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ABSTRACT

Light-emitting diodes (LEDs) are replacing convenal lighting sources, like incandescent and
fluorescent lamps, due to their higher efficienloyyer energy consumption and environmental
friendliness characteristics. Additional applicasaenvisaging “engineered light” able to control
the human circadian rhythm are now in place wittpleases on green-emitting LEDs. In this
work, transparent and flexible coatings based @amic—inorganic di-ureasil hybrids doped in-
situ with a terbium (TH) complex involving salicylic acid as ligands wesgnthesized. The
materials are transparent, essentially amorphodisheemmal stable up to 18C. Under near-UV
excitation, bright green emission with high quantuyneld (0.565+0.057) and enhanced
photostability are observed. Green-emitting prqiesywere fabricated using a commercial near-
UV-emitting LED (NUV-LED) combined with the TH-doped di-ureasil coating showing
narrow-band green emission with yellowish-greeroicobordinates (Commission Internationale
de I'Eclairage, CIE 1931) of (0.329, 0.606) andhhlgminous efficacy (21.5 Im/W). This
efficacy is the largest one reported for analogpretotypes formed by an NUV-LED coated
with a green-emitting phosphor prepared under nslghthetic conditions (<100°C),
demonstrating that in-situ formation of carboxyldéathanide-based complexes is an energy

saving process with potential for solid-state lightand backlight for flexible displays.
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1. Introduction

Lighting as one of the indispensable human teclgietohas been widely applied to
human activities, including basic illumination adécoration [1]. Light-emitting diodes (LEDS)
emerged in the last decades as an efficient stdig-dighting source not only replacing the
traditional incandescent and compact fluorescegiit libulbs [2], but also featuring more
uncommon applications in the fields of human heatid productivity due to their “engineered
light” able to control the circadian rhythm [3-&]EDs, however, still face some shortcomings
such as an insufficient cyan emission limiting calender index and a relatively low efficient
green emission, termed as “cyan gap’ and “green” gapblems, respectively [6,7].
Monochromatic green-emitting devices are partidyldesirable due to the larger sensibility of
the human eyes in this spectral region [8], pushitngrefore, solid-state lighting to pay
particular attention to the development of greertterg LEDs. Contrarily to what found for
LEDs with emission the blue or red spectral regidihe development of green-emitting devices
has been limited so far due to the “green gaps”\|Mile fabricating for red- and blue-emitting
LEDs high luminous efficacy (LE) is attained simply adjusting the relative amount of indium
in InGaN or AllnGaP, for the green-emitting ondsstmethodology induces a decrease in the
LE [9]. An alternative approach to overcome thee&gr gap” is the combination of near-UV
emitting LEDs (NUV-LEDs) and down-shifting phospblable to efficiently convert the near-
UV radiation from GaN-based LEDs into green ligh]

Complexation of lanthanide ions (£ with organic ligands has been extensively applied
to develop efficient phosphors for LED applicatiorggven the intrinsic pure and tunable
emission colors of the ions. The judicious choidettte ligands requires high-absorption

coefficients in the UV spectral region and effidiéntramolecular energy transfer to the®tn
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excited states [11]. For sensitizing the*Lions, whereag-diketonates and carboxylates are
frequently used as the primary ligands, heterocyelibieties are used as ancillary ones [12].
Compared to L#i-based complexes involving-diketonate ligands, carboxylate complexes
usually show improved photo- and thermal-stabsitikie to their polymeric nature [13]. As a
result, Lii*-based complexes with carboxylates could be redaaseprospective phosphors for
lighting and display applications. In particularpmatic carboxylic acids typically have strong
absorption in the UV or near-UV spectral regiong do the delocalizedrelectron system of
aromatic rings and have been widely used to prejpaifebased coordination polymers [14—24].
Among those complexes, examples involving hydroxyo& acids, especially salicylic acid
(HSal) and their derivatives, already displayedwmsing luminescence features [21-24]. In what
concerns processability, these complexes shouldnberporated into solid-state matrices
enabling easy film fabrication, which is a relevambperty featuring the use of UV-LED.
Nonetheless, the polymeric characteristic of themgexes with short-range interactions [25],
renders them with poor solubility in common orgarsolvents, preventing their direct
incorporation in matrices.

Up to now, those complexes were incorporated intminaclays [26] and
organic-inorganic hosts either via covalent binding or ptglsembedding by in-situ segel
process [27-30]. Focusing our attention oriTderived complexes due to the intrinsic green
color, mention must be done to examples involvirBaHand 1,10-phenanthroline (phen) ligands
doped into polyvinyl alcohol (PVA) [31]. Althouglome of the TB'-derived complexes with
aromatic carboxylates display high emission quanyigids (10.50), the maximum excitation
wavelength lies in the UV regionl§20 nm), which is not suitable for excitation wlvV-LED

chips (>350 nm) [15,21,32]. Therefore, the desigl synthesis of new near-UV excited
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phosphors are critical issues. Few works repotiedsensitization of Th-related luminescence
by aromatic carboxylate ligands in the near-UV oegj33-36]. For instance, the *tbased
macrocyclic complex with pyrazoyl-1-azaxanthonevehdhe maximum excitation wavelength
at 355 nm [33], while the complex bearing the 2+oygisophthalate moiety displays the
strongest excitation wavelength at 370 nm [34]. Tibg(Hesa)e(1-OH)10(NO3) (Hesa=hexyl
salicylate) hydroxo cluster exhibits a red-shiftloé absorption band from 315 to 340 nm, due to
phenyl stacking [35]. The Fhbased complex with 4-benzoylbenzoic acid and uyldaiz acid,

as primary and reactive ligands, respectivelyhiaracterized by a wide excitation range (310—
400 nm) [36]. It should be noted that an intrigumgrk was reported showing that using HSal as
primary ligand and trioctylphosphine oxide as atrauigand the obtained Phbased complex
can render soluble even in non-polar matrices [32].

Inspired by the aforementioned works, and aimingyathesizing green phosphors with
high quantum yields under near-UV excitation, heree incorporate high doping concentrations
of a TB*-based complex involving the HSal ligand into ofigamorganic di-ureasil hybrids by
in-situ solgel method, overcoming solubility issues, as daaile have unique polymeric
structures with different coordination points then interact with the Tb ions [37]. The
resulting luminescent di-ureasils were structuralyd spectrally characterized, displaying a
photostable and bright green emission (quantund yo¢l0.565+0.057). Green-emitting LEDs
prototypes were also fabricated using commerciallable NUV-LEDs (365 nm) combined
with the TB*-doped di-ureasil coating showing the largest LE.§2m/W) reported so far for
analogous prototypes formed by an NUV-LED coateth \ai green-emitting phosphor prepared

under mild synthetic conditions (<10Q).
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2. Experimental section
2.1. Chemical and materials

Sodium salicylate (NaSal, Acofarma, 99%), HSal (fdcma, Madrid, Spain)o,o-
diaminepoly(oxyethylene-co-oxypropylene) (ED-600, untsman), and 3-
isocyanateproplytriethoxysilane (ICPTES, 95%, Adtljiare commercially available. A terbium
chloride (TbC}) aqueous solution (0.1 mol/L) was obtained byalissg terbium oxide (THO-,
Yuelong New Material Co., Ltd., Shanghai, Chinahidrochloride acid (HCI, 37%, Aldrich).
The remaining acid was removed by successive eatiporand the resulting solid was dissolved
in distilled water. Tetrahydrofuran (THF, 99%, SawAldrich) and absolute ethanol (EtOH,
Sigma—Aldrich) were used as solvents. The HCI avdiusn hydroxide (NaOH, AkzoNobel,
Barcelona, Spain) were used for the formation d§.gall chemicals were used as received
without purifications. Distilled water was useddbhghout experiments. The commercial NUV-
LED chips (365+5 nm) were purchased from Shenzheoking Long Technology Co., Ltd.,
Shenzhen, China.

a) o] o]
EESN\T*T)\/(OW/%OAMO\)%TJ\T/\/\S/\% :__
oo a+c=2.5 b=8.5 oo

OH

b)

C—OH

Scheme 1. Molecular structures of (a) dU(600) and (b) H&gdhd.

2.2. Synthesis of d-UPTES(600) precursor
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The non-hydrolised precursor, d-UPTES(600), usedHe preparation of the di-ureasil,
dU(600), was synthesized according to the liteeaf88]. The ICPTES was added dropwise into
a homogenous mixture of ED-600 and THF under sgrat room temperature with the molar
ratio of ED-600:ICPTES=1:2. After 24 h of stirriag room temperature, the THF in the mixture
was evaporated under vacuum, and the d-UPTES(8806)isor was achieved.

2.3. Synthesis of dU(600) doped in-situ with & Timsed complex

For the preparation of the non-doped dU(600), 1(0.¢13 mmol) of d-UPTES(600) was
mixed with 1 mL of EtOH and 98@0° L of HCI (0.05 mol/L) in a beaker for 30 minutes
stirring. The mixture was then transferred intoocaen at 56C. The molecular structure of the
duU(600) is illustrated in Scheme 1. For the prepameof the dU(600)-based hybrids containing
distinct concentrations of the Tbcomplex with HSal, 1.0 g (0.913 mmol) of d-UPTESp
was mixed with 1 mL of EtOH in three isolated beak&hen 98.810° L of HCI (0.05 mol/L)
was added with a molar ratio of d-UPTES(60QDH1:6 to the three isolated beakers. The
resulting sols were stirred at room temperature 30r minutes. Simultaneously, 9413,
1.826<10° and 2.73910°2 L of TbCk (0.1 mol/L) aqueous solutions were added to another
three separated beakers and dried di®% evaporate the water. Then, they were dissdived
4x107 L of EtOH, followed by addition of 37:@073, 75.7%10°° and 113.810° g of HSal
(Scheme 1) with a molar ratio of dU(600):Th:HSat=2c (c=10%, 20% and 30%), respectively.
These mixtures were added to the above sols, deparfollowed by 10 minutes of stirring at
room temperature. Finally, 5480°, 110.10°, and 164.510° L of NaOH (5.0 mol/L) were
added to the above mentioned three sols undeingtinvith a molar ratio of HSal:NaOH=1:1.
The resulting transparent sols were transferredrtodel and placed in an oven of&Dfor two

days. The samples with doping concentrations of ,1@%6 and 30% are designated as
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10TbSal@dU6, 20ThSal@dU6, and 30ThSal@dU6, rey@dgetiThe Th content in the final
hybrids was determined by Inductively Coupled Pladdptical Emission Spectroscopy (ICP-
OES) as 1.3#0.1, 2.5#0.3, and 3.910.4 wt%, for 1®AI@AU6, 20ThSal@duU6, and
30ThSal@dU6 respectively. These values are in dcedath the calculated ones, 1.7+0.2,
3.240.3 and 4.6+0.4 wt%, respectively, being theanideviations assigned to residual solvent
and the unfinished condensation reaction. The tmifdistribution of the complex within the
hybrid is inferred from scanning electronic microgg (SEM) images and energy-dispersive X-
ray spectroscopy (EDX) elemental maps of 30ThSal@that reveal a smooth surface and a
homogenous distribution of the Si and Th atomshaevit evidence of aggregation, (Fig. S1). We
note that at higher dopant molar ratios (e.g., 48%m transparency is lost. Fig. 1a and 1b
display photographs of a transparent 30TbSal@dl tiim under day light and 365 nm

illumination, respectively.

T mm

Fig. 1. Photographs of a free standing film of 30TbSal@dd@er (a) day light and (b) near-UV

radiation (365 nm); In (c) a commercial NUV-LED pki(365 nm) coated with 30ThSal@dU6 is
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shown (the grey dashed circle signs the hybridiegatwhereas the photo in (d) zooms the LED

operating at 50107 A of driving current.

2.4. Synthesis of the ¥bcomplex

The pure TB"-based complex with HSal ligand, Th(S&H,0, designated as Th-I, was
synthesized according to the literature [39].
2.5. Prototypes of green-emitting LEDs fabrication

The green-emitting LEDs prototypes were fabricatedollowed: a droplet (1107 L)
of the 30ThSal@dU6 sol was drop-casted on the saidh a commercial NUV-LED. Then, the
LED was moved into an oven (5Q) for 2 days for complete gelification and solvesmoval.
To ensure reproducibility, three prototypes weraejainder the same experimental conditions.
Fig. 1c shows a photograph of the as-fabricatetbprpe under daylight and the zoomed photo
in Fig. 1d displays the same LED upoxl8™ A of driving current.
2.6. Measurements

UV-visible absorption spectra were measured usidga-beam spectrometer Lambda
950 (PerkinElmer) at a resolution of 1.0 nm. PowHemay diffraction (XRD) patterns were
recorded in the 2range of 3.5 to 60.0° by using Panalytical Empyr&affractometer under
exposure of CuKradiation (1.54 A). Fourier transforinfrared (FT-IR) spectra from 4000 to
400 cm™ with 64 scans and 4 ¢Mhresolution were obtained by using MATTSON 7000 IRT-
Spectrometer. The best fit of the experimental de#s sought by varying the frequency,
bandwidth, and intensity of the bands and by emptpyorentzian/Gaussian contributions. FT-
Raman spectra were obtained at room temperatute aviBruker RFS 100/S spectrometer
equipped with a Nd:YAG laser (1064 nm, 350 mW). Raman intensities were collected over

the 4000-50 ciit range at a resolution of 4 mThermogravimetric (TG) measurements were
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performed with a 16C/min heating speed under the air atmosphere oBdh 2960 analyzer
(Shimadzu, Japan). The Tb content was determinelCByOES (Inductively Coupled Plasma
Optical Emission Spectroscopy) analysis on a Haidbiain Yvon model Activa-M. SEM
analyses were carried out using a scanning eleaticroscope Hitachi SU-70 operating at an
accelerating voltage of 15 kV and an EDX from Brukexcitation and emission spectra were
recorded using a Fluorolo§3oriba Scientific spectroscope (Model FL3-2T) withmodular
double grating excitation spectrometer and a TRIB2D single emission monochromator,
coupled to an R928 Hamamatsu photomultiplier ufiegfront face acquisition mode. A 450 W
Xe arc lamp was used as the excitation source. emhission spectra were corrected for the
detection and optical spectral response of thetggkmrimeter and the excitation spectra were
corrected for the spectral distribution of the lamiensity using a photodiode reference detector.
The emission decay curves were measured with the slescribed for the luminescence spectra
using a pulsed Xe—Hg lamp (& pulse at half-width and 20-3@ tail). The absolute emission
guantum vyields d) were measured at room temperature using the @13§8tem from
Hamamatsu with a 150 W xenon lamp coupled to a wmimoonator for wavelength
discrimination, an integrating sphere as samplentiea and two multichannel analyzers for
signal detection. Three measurements were madsafdr sample and the average value with an
accuracy of 10% is reported. The radiant flux (MWl ghe luminous flux (Im) of the prototypes
(coated NUV-LED) were measured using an integrasipigere ISP 150L-131 from Instrument
Systems. The integrating sphere (Ba®0ating) has an internal diameter of 150 mm and wa
coupled to an array spectrometer MAS 40 from Imsgmt Systems. The measurements are
accurate within 5%, accordingly to the manufactufdére phosphor performance was evaluated

under continuous excitation at 365 nm (450 W, Xelamp, 3.5x10 W irradiation).

10
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209 3. Resultsand discussion

210 3.1. Structural studies

211 The powder XRD patterns of 10ThSal@dU6, 20ThSal@daigl 30ThSal@dU6 are

212 given in Fig. S2. All the patterns show a broaddeantred ata. 21.0° ascribed to the presence
213 of amorphous siliceous domains from the dU(600) 8]. The second-order of this peak
214 appears as a very broad weak hump around-88.0°. Accordingly, the structural unit distances
215 are estimated, using the Bragg law [41], to be @.B#4.2+0.1 and 4.2+0.1 A for 10TbSal@dUs,
216 20TbSal@du6, and 30ThSal@dU6, respectively, resamlvhat previously reported (4.2+0.1
217 A) for dU(600) [42]. The sharp peaks at 31.9, 4&r6j 56.6 result from the diffraction of NaCl

218 (Fig. S2), that was formed when @bns in TbC} react with Naions in NaOH.

60

1595
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30ThSal@dué

[ Bl D2 Bl O ji
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Integral are fraction (%)
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10ThSal@edue

-| |>4 L 1 | - B .

1 1
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219 Wavenumber (cm™) “Amide I components (cm™)

220 Fig. 2. (a) Curve-fitting results of the FT-IR “Amide I'egion of 10ThSal@dU6 (red line),

221 20TbSal@du6 (green line) and 30ThSal@duU6 (blue);lifle) Integral area fraction of the
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resolved components of the “Amide [I” bands of 2103lEgdU6 (red line/symbol),

20ThSal@dU6 (green line/symbol) and 30ThSal@dUéelihe/symbol).

The local structure of 10ThSal@dU6, 20ThSal@dU6ThEal@dU6 were further
investigated by FT-IR (Fig. $3The disappearance of the strong band at 2272 refated to the
isocyanate moiety of ICPTES in all the spectradatis that the functional amine groups fully
react with ICPTES (Fig. S3). Looking for evidendettee T local coordination in the hybrid
host through the oxygen atom of the carbonyl grolithe urea cross-linkages, we inspect the
“Amide I’ and “Amide II” regions (1800-1490 cr') [43], in Fig. 2a.For dU(600), in “Amide
I” region, the three individual components centetd-1720 D3), 1686 D2), and 1662 1)
cm™* are assigned to the absorptions of hydrogen-bor@e® groups of disordered poly-
(oxyethylene) (POE)/urea aggregates of increasimgngth, whereas the prominent band
appeared at around 1640 ¢mO) is due to the absorption of C=O groups includad i
significantly more ordered hydrogen-bonded urteaa aggregates [44]. Typically, the
coordination of LA ions to the C=0 oxygen atoms of the urea crossjas of the di-ureasil
matrix is easily discerned in the “Amide 1I” regitimough the detection of a new event around
1620 cm® (L) [44,45]. The results of the curve-fitting perfachin the “Amide I” and “Amide
II” bands of 10TbSal@dU6, 20TbSal@dU6, and 30ThSH@ (Fig. 2a) and the integral area
fraction of the resolved components of “Amide I"iJF2b, and Table S1 for the relative
component percentages) fully supports the intevadiietween TH ions and the C=0 groups of
the urea bridges. Indeed, increasing th&" Bmount the intensities of the 1662 and 1640" cm
components are reduced, while that of the 1620 troreases significantly. These findings are
indicative of the disruption of urearea aggregate® and strongest POE/urea aggregddés

respectively, with the concomitant formation of b*Tcoordination-sensitive feature and more

12
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POE/urea aggregatd32 (the intensity of the 1686 c¢mcomponent increases as the®*Tb
concentration increases). In the “Amide II” regidine low-relative intensity band at 1515 ¢m
is attributed to the presence of weaker hydrogerded urea—urea structures [38], while that at
1595 cm® (that increases with the increasing of thé Tdpncentration) is due to asymmetric —
COQO vibrations from Sal ligands [46,47].

The hybrids’ local structure was further studiedHIy-Raman spectroscopy, to ascertain
the formation of the TB-based complex during in-situ synthesis processadgist an easier
interpretation of the data, the FT-Raman spectrin@®fdU(600) and the pure HSal, NaSal, and
Tb-1 are given out in Fig. S4. The FT-Raman speotréie TH"-based hybrids are composed of
the components found for dU(600) and Tb-I, with eadence of the NaSal and HSal
contributions (Table S2), supporting, therefore; tbhrmation of the TH-based complex by in-
situ sol-gel process.

The thermal stabilities of the hybrids were alsaleated through the comparison among
the TGA data of dU(600), Th-l and 30TbhSal@dU6 (Fig5). For Tb-l, the thermal
decomposition process takes four steps. The fiesglvt loss occurs from 150 to 180 °C due to
the removal of one water molecule from the lat{icalcd.: 3.1%, found: around 3.5%). Further
weight losses are attributed to the formation ofe thintermediate products
(1/2)Tbh(GH,OHCOO}: (1/4)ThO,CO; (calcd: 63.9%, found: around 66.5%) and
(1/3)Th(GH,OHCOO}: (1/3)ThO,COs (calcd: 53.9%, found: around 48.9%&spectively [48].
The final weight loss is associated with the decosimy of residues and forming Xy (calcd:
31.1%, found: around 32.0%) [49]. This decompositirocess of Tb-l1 is similar to the
decomposition behavior of the binuclear terbium ptax [Thy(HSalk(H20)][(Hphen)]- 2H,O

[50] that losses lattice and coordinated water mdés between 107 to 171 °C (observed,
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3.65%; calculated, 3.89%). Moreover, the two chedpsalicylate groups (observed, 36.18%,
calculated, 34.43%.) decompose from 171 to 291FY€.dU(600), the first weight losses before
100 °C is ascribed to the removal of the absorbatémand residual organic solvent. The main
weight loss happened when the temperature is imathge of 175 to 327 °C, with around 53%,
due to the decomposition of Jeffamine moieties, tn@dnext weight change is related to the
gradual loss of the remaining organic moieties famohing SiQ (calcd.: 13.7%, found: 14.4%)
[51]. For the 30ThSal@dU6 hybrid, two significaneight losses due to the decomposition of
polymer chains are discerned in the range of 1883t °C [42]. Moreover, three extra weight
losses (marked with arrows) are consistent withdsomposition behavior of Th-I (except the
weight loss of lattice water around 107 to 171 °Qjis evidence hints that there is no water
located on the first coordination shell of*Ttions. For 30ThSal@dUS6, the decomposition of Sal
mainly occurs at around 287 °C, 383 °C, and 545w the final residual of Sig) NaCl and
Th,03 (calcd.: 16.2%, found: 16.9%). The thermal decositiom of the in-situ synthesized ¥'b
complex is similar to that of pure Tb-I. In summattye TH*-based hybrids are stable up to 180

°C making them suitable for LED-based applications.

3.2. Optical properties

Fig. 3a displays the UWisible absorption spectra of free-standing film$ o
10TbhSal@duU6, 20ThSal@dU6, and 30TbSal@dU6, revgdlmat all are transparent. The
spectra are dominated by a broadband in the re2f®+-325 nm that overlaps the absorption
region of the undoped dU(600) hybrid [52], and thee HSal located at 238 and 305 nm
(S2«S and $- S transitions, respectively) [53]. The maximum alpsion wavelengths are

[B48, [B50 and(B57 nm, for 10TbSal@dU6, 20TbSal@dU6, and 30ThSal@despectively,

14
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309

with a red-shift tendency relying on the dopant ampbeing observed a maximum absorption
coefficient for the 20ThSal@dU6 (47 that 348 nm). However, around the near-UV region of
interest for the use of commercial NUV LEOS365 nm), the 30TbSal@dU6 film displays the
largest absorption coefficient (inset in Fig. 3Bhe red-shift of the absorption onset as th& Th
concentration increases resembles that reported tloe similar Tb(SafTOPO)
(TOPO-=trioctylphosphine oxide) complex [32], whasesorption [B50 nm) deviates as the
dopants concentration increases (0.05-0.75 wt%gh Silependence was ascribed to the
enhanced stack possibility of the aromatic ringssed by the increasing of organic dopants [16].
Increasing the dopant concentration enforces tteraations between the aromatic ligands and
consequently forms morer-stacking” which also results in the red-shift g&tiation, consistent

with the results of UV-visible spectra.
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Fig. 3. (a) UV-visible absorption and (b) normalized exittn spectra (monitored at 543 nm of
Tb** °D4— 'Fs transitions) of 10TbSal@dU6, 20ThSal@dU6, and B@dUS6; (c) emission

spectrum of 30ThSal@dU6 excited at 362 nm (maxirenoitation wavelength).

The room temperature excitation and emission spefti 0TbSal@dU6, 20ThSal@dU6,

and 30ThSal@dU6 (Fig. 3b and Fig. S6a) are anabgmd, thus, in Fig. 3c we show the
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310 illustrative emission spectrum of 30TbhSal@dU6. Ekeitation spectra resemble the absorption
311 one, revealing a broadband in the UV region asdriteethe overlapped contribution of the
312 dU(600) excited states and those from the liganéig. (3b). The maximum excitation
313 wavelength [(8350, [B58 and1362 nm, for 10ThSal@dU6, 20ThSal@dU6, and 30ThSal@d
314 respectively) shifts to the red as the dopant cainagon increases. The spectra also reveal the
315 low-relative intensityFs - °D, intra-4f transition pointing out that the ligands domingte Tt
316 sensitization, enabling the excitation of the hgbnvith commercial NUV-LEDs. Moreover, the
317 resonance between the triplet energy level of 34184 cm') and of the TH' °D4 level (20500
318 cm) [54,55] (an energy gap of 3684 Tinfavours efficient ligand-to-metal energy transfer
319 [56].

320 The emission spectra are governed by the typital-#f °D,— 'Fs_3 emission lines (Fig.
321 3c). The higher relative intensity and low FWHM (<tm) of the’D, — 'Fg transition in the
322 green spectral rangeg45 nm) confers superior color purity [57,58], dayer overlap with the
323 maximum spectral sensitivity of the human eye (668 [59], when compared with other green-
324 emitting centres such as Eu*Fs°D1-*F) or C€* (*Fe°D1—*Fy) incorporated in inorganic
325 hosts, in particular, BafdsEU”,PF* ((514 nm, FWHM 50 nm) [60], and
326 CaAl2sSio N6 Ce™* Li* (centre at 525 nm, FWHNIL35 nm) [61].

327 The fact that the energy, full-width-at-half maximuFWHM) and number of Stark
328 components is independent of the concentrationeasdation wavelength (Fig. S6), points out
329 that the TB' ions occupy, in average, the same unique locat@mwent in all the materials and,
330 thus, that a single Pb complex was formed in-situ. Concerning the locavi®nment, we
331 notice that TGA data confirmed that there is nordbmtion water to the TH ions (Fig. S5).

332 Accordingly, the in-situ synthesis of the *fbcomplex both blocks the polymeric stacking
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interaction nature of multi-carboxylates and preagahe direct coordination of water molecules
to Tb* ions.

The luminescence decay curves of 10TbSal@dU6, 28i@&J6, and 30TbSal@dU6
are shown in Fig. S7, all monitored at 543 ABw( ‘Fs of Th** transition) at room temperature.
All curves are fitted by a single exponential fuaotyielding lifetime values of 1£0.1x10° s
(10ThSal@du6) and 1#0.1x10°s (20TbhSal@dU6 and 30TbSal@dU6). The single
exponential decay and the similarity among all\hkies are additional arguments towards the
formation of an analogous single complex, indepatidef the TH* concentration. In addition,
the absolute quantum vyield values are also predantd-ig. 4, in which the 30TbhSal@dU6
displays the highest value, 0.56b057 under excitation of 360 nm. The correspondalges of
10TbSal@dU6 and 20TbhSal@duU6 are 082839 (340 nm) and 0.4130.042 (350 nm),
respectively. The increase of the quantum yieldhwhe concentration increase may account for
the contribution of the hybrid excited states. The¢ioal calculations demonstrated that ligand-
to-Ln>* energy transfer rates are one order of magnitadget than the values estimated for
direct hybrid-to-LA* energy transfer [62], and, then, the dominanaimwlecular energy transfer
pathway is hybrid-to-ligand-tdD,, for excitation in the dU(600) singlet excited teta We
notice that, as more ions are incorporated, a tangmber of ligands are closer to the hybrids’
excited states and thus enabling efficient energgster which contributes to enhancing the
radiative transition probability. At lower conceations, despite absorption occurs, less energy is

transferred with the consequent decrease of thesemni quantum vyield.
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Fig. 4. Absolute quantum yields of 10ThSal@dU6, 20TbhSal@duhd 30ThSal@dU6 based on

excitation wavelength.

To unveil the potential of the hybrids to be usedW/-down shifting layers in NUV-
LEDs, the photostability under NUV excitation waslkated. Under continuous excitation (365
nm), the emission of 30ThSal@dU6 is nearly stablehe initial 15 h, revealing a decrease
((20%) in the next 13 h, Fig. 5. Aiming at comparihgith other green-emitting phosphors, we
note that photostability depends on the excitasonrce features (energy and optical power
density) and aspects related to the phosphors, Ipasnethe physical (absorption coefficient,
thickness, temperature) and chemical (concentiapooperties (Table S3). Thus, an accurate
comparison between data must clarify those aspEiggs5 shows the normalized photostability
curves of green-emitting down-shifting materialsle@nexcitation in the near-UV (365 and 370
nm) by LEDs or lamps [63—-70]. Among near-UV-excitedterials, only CsPbBmnanocrystals
prepared at high-temperature values (180 [64] reveal better stability compared with tloét

30ThSal@dU6. We also highlight that the 30TbSal@duépared in-situ using carboxylate
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ligands, shows improved photostability compared that of the (Tb(3Cl-acag)H.0),
(acac=acetylacetonate) [6/{diketonate complex, in agreement with the repodetive role of

the polymeric nature from the former ligands.
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Fig. 5. Photostabilities of selected green-emitting LEDd @hosphors (Table S3). a) Th(3ClI-
acac)(H.0), [67]; b) Silica monolith doped with CdSe/CdS/Zn®agtum dots [65]; c)
30TbhSal@dU6; d) Hierarchical CaRanosphere loading CsPhBrerovskite quantum dots [70];
e) CsPbByperovskite quantum dots [70]; f) CsPhBranocrystals [64]; g) Mesoporous silica
incorporated with CsPbBr nanocrystals [64]; h) (pba-allyly(pic)@SiO, (HPba= 4-(2-

pyridyl)benzaldehyde and pic= picolinic acid) [6§]Carbon dots [69].

From the above data, we selected 30ThSal@dU6 tcédbd a green-emitting LED (Fig.
1). As a figure of merit, the optimised prototymesed on 30TbhSal@dUG6 reveals a maximum LE
of 21.5 Im/W (4.4x17° A of driving current, and 3.2 V of applied voltdged yellowish-green
emission with CIE color coordinates of (0.329, @p0rable S4. This LE value is the best values

reported for analogous prototypes formed by a NUBDL(3655 nm) coated with a green-
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emitting phosphor prepared either under mild sytitteonditions (<100C) based on T8 ions

or at high temperature from solid-state reactiorEfi¢* ions [36,67,71,72].

4. Conclusions

In this work, organieinorganic di-ureasils containing a *fbcomplex with the organic
ligand HSal were synthesized via an in-situ solgelcess. This in-situ synthesis was done at
low temperatures ensuring energy saving and pnogidh alternative way to incorporate’t:n
based complexes into polymeric and hybrid matrisesh as di-ureasils), which overcomes the
poor solubility problems of L complexes that are hardly dissolved and/or decempluring
the sotgel process. We demonstrated the in-situ formatiothe TH5*-complex within the di-
ureasil host due to the deprotonation of the caybgroups and the TH coordination with
ligand anions yielding transparent coatings. Thenihescent di-ureasils show bright green
emission with a maximum quantum yield of 0.5659057 under near-UV excitation up365
nm, enabling the fabrication of a green-emittingtptype based on a near-UV GaN-based chip
coated with the TH-based di-ureasil layerThe attained narrow-band green emission
displays color stability, and relatively high LE1(5 Im/\WW) pointing out that carboxylate-
based complexes prepared in-situ using energy-gasynthesis ar@romising future for
commercial green-emitting LED applications incluglinolid-state lighting and backlight for

flexible displays.
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Highlights
« High doping concentration of ¥bcarboxylate-based di-ureasil hybrids
« Tb*-doped di-ureasils with a high emission quantunity(@.565+0.057)
* ‘“m-stacking” of aromatic ligands benefits near-UV itatton
* High luminous efficacy (21.5 Im/W) of 365 nm yell@k-green LED coated with the

hybrids



