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Abstract

A finite-context (Markov) model of order k yields the probability distribution of the next symbol in a sequence of symbols,
given the recent past up to depth k. Markov modeling has long been applied to DNA sequences, for example to find gene-
coding regions. With the first studies came the discovery that DNA sequences are non-stationary: distinct regions require
distinct model orders. Since then, Markov and hidden Markov models have been extensively used to describe the gene
structure of prokaryotes and eukaryotes. However, to our knowledge, a comprehensive study about the potential of Markov
models to describe complete genomes is still lacking. We address this gap in this paper. Our approach relies on (i) multiple
competing Markov models of different orders (ii) careful programming techniques that allow orders as large as sixteen (iii)
adequate inverted repeat handling (iv) probability estimates suited to the wide range of context depths used. To measure
how well a model fits the data at a particular position in the sequence we use the negative logarithm of the probability
estimate at that position. The measure yields information profiles of the sequence, which are of independent interest. The
average over the entire sequence, which amounts to the average number of bits per base needed to describe the sequence,
is used as a global performance measure. Our main conclusion is that, from the probabilistic or information theoretic point
of view and according to this performance measure, multiple competing Markov models explain entire genomes almost as
well or even better than state-of-the-art DNA compression methods, such as XM, which rely on very different statistical
models. This is surprising, because Markov models are local (short-range), contrasting with the statistical models underlying
other methods, where the extensive data repetitions in DNA sequences is explored, and therefore have a non-local
character.
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Introduction

Since the work of Grumbach and Tahi [1], many contributions

have been made in the area of DNA data compression (see, for

example, [2–10] and for a recent review [11]). These works

explore the non-stationary nature of DNA sequence data, which

are characterized by an alternation between regions of relatively

high and low entropy. Typically, there are two compression

approaches, one based on Lempel-Ziv-like substitutional proce-

dures [12] (that usually perform well on repetitive, low entropy

regions) and another based on low-order context-based (Markov)

arithmetic coding (better suited for regions of high entropy).

According to the substitutional paradigm, repeated regions of

the DNA sequence are represented by a pointer to a past

occurrence of the repetition and by the length of the repeating

sequence. Both exact and approximate repetitions have been

explored, as well as their inverted complements.

Markov modeling has long been applied to DNA data

sequences (see, for example, the works of Borodovsky et al.

[13,14] and of Tavaré and Song [15]). Since then, a large number

of publications have addressed this topic, although mainly with the

aim of proposing techniques for gene finding (some examples can

be found in [16–22]). Other applications, such as the detection of

short inverted DNA segments [23], the assessment of the statistical

significance of DNA patterns [24] or the identification of CpG

islands [25], have also relied on Markov models. However,

Markov models have never been used as the sole paradigm for

DNA sequence modeling or compression. In this paper, we

address a modeling question that we do believe has not been

satisfactorily answered before: How well can complete genomes
be described using exclusively a combination of Markov models?

We seek descriptions that are good in the sense of the minimal

description length principle [26], i.e., that require as few bits as

possible for representing the information.

To investigate this matter, we developed a method based on

multiple competing finite-context models that incorporate features

found in DNA sequence data, such as the existence of inverted

repeats. Finite-context models are computational models that

provide a probability estimate of the next DNA base, given the

recent past of the sequence, in accordance with the Markov

property.

There is a close connection between compression and modeling.

Compression methods depend on statistical models of the data. If

a compression method outperforms another, it is because the
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underlying statistical model is better suited to the data. Conversely,

if a statistical data model explains a string of data very well, that is,

if it provides good estimates of the distribution of each data

symbol, then it is conceivable that its application in sequence

compression might lead to good compression performance.

To measure how well a model fits the data at a particular

position in the sequence we use the negative logarithm of the

probability estimate at that position. The measure yields

information profiles of the sequence, which are of independent

interest. The average over the entire sequence, which amounts to

the average number of bits per base needed to describe the

sequence, is used as a global performance measure.

Our experimental results show that the ability of multiple

competing finite-context models to describe DNA sequences is

surprisingly close to that attained by more complex state-of-the-art

DNA compression methods, such as XM [10]. In fact, for small-

sized sequences, the finite-context models perform better.

XM, the method that we use as the reference to compare the

performance of the finite-context models, relies on a mixture of

experts for providing symbol by symbol probability estimates,

which are then used for driving an arithmetic encoder. The

algorithm comprises three types of experts: (1) order-2 Markov

models; (2) order-1 context Markov models, i.e., Markov models

that use statistical information only of a recent past (typically, the

512 previous symbols); (3) the copy experts, that consider the next

symbol as part of a copied region from a particular offset. The

probability estimates provided by the set of experts are then

combined using Bayesian averaging and sent to the arithmetic

encoder.

Besides a global comparison, based on the average of the

negative logarithm of the probability estimates (i.e., the average of

the per base information content) performed for several genomes

of various sizes, we also provide some samples of the local profiles

of the so-called information sequences [27]. These information

sequences contain the per base information content generated by

the models (measured in bits), allowing, for example, the

comparative analysis of long DNA sequences [28], the classifica-

tion of biological sequences [29] or sequence alignment [30]. In

addition, we show an example of the context depth profile

produced along the sequences, that might have independent

interest.

As we mentioned before, in this paper we explore multiple

competing finite-context models, with the aim of finding how well

complete DNA data sequences can be described exclusively by this

modeling paradigm.

As far as we know, this paper provides the first comprehensive

investigation of the extent to which Markov models explain DNA

data. We believe that this is important because it provides evidence

that complete DNA data sequences can be reasonably well

described by statistical models that rely only on the immediate past

of the sequence. In other words, local, short-range models perform

as well as or better than non-local models built in the state-of-the-

art compression methods. Since the search for better data

compression methods is intimately related to the problem of

finding better data models, this work contributes to an improved

understanding of the laws that govern the DNA data, an objective

that has been long pursued (see, for example, [1,31–33]).

Materials and Methods

DNA data sequences
In this study, we used the complete DNA sequences of eleven

species of various sizes. The genomes were obtained from the

following sources:

N Homo sapiens, Build 33, from the National Center for

Biotechnology Information (NCBI) (ftp://ftp.ncbi.nlm.nih.

gov/genomes/H_sapiens/April_14_2003);

N Arabidopsis thaliana, TAIR 9, from The Arabidopsis Information

Resource (ftp://ftp.arabidopsis.org/home/tair/Sequences/

whole_chromosomes);

N Candida albicans, Assembly 21, from the Candida Genome

Database (http://www.candidagenome.org/download/sequence/

Assembly21);

N Staphylococcus aureus aureus MSSA476, NC002953, from the

NCBI (ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/Staphylococ

cus_aureus_aureus_MSSA476);

N Thermococcus kodakarensis KOD1, NC006624, from the NCBI

(ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/Thermococcus_

kodakaraensis_KOD1);

N Methanocaldococcus jannaschii DSM 2661, NC000909, from the

NCBI (ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/Methano

coccus_jannaschii);

N Schizosaccharomyces pombe, NC001326, NC003421, NC003423,

NC003424, from the NCBI (ftp://ftp.ncbi.nlm.nih.gov/ge

nomes/Fungi/Schizosaccharomyces_pombe);

N Mycoplasma genitalium, NC000908, from the NCBI (ftp://ftp.

ncbi.nlm.nih.gov/genomes/Bacteria/Mycoplasma_genitalium);

N Aspergillus nidulans FGSC A4 uid13961, from the NCBI (ftp://

ftp.ncbi.nlm.nih.gov/genomes/Fungi/Aspergillus_nidulans_FGS

C_A4_uid13961/);

N Escherichia coli K12 MG1655, NC000913, from the NCBI

(ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/Escherichia_coli_

K_12_substr__MG1655_uid57779/);

N Saccharomyces cerevisiae, from the NCBI (ftp://ftp.ncbi.nlm.nih.

gov/genomes/Saccharomyces_cerevisiae/).

Finite-context models
Consider an information source that generates symbols, s,

from a finite alphabet A~fs1,s2, . . . ,sjAjg, where jAj denotes

the size of the alphabet. In the case of DNA data,

A~fA,C,G,Tg and, therefore, jAj~4. Also, consider that the

information source has already generated the sequence of n
symbols xn~x1x2 . . . xn, xi [A. A finite-context model assigns

probability estimates to the symbols of the alphabet, regarding

the next outcome of the information source, according to a

conditioning context computed over a finite and fixed number,

kw0, of the most recent past outcomes c~xn{kz1 . . . xn{1xn

(order-k finite-context model) [34–36]. The number of condi-

tioning states of the model is jAjk, determining the model

complexity or cost. The context, c, varies along the sequence,

i.e., it depends on the position n. However, for alleviating the

notation, we considered this dependency implicit and, therefore,

when we refer to c we mean the value of the context at the

location that should be easily inferred from the formula where it

occurs.

The probability estimates, P(Xnz1~sjc),Vs[A, are usually

calculated using symbol counts that are accumulated while the

sequence is processed, which makes them dependent not only of

the past k symbols, but also of n. In other words, these probability

estimates are generally time varying.

Table 1 shows an example of how statistical data are usually

collected in finite-context modeling. In this example, an order-5

finite-context model is presented (as that of the FCM1 model of

Fig. 1). Each row represents a probability model that is used to

represent a given symbol according to the last processed symbols

Representing Genomes by Finite-Context Models

PLoS ONE | www.plosone.org 2 June 2011 | Volume 6 | Issue 6 | e21588



(five in this example). The counters are updated each time a

symbol is processed.

The theoretical per symbol information content average

provided by the finite-context model after having processed n

symbols is given by

Hn~{
1

n

Xn{1

i~0

log2 P(Xiz1~xiz1jc) bpb, ð1Þ

where ‘‘bpb’’ stands for ‘‘bits per base’’. Recall that the entropy of

any sequence of four symbols is limited to two bits per symbol, a

value that is obtained when the symbols are independent and

equally likely, and that the fewer the number of bits produced the

better is the model.

One of the drawbacks of implementing the finite-context models

using the approach illustrated in Table 1 is that the memory

requirements grow exponentially with k. In fact, the total number

of counters needed in this case is (jAjz1)jAjk. For DNA data,

and even considering only two-byte counters, this would imply

about 40 Gbytes of memory for implementing an order-16 model.

However, this table would also be very sparse, because the

maximum number of different words of size k that can be found in

a sequence of length n is clearly upper bounded by n. Using this

simple observation and appropriate data structures such as hash-

tables, we managed to implement a computer program that allows

using finite-context models of orders up to sixteen in a laptop

computer with 3 Gbytes of memory (the source code of this

computer program is publicly available in ftp://www.ieeta.pt/

,ap/codecs/DNAEnc3.tar.gz).

Updating the inverted complements
Frequently, DNA sequences contain sub-sequences that are

reversed and complemented copies of some other sub-sequences.

These sub-sequences are named ‘‘inverted repeats’’. As mentioned

before, this particularity of DNA sequence data is used by most of

the DNA compression methods that have been proposed and that

rely on the sliding window searching paradigm.

For exploring the inverted repeats of a DNA sequence, besides

updating the corresponding counter after encoding a symbol, we

also update another counter that we determine in the following

way [37]. Consider the example given in Fig. 1 (FCM1 model),

where the context is the string ‘‘ATAGA’’ and the symbol to

encode is ‘‘C’’. Reversing the string obtained by concatenating the

context string and the symbol, i.e., ‘‘ATAGAC’’, we obtain the

string ‘‘CAGATA’’. Complementing this string (A<T, C<G), we

get ‘‘GTCTAT’’. Now we consider the prefix ‘‘GTCTA’’ as the

context and the suffix ‘‘T’’ as the symbol that determines which

counter should be updated. Therefore, according to this

procedure, we take into consideration the inverted repeats if, after

encoding symbol ‘‘C’’ of the example FCM1 of Fig. 1, the counters

are updated according to Table 2. As shown in [37], this provides

additional modeling performance.

Multiple competing models
DNA sequence data are non-stationary. In fact, one of the

reasons why most DNA compression algorithms use a mixture of

two methods, one based on repetitions and the other relying on

low-order finite-context models, is to try to cope with the non-

stationary nature of the data. We also follow this line of reasoning,

i.e., that of using different models along the sequence. However,

unlike the other approaches, we use exclusively the finite-context

paradigm for modeling the data, changing only the order of the

model as the characteristics of the data change. More precisely, we

Figure 1. Example of finite-context models. In this example,
A~fA,C,G,Tg and the context depths, k, are k1~5 and k2~11. The
probability of the next outcome, Xnz1 , is conditioned by the last k
outcomes. When more than one model is running competitively, the
particular context depth used is chosen on a block basis.
doi:10.1371/journal.pone.0021588.g001

Table 1. Probability models.

Context, c nc
A nc

C nc
G nc

T
nc~

P
a[A

nc
a

AAAAA 23 41 3 12 79

ATAGA 16 6 21 15 58

GTCTA 19 30 0 4 53

TTTTT 8 2 18 11 39

Simple example illustrating how statistical data are typically collected in finite-
context models. Each row of the table represents a probability model at a given
instant n. In this example, the particular model that is chosen for encoding a
symbol depends on the last five processed symbols (order-5 context).
doi:10.1371/journal.pone.0021588.t001

Table 2. Updating the inverted repeats.

Context, c nc
A nc

C nc
G nc

T
nc~

P
a[A

nc
a

AAAAA 23 41 3 12 79

ATAGA 16 7 21 15 59

GTCTA 19 30 10 5 54

TTTTT 8 2 18 11 39

Table 1 updated after processing symbol ‘‘C’’ according to context ‘‘ATAGA’’
(see example of Fig. 1) and taking the inverted repeats property into account.
doi:10.1371/journal.pone.0021588.t002

Representing Genomes by Finite-Context Models

PLoS ONE | www.plosone.org 3 June 2011 | Volume 6 | Issue 6 | e21588



explore an approach based on multiple finite-context models of

different orders that compete for encoding the data.

Using several models with different orders allows a better

handling of DNA regions with diverse characteristics. Therefore,

although these multiple models are continuously updated, only the

best one is used for encoding a given region. For convenience, the

DNA sequence is partitioned into non-overlapping blocks of fixed

size, which are then encoded by one (the best one) of the finite-

context models. Figure 1 shows an example where two competing

finite-context models are used. In this example, each model

collects statistical information from a context of depth k1~5 and

k2~11, respectively. At time n, the two conditioning contexts are

c1~xn{k1z1 . . . xn{1xn and c2~xn{k2z1 . . . xn{1xn.

Estimating the probabilities
How to estimate probabilities based on counting the occur-

rences of past events has been a problem addressed by several

researchers, going back at least to the works of Bayes and Laplace

[38,39].

The central problem is the estimation of the probability of

events that have never been observed (this is also known as the

pseudocount estimation problem). For that purpose, we use an

estimator that is a generalization of earlier formulae (see, for

example, [40–45]), which is given by

Pa(Xnz1~sjc)~
nc

sza

nczajAj , ð2Þ

where nc
s represents the number of times that, in the past, the

information source generated symbol s having c as the

conditioning context and where

nc~
X

a[A
nc

a ð3Þ

is the total number of events that has occurred so far in association

with context c. It is important to note that defining

m~
nc

nczajAj , ð4Þ

the estimator can be rewritten as

Pa(Xnz1~sjc)~m
nc

s

nc
z(1{m)

1

jAj , ð5Þ

revealing a linear interpolation between the maximum likelihood

estimator and the uniform distribution. This also shows that when

the total number of events, nc, is large, the estimator behaves as a

maximum likelihood estimator (when nc??, m?1), regardless of

the value of a. Therefore, the main interest in the estimator of (2) is

when nc is small, in which case the value of a plays a key role.

Moreover, it can also be seen that the parameter a controls the

probability assigned to previously unseen (but possible) events, i.e.,

the probability when nc
s~0. This probability is given by

a

nczajAj , ð6Þ

which decreases faster with nc for smaller values of a.

The estimator described in (2) assumes a Dirichlet prior,

Dir(a1, . . . ,ajAj), over the probabilities that are being estimated,

with a1~ . . . ~ajAj~a. Dirichlet mixtures have also been used,

for example in the context of protein family modeling (see, for

instance, [46,47]).

Results and Discussion

Each organism under analysis was processed using eight

competing finite-context models with context depths k~2,4,6,
8,10,12,14,16. The decision of which depth to use was taken on a

block by block basis, using blocks of two hundred DNA bases. This

block size, although not optimal for every sequence, has revealed

to be on average a good compromise.

Since we are interested in evaluating the performance of the

models, we used the average number of bits per DNA base (bpb)

provided by these models, as a measure of their fitness to the data.

This is essentially the value provided by (1) when n equals the

length of the sequence, i.e., after processing the whole sequence.

Besides this per symbol average information content, the overhead

required to indicate the depth of the particular finite-context

model used in each data block was also considered. Note that, for

blocks of two hundred bases, and without further modeling, this

implies a small overhead of 3=200~0:015 bpb (recall that the

eight possible context depths can be represented with three bits).

Nevertheless, we also used a finite-context model for representing

this information in a more efficient way. It was found,

experimentally, that an order-4 model was able to provide a good

performance.

For comparison, we processed the DNA sequences using the

single finite-context model approach. In this case, the best context

depth was used. For genomes composed of several chromosomes,

the best context depth was determined for each chromosome. The

results regarding this approach are presented in the ‘‘FCM-S’’

column of Table 3, whereas the results obtained with the multiple

competing models are shown in column ‘‘FCM-M’’. We used the

currently best-performing DNA compression algorithm, XM [10],

for evaluating the overall performance of the multiple competing

finite-context models in comparison with the state-of-the-art

technique for DNA sequence compression. Also, with the aim of

providing an additional term of comparison, we include the results

attained by another DNA compression method, developd by

Manzini et al. [6], because it is a fast, although competitive DNA

compressor. This technique is based on fingerprints for fast pattern

matching, and relies on fallback mechanisms for encoding the

regions where matching fails, which are order-2 (DNA2) or order-3

(DNA3) finite-context models. The results presented in Table 3

correspond to the average number of bits actually generated.

The probabilities associated to the finite-context models were

estimated using (2), with a~1 (corresponding to Laplace’s

estimator) for model orders k~2,4,6,8,10 and with a~0:05 for

model orders k~12,14,16. As explained in the previous section,

when nc is large, the estimator converges to the maximum

likelihood estimator, meaning that the value of a is virtually

irrelevant when nc??. This is what happens for small-order

models, because, due to the reduced number of contexts, on

average the total number of events that occur associated to each

context, i.e., nc, quickly attains a sufficiently high value for

rendering m&1 in (4). However, when k is large, then the number

of conditioning states, 4k, is very high. This implies that statistics

have to be estimated using only a few observations (small values of

nc), which is the case where the value of a might play an important

role.

In fact, during our study, we have found out experimentally

that, using the combination of multiple finite-context models, the

probability estimates calculated for the higher order models lead to

significantly better results when smaller values a are used. We have

Representing Genomes by Finite-Context Models
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performed a number of experiments and reached the conclusion

that picking a~0:05 would provide, globally, good results. Other

values similar to this one would also produce good results,

meaning that the performance of the estimator is robust with

respect to small variations of a.

The results presented in Table 3 show a clear distinction

between organisms with small genomes and organisms with large

ones. For small-sized genomes, the modeling ability of the multiple

finite-context models is basically the same as the more sophisti-

cated modeling approach provided by the XM algorithm. This is

observed in the case of the A. nidulans, C. albicans, S. pombe, S.

cerevisiae, E. coli, S. aureus, T. kodakarensis, M. jannaschii and M.

genitalium organisms, with some of them being slightly better

compressed by the finite-context models. For the H. sapiens and A.

thaliana species, the modeling capability of the finite-context

models appears to be insufficient, because the XM approach is

able to attain lower entropies (about 5% lower when using 200

experts).

This result agrees with the known strong repetitive characteristic

of the DNA data of the higher organisms, a characteristic that is

usually better modeled by the copy expert mechanism provided by

XM. On the contrary, the species with small-sized genomes seem

to be very well represented exclusively by finite-context models,

without needing the help of the copy experts. This observation

allow us to conclude that the DNA sequence data of these species

can be represented by models that rely only on short-term

knowledge of the past, i.e., sixteen bases or less as suggested by the

experimental results that we have obtained. Moreover, even in the

higher species, the capability of the Markov-only approach seems

to be quite significant, since it is able to represent, at least, about

95% of the information of the genome.

For better understanding how the two approaches behave

locally, i.e., with and without the copy expert mechanism, Fig. 2

presents the information sequences regarding the first 400000 well-

defined bases (i.e., ignoring the ‘‘N’’ cases) of the human

chromosome number one. The (a), (b) and (d) plots represent

the instantaneous number of bits required by each of the two

modeling approaches for representing the DNA bases. Conse-

quently, smaller values indicate that the DNA bases in that

particular region of the DNA sequence were ‘‘easier’’ to represent

(i.e., they required less bits) than other bases for which the values

of the plot are higher. Note that, for facilitating the visualization of

the curves, the data were low-pass filtered.

As can be seen, the curves displayed in Fig. 2(a) and (b) are

reasonably similar. These plots exhibit valleys of varying depth

mixed with a kind of plateau regions, clearly showing the different

complexities that we referred along the paper and that motivated

the adoption of the multiple competing finite-context models. The

plateau-type regions reveal DNA segments that are difficult to

represent, in the sense that they require more bits than average.

These regions are typically encoded by the low-order finite context

models. On the contrary, the valleys indicate DNA regions easier

to represent, and, therefore, requiring less bits per DNA base.

These parts of the DNA sequences are usually better handled by

the high-order finite-context models or by the repetition-seeking

mechanisms of the compression methods that incorporate this

paradigm.

Still making use of the analytical power provided by the

information sequences, Fig. 2(d) shows how important the value of

a is in the probability estimator formula for a good performance of

the high-order models. As can be seen in the figure, when using

a~1 for all model depths the majority of the valleys is much less

deep than when using a~0:05 for the high-order models

(k~12,14,16), showing that the representation of the low

complexity regions is strongly affected by this parameter.

Finally, in Fig. 2(c) we display the plot of the variation of the

context depth along the sequence when processed with the same

parameters as those used to produce the graphic shown in Fig. 2(b).

It can be observed that, generally, deeper context models are

chosen when the entropy is lower. Nevertheless, this is not always

the case, and, therefore, these kind of plots may provide additional

information about the structure of the DNA sequence.

Conclusions
We have provided the first comprehensive investigation of the

extent to which Markov models explain complete genomes. To

explore the potential of Markov models as completely as possible,

we have used a model that includes several competing Markov

Table 3. Results for eleven complete genomes.

Organism Size DNA3 FCM-S FCM-M XM50 XM200

Mb bpb bpb bpb secs bpb secs bpb secs

H. sapiens 2832.18 1.779 1.773 1.695 22529 1.644 92461 1.618 129374

A. thaliana 119.48 1.836 1.911 1.821 1106 1.736 1614 1.730 3423

A. nidulans 29.54 1.977 1.987 1.978 177 1.968 143 1.968 146

C. albicans 14.32 1.872 1.882 1.864 93 1.861 119 1.861 146

S. pombe 12.59 1.886 1.926 1.887 75 1.865 97 1.865 140

S. cerevisiae 12.16 1.906 1.940 1.906 77 1.892 50 1.892 51

E. coli 4.64 1.915 1.937 1.901 27 1.914 39 1.914 50

S. aureus 2.80 1.859 1.888 1.858 16 1.853 28 1.852 40

T. kodakarensis 2.09 1.946 1.935 1.922 12 1.946 18 1.946 19

M. jannaschii 1.66 1.818 1.824 1.804 10 1.814 16 1.814 17

M. genitalium 0.58 1.818 1.841 1.812 4 1.816 4 1.816 4

Results regarding eleven complete genomes. Rates are in bits per base (bpb). The ‘‘DNA3’’ column contains the results provided by the technique of Manzini et al. using
and order-3 fallback finite-context model. The ‘‘FCM-S’’ and ‘‘FCM-M’’ columns contain, respectively, the results provided by the single finite-context models and by the
multiple competing finite-context models. The ‘‘XM50’’ and ‘‘XM200’’ columns show the results obtained with the XM algorithm, using 50 and 200 experts. Computation
times, in seconds, are also included.
doi:10.1371/journal.pone.0021588.t003
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models of different orders. The model adapts to the statistical

characteristics of the DNA sequences, which vary widely across the

sequence, depending on the nature of the data (consider coding

and non-coding DNA segments, for instance). The adaptation

reflects itself on the selection of Markov models of different orders

for different DNA segments.

We have noted that this approach is effective when comple-

mented with the following ideas, that we have come to regard as

essential: (a) careful programming, based on hash tables, to cope

with the memory demands posed by the Markov models with

longer context depth and the inherent sparsity of their associated

contexts (b) probability estimates adequate to the wide range of

context depths used (c) inverted repeat handling.

To measure the fit of the model at a certain position we adopted

the negative logarithm of the probability estimate at that position.

This standard measure yields information profiles of the sequences,

which are of independent interest, and reveal instantaneous

innovation along the sequences (that is, segments through which

the sequence behaves in a more random and unpredictable way, as

opposed to segments in which the behaviour is more predictable).

The average of the measure over the entire sequence reduces to the

average number of bits per base to describe the sequence, and works

as a global performance measure.

A comparison of the results obtained with our multiple Markov

model and state-of-the-art compression models reveals that the

Markov-only description is able to explain genomes almost as well

or even better. This is surprising for the following reasons. Our

method is not intended to be a complete compression method – it

does not attempt to explore long-range correlations and it does not

take advantage of the presence of segments that are repeated

(exactly or approximately) across the sequences. Furthermore, it

consists only of Markov models, which are inherently short-range

or local. Compression methods do take advantage of local

correlations (and commonly resort to Markov models for that

purpose) but also employ techniques such as copy experts, that are

able to efficiently represent repetitions found along the sequence

(potentially at unbounded distances). The fact that the degree of

local dependence present in DNA sequences allows representa-

tions that compete with advanced compression methods is

unexpected. The sequences for which our method gave better

performance than state-of-the-art compressors (generally speaking,

the shortest sequences) must include those for which short-range

dependencies out-weight long-range dependencies. In other

words, those that are less rich in exact and approximate repeats.

To conclude, our work provides evidence that complete DNA

data sequences can be reasonably well described by statistical

models that are inherently local, provided that inverted repeats are

accounted for and that the probability estimates are taylored to the

wide range of context depths used. Since the search for better data

compression methods is closely related to the problem of finding

better data models, this work contributes to an improved

understanding of the laws that govern the DNA data.
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Dirichlet mixture priors to derive hidden Markov models for protein families. In:

Proc. of the 1st Int. Conf. on Intelligent Systems for Molecular Biology. pp

47–55.
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