter

	Conclusions

