Author's Accepted Manuscript

Discovery of bioactive nitrated lipids and nitrolipid-protein adducts using mass spectrometrybased approaches

Tânia Melo, Javier-Fernando Montero-Bullón, Pedro Domingues, M. Rosário Domingues

\$2213-2317(18)31024-3
https://doi.org/10.1016/j.redox.2019.101106
101106
REDOX101106
Redox Biology

Received date:2 November 2018Revised date:8 January 2019Accepted date:10 January 2019

Cite this article as: Tânia Melo, Javier-Fernando Montero-Bullón, Pedro Domingues and M. Rosário Domingues, Discovery of bioactive nitrated lipids and nitro-lipid-protein adducts using mass spectrometry-based approaches, *Redox Biology*, https://doi.org/10.1016/j.redox.2019.101106

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Discovery of bioactive nitrated lipids and nitro-lipid-protein adducts using mass spectrometry-based approaches

Tânia Melo^{1,2}, Javier-Fernando Montero-Bullón¹, Pedro Domingues¹, M. Rosário Domingues^{1,2}

¹Centro de Espectrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal

²Departamento de Química & CESAM & ECOMARE, Universidade de Aveiro, 3810-193 Aveiro, Portugal

Abstract

Nitro-fatty acids (NO₂-FA) undergo reversible Michael adduction reactions with cysteine and histidine residues leading to the post-translational modification (PTM) of proteins. This electrophilic character of NO₂-FA is strictly related to their biological roles. The NO₂-FA-induced PTM of signaling proteins can lead to modifications in protein structure, function, and subcellular localization. The nitro lipid-protein adducts trigger a series of downstream signaling events that culminates with anti-inflammatory, anti-hypertensive, and cytoprotective effects mediated by NO₂-FA. This lipoxidation adducts have been detected and characterized both in model systems and in biological samples by using mass spectrometry (MS)-based approaches. These MS approaches allow to unequivocally identify the adduct together with the targeted residue of modification. The identification of the modified proteins allows inferring on the possible impact of the NO₂-

FA-induced modification. This review will focus on MS-based approaches as valuable tools to identify NO₂-FA-protein adducts and to unveil the biological effect of this lipoxidation adducts.

1. Introduction

During the last decade, nitrated lipid gained the interest of the scientific community, as new endogenous signaling molecules with important regulatory role in health and disease. Research on this is aimed at understanding the reactivity of reactive nitrogen species (RNS) with lipids, to unravel their occurrence in vivo and their biological roles. Among nitrated and nitroxidized lipids identified so far, the nitro-fatty acids (NO₂-FA) are best-known products of RNS. These products have been widely detected in several tissues [1–5] and biofluids [6–12], and are nowadays a hot topic in nitro lipidomics. NO₂-FA are considered important bioactive molecules and have been associated with anti-inflammatory [6,13–24], anti-hypertensive [25–32], and anti-thrombotic properties [31,33] and cytoprotective effects [2,34–37]. More recently, other nitrated and nitroxidized lipids [1,6– 8,13,38] and also nitro derivatives of phospholipids (PL) [39,40] and triglycerides (TAG) [41] have been detected in biological samples and were associated with protective and beneficial effects, but they are scarcely studied. Also, esterified forms of NO₂-FA have been found as they can be generated either by direct nitrated of the esterified fatty acyl moiety or by the incorporation of NO₂-FA [41].

NO₂-FA are also known as nitroalkenes derivatives of fatty acids since it includes a nitro group linked to the double bond (alkene group) of the unsaturated fatty acyl chain, and

the nitro-alkene moiety makes these derivatives highly reactive with electrophilic properties. These endogenous electrophilic lipids are capable to covalently link to proteins, via Michael addition [42], leading to the formation of lipoxidation adducts. This type of post-translational modification (PTM) of proteins can modulate protein function, which underlies some of the biological roles attributed to the NO₂-FA (Figure 1). Some of these PTMs are shown to elicit a protective effect, which may provide clues for new therapeutic strategies and new drugs.

Detection of NO₂-FA and especially their lipoxidation adducts are still a challenge that is mostly addressed by MS approaches. MS-based approaches have been extensively applied in the study of NO₂-FA-protein adducts [4,7,34,42–44], providing detailed structural information of these adducts both *in vitro* and *in vivo*. LC-MS and MS/MS-based proteomics approaches have been performed to characterize the NO₂-FA protein adducts and the sites of adduction [34,42,45–48]. Very recently peptide adducts were also reported for NO₂-FA esterified in phospholipids using biomimetic *in vitro* studies and MS approaches [49].

In this review we will discuss the formation and type of nitrated FA found in biological systems, their structure and reactivity with proteins and characterization by a MS-based proteomic and lipidomic approach that allowed to disclose possible biological roles associate with nitrated lipids-protein adducts.

2. Endogenous nitro-fatty acids

2.1. Chemistry and analysis

NO₂-FA are endogenous chemical entities generated by the attack of nitric oxide (NO)-derived reactive species, collectively called reactive nitrogen species (RNS), with unsaturated fatty acids. Nitrogen dioxide ($^{\bullet}NO_2$), nitronium cation (NO_2^+), and peroxynitrite/peroxynitrous acid, whose decomposition yields [•]NO₂ and hydroxyl radical (OH), were reported as RNS that most frequently initiate nitration or nitroxidation reactions in biomolecules, including lipids. The prevalence and the yield of one process of these processes over the others are dependent on the oxygen levels, concentration of ROS versus RNS, the presence of secondary target molecules (scavengers, thiols, and transition metals), pH, and the partition between hydrophilic and hydrophobic milieu in cellular compartments [50]. The mechanism of FA nitration and nitroxidation in biological systems is not yet wholly undisclosed, and there are some alternative routes to explain the generation of NO₂-FA (Figure 2). The free radical-induced nitration of FA mediated by •NO₂ is one of the most prominent reaction in vivo as a source of NO₂-FA [51]. The endogenous formation of NO₂-FA during free radical-mediated nitration reactions occurs in several biological processes such as digestion [52], metabolic stress, and inflammatory conditions [53]. Thus NO₂-FA were already identified in human red blood cells [8,9], plasma [6,8–10,12], urine [6,7], and tissues [1–5] at concentrations ranging from picomolar [12] to micromolar [6] and associated to some of the reported processes. Dietary sources of nitrite can also leads to the generation of NO₂-FA via acid-catalyzed nitration reactions [52,54–56]. Recently, NO₂-FA were also reported in plants, fresh olives, and in extra virgin olive oil [56,57], which are considered external sources of NO₂-FA and can contribute to rising the endogenous levels of NO₂-FA [58].

The most common NO₂-FA identified *in vivo* were the nitrated forms of the nitrooleic acid (NO₂-OA), nitro-linoleic acid (NO₂-LA), and nitro-conjugated linoleic acid (NO₂-cLA) [6,8,9]. However, the reaction of RNS with fatty acids can lead to the generation of several nitroalkene derivatives of other fatty acids, such as the nitropalmitoleic acid (NO₂-POA), nitro linolenic acid (NO₂-LNA), nitro-arachidonic acid (NO₂-AA), nitro eicosapentaenoic acid (NO₂-EPA), and nitro-docosahexaenoic acid (NO₂-Dha) [6,8,38,51]. Different stereo or positional isomers of NO₂-FA were detected *in vitro* and in biological samples [6,8,38], as represented in Figures 3 to 5 and Table 1.

Nevertheless, the recovery of NO₂-FA from biological samples, together with their detection and accurate quantification is a challenge due to their low concentration, stability issues, metabolism (β-oxidation and saturation/desaturation reactions) [59], reactivity with proteins [59] and esterification [39-41], and different distribution among tissues and biofluids [6,12]. In line with these limitations, there has been an effort for the development of specific, standardized and reproducible methodologies of sample preparation and sensitive analytical approaches. The advent of more sensitive and sophisticated instruments, allied with the possibility of high-throughput analysis prompted by MS-based approaches, combined or not with liquid chromatography (LC-MS), has been the selected tool for the identification, structural characterization and quantification of free NO₂-FA. Indeed, the detection of these lipids is an indication to disclose the bioactive properties of these nitrated derivatives. The progress in the field of MS-based approaches enabled the discovery of NO₂-FA and contributed to the knowledge of NO₂-FA biological roles giving information on the structure-function relationships [60]. The development of improved sample preparation techniques, chromatographic separations, high-resolution instruments with

great sensitivity, and innovative tools raised the possibility of detection, structural characterization and quantification of nitro lipids in human samples and animal models both under physiological and pathological conditions [1,3,4,8,59,61,62], and also in plants [56] as summarized in Table 1. The identification of NO₂-FA by MS is based on the detection of specific mass shifts compared to non-modified fatty acid (FA+45 Da). Using MS-based approaches, NO₂-FA are preferentially analyzed in negative-ion mode as [M-H]⁻ ions [3,63]. However, positive-ion mode ionization can also occur, and NO₂-FA can also be identified as [M+H]⁺ [26], [M+Li]⁺ [51], [M+NH₄]⁺ [9,41], and [M+Na]⁺ ions [9]. Tandem mass spectra acquired both in positive- and negative-ion mode provides information that allows the structural characterization of NO₂-FA [8,38,51,63,64]. The fragmentation pattern of NO₂-FA under tandem MS (MS/MS) conditions includes the typical neutral losses of 47 Da (HNO₂) and product ions formed by cleavage of the hydrocarbon chain in the vicinity of the NO₂ group, that allow assigning this modified FA. The differentiation of isomers can be addresses by the identification of reporter fragment ion that is formed by cyclization, followed by heterolytic carbon chain fragmentation, which allows pinpointing the correct position of the NO₂ group [2,63]. These product ions have been used as diagnostic ions broadly employed for targeted analysis and quantitation of specific NO₂-FA using reversed phase LC-MS/MS approaches, in biomimetic systems and in cells, tissues and biofluids [3,6,8–10,12,17,38,59,65,66]. Structural information gathered by using MS studies can be further confirmed by infrared and nuclear magnetic resonance analysis for the confirmation of the functional groups and the final structure [6,9,10,30,31,51].

The generation of NO₂-FA can be considered as the first step of nitration reactions. These species can be precursors of other nitrated and nitroxidized species because NO₂-FA

can undergo additional reaction with ROS and RNS to be further nitrated, leading to the formation of nitroso, dinitroso, nitronitroso, di and trinitro species, or oxidized generating the assorted nitroxidized species as nitrohydroxy, nitrohydroperoxy, nitro-epoxy and nitro-keto (Table 1) [3,6,8,26,54,64]. All of these derivatives were already identified by (LC)-MS and characterized by (LC)-MS/MS [1,6,9,38]. In fact, the great sensitivity of MS-based approaches allowed to identify both nitro and nitrohydroxy derivatives of palmitoleic, oleic, linoleic, linolenic, arachidonic and eicosapentaenoic acids in human plasma and urine [6]. However by far the NO₂-FA are the most studied mostly because, in opposition to other nitrated and nitroxidized FA, they are electrophilic molecules with great capability to react with protein with the formation of lipoxidation adducts.

2.2. Biological roles of nitro-fatty acids as new metabolic mediators, signaling molecules, and new therapeutic drugs candidates

NO₂-FA have raised the interest of the scientific community in last years, mainly because of their biological roles as key mediators in physiological and pathophysiological processes, as demonstrated in a variety of preclinical animal models of disease and in plants [2,5,13,15,20,28,32,34,45,56]. They were assigned as biologically relevant and putative signaling molecules in cardiovascular disease [28,33], myocardial ischemia/reperfusion and ischemia preconditioning [1,2,24], nephropathy [24], renal ischemia/reperfusion [24], diabetes and metabolic syndrome [14], pulmonary inflammation [15,67] and chronic inflammatory disease [65]. NO₂-FA reach endogenous levels that allow them to mediate pivotal signaling actions as cytoprotective and pro-survival players [2,34–37], and based on their pleiotropic actions, NO₂-FA has emerged as potential therapeutic agents with high

potential for therapeutic use (Table 2). In fact, NO₂-FA already undergo clinical trials [68]. Also, 10-NO₂-OA (CXA-10) demonstrated promising pharmacokinetic and pharmacodynamics characteristics during preclinical experiments [61,68,69]. CXA-10 is currently in phase II clinical trials for the treatment of chronic inflammatory and metabolicrelated diseases, namely focal segmental glomerulosclerosis and pulmonary arterial hypertension, since it demonstrated beneficial effects when administrated via intravenous injections or through ingestion [61,68,69].

The biological actions of NO₂-FA are mediated via a) decay reactions and transduction of nitric oxide (NO) signaling actions [29,70]. Also, NO₂FA can be considered NO donor, b) via receptor-dependent and c) via electrophilic adduction reactions to proteins [42], with formation of lipoxidation adducts. All these processes mediate important and specific signaling roles. These signaling actions are summarized in Table 2. Nitric oxide release by NO₂-FA has been associated with potential antioxidant properties through inhibition of lipid peroxidation process [71]. Additionally, the release of •NO by both NO₂-FA and nitrohydroxy FA derivatives has also been related with vasorelaxation properties of these nitrated lipid [26,29-31,51]. The nitro derivatives of arachidonic acid, NO₂-AA and nitrohydroxy-AA were also reported to be able to release •NO and thus to induce cGMP-dependent vasorelaxation in rat aortic ring in an endothelium-independent manner [26,31,51]. NO₂-LA, NO₂-cLA and nitrohydroxy-LA promoted vessel relaxation via cGMP-dependent and endothelial-independent manner in pre-constricted rat aortic rings [29,30]. Nevertheless, the [•]NO release by nitro lipids remains a controversial issue, and at some level, considered of minor relevance at endogenous levels [28,29,51,70,72]. Actually, NO signaling actions mediated by NO₂-FA

mainly occurs via cGMP-independent mechanisms. NO₂-FA modulates endothelial (eNOS) and inducible nitric oxide synthase (iNOS) gene expression and activity and consequently the eNOS- and iNOS-mediated [•]NO generation and reactions. Also, NO₂-FA modulates a broad array of signaling pathways that culminates with the downstream activation or inactivation of [•]NO signaling [67,73,74].

The covalent adduction to key proteins propelled by the electrophilic character of NO₂-FA seems to be the most prominent mechanism by which these nitro lipids spread their modulatory and protective actions. The identification and characterization of these NO₂-FA-protein adducts in distinct biological conditions have been achieved by reversed phase LC-MS-based proteomics approaches [28,42,56,59,75,76]. This topic will be discussed in more detail in the next section.

As endogenous molecules, NO₂-FA undergo a series of metabolic, trafficking and clearance pathways that influences the regulation of activity, half-life and levels of free NO₂-FA. Protein adduction and esterification in complex lipids [70,77,78] are considered as reservoirs of NO₂-FA, allowing to regulate their endogenous levels [70,77,78]. NO₂-FA– protein adducts are reversible in biological systems [59,73,79] and NO₂-FA esterified forms can be hydrolyzed and mobilized by esterases and lipases, allowing NO₂-FA to return to free active forms [70,80]. NO₂-FA can be metabolized via β-oxidation that mediates the formation of shorter and more polar electrophilic species [59] that retains the electrophilic power, but also to inactive nitroalkane species [7,59]. In fact, in humans and rodents, the bio-elimination pathways of 10-NO₂-OA involves the generation of a series of shorter metabolites that were detected in urine using C18-HPLC-ESI-MS and MS/MS using both LTQ Velos Orbitrap and API 5000 triple quadrupole instruments [61]. However, the

electrophilic functionality of NO₂-FA is irreversibly inactivated after reduction and conversion to the correspondent nitroalkane derivative by the nitroalkene saturase prostaglandin reductase-1 [81]. Both saturation and desaturation of the double bond of NO₂-FA are related with the generation of saturated non-electrophilic NO₂-FA [59], which are nitro derivatives without signaling abilities. Adduction to peptides or proteins seems to have other proposes, such as the case of conjugation with GSH, which increases the urinary excretion rate of NO₂-FA excreted in urine [82]. Incorporation of NO₂-FA into lipoproteins is another way for NO₂-FA to enter in circulation and to be systemically distributed among tissues. The modulation of all of these diverse pathways will impact the potential reactivity, the efficacy of signaling actions and behavior of these nitration products.

The signaling actions of NO₂-FA are also mediated through the modulation of the structure and regulation of the expression and activity of anti- and pro-inflammatory proteins, heat shock proteins and phase II antioxidant response proteins. The capability of NO₂-FA to react with specific peptides and proteins determines the role of this nitrated lipids in redox regulation with consequence in cell signaling, as will be described in the following section.

3. Nitro-fatty acids and Protein lipoxidation adducts

3.1. Main target and biological significance of PTM by nitro-fatty acids

NO₂-FA are electrophilic compounds, able to react via reversible Michael addition with nucleophiles within key proteins, leading to the formation of lipid-protein adducts (lipoxidation) in a process generally denominated nitroalkylation [83,84]. The target

nucleophiles in peptides and proteins include the deprotonated thiolate group of cysteine and the nucleophilic amino group of the imidazole moiety of histidine or the amino groups of lysine and arginine [83–85]. The high electronegative olefinic NO_2 group facilitate the addition to the double bond of the unsaturated hydrocarbon chain of NO₂-FA. This addition generates an important positive density of charge in the methylenic β -carbon adjacent to the nitration site. The oxygens of the NO₂ group withdraw electrons and the double bond is rearranged over the C-N bond, generating a carbocation. This conjugation makes the β carbon adjacent to the NO₂ group electron poor and with potential reactivity. The NO₂-FAprotein covalent adducts generated during the nitroalkylation process are reversible, which seems to be related with the possibility of redox regulation [59,73,79] and thus can be associated with the apparent lack of toxicity of these modified lipids. All of the aforementioned characteristics make NO₂-FA as promising pharmacological compounds. In pre-clinical and human trials has demonstrated the NO₂-FA favorable fact. pharmacokinetics and safety.

The formation of NO₂-FA adducts with proteins is considered a key PTM of proteins. This modification of functionally-relevant proteins can modulate the patterns of gene expression programs, transcription factors function, enzyme function and activity, metabolic and inflammatory responses, and cell signaling networks [50,59,73,84]. This lead to a series of downstream signaling events that are intrinsically related to the biological signaling roles of NO₂-FA [2,6,13–37,61,74,75,86–90] (Table 2). The activation of several of these pathways are considered essential for restoring the homeostasis and the redox balance and makes NO₂-FA promising pharmacological compounds [91].

There are several proteins reported to be targets of NO₂-FA electrophilic reactivity, for example, the p65 subunit of NF- κ B [1,23,92], heme oxygenase-1 (HO-1) [17,19,22,67,89,93], mitogen-activated protein kinase (MAPK) phosphatase 1 (MPK-1) [92], Kelch-like ECH-associated protein 1 (Keap 1) [17,22,46,88], metalloproteinases (MMP-7 and MMP-9) [75], glyceraldehyde-3-phosphate dehydrogenase (GAPDH) [42,94], protein disulfide isomerase (PDI) [95], and transient receptor potential (TRP) channels [96– 99] (Table 3). NO₂-FA can also conduct their biological signaling roles by a receptordependent signaling action and peroxisome proliferator-activated receptor gamma (PPAR γ) is one of the main targets, which is a significant route for the anti-inflammatory effect associated with NO₂-FA derivatives [6,23,47,65,93,100–102].

The nitro lipoxidation PTM of the proteins shown in the table 3 have been correlated with specific biological effects. For example, nitroalkylation of the p65 subunit of NF- κ B [23], induction of HO-1 expression [93], PPAR γ modulation [100], inhibition of the correct assembly of the active NADPH oxidase (NOX2) [74], and inhibition of both reductase and chaperone activities of PDI and possible prevention of NOX2 activation [95] have been associated with the anti-inflammatory properties of NO₂-FA. Another important anti-inflammatory action of NO₂-FA is attributed to their capability to induce PTM of 5-Lipoxygenase (5-LOX) limiting the inflammation induced by the 5-LOX-dependent leukotriene synthesis. This point deserves to be further explored as a potential therapeutic/pharmacological strategy due to the physiological relevance of 5-LOX, namely in inflammation [45]. Induction of HO-1 and activation of NO₂-FA [93]. Activation of PPAR γ by NO₂-FA has also been associated with glucose uptake and anti-hyperglycemic

effects [100]. Inhibition of the catalytic activity of sHE was associated with antihypertensive properties of NO₂-FA [32]. Finally, neuroprotective effects associated with the decrease of protein aggregation were related with PTMs of α -synuclein by NO₂-OA [35].

3.2. Identification of protein-nitro-fatty acids adducts: tools and challenges

Identification of protein nitroalkylation by NO₂-FA has been disclosed by using different experimental approaches, as crystallographic analysis [100,101], western immunoblot-based assay [2,23,32,34,87], spectrophotometry [7,43,44,94] and MS-based approaches [4,7,34,42–44]. However, spectrophotometry and immunoassays do not give detailed structural information and crystallography requires pure proteins, being difficult to be used in the analysis of complex biological samples.

Mass spectrometry, namely using matrix assisted laser desorption/ionization (MALDI) or electrospray (ESI) MS-based proteomics approaches, often coupled to reverse phase (RP) liquid chromatography (LC–MS), are the most suitable methods for detection and characterization of adducts formed between NO₂-FA and proteins. *In vitro* generation of NO₂-FA-protein adducts, in biomimetic systems, between standards of NO₂-FA and candidate peptides or proteins has been used as strategy for the initial identification by (LC)-MS and further characterization of these adducts by MS/MS. Data obtained using these biomimetic approaches using controlled reaction conditions are more straightforward and relatively easy to analyze. This, in turn, allows to obtain knowledge on the reactivity of each individual NO₂-FA and the typical fragmentation pathways under MS/MS needed to

identify these adducts. The information gathered by tandem mass experiments concerning the typical fragmentation pathways and reporter ions can be used to identify these lipoxidation products in complex biological samples by using MS-based proteomics approaches and to develop MS target analysis, namely multiple reaction monitoring (MRM) analysis. This has contributed to achieve the ultimate goal that consists of the identification of the NO₂-FA-protein adducts in complex biological samples as cells, tissues, biological fluids, which requires specific and targeted approaches. Bottom-up proteomics approaches are usually performed. Through these analytical approaches, it is possible to unequivocally identify the modified peptides after enzymatic digestion of NO₂-FA-protein adduct, usually using trypsin, followed by the analysis of the tryptic peptides by reverse-phase (RP)-LC-MS and MS/MS. The addition of the NO₂-FA moiety increases the retention time of the modified peptides [42], which are identified on the mass spectra as singly, $[M+H]^+$ ions, or multiple charged ions, $[M+nH]^{n+}$, based on the mass shift against the unmodified peptide. This gives information on the nature of NO₂-FA covalently attached to the protein. The observed mass shift in the mass spectra for the Michael adducts will be equal to the molecular weight of the NO₂-FA. Thus, a mass shift of +327 Da and +325 Da corresponds to the addition of NO₂-OA and NO₂-LA, respectively [42]. MS/MS data allows to confirm the nature of the modification and provides information on the fragmentation pattern of NO₂-FA-peptide adducts. These data further allows to pinpoint the location of the modification site and thus the targeted residue in the peptide backbone [103,104]. Detailed information to identify the sites of adduction is revealed by a mass shift of the typical b and y product ions of the adducted peptide, when compared with the non-

modified one. The modified immonium ions are also useful to confirm the presence of a modified amino acid residue within the adducted peptide.

RP-LC-ESI-MS and MS/MS were used to detect lipoxidation adducts formed between NO₂-OA or NO₂-LA and GAPDH and GSH in vivo in healthy human red cells [42]. This methodology was also applied to confirm the post-translational modifications of matrix metalloproteinase by NO₂-OA [75], and the for the identification of reversible Michael adducts of NO₂-OA and thiols of proteins and GSH in liver and plasma of NO₂-OA-treated mice [59]. Significant levels of protein cysteine adducts of NO₂-OA were also observed in fresh olives, especially in the peel [56]. AT₁-R adducts with NO₂-OA were quantified by HPLC-MS/MS using MRM scan mode in the negative-ion mode as BME adducts (BME-NO₂-OA adducts) after a nucleophilic exchange of NO₂-OA from AT₁-R to BME. The presence of exchangeable NO_2 -OA demonstrated the direct adduction of AT_1 -R by NO₂-OA, and therefore that AT₁-R is a relevant cellular target for NO₂-OA alkylation [28]. RP-LC-MRM scan in the positive-ion mode ([M+H]⁺ ions) was applied for the characterization of NO₂-LA-GSH adducts in vitro and further identification in MCF7 cells treated with NO₂-LA [76]. Nitroalkylation of albumin by NO₂-OA and NO₂-LA have been found in the plasma of mice gavage with these fatty acids [62]. Nitroalkylation of p65 subunit of nuclear factor κB (NF- κB) was observed *in vivo* in myocardial tissue of a murine model of ischaemia-reperfusion with intravenous supplementation of OA and LA [1]. One study also reported the direct analysis by MALDI-TOF-TOF MS and MS/MS, in positiveion mode, of adenine nucleotide translocase 1 (ATN 1) adducts after NO₂-LA infusion into intact perfused heats allowing to pinpoint that the nitroalkylation of ANT1 by NO₂-LA

occurred on Cys57 [34]. Adduction of NO₂-OA to PPAR- γ [47], and to Keap1 [46] are also examples of biological detection and characterization of NO₂-OA-protein adducts by MS.

The Michael addition reactions between NO₂-FA and proteins is remarkably selective and depends on the nature and structural features of the NO₂-FA. The fatty acyl chain length and the position of the electrophilic carbon, i.e., the position of the nitroalkene group, has a pivotal effect on the reactivity of NO₂-FA [102]. Therefore both factors regulate the formation of NO₂-FA-protein adducts and the biological activity of the NO₂-FA [22,42,65,73,100,101]. In spite of its four possible isomers (at C9, C10, C12 or C13), only the NO₂-LA isomers bearing the NO₂ at C10 and C12 were reported to selectively bind to cysteine 285 (Cys285) in the ligand-binding domain and activate PPAR γ [101]. The C10 isomer of NO₂-OA is more reactive toward to Cys285 in the ligand binding domain of PPAR γ than the C9 isomer [47]. On the other hand, Keap1 is easily activated by the C9 isomer via nitroalkylation of Cys273 and Cys288 [22,46]. Xanthine oxidoreductase activity is preferentially inhibited by the C9 isomer of NO₂-OA or a mixture of both C9 and C10 isomers [73]. It has been reported that NO₂-FA with shorter acyl chains interact stronger with Nrf2 and NF-kB [60].

Overall, the identification of NO_2 -FA-protein adducts is important, because it may give information, as shown in several examples reported earlier, on the potential protein targets whose modulation by NO_2 -FA can have potential therapeutic interest.

4. Esterified nitro-fatty acids

4.1 Nitrated phospholipids and their lipoxidation adducts

In spite of their free forms, NO₂-FA can be stabilized by esterification in more complex lipids in hydrophobic compartments, as the biological membranes. Nitrated derivatives of phospholipids were identified in biomimetic model systems and also *in vivo* [39,40]. In mimetic model studies, nitrated PLs were generated after *in vitro* incubation of PL standards (phosphatidylcholines, PCs and phosphatidylethanolamines, PEs) and NO₂BF₄, and its characterization was performed using C5-LC-MS and MS/MS in a Linear ion trap [39,40]. Nitrated PCs and nitrated PEs were detected by HILIC-LC-MS and MS/MS-based lipidomic approaches in cardiac mitochondria from diabetic rats [39] and cardiomyoblasts subjected to starvation [40]. Nitrated 1-palmitoyl-2-oleyl-*sn*-glycero-3-phosphocholine (nitrated POPC) was reported to have antioxidant properties as scavenging agent, mediated by its anti-radical potential and ability to inhibit lipid peroxidation. Anti-inflammatory properties of nitrated POPC, related with its ability to inhibit iNOS expression in LPS-activated macrophages, were also reported [105].

NO₂-FA incorporation in PLs was also reported by using C18-HPLC-ESI-MS and MS/MS in API 4000 Q-trap triple quadrupole in adipocytes supplemented with NO₂-SA, NO₂-OA, NO₂-cLA, and NO₂-LA, before and after acidic hydrolysis. The incorporation yield and profile was specific for each supplemented NO₂-FA and PL class, being PC the PL class with highest levels of incorporation of NO₂-FA [106].

Nitrated POPC was also found to have the capability to form adducts with peptides. The identification of the covalent adducts of NO₂POPC with GSH was characterized by tandem MS in different instruments and the typical fragmentation pathways were disclosed for the first time. In this study, the NO₂POPC-GSH adducts were generated under biomimetic conditions and characterized by direct infusion MS and MS/MS using different

instrumental platforms including LXQ linear ion trap, Q-TOF 2, and Q-Exactive Hybrid Orbitrap. The observed fragmentation pattern of NO₂POPC-GSH adducts included product ions that confirmed the presence of the phosphatidylcholine moiety (m/z 184.074 and neutral loss of 183 Da), the nitro group (neutral loss of HNO₂), and $*y_2$, $*b_2$ and $*C_1$ fragment ions of the modified peptide. All of these product ions pinpointing that NO₂POPC was linked to a cysteine residue of GSH (Figure 6) and can be used as reporter ions applied in the search of these lipoxidation adducts in biological samples [49].

4.2. Nitrated Triacylglycerides

Nitrated triacylglycerides (NO₂-FA-TAG) have been reported in rat plasma after oral administration of NO₂-OA, together with β -oxidation and dehydrogenation derivatives of NO₂-FA-TAG in adipocytes supplemented with NO₂-OA. These studies were performed by C18-HPLC-ESI-MS and MS/MS in API4000 Q-trap triple quadrupole and LTQ Velos Orbitrap instruments [41]. Another study reported the differential esterification profile of NO₂-FA and their metabolites in TAGs in adipose tissue of rats fed with 10-NO₂-OA. By using C18-HPLC-ESI-MS and MS/MS in API 4000 Q-trap triple quadrupole, the NO₂-FA were observed to be preferentially incorporated in monoacyl- and diacylglycerides. This was found to be in opposite to its reduced metabolites, which were favorably incorporated in TAGs. These observations were corroborated by the analysis of the lipid polar and neutral fractions from adipocytes supplemented with NO₂-SA (nitro-stearic acid), NO₂-OA, NO₂-cLA, and NO₂-LA, after acidic hydrolysis [106].

The occurrence of nitrated phospholipids and triacylglycerides can be of high relevance at biological level. The NO₂-FA-containing phospholipids and triacylglycerides

can act as a reservoir of NO₂-FA. Additionally, these esterified NO₂-FA can be further mobilized by lipases in turn to exert their adaptive and anti-inflammatory signaling actions. In the case of NO₂-FA-containing phospholipids, the NO₂-FA moiety seems to be able to retain the electrophilic character, and thus the ability to undergo reversible reactions via Michael addition with key proteins. Also, these phospholipid-esterified NO₂-FA can have an impact as anti-inflammatory and cytoprotective species. The nitration of esterified NO₂-FA or its incorporation into more complex lipids, together with the occurrence of lipoxidation products of NO₂-FA-containing phospholipids, and perhaps NO₂-FA-TAGs, can also contribute to the systemic distribution and metabolism of NO₂-FA.

5. Conclusion and future perspectives

NO₂-FA own important physiological functions that are mediated *via* formation of lipoxidation adducts and associated regulation of protein function. Several signaling proteins, with key roles in anti-inflammatory, anti-hypertensive, anti-hyperglycemic, and cytoprotective pathways, are targets of NO₂-FA adduction. This points to potential for new therapeutic strategies in important non-communicable diseases as cardiovascular, renal, pulmonary, and metabolic diseases. Mass spectrometry is a promising analytical tool in the detection of NO₂-FA-protein adducts. Nevertheless, there is a need for new methodological developments to improve the detection of these elusive lipoxidation adducts, and to obtain more insights regarding the protein targets of NO₂-FA and its roles in biological signaling pathways.

Acknowledgments

We acknowledge the European Commission's Horizon 2020 research and innovation programme for the Marie Sklodowska-Curie grant agreement number 675132 (MSCA-ITN-ETN MASSTRPLAN) to University of Aveiro and to Centro Hospitalar e Universitário de Coimbra. Thanks are due to the University of Aveiro, FCT/MEC, European Union, QREN, COMPETE for the financial support to the QOPNA (FCT UID/QUI/00062/2013) and CESAM (UID/AMB/50017 - POCI-01-0145-FEDER-007638), through national funds and where applicable co-financed by the FEDER, within the PT2020 Partnership Agreement, to the Portuguese Mass Spectrometry Network (LISBOA-01-0145-FEDER-402-022125). Tânia Melo (BPD/UI51/5388/2017) is grateful to FCT for her grant.

Bibliography

- [1] V. Rudolph, T.K. Rudolph, F.J. Schopfer, G. Bonacci, S.R. Woodcock, M.P. Cole, P.R.S. Baker, R. Ramani, B.A. Freeman, Endogenous generation and protective effects of nitro-fatty acids in a murine model of focal cardiac ischaemia and reperfusion, Cardiovasc. Res. 85 (2010) 155–66. doi:10.1093/cvr/cvp275.
- S.M. Nadtochiy, P.R.S. Baker, B.A. Freeman, P.S. Brookes, Mitochondrial nitroalkene formation and mild uncoupling in ischaemic preconditioning: Implications for cardioprotection, Cardiovasc. Res. 82 (2009) 333–340. doi:10.1093/cvr/cvn323.
- [3] G. Bonacci, P.R.S. Baker, S.R. Salvatore, D. Shores, N.K.H. Khoo, J.R. Koenitzer,D.A. Vitturi, S.R. Woodcock, F. Golin-Bisello, M.P. Cole, S. Watkins, C. St. Croix,

C.I. Batthyany, B.A. Freeman, F.J. Schopfer, Conjugated linoleic acid is a preferential substrate for fatty acid nitration, J. Biol. Chem. 287 (2012) 44071–44082. doi:10.1074/jbc.M112.401356.

- [4] J.C. Schoeman, A.C. Harms, M. van Weeghel, R. Berger, R.J. Vreeken, T. Hankemeier, Development and application of a UHPLC–MS/MS metabolomics based comprehensive systemic and tissue-specific screening method for inflammatory, oxidative and nitrosative stress, Anal. Bioanal. Chem. 410 (2018) 2551–2568. doi:10.1007/s00216-018-0912-2.
- [5] A.T. Reddy, S.P. Lakshmi, R.R. Muchumarri, R.C. Reddy, Nitrated fatty acids reverse cigarette smoke-induced alveolar macrophage activation and inhibit protease activity via electrophilic S-alkylation, PLoS One. 11 (2016) e0153336. doi:10.1371/journal.pone.0153336.
- [6] P.R.S. Baker, Y. Lin, F.J. Schopfer, S.R. Woodcock, A.L. Groeger, C. Batthyany, S. Sweeney, M.H. Long, K.E. Iles, L.M.S. Baker, B.P. Branchaud, Y.E. Chen, B.A. Freeman, Fatty acid transduction of nitric oxide signaling: Multiple nitrated unsaturated fatty acid derivatives exist in human blood and urine and serve as endogenous peroxisome proliferator-activated receptor ligands, J. Biol. Chem. 280 (2005) 42464–42675. doi:10.1074/jbc.M504212200.
- S.R. Salvatore, D.A. Vitturi, P.R.S. Baker, G. Bonacci, J.R. Koenitzer, S.R.
 Woodcock, B.A. Freeman, F.J. Schopfer, Characterization and quantification of endogenous fatty acid nitroalkene metabolites in human urine, J. Lipid Res. 54 (2013) 1998–2009. doi:10.1194/jlr.M037804.
- [8] P.R. Baker, F.J. Schopfer, S. Sweeney, B.A. Freeman, Red cell membrane and plasma linoleic acid nitration products: synthesis, clinical identification, and quantitation, Proc. Natl. Acad. Sci. U.S.A. 101 (2004) 11577–11582. doi:10.1073/pnas.0402587101.
- [9] E.S. Lima, P. Di Mascio, D.S.P. Abdalla, Cholesteryl nitrolinoleate, a nitrated lipid present in human blood plasma and lipoproteins, J. Lipid Res. 44 (2003) 1660–1666.

doi:10.1194/jlr.M200467-JLR200.

- [10] É.S. Lima, P. Di Mascio, H. Rubbo, D.S.P. Abdalla, Characterization of linoleic acid nitration in human blood plasma by mass spectrometry, Biochemistry. 41 (2002) 10717–10722. doi:10.1021/bi025504j.
- [11] D. Tsikas, A.A. Zoerner, J. Jordan, Oxidized and nitrated oleic acid in biological systems: Analysis by GC-MS/MS and LC-MS/MS, and biological significance, Biochim. Biophys. Acta Mol. Cell Biol. Lipids. (2011) 694–705. doi:10.1016/j.bbalip.2011.06.015.
- [12] D. Tsikas, A.A. Zoerner, A. Mitschke, F.M. Gutzki, Nitro-fatty acids occur in human plasma in the picomolar range: A targeted nitro-lipidomics GC-MS/MS study, Lipids. 44 (2009) 855–865. doi:10.1007/s11745-009-3332-4.
- [13] L. Villacorta, L. Minarrieta, S.R. Salvatore, N.K. Khoo, O. Rom, Z. Gao, R.C. Berman, S. Jobbagy, L. Li, S.R. Woodcock, Y.E. Chen, B.A. Freeman, A.M. Ferreira, F.J. Schopfer, D.A. Vitturi, In situ generation, metabolism and immunomodulatory signaling actions of nitro-conjugated linoleic acid in a murine model of inflammation, Redox Biol. 15 (2018) 522–531. doi:10.1016/j.redox.2018.01.005.
- [14] T. Yang, H. Wang, H. Liu, Z. Jia, G. Guan, Effects of endogenous PPAR agonist nitro-oleic acid on metabolic syndrome in obese Zucker rats, PPAR Res. (2010). doi:10.1155/2010/601562.
- [15] A.T. Reddy, S.P. Lakshmi, R.C. Reddy, The nitrated fatty acid 10-nitro-oleate diminishes severity of lps-induced acute lung injury in mice, PPAR Res. (2012). doi:10.1155/2012/617063.
- [16] A.L. Hansen, G.J. Buchan, M. Rühl, K. Mukai, S.R. Salvatore, E. Ogawa, S.D.
 Andersen, M.B. Iversen, A.L. Thielke, C. Gunderstofte, M. Motwani, C.T. Møller,
 A.S. Jakobsen, K.A. Fitzgerald, J. Roos, R. Lin, T.J. Maier, R. Goldbach-Mansky,
 C.A. Miner, W. Qian, J.J. Miner, R.E. Rigby, J. Rehwinkel, M.R. Jakobsen, H. Arai,

T. Taguchi, F.J. Schopfer, D. Olagnier, C.K. Holm, Nitro-fatty acids are formed in response to virus infection and are potent inhibitors of STING palmitoylation and signaling, Proc. Natl. Acad. Sci. 115 (2018) E7768–E7775. doi:10.1073/pnas.1806239115.

- K.E. Iles, M.M. Wright, M.P. Cole, N.E. Welty, L.B. Ware, M.A. Matthay, F.J. Schopfer, P.R.S. Baker, A. Agarwal, B.A. Freeman, Fatty acid transduction of nitric oxide signaling: nitrolinoleic acid mediates protective effects through regulation of the ERK pathway, Free Radic. Biol. Med. 46 (2009) 866–75. doi:10.1016/j.freeradbiomed.2008.12.001.
- B. Coles, A. Bloodsworth, S.R. Clark, M.J. Lewis, A.R. Cross, B.A. Freeman, V.B. O'Donnell, Nitrolinoleate inhibits superoxide generation, degranulation, and integrin expression by human neutrophils: Novel antiinflammatory properties of nitric oxide-derived reactive species in vascular cells, Circ. Res. 91 (2002) 375–381. doi:10.1161/01.RES.0000032114.68919.EF.
- M.P. Cole, T.K. Rudolph, N.K.H. Khoo, U.N. Motanya, F. Golin-Bisello, J.W.
 Wertz, F.J. Schopfer, V. Rudolph, S.R. Woodcock, S. Bolisetty, M.S. Ali, J. Zhang,
 Y.E. Chen, A. Agarwal, B.A. Freeman, P.M. Bauer, Nitro-fatty acid inhibition of
 neointima formation after endoluminal vessel injury, Circ. Res. 105 (2009) 965–972.
 doi:10.1161/CIRCRESAHA.109.199075.
- [20] A.R. Mathers, C.D. Carey, M.E. Killeen, J.A. Diaz-Perez, S.R. Salvatore, F.J. Schopfer, B.A. Freeman, L.D. Falo, Electrophilic nitro-fatty acids suppress allergic contact dermatitis in mice, Allergy Eur. J. Allergy Clin. Immunol. 72 (2017) 656– 664. doi:10.1111/all.13067.
- [21] J. Hwang, K.E. Lee, J.Y. Lim, S.I. Park, Nitrated fatty acids prevent TNFαstimulated inflammatory and atherogenic responses in endothelial cells, Biochem. Biophys. Res. Commun. 387 (2009) 633–640. doi:10.1016/j.bbrc.2009.07.030.
- [22] E. Kansanen, H.K. Jyrkkänen, O.L. Volger, H. Leinonen, A.M. Kivelä, S.K.Häkkinen, S.R. Woodcock, F.J. Schopfer, A.J. Horrevoets, S. Ylä-Herttuala, B.A.

Freeman, A.L. Levonen, Nrf2-dependent and -independent responses to nitro-fatty acids in human endothelial cells: Identification of heat shock response as the major pathway activated by nitro-oleic acid, J. Biol. Chem. 284 (2009) 33233–33241. doi:10.1074/jbc.M109.064873.

- T. Cui, F.J. Schopfer, J. Zhang, K. Chen, T. Ichikawa, P.R.S. Baker, C. Batthyany,
 B.K. Chacko, X. Feng, R.P. Patel, A. Agarwal, B.A. Freeman, Y.E. Chen, Nitrated fatty acids: Endogenous anti-inflammatory signaling mediators, J. Biol. Chem. 281 (2006) 35686–35698. doi:10.1074/jbc.M603357200.
- [24] H. Liu, Z. Jia, S. Soodvilai, G. Guan, M.-H. Wang, Z. Dong, J.D. Symons, T. Yang, Nitro-oleic acid protects the mouse kidney from ischemia and reperfusion injury, Am. J. Physiol. Physiol. 295 (2008) F942–F949. doi:10.1152/ajprenal.90236.2008.
- [25] E. Kansanen, S.M. Kuosmanen, A.-K. Ruotsalainen, H. Hynynen, A.-L. Levonen, Nitro-Oleic Acid Regulates Endothelin Signaling in Human Endothelial Cells, Mol. Pharmacol. 92 (2017) 481–490. doi:10.1124/mol.117.109751.
- [26] M. Balazy, T. Iesaki, J.L.L. Park, H. Jiang, P.M.M. Kaminski, M.S.S. Wolin, Vicinal nitrohydroxyeicosatrienoic acids: vasodilator lipids formed by reaction of nitrogen dioxide with arachidonic acid., J. Pharmacol. Exp. Ther. 299 (2001) 611–619.
- [27] M. Rudnicki, L.A. Faine, N. Dehne, D. Namgaladze, S. Ferderbar, R. Weinlich, G.P. Amarante-Mendes, C.Y.I. Yan, J.E. Krieger, B. Brüne, D.S.P. Abdalla, Hypoxia inducible factor-dependent regulation of angiogenesis by nitro-fatty acids, Arterioscler. Thromb. Vasc. Biol. 31 (2011) 1360–1367. doi:10.1161/ATVBAHA.111.224626.
- J. Zhang, L. Villacorta, L. Chang, Z. Fan, M. Hamblin, T. Zhu, C.S. Chen, M.P.
 Cole, F.J. Schopfer, C.X. Deng, M.T. Garcia-Barrio, Y.H. Feng, B.A. Freeman, Y.E.
 Chen, Nitro-oleic acid inhibits angiotensin II-induced hypertension, Circ. Res. 107
 (2010) 540–548. doi:10.1161/CIRCRESAHA.110.218404.
- [29] É.S. Lima, M.G. Bonini, O. Augusto, H. V. Barbeiro, H.P. Souza, D.S.P. Abdalla,

Nitrated lipids decompose to nitric oxide and lipid radicals and cause vasorelaxation, Free Radic. Biol. Med. 39 (2005) 532–539. doi:10.1016/j.freeradbiomed.2005.04.005.

- [30] D.G. Lim, S. Sweeney, A. Bloodsworth, C.R. White, P.H. Chumley, N.R. Krishna, F. Schopfer, V.B. O'Donnell, J.P. Eiserich, B.A. Freeman, Nitrolinoleate, a nitric oxide-derived mediator of cell function: synthesis, characterization, and vasomotor activity., Proc Natl Acad Sci U S A. 99 (2002) 15941–15946. doi:10.1073/pnas.232409599.
- [31] F. Blanco, A.M. Ferreira, G. V. López, L. Bonilla, M. González, H. Cerecetto, A. Trostchansky, H. Rubbo, 6-Methylnitroarachidonate: A novel esterified nitroalkene that potently inhibits platelet aggregation and exerts cGMP-mediated vascular relaxation, Free Radic. Biol. Med. 50 (2011) 411–418. doi:10.1016/j.freeradbiomed.2010.11.031.
- R.L. Charles, O. Rudyk, O. Prysyazhna, A. Kamynina, J. Yang, C. Morisseau, B.D. Hammock, B.A. Freeman, P. Eaton, Protection from hypertension in mice by the Mediterranean diet is mediated by nitro fatty acid inhibition of soluble epoxide hydrolase, Proc. Natl. Acad. Sci. 111 (2014) 8167–8172. doi:10.1073/pnas.1402965111.
- [33] B. Coles, A. Bloodsworth, J.P. Eiserich, M.J. Coffey, R.M. McLoughlin, J.C. Giddings, M.J. Lewis, R.J. Haslam, B.A. Freeman, V.B. O'Donnell, Nitrolinoleate inhibits platelet activation by attenuating calcium mobilization and inducing phosphorylation of vasodilator-stimulated phosphoprotein through elevation of cAMP, J. Biol. Chem. 277 (2002) 5832–5840. doi:10.1074/jbc.M105209200.
- [34] S.M. Nadtochiy, Q. Zhu, W. Urciuoli, R. Rafikov, S.M. Black, P.S. Brookes, Nitroalkenes confer acute cardioprotection via adenine nucleotide translocase, J. Biol. Chem. 287 (2012) 3573–3580. doi:10.1074/jbc.M111.298406.
- [35] J.M. Souza, A. Trostchansky, C. Batthyany, R. Durán, B.A. Freeman, H. Rubbo,Posttranslational Modification of Human Alpha-Synuclein by Nitro-Oleic Acid, Free

Radic. Biol. Med. 49 (2010) S158. doi:https://doi.org/10.1016/j.freeradbiomed.2010.10.445.

- [36] B. Sánchez-Calvo, A. Cassina, N. Rios, G. Peluffo, J. Boggia, R. Radi, H. Rubbo, A. Trostchansky, Nitro-arachidonic acid prevents angiotensin II-induced mitochondrial dysfunction in a cell line of kidney proximal tubular cells, PLoS One. 11 (2016) e0150459. doi:10.1371/journal.pone.0150459.
- [37] P.M. Van Hoose, N.Q. Kelm, K.M. Piell, M.P. Cole, Conjugated linoleic acid and nitrite attenuate mitochondrial dysfunction during myocardial ischemia, J. Nutr. Biochem. 34 (2016) 8–16. doi:10.1016/j.jnutbio.2016.04.001.
- [38] I. Milic, E. Griesser, V. Vemula, N. Ieda, H. Nakagawa, N. Miyata, J.M. Galano, C. Oger, T. Durand, M. Fedorova, Profiling and relative quantification of multiply nitrated and oxidized fatty acids, Anal. Bioanal. Chem. 407 (2015) 5587–5602. doi:10.1007/s00216-015-8766-3.
- [39] T. Melo, P. Domingues, R. Ferreira, I. Milic, M. Fedorova, S.M. Santos, M.A. Segundo, M.R.M. Domingues, Recent Advances on Mass Spectrometry Analysis of Nitrated Phospholipids, Anal. Chem. 88 (2016) 2622–2629. doi:10.1021/acs.analchem.5b03407.
- [40] T. Melo, P. Domingues, T.M. Ribeiro-Rodrigues, H. Girão, M.A. Segundo, M.R.M. Domingues, Characterization of phospholipid nitroxidation by LC-MS in biomimetic models and in H9c2 Myoblast using a lipidomic approach, Free Radic. Biol. Med. 106 (2017) 219–227. doi:10.1016/j.freeradbiomed.2017.02.033.
- [41] M. Fazzari, N. Khoo, S.R. Woodcock, L. Li, B.A. Freeman, F.J. Schopfer, Generation and esterification of electrophilic fatty acid nitroalkenes in triacylglycerides, Free Radic. Biol. Med. 87 (2015) 113–124. doi:10.1016/j.freeradbiomed.2015.05.033.
- [42] C. Batthyany, F.J. Schopfer, P.R.S. Baker, R. Durán, L.M.S. Baker, Y. Huang, C. Cerveñansky, B.P. Branchaud, B.A. Freeman, Reversible post-translational

modification of proteins by nitrated fatty acids in vivo, J. Biol. Chem. 281 (2006) 20450–20563. doi:10.1074/jbc.M602814200.

- [43] M.N. Padilla, C. Mata-Pérez, M. Melguizo, J.B. Barroso, In vitro nitro-fatty acid release from Cys-NO2-fatty acid adducts under nitro-oxidative conditions, Nitric Oxide - Biol. Chem. 68 (2017) 14–22. doi:10.1016/j.niox.2016.12.009.
- [44] L. Turell, D.A. Vitturi, E.L. Coitiño, L. Lebrato, M.N. Möller, C. Sagasti, S.R. Salvatore, S.R. Woodcock, B. Alvarez, F.J. Schopfer, The chemical basis of thiol addition to nitro-conjugated linoleic acid, a protective cell-signaling lipid, J. Biol. Chem. 292 (2017) 1145–1159. doi:10.1074/jbc.M116.756288.
- [45] K. Awwad, S.D. Steinbrink, T. Frömel, N. Lill, J. Isaak, A.-K. Häfner, J. Roos, B. Hofmann, H. Heide, G. Geisslinger, D. Steinhilber, B.A. Freeman, T.J. Maier, I. Fleming, Electrophilic Fatty Acid Species Inhibit 5-Lipoxygenase and Attenuate Sepsis-Induced Pulmonary Inflammation, Antioxid. Redox Signal. 20 (2014) 2667– 2680. doi:10.1089/ars.2013.5473.
- [46] E. Kansanen, G. Bonacci, F.J. Schopfer, S.M. Kuosmanen, K.I. Tong, H. Leinonen, S.R. Woodcock, M. Yamamoto, C. Carlberg, S. Ylä-Herttuala, B.A. Freeman, A.L. Levonen, Electrophilic nitro-fatty acids activate Nrf2 by a Keap1 cysteine 151independent mechanism, J. Biol. Chem. 286 (2011) 14019–14027. doi:10.1074/jbc.M110.190710.
- [47] F.J. Schopfer, M.P. Cole, A.L. Groeger, C.S. Chen, N.K.H. Khoo, S.R. Woodcock, F. Golin-Bisello, U. Nkiru Motanya, Y. Li, J. Zhang, M.T. Garcia-Barrio, T.K. Rudolph, V. Rudolph, G. Bonacci, P.R.S. Baker, H.E. Xu, C.I. Batthyany, Y.E. Chen, T.M. Hallis, B.A. Freeman, Covalent peroxisome proliferator-activated receptor γ adduction by nitro-fatty acids: Selective ligand activity and anti-diabetic signaling actions, J. Biol. Chem. 285 (2010) 12321–12333. doi:10.1074/jbc.M109.091512.
- [48] J.R. Koenitzer, G. Bonacci, S.R. Woodcock, C.S. Chen, N. Cantu-Medellin, E.E. Kelley, F.J. Schopfer, Fatty acid nitroalkenes induce resistance to ischemic cardiac

injury by modulating mitochondrial respiration at complex II, Redox Biol. 8 (2016) 1–10. doi:10.1016/j.redox.2015.11.002.

- [49] J.-F. Montero-Bullon, T. Melo, M.R. Domingues, P. Domingues, Characterization of Nitrophospholipid-Peptide Covalent Adducts by Electrospray Tandem Mass Spectrometry: A First Screening Analysis Using Different Instrumental Platforms, Eur. J. Lipid Sci. Technol. 0 (2018) 1800101. doi:10.1002/ejlt.201800101.
- [50] B.A. Freeman, P.R.S. Baker, F.J. Schopfer, S.R. Woodcock, A. Napolitano, M. D'Ischia, Nitro-fatty acid formation and signaling, J. Biol. Chem. (2008) 15515– 15519. doi:10.1074/jbc.R800004200.
- [51] A. Trostchansky, J.M. Souza, A. Ferreira, M. Ferrari, F. Blanco, M. Trujillo, D. Castro, H. Cerecetto, P.R.S. Baker, V.B. O'Donnell, H. Rubbo, Synthesis, isomer characterization, and anti-inflammatory properties of nitroarachidonate, Biochemistry. (2007). doi:10.1021/bi602652j.
- [52] A. Napolitano, L. Panzella, M. Savarese, R. Sacchi, I. Giudicianni, L. Paolillo, M. D'Ischia, Acid-induced structural modifications of unsaturated fatty acids and phenolic olive oil constituents by nitrite ions: A chemical assessment, Chem. Res. Toxicol. 17 (2004) 1329–1337. doi:10.1021/tx049880b.
- [53] C. Pereira, N.R. Ferreira, B.S. Rocha, R.M. Barbosa, J. Laranjinha, The redox interplay between nitrite and nitric oxide: From the gut to the brain, Redox Biol. 1 (2013) 276–284. doi:10.1016/j.redox.2013.04.004.
- [54] A. Napolitano, E. Camera, M. Picardo, M. D'Ischia, Acid-promoted reactions of ethyl linoleate with nitrite ions: Formation and structural characterization of isomeric nitroalkene, nitrohydroxy, and novel 3-nitro-1,5-hexadiene and 1,5-dinitro-1,3pentadiene products, J. Org. Chem. 65 (2000) 4853–4860. doi:10.1021/jo000090q.
- [55] E. Weitzberg, J.O. Lundberg, Novel Aspects of Dietary Nitrate and Human Health, Annu. Rev. Nutr. 33 (2013) 129–159. doi:10.1146/annurev-nutr-071812-161159.
- [56] M. Fazzari, A. Trostchansky, F.J. Schopfer, S.R. Salvatore, B. Sánchez-Calvo, D.

Vitturi, R. Valderrama, J.B. Barroso, R. Radi, B.A. Freeman, H. Rubbo, Olives and olive oil are sources of electrophilic fatty acid nitroalkenes, PLoS One. 9 (2014) e84884. doi:10.1371/journal.pone.0084884.

- [57] C. Mata-Pérez, B. Sánchez-Calvo, M.N. Padilla, J.C. Begara-Morales, R.
 Valderrama, F.J. Corpas, J.B. Barroso, Nitro-fatty acids in plant signaling: New key mediators of nitric oxide metabolism, Redox Biol. (2017).
 doi:10.1016/j.redox.2017.01.002.
- [58] M. Delmastro-Greenwood, K.S. Hughan, D.A. Vitturi, S.R. Salvatore, G. Grimes, G. Potti, S. Shiva, F.J. Schopfer, M.T. Gladwin, B.A. Freeman, S. Gelhaus Wendell, Nitrite and nitrate-dependent generation of anti-inflammatory fatty acid nitroalkenes, Free Radic. Biol. Med. 89 (2015) 333–341.
 doi:10.1016/j.freeradbiomed.2015.07.149.
- [59] V. Rudolph, F.J. Schopfer, N.K.H. Khoo, T.K. Rudolph, M.P. Cole, S.R. Woodcock, G. Bonacci, A.L. Groeger, F. Golin-Bisello, C.S. Chen, P.R.S. Baker, B.A. Freeman, Nitro-fatty acid metabolome: saturation, desaturation, β-oxidation, and protein adduction, J. Biol. Chem. 284 (2009) 1461–1473. doi:10.1074/jbc.M802298200.
- [60] N.K.H. Khoo, L. Li, S.R. Salvatore, F.J. Schopfer, B.A. Freeman, Electrophilic fatty acid nitroalkenes regulate Nrf2 and NF-κB signaling: A medicinal chemistry investigation of structure-function relationships, Sci. Rep. 8 (2018) 2295. doi:10.1038/s41598-018-20460-8.
- [61] S.R. Salvatore, D.A. Vitturi, M. Fazzari, D.K. Jorkasky, F.J. Schopfer, Evaluation of 10-Nitro Oleic Acid Bio-Elimination in Rats and Humans, Sci. Rep. 7 (2017) 39900. doi:10.1038/srep39900.
- [62] F.J. Schopfer, C. Batthyany, P.R.S. Baker, G. Bonacci, M.P. Cole, V. Rudolph, A.L. Groeger, T.K. Rudolph, S. Nadtochiy, P.S. Brookes, B.A. Freeman, Detection and quantification of protein adduction by electrophilic fatty acids: mitochondrial generation of fatty acid nitroalkene derivatives, Free Radic. Biol. Med. 46 (2009) 1250–1259. doi:10.1016/j.freeradbiomed.2008.12.025.

- [63] G. Bonacci, E.K. Asciutto, S.R. Woodcock, S.R. Salvatore, B.A. Freeman, F.J. Schopfer, Gas-phase fragmentation analysis of nitro-fatty acids, J. Am. Soc. Mass Spectrom. 22 (2011) 1534–1551. doi:10.1007/s13361-011-0185-x.
- [64] S.V.S. Chakravartula, M. Balazy, Characterization of Nitro Arachidonic Acid and Nitro Linoleic Acid by Mass Spectrometry, Anal. Lett. 45 (2012) 2412–242. doi:10.1080/00032719.2012.693558.
- [65] S. Borniquel, E.A. Jansson, M.P. Cole, B.A. Freeman, J.O. Lundberg, Nitrated oleic acid up-regulates PPARgamma and attenuates experimental inflammatory bowel disease, Free Radic. Biol. Med. 48 (2010) 499–505. doi:10.1016/j.freeradbiomed.2009.11.014.
- [66] A.M. Ferreira, M.I. Ferrari, A. Trostchansky, C. Batthyany, J.M. Souza, M.N. Alvarez, G. V López, P.R.S. Baker, F.J. Schopfer, V. O'Donnell, B.A. Freeman, H. Rubbo, Macrophage activation induces formation of the anti-inflammatory lipid cholesteryl-nitrolinoleate, Biochem. J. 417 (2009) 223–234. doi:10.1042/BJ20080701.
- [67] N.K.H. Khoo, V. Rudolph, M.P. Cole, F. Golin-Bisello, F.J. Schopfer, S.R.
 Woodcock, C. Batthyany, B.A. Freeman, Activation of vascular endothelial nitric oxide synthase and heme oxygenase-1 expression by electrophilic nitro-fatty acids, Free Radic. Biol. Med. 48 (2010) 230–239.
 doi:10.1016/j.freeradbiomed.2009.10.046.
- [68] F.J. Schopfer, D.A. Vitturi, D.K. Jorkasky, B.A. Freeman, Nitro-fatty acids: New drug candidates for chronic inflammatory and fibrotic diseases, Nitric Oxide. 79 (2018) 31–37. doi:https://doi.org/10.1016/j.niox.2018.06.006.
- [69] W. Wang, C. Li, T. Yang, Protection of nitro-fatty acid against kidney diseases, Am. J. Physiol. Renal Physiol. 310 (2016) F697–F704. doi:10.1152/ajprenal.00321.2015.
- [70] F.J. Schopfer, P.R.S. Baker, G. Giles, P. Chumley, C. Batthyany, J. Crawford, R.P.Patel, N. Hogg, B.P. Branchaud, J.R. Lancaster, B.A. Freeman, Fatty Acid

Transduction of Nitric Oxide Signaling: NITROLINOLEIC ACID IS A HYDROPHOBICALLY STABILIZED NITRIC OXIDE DONOR, J. Biol. Chem. . 280 (2005) 19289–19297. doi:10.1074/jbc.M414689200.

- [71] H. Rubbo, S. Parthasarathy, S. Barnes, M. Kirk, B. Kalyanaraman, B.A. Freeman, Nitric Oxide Inhibition of Lipoxygenase-Dependent Liposome and Low-Density Lipoprotein Oxidation: Termination of Radical Chain Propagation Reactions and Formation of Nitrogen-Containing Oxidized Lipid Derivatives, Arch. Biochem. Biophys. 324 (1995) 15–25. doi:https://doi.org/10.1006/abbi.1995.9935.
- [72] M.J. Gorczynski, J. Huang, H. Lee, S.B. King, Evaluation of nitroalkenes as nitric oxide donors, Bioorg. Med. Chem. Lett. 17 (2007) 2013–2017.
 doi:https://doi.org/10.1016/j.bmcl.2007.01.016.
- [73] E.E. Kelley, C.I. Batthyany, N.J. Hundley, S.R. Woodcock, G. Bonacci, J.M. Del Rio, F.J. Schopfer, J.R. Lancaster Jr, B.A. Freeman, M.M. Tarpey, Nitro-oleic acid, a novel and irreversible inhibitor of xanthine oxidoreductase, J. Biol. Chem. 283 (2008) 36176–36184. doi:10.1074/jbc.M802402200.
- [74] L. González-Perilli, M.N. Álvarez, C. Prolo, R. Radi, H. Rubbo, A. Trostchansky, Nitroarachidonic acid prevents NADPH oxidase assembly and superoxide radical production in activated macrophages, Free Radic. Biol. Med. 58 (2013) 126–133. doi:10.1016/j.freeradbiomed.2012.12.020.
- [75] G. Bonacci, F.J. Schopfer, C.I. Batthyany, T.K. Rudolph, V. Rudolph, N.K.H. Khoo,
 E.E. Kelley, B.A. Freeman, Electrophilic fatty acids regulate matrix
 metalloproteinase activity and expression, J. Biol. Chem. 286 (2011) 16074–16081.
 doi:10.1074/jbc.M111.225029.
- [76] R.L. Alexander, D.J.P. Bates, M.W. Wright, S.B. King, C.S. Morrow, Modulation of Nitrated Lipid Signaling by Multidrug Resistance Protein 1 (MRP1): Glutathione Conjugation and MRP1-Mediated Efflux Inhibit Nitrolinoleic Acid-Induced, PPARγ-Dependent Transcription Activation, Biochemistry. 45 (2006) 7889–7896. doi:10.1021/bi0605639.

- [77] T.K. Rudolph, B.A. Freeman, Transduction of redox signaling by electrophileprotein reactions, Sci. Signal. 2 (2009) re7-re7. doi:10.1126/scisignal.290re7.
- [78] A. Trostchansky, H. Rubbo, Nitrated fatty acids: Mechanisms of formation, chemical characterization, and biological properties, Free Radic. Biol. Med. 44 (2008) 1887–1896. doi:https://doi.org/10.1016/j.freeradbiomed.2008.03.006.
- [79] D. Lin, S. Saleh, D.C. Liebler, Reversibility of covalent electrophile-protein adducts and chemical toxicity, Chem. Res. Toxicol. 21 (2008) 2361–2369.
 https://www.ncbi.nlm.nih.gov/pubmed/19548357.
- [80] K. Jain, A. Siddam, A. Marathi, U. Roy, J.R. Falck, M. Balazy, The mechanism of oleic acid nitration by •NO2, Free Radic. Biol. Med. 45 (2008) 269–283. doi:https://doi.org/10.1016/j.freeradbiomed.2008.04.015.
- [81] D.A. Vitturi, C.-S. Chen, S.R. Woodcock, S.R. Salvatore, G. Bonacci, J.R. Koenitzer, N.A. Stewart, N. Wakabayashi, T.W. Kensler, B.A. Freeman, F.J. Schopfer, Modulation of nitro-fatty acid signaling: prostaglandin reductase-1 is a nitroalkene reductase, J. Biol. Chem. 288 (2013) 25626–25637. doi:10.1074/jbc.M113.486282.
- [82] B. Alvarez, L. Turell, D.A. Vitturi, E.L. Coitiño, L. Lebrato, M.N. Moller, C. Sagasti, S.R. Salvatore, S.R. Woodcock, F.J. Schopfer, Thiol Addition to Conjugated Nitrolinoleic Acid, FASEB J. 31 (2017) 605.1-605.1.
 doi:10.1096/fasebj.31.1_supplement.605.1.
- [83] H. Rubbo, Nitro-fatty acids: novel anti-inflammatory lipid mediators, Brazilian J. Med. Biol. Res. = Rev. Bras. Pesqui. Medicas e Biol. 46 (2013) 728–734. doi:10.1590/1414-431X20133202.
- [84] A.C. Geisler, T.K. Rudolph, Nitroalkylation A redox sensitive signaling pathway, Biochim. Biophys. Acta - Gen. Subj. 1820 (2012) 777–784. doi:https://doi.org/10.1016/j.bbagen.2011.06.014.
- [85] G. Aldini, M.R. Domingues, C.M. Spickett, P. Domingues, A. Altomare, F.J.

Sánchez-Gómez, C.L. Oeste, D. Pérez-Sala, Protein lipoxidation: Detection strategies and challenges, Redox Biol. 5 (2015) 253–266. doi:10.1016/j.redox.2015.05.003.

- [86] G. Ambrozova, H. Martiskova, A. Koudelka, T. Ravekes, T.K. Rudolph, A. Klinke, V. Rudolph, B.A. Freeman, S.R. Woodcock, L. Kubala, M. Pekarova, Nitro-oleic acid modulates classical and regulatory activation of macrophages and their involvement in pro-fibrotic responses, Free Radic. Biol. Med. 90 (2016) 252–260. doi:10.1016/j.freeradbiomed.2015.11.026.
- [87] T.K. Rudolph, V. Rudolph, M.M. Edreira, M.P. Cole, G. Bonacci, F.J. Schopfer, S.R. Woodcock, A. Franek, M. Pekarova, N.K.H. Khoo, A.H. Hasty, S. Baldus, B.A. Freeman, Nitro-fatty acids reduce atherosclerosis in apolipoprotein E-deficient mice, Arterioscler. Thromb. Vasc. Biol. 30 (2010) 938–945. doi:10.1161/ATVBAHA.109.201582.
- [88] L. Villacorta, J. Zhang, M.T. Garcia-Barrio, X. Chen, B.A. Freeman, Y.E. Chen, T. Cui, Nitro-linoleic acid inhibits vascular smooth muscle cell proliferation via the Keap1/Nrf2 signaling pathway, Am. J. Physiol. Heart Circ. Physiol. 293 (2007) H770–H776. doi:10.1152/ajpheart.00261.2007.
- [89] M.M. Wright, J. Kim, T.D. Hock, N. Leitinger, B.A. Freeman, A. Agarwal, Human haem oxygenase-1 induction by nitro-linoleic acid is mediated by cAMP, AP-1 and E-box response element interactions, Biochem. J. 422 (2009) 353–361. doi:10.1042/BJ20090339.
- [90] C.-S.C. Woodcock, Y. Huang, S.R. Woodcock, S.R. Salvatore, B. Singh, F. Golin-Bisello, N.E. Davidson, C.A. Neumann, B.A. Freeman, S.G. Wendell, Nitro-fatty acid inhibition of triple-negative breast cancer cell viability, migration, invasion, and tumor growth, J. Biol. Chem. 293 (2018) 1120–1137. doi:10.1074/jbc.M117.814368.
- [91] A. Trostchansky, M. Mastrogiovanni, E. Miquel, S. Rodríguez-Bottero, L. Martínez-Palma, P. Cassina, H. Rubbo, Profile of Arachidonic Acid-Derived Inflammatory

Markers and Its Modulation by Nitro-Oleic Acid in an Inherited Model of Amyotrophic Lateral Sclerosis, Front. Mol. Neurosci. 11 (2018) 131. doi:10.3389/fnmol.2018.00131.

- [92] T. Ichikawa, J. Zhang, K. Chen, Y. Liu, F.J. Schopfer, P.R.S. Baker, B.A. Freeman, Y.E. Chen, T. Cui, Nitroalkenes suppress lipopolysaccharide-induced signal transducer and activator of transcription signaling in macrophages: a critical role of mitogen-activated protein kinase phosphatase 1, Endocrinology. 149 (2008) 4086– 4094. doi:10.1210/en.2007-1639.
- [93] M.M. Wright, F.J. Schopfer, P.R.S. Baker, V. Vidyasagar, P. Powell, P. Chumley, K.E. Iles, B.A. Freeman, A. Agarwal, Fatty acid transduction of nitric oxide signaling: nitrolinoleic acid potently activates endothelial heme oxygenase 1 expression, Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 4299–4304. doi:10.1073/pnas.0506541103.
- [94] L.M.S. Baker, P.R.S. Baker, F. Golin-Bisello, F.J. Schopfer, M. Fink, S.R. Woodcock, B.P. Branchaud, R. Radi, B.A. Freeman, Nitro-fatty acid reaction with glutathione and cysteine. Kinetic analysis of thiol alkylation by a Michael addition reaction, J. Biol. Chem. 282 (2007) 31085–31093. doi:10.1074/jbc.M704085200.
- [95] L. González-Perilli, M. Mastrogiovanni, D. de Castro Fernandes, H. Rubbo, F. Laurindo, A. Trostchansky, Nitroarachidonic acid (NO2AA) inhibits protein disulfide isomerase (PDI) through reversible covalent adduct formation with critical cysteines, Biochim. Biophys. Acta Gen. Subj. (2017). doi:10.1016/j.bbagen.2017.02.013.
- [96] D.E. Artim, F. Bazely, S.L. Daugherty, A. Sculptoreanu, K.B. Koronowski, F.J. Schopfer, S.R. Woodcock, B.A. Freeman, W.C. de Groat, Nitro-oleic acid targets transient receptor potential (TRP) channels in capsaicin sensitive afferent nerves of rat urinary bladder, Exp. Neurol. 232 (2011) 90–99. doi:10.1016/j.expneurol.2011.08.007.
- [97] X. Zhang, K.B. Koronowski, L. Li, B.A. Freeman, S. Woodcock, W.C. de Groat,

Nitro-oleic acid desensitizes TRPA1 and TRPV1 agonist responses in adult rat DRG neurons, Exp. Neurol. 251 (2014) 12–21. doi:10.1016/j.expneurol.2013.10.020.

- [98] A. Sculptoreanu, F.A. Kullmann, D.E. Artim, F.A. Bazley, F. Schopfer, S. Woodcock, B.A. Freeman, W.C. de Groat, Nitro-oleic acid inhibits firing and activates TRPV1- and TRPA1-mediated inward currents in dorsal root ganglion neurons from adult male rats, J. Pharmacol. Exp. Ther. 333 (2010) 883–895. doi:10.1124/jpet.109.163154.
- [99] X. Zhang, J.M. Beckel, S.L. Daugherty, T. Wang, S.R. Woodcock, B.A. Freeman,
 W.C. de Groat, Activation of TRPC channels contributes to OA-NO2-induced
 responses in guinea-pig dorsal root ganglion neurons, J. Physiol. 592 (2014) 4297–
 4312. doi:10.1113/jphysiol.2014.271783.
- [100] F.J. Schopfer, Y. Lin, P.R.S. Baker, T. Cui, M. Garcia-Barrio, J. Zhang, K. Chen, Y.E. Chen, B.A. Freeman, Nitrolinoleic acid: an endogenous peroxisome proliferator-activated receptor gamma ligand, Proc. Natl. Acad. Sci. U. S. A. 102 (2005) 2340–2345. doi:10.1073/pnas.0408384102.
- [101] Y. Li, J. Zhang, F.J. Schopfer, D. Martynowski, M.T. Garcia-Barrio, A. Kovach, K. Suino-Powell, P.R.S. Baker, B.A. Freeman, Y.E. Chen, H.E. Xu, Molecular recognition of nitrated fatty acids by PPAR gamma, Nat. Struct. Mol. Biol. 15 (2008) 865–867. doi:10.1038/nsmb.1447.
- [102] M.J. Gorczynski, P.K. Smitherman, T.E. Akiyama, H.B. Wood, J.P. Berger, S.B. King, C.S. Morrow, Activation of peroxisome proliferator-activated receptor gamma (PPARgamma) by nitroalkene fatty acids: importance of nitration position and degree of unsaturation, J. Med. Chem. 52 (2009) 4631–4639. doi:10.1021/jm900326c.
- [103] Y. V Vasil'ev, S.-C. Tzeng, L. Huang, C.S. Maier, Protein modifications by electrophilic lipoxidation products: adduct formation, chemical strategies and tandem mass spectrometry for their detection and identification, Mass Spectrom. Rev. 33 (2014) 157–182. https://www.ncbi.nlm.nih.gov/pubmed/24818247.

- [104] M. Fedorova, R.C. Bollineni, R. Hoffmann, Protein carbonylation as a major hallmark of oxidative damage: Update of analytical strategies, Mass Spectrom. Rev. 33 (2013) 79–97. doi:10.1002/mas.21381.
- [105] T. Melo, S.S. Marques, I. Ferreira, M.T. Cruz, P. Domingues, M.A. Segundo, M.R.M. Domingues, New Insights into the Anti-Inflammatory and Antioxidant Properties of Nitrated Phospholipids, Lipids. 53 (2018) 117–131. doi:10.1002/lipd.12007.
- [106] M. Fazzari, N.K.H. Khoo, S.R. Woodcock, D.K. Jorkasky, L. Li, F.J. Schopfer, B.A. Freeman, Nitro-fatty acid pharmacokinetics in the adipose tissue compartment, J. Lipid Res. 58 (2017) 375–385. doi:10.1194/jlr.M072058.
- [107] L. Villacorta, L. Chang, S.R. Salvatore, T. Ichikawa, J. Zhang, D. Petrovic-Djergovic, L. Jia, H. Carlsen, F.J. Schopfer, B.A. Freeman, Y.E. Chen, Electrophilic nitro-fatty acids inhibit vascular inflammation by disrupting LPS-dependent TLR4 signalling in lipid rafts, Cardiovasc. Res. 98 (2013) 116–124. doi:10.1093/cvr/cvt002.
- [108] A.T. Reddy, S.P. Lakshmi, S. Dornadula, S. Pinni, D.R. Rampa, R.C. Reddy, The Nitrated Fatty Acid 10-Nitro-Oleate Attenuates Allergic Airway Disease, J. Immunol. (2013). doi:10.4049/jimmunol.1300730.
- [109] A. Trostchansky, L. Bonilla, C.P. Thomas, V.B. O'Donnell, L.J. Marnett, R. Radi, H. Rubbo, Nitroarachidonic acid, a novel peroxidase inhibitor of prostaglandin endoperoxide H synthases 1 and 2, J. Biol. Chem. 286 (2011) 12891–12900. doi:10.1074/jbc.M110.154518.
- [110] E.E. Kelley, J. Baust, G. Bonacci, F. Golin-Bisello, J.E. Devlin, C.M. St Croix, S.C. Watkins, S. Gor, N. Cantu-Medellin, E.R. Weidert, J.C. Frisbee, M.T. Gladwin, H.C. Champion, B.A. Freeman, N.K.H. Khoo, Fatty acid nitroalkenes ameliorate glucose intolerance and pulmonary hypertension in high-fat diet-induced obesity, Cardiovasc. Res. 101 (2014) 352–363. doi:10.1093/cvr/cvt341.

- [111] A. Klinke, A. Möller, M. Pekarova, T. Ravekes, K. Friedrichs, M. Berlin, K.M. Scheu, L. Kubala, H. Kolarova, G. Ambrozova, R.T. Schermuly, S.R. Woodcock, B.A. Freeman, S. Rosenkranz, S. Baldus, V. Rudolph, T.K. Rudolph, Protective effects of 10-nitro-oleic acid in a hypoxia-induced murine model of pulmonary hypertension, Am. J. Respir. Cell Mol. Biol. 51 (2014) 155–162. doi:10.1165/rcmb.2013-0063OC.
- [112] H. Wang, H. Liu, Z. Jia, C. Olsen, S. Litwin, G. Guan, T. Yang, Nitro-oleic acid protects against endotoxin-induced endotoxemia and multiorgan injury in mice, Am. J. Physiol. Renal Physiol. 298 (2010) F754–F762. doi:10.1152/ajprenal.00439.2009.
- [113] T.K. Rudolph, T. Ravekes, A. Klinke, K. Friedrichs, M. Mollenhauer, M. Pekarova, G. Ambrozova, H. Martiskova, J.-J. Kaur, B. Matthes, A. Schwoerer, S.R. Woodcock, L. Kubala, B.A. Freeman, S. Baldus, V. Rudolph, Nitrated fatty acids suppress angiotensin II-mediated fibrotic remodelling and atrial fibrillation, Cardiovasc. Res. 109 (2016) 174–184. doi:10.1093/cvr/cvv254.
- [114] E. Shin, E. Yeo, J. Lim, Y.H. Chang, H. Park, E. Shim, H. Chung, H.J. Hwang, J. Chun, J. Hwang, Nitrooleate Mediates Nitric Oxide Synthase Activation in Endothelial Cells, Lipids. 49 (2014) 457–466. doi:10.1007/s11745-014-3893-8.
- [115] L. Bonilla, V.B. O'Donnell, S.R. Clark, H. Rubbo, A. Trostchansky, Regulation of protein kinase C by nitroarachidonic acid: Impact on human platelet activation, Arch. Biochem. Biophys. 533 (2013) 55–61. doi:https://doi.org/10.1016/j.abb.2013.03.001.
- [116] T. Uchiyama, H. Atsuta, T. Utsugi, M. Oguri, A. Hasegawa, T. Nakamura, A. Nakai, M. Nakata, I. Maruyama, H. Tomura, F. Okajima, S. Tomono, S. Kawazu, R. Nagai, M. Kurabayashi, HSF1 and constitutively active HSF1 improve vascular endothelial function (heat shock proteins improve vascular endothelial function), Atherosclerosis. 190 (2007) 321–329. doi:10.1016/j.atherosclerosis.2006.03.037.

Captions:

Figure 1. Schematic representation of nitrated lipids pathways: from their generation to their biological effect.

Figure 2. Representative mechanisms of nitro-fatty acid (NO₂-FA) formation. Radicalinduced nitration of unsaturated fatty acids by nitrogen dioxide ($^{\circ}NO_2$) yields a β -nitroalkyl radical that can further react with other $^{\circ}NO_2$ generating the nitronitrite intermediates. Further loss of nitrous acid (HNO₂) leads to the generation of the nitroalkene derivatives also called NO₂-FA. Electrophilic substitution at the double bond mediated by nitronium cation (NO₂⁺) also yields NO₂-FA.

Figure 3. Proposed structures for nitro-oleic (NO₂-OA) and nitro-linoleic acids (NO₂-LA), with assignment of their different positional isomers, which were previously detected in *in vitro* studies and/or biological samples.

Figure 4. Proposed structures for nitro arachidonic acid (NO₂-AA), with assignment of its different positional isomers, which were previously detected in *in vitro* studies and/or biological samples.

Figure 5. Proposed structures for nitro-docosahexaenoic acid (NO₂-DHA), with assignment of its different positional isomers, which were previously detected in *in vitro* studies and/or biological samples.

Figure 6. ESI-MS spectra of mono charged $[M+H]^+$ (A) and double charged $[M+2H]^{2+}$ ions (B) of NO₂POPC-GSH adducts, acquired in Q-Exactive Orbitrap, with identification

of major fragmentation pathways. (Reprinted with permission from Bullón et al. (2018), copyright 2018 [John Wiley & Sons]).

Nitrated Arachidonic Acid (NO2-AA) isomers

(1) = (1)	$\sim - \sim - \sim - \sim - \sim - \sim +$
10-nitro-4,7,10,13,16,19-Docosahexaenoic acid	11-nitro-4,7,10,13,16,19-Docosahexaenoic acid
10-NO ₂ -DHA	11-NO ₂ -DHA
° ° ° ° ° ° ° Å	î î î î î î î
13-nitro-4,7,10,13,16,19-Docosahexaenoic acid	14-nitro-4,7,10,13,16,19-Docosahexaenoic acid
13-NO ₂ -DHA	14-NO ₂ -DHA
\circ \circ \circ \circ \circ \circ \circ \downarrow	$ \qquad \qquad$
16-nitro-4,7,10,13,16,19-Docosahexaenoic acid	17-nitro-4,7,10,13,16,19-Docosahexaenoic acid
16-NO ₂ -DHA	17-NO ₂ -DHA
\sim \sim \sim \sim \sim \sim	\sim \sim \sim \sim \sim \sim \downarrow
19-nitro-4,7,10,13,16,19-Docosahexaenoic acid	20-nitro-4,7,10,13,16,19-Docosahexaenoic acid
19-NO ₂ -DHA	20-NO ₂ -DHA
	U.
Figure	5

Nitrated Docosahexaenoic Acid (NO₂-DHA) isomers

A) Mono charged [M+H]⁺ions

Figure 6

 Table 1. Nitro-fatty acids identified in biological samples and in vitro mimetic model

systems.

<i>In vitro</i> mimetic model systems				
NO ₂ -FA	Isomer	Experimental model	Method	Ref
Nitro-oleic a	cid (NO ₂ -OA)			
NO ₂ -OA	9-NO ₂ -OA 10-NO ₂ -OA	Gastric juice artificial + NO ₂ ⁻ Pancreatic lipase-digested EVOO	C18-HPLC-ESI-MS and MS/MS in a API 4000 triple quadrupole and LTQ Orbitrap Velos	[56]
NO ₂ -OA		$\begin{array}{l} MPO + H_2O_2 + NO_2^{-} \\ ONOO^{-} \\ NO_2^{-} \text{ in acidic conditions} \end{array}$	C18-HPLC-ESI-MS and MS/MS in a hybrid triple quadrupole-linear ion trap (4000 Q-Trap)	[6]
NO ₂ -OA	9-NO ₂ -OA 10-NO ₂ -OA	•NO ₂	C18-HPLC-ESI-MS and MS/MS in API 2000 triple quadrupole	[80]
Nitro-linolei	c acid (NO ₂ -LA)			
NO ₂ -LA	9-NO ₂ -LA 10-NO ₂ -LA 12-NO ₂ -LA 13-NO ₂ -LA	Gastric juice artificial + NO ₂ ⁻ Pancreatic lipase-digested EVOO	C18-HPLC-ESI-MS and MS/MS in an API 4000 triple quadrupole and LTQ Orbitrap Velos	[56]
NO ₂ -LA		NO ₂ ⁻ in acidic conditions	C18-HPLC-ESI-MS and MS/MS in a Quattro triple quadrupole	[10]
Nitro-conjug	ated linoleic acid	(NO ₂ -cLA)	1	
NO ₂ -cLA	8-NO ₂ -cLA 9-NO ₂ -cLA 11-NO ₂ -cLA 12-NO ₂ -cLA	Gastric juice artificial + NO ₂ ⁻ Pancreatic lipase-digested EVOO	C18-HPLC-ESI-MS and MS/MS in an API 4000 triple quadrupole and LTQ Orbitrap Velos	[56]
NO ₂ -cLA	9-NO ₂ -cLA 12-NO ₂ -cLA	$\begin{array}{c} MPO + H_2O_2 + NO_2^{-} \\ ONOO^{-} \\ ^{\bullet}NO_2 \end{array}$	C18-HPLC-ESI-MS and MS/MS in an API 5000 triple quadrupole, API Q-Trap 4000, and Velos Orbitrap	[3]
NO ₂ -cLA Cholestervl-	NO ₂ -cLA Multiple nitro, nitroso, and nitroxidized derivatives	Photocontrollable peroxynitrite donor 2,3,5,6- tetramethyl-4- (methylnitrosoamino)phenol (P-NAP) (Chol-NO ₂ -LA)	ESI-MS and MS/MS in a hybrid triple quadrupole-linear ion trap (4000 Q-Trap)	[38]
Chol-NO ₂ -	intro inforcic actu		C18-HPLLC-ESI/MS/MS in a	
LA		NO ₂ in acidic conditions	Quattro II triple quadrupole ESI–MS and MS/MS in a 2000	[9]
Chol-NO ₂ - LA		NO_2^- in acidic conditions	Q-Trap C18-HPLC-ESI–MS and MS/MS in a 2000 Q-Trap	[66]
Nitro-arachi	donic acid (NO ₂ -A	AA)		
NO ₂ -AA		•NO ₂	C18-HPLC-ESI-MS and MS/MS in an Esquire ion trap	[26]
NO ₂ -AA	9-NO ₂ -AA 12-NO ₂ -AA	NO ₂ ⁻ in acidic conditions	C18-HPLC-ESI-MS and MS/MS in a hybrid quadrupole-	[51]

	14-NO ₂ -AA 15-NO ₂ -AA		linear ion trap	
Biological Nitro-palmit	samples toleic acid (NO2-PO	DA)		
NO ₂ -POA		Human plasma and urine	C18-HPLC-ESI-MS and MS/MS in a hybrid triple Q- linear ion trap (4000 Q Trap)	[6]
Nitrohydrox	xy-palmitoleic acid	(NO ₂ OH-POA)	iniear ion trap (4000 Q-11ap)	
NO ₂ OH- POA		Human plasma and urine	C18-HPLC-ESI-MS and MS/MS in a hybrid triple Q- linear ion trap (4000 Q-Trap)	[6]
Nitro-oleic a	cid (NO ₂ -OA)			
NO ₂ -OA		Human red cells, plasma and urine	C18-HPLC-ESI-MS and MS/MS in a hybrid triple Q- linear ion trap (4000 O-Trap)	[6]
NO ₂ -OA	9-NO ₂ -OA 10-NO ₂ -OA	Myocardial heart tissue from a murine model of focal myocardial ischemia/reperfusion	C18-HPLC-ESI MS/MS	[1]
NO ₂ -OA	NO ₂ -OA and β -oxidation metabolites	NO ₂ -OA acute intravenous treatment of mice with LPS- induced inflammation	C18-HPLC-ESI-MS/MS in an API 5000 triple quadrupole	[107]
NO ₂ -OA	NO ₂ -OA and its metabolic derivatives	Human and rat urine after intravenous administration of NO ₂ -OA	C18-HPLC-ESI-MS and MS/MS in a LTQ Velos Orbitrap and API 5000 triple quadrupole	[61]
NO ₂ -OA	NO ₂ -OA and its metabolic derivatives	Mitochondrial extracts from rat hearts after ischemia- reperfusion	BME trans-nitroalkylation + C18-HPLC-ESI-MS and MS/MS in a 4000 Q trap hybrid triple quadrupole-linear ion trap	[62]
Dinitro-OA		Rat cardiomyocytes treated with peroxynitrite donor 3- morpholinosydnonimine (SIN- 1)	C18-HPLC-ESI-MS and MS/MS in a hybrid triple quadrupole-linear ion trap (4000 Q-Trap)	[38]
NO ₂ -OA	NO ₂ -OA and its Saturation, Desaturation β -oxidation metabolic derivatives	Plasma from NO ₂ -OA-treated mice	C18-HPLC-ESI MS/MS coupled to an API 4000 hybrid triple quadrupole or API 5000 triple quadrupole	[59]
NO ₂ -OA	NO ₂ -OA saturation derivatives	NO ₂ -OA-treated BAEC cells	C18-HPLC-ESI MS/MS coupled to an API 4000 hybrid triple quadrupole or API 5000 triple quadrupole C18-HPL C-ESI MS/MS	[59]
NO ₂ -OA	NO ₂ -OA and its derivatives	Liver lipid extracts from NO ₂ -OA-treated mice	coupled to an API 4000 hybrid triple quadrupole or API 5000 triple quadrupole	[59]
Nitrohydrox	xy-oleic acid (NO ₂ C	DH-OA)		
NO ₂ OH-OA		Human red cells, plasma and urine	C18-HPLC-ESI-MS and MS/MS in a hybrid triple Q- linear ion trap (4000 Q-Trap)	[6]
Nitro-linolei	c acid (NO ₂ -LA)			

		II	MCMC is a habit to be of the	[6]
NO ₂ -LA		Human plasma and urine	MS/MS in a hybrid triple Q-	[6]
			(18 LIDE C ESL MS and	
NO LA		Human blood plasma	MS/MS in a Quattro triple	[10]
NO2-LA		Human 01000 plasma	quadrupole	[10]
		Hannan and a 11 march and	C18-HPLC-ESI-MS and	
NO ₂ -LA	$9-NO_2-LA$	Human red cell membranes	MS/MS in a hybrid triple Q-	[8]
	$12-1NO_2-LA$	and plasma	linear ion trap	_
	NO ₂ -LA and	Mitochondrial extracts from	BME trans-nitroalkylation +	
NO ₂ -LA	its metabolic	rat hearts after ischemia-	C18-HPLC-ESI-MS and	[62]
	derivatives	reperfusion	MS/MS in a 4000 Q trap hybrid	r . = 1
Nitrobydroy	v linalaja agid (Ni		triple quadrupole-linear ion trap	
THEORYUPOX	y-molete actu (IN)	Myocardial heart tissue from a		
		murine model of focal	C18-HPLC-ESI MS and	
NO ₂ OH-LA		mvocardial	MS/MS	[1]
		ischemia/reperfusion		
		-	C18-HPLC-ESI-MS and	
NO ₂ OH-LA		Human plasma and urine	MS/MS in a hybrid triple Q-	[6]
			linear ion trap (4000 Q-Trap)	
Nitrokto-line	oleic acid (NO_2 -ox	0-LA)		
		murine model of focal		
NO ₂ -oxo-LA		myocardial	C18-HPLC-ESI MS/MS	[1]
		ischemia/reperfusion		
Nitro-conjug	ated linoleic acid	(NO ₂ -cLA)		
5 6		Plasma and vaginal lavages		
		after cLA inoculation in the	C18-HPLC-MS/MS in a 6500+	
NO ₂ -cLA		vaginal lumen from mice	O-trap or a API 5000	[16]
		intected intravaginally with		
Nitro linolar		HSV-2		
Nitro-linolen	nic acid (NO ₂ OH-)	HSV-2 LNA)	C18-HPI C-FSI-MS and	
Nitro-linolen	ic acid (NO ₂ OH-)	HSV-2 LNA) Human plasma and urine	C18-HPLC-ESI-MS and MS/MS in a hybrid triple O-	[6]
Nitro-linolen NO ₂ -LNA	ic acid (NO ₂ OH-)	HSV-2 LNA) Human plasma and urine	C18-HPLC-ESI-MS and MS/MS in a hybrid triple Q- linear ion trap (4000 Q-Trap)	[6]
Nitro-linolen NO ₂ -LNA Nitrohydrox	ic acid (NO ₂ OH-) y-linolenic acid (1	HSV-2 LNA) Human plasma and urine NO ₂ OH-LNA)	C18-HPLC-ESI-MS and MS/MS in a hybrid triple Q- linear ion trap (4000 Q-Trap)	[6]
Nitro-linolen NO ₂ -LNA Nitrohydrox	ic acid (NO ₂ OH-) y-linolenic acid (I	HSV-2 LNA) Human plasma and urine NO ₂ OH-LNA)	C18-HPLC-ESI-MS and MS/MS in a hybrid triple Q- linear ion trap (4000 Q-Trap) C18-HPLC-ESI-MS and	[6]
Nitro-linolen NO ₂ -LNA Nitrohydrox NO ₂ OH- LNA	iic acid (NO ₂ OH-) y-linolenic acid (N	HSV-2 LNA) Human plasma and urine NO ₂ OH-LNA) Human plasma and urine	C18-HPLC-ESI-MS and MS/MS in a hybrid triple Q- linear ion trap (4000 Q-Trap) C18-HPLC-ESI-MS and MS/MS in a hybrid triple Q-	[6]
Nitro-linolen NO ₂ -LNA Nitrohydrox NO ₂ OH- LNA	ic acid (NO ₂ OH- y-linolenic acid (N	HSV-2 LNA) Human plasma and urine NO ₂ OH-LNA) Human plasma and urine	C18-HPLC-ESI-MS and MS/MS in a hybrid triple Q- linear ion trap (4000 Q-Trap) C18-HPLC-ESI-MS and MS/MS in a hybrid triple Q- linear ion trap (4000 Q-Trap)	[6]
Nitro-linolen NO ₂ -LNA Nitrohydrox NO ₂ OH- LNA Nitro-arachi	ic acid (NO ₂ OH-) y-linolenic acid (N donic acid (NO ₂ -4	HSV-2 LNA) Human plasma and urine NO ₂ OH-LNA) Human plasma and urine	C18-HPLC-ESI-MS and MS/MS in a hybrid triple Q- linear ion trap (4000 Q-Trap) C18-HPLC-ESI-MS and MS/MS in a hybrid triple Q- linear ion trap (4000 Q-Trap)	[6] [6]
Nitro-linolen NO ₂ -LNA Nitrohydrox NO ₂ OH- LNA Nitro-arachi	ic acid (NO ₂ OH- y-linolenic acid (N donic acid (NO ₂ -4	HSV-2 LNA) Human plasma and urine NO ₂ OH-LNA) Human plasma and urine AA) Human plasma and urine	C18-HPLC-ESI-MS and MS/MS in a hybrid triple Q- linear ion trap (4000 Q-Trap) C18-HPLC-ESI-MS and MS/MS in a hybrid triple Q- linear ion trap (4000 Q-Trap) C18-HPLC-ESI-MS and MS/MS into a hybrid triple Q-	[6]
Nitro-linolen NO ₂ -LNA Nitrohydrox NO ₂ OH- LNA Nitro-arachi NO ₂ -AA	ic acid (NO ₂ OH- y-linolenic acid (N donic acid (NO ₂ -4	HSV-2 LNA) Human plasma and urine NO ₂ OH-LNA) Human plasma and urine AA) Human plasma and urine	C18-HPLC-ESI-MS and MS/MS in a hybrid triple Q- linear ion trap (4000 Q-Trap) C18-HPLC-ESI-MS and MS/MS in a hybrid triple Q- linear ion trap (4000 Q-Trap) C18-HPLC-ESI-MS and MS/MS into a hybrid triple Q- linear ion trap (4000 Q-Trap)	[6] [6]
Nitro-linolen NO ₂ -LNA Nitrohydrox NO ₂ OH- LNA Nitro-arachi NO ₂ -AA	ic acid (NO ₂ OH-) y-linolenic acid (N donic acid (NO ₂ -4	HSV-2 LNA) Human plasma and urine NO ₂ OH-LNA) Human plasma and urine AA) Human plasma and urine Rat cardiomyocytes treated	C18-HPLC-ESI-MS and MS/MS in a hybrid triple Q- linear ion trap (4000 Q-Trap) C18-HPLC-ESI-MS and MS/MS in a hybrid triple Q- linear ion trap (4000 Q-Trap) C18-HPLC-ESI-MS and MS/MS into a hybrid triple Q- linear ion trap (4000 Q-Trap) C18-HPLC-ESI-MS and	[6] [6]
Nitro-linolen NO ₂ -LNA Nitrohydrox NO ₂ OH- LNA Nitro-arachi NO ₂ -AA	ic acid (NO ₂ OH-) y-linolenic acid (N donic acid (NO ₂ -4	HSV-2 LNA) Human plasma and urine NO ₂ OH-LNA) Human plasma and urine AA) Human plasma and urine Rat cardiomyocytes treated with peroxynitrite donor 3-	C18-HPLC-ESI-MS and MS/MS in a hybrid triple Q- linear ion trap (4000 Q-Trap) C18-HPLC-ESI-MS and MS/MS in a hybrid triple Q- linear ion trap (4000 Q-Trap) C18-HPLC-ESI-MS and MS/MS into a hybrid triple Q- linear ion trap (4000 Q-Trap) C18-HPLC-ESI-MS and MS/MS in a hybrid triple	[6] [6] [6]
Nitro-linolen NO ₂ -LNA Nitrohydrox NO ₂ OH- LNA Nitro-arachi NO ₂ -AA	ic acid (NO ₂ OH- y-linolenic acid (N donic acid (NO ₂ -4	HSV-2 LNA) Human plasma and urine NO ₂ OH-LNA) Human plasma and urine AA) Human plasma and urine Rat cardiomyocytes treated with peroxynitrite donor 3- morpholinosydnonimine (SIN-	C18-HPLC-ESI-MS and MS/MS in a hybrid triple Q- linear ion trap (4000 Q-Trap) C18-HPLC-ESI-MS and MS/MS in a hybrid triple Q- linear ion trap (4000 Q-Trap) C18-HPLC-ESI-MS and MS/MS into a hybrid triple Q- linear ion trap (4000 Q-Trap) C18-HPLC-ESI-MS and MS/MS in a hybrid triple quadrupole-linear ion trap	[6] [6] [38]
Nitro-linolen NO ₂ -LNA Nitrohydrox NO ₂ OH- LNA Nitro-arachi NO ₂ -AA	ic acid (NO ₂ OH- y-linolenic acid (N donic acid (NO ₂ -4	HSV-2 LNA) Human plasma and urine NO ₂ OH-LNA) Human plasma and urine AA) Human plasma and urine Rat cardiomyocytes treated with peroxynitrite donor 3- morpholinosydnonimine (SIN- 1)	C18-HPLC-ESI-MS and MS/MS in a hybrid triple Q- linear ion trap (4000 Q-Trap) C18-HPLC-ESI-MS and MS/MS in a hybrid triple Q- linear ion trap (4000 Q-Trap) C18-HPLC-ESI-MS and MS/MS into a hybrid triple Q- linear ion trap (4000 Q-Trap) C18-HPLC-ESI-MS and MS/MS in a hybrid triple quadrupole-linear ion trap (4000 Q-Trap)	[6] [6] [38]
Nitro-linolen NO ₂ -LNA Nitrohydrox NO ₂ OH- LNA Nitro-arachi NO ₂ -AA NO ₂ -AA	ic acid (NO ₂ OH- y-linolenic acid (N donic acid (NO ₂ -4 y-arachidonic aci	HSV-2 LNA) Human plasma and urine NO ₂ OH-LNA) Human plasma and urine AA) Human plasma and urine Rat cardiomyocytes treated with peroxynitrite donor 3- morpholinosydnonimine (SIN- 1) d (NO ₂ OH-AA)	C18-HPLC-ESI-MS and MS/MS in a hybrid triple Q- linear ion trap (4000 Q-Trap) C18-HPLC-ESI-MS and MS/MS in a hybrid triple Q- linear ion trap (4000 Q-Trap) C18-HPLC-ESI-MS and MS/MS into a hybrid triple Q- linear ion trap (4000 Q-Trap) C18-HPLC-ESI-MS and MS/MS in a hybrid triple quadrupole-linear ion trap (4000 Q-Trap)	[6] [6] [38]

			MS/MS in a hybrid triple Q- linear ion trap (4000 Q-Trap)	
Nitro-Eicosa	pentaenoic acid (N	NO ₂ -EPA)		
NO ₂ -EPA		Human plasma and urine	C18-HPLC-ESI-MS and MS/MS in a hybrid triple Q- linear ion trap (4000 Q Trap)	[6]
Nitrohvdrox	v- Eicosapentaeno	ic acid (NO2OH-EPA)	iniear ion trap (4000 Q-11ap)	
NO ₂ OH- EPA	F	Human plasma and urine	C18-HPLC-ESI-MS and MS/MS in a hybrid triple Q- linear ion trap (4000 Q Trap)	[6]
Nitro-Docos	ahexaenoic acid (N	NO2-DHA)	iniear ion trap (4000 Q-11ap)	
NO ₂ -DHA and dinitro- DHA		Rat cardiomyocytes treated with peroxynitrite donor 3- morpholinosydnonimine (SIN-	C18-HPLC-ESI-MS and MS/MS in a hybrid triple quadrupole-linear ion trap	[38]
Nitten handman	Do oo oo k omo om of	1) $(\mathbf{NO} \mathbf{DUA})$	(4000 Q-Trap)	
NULLONYOLOX NO2OH- DHA	y-Docosanexaenoi	Rat cardiomyocytes treated with peroxynitrite donor 3- morpholinosydnonimine (SIN- 1)	C18-HPLC-ESI-MS and MS/MS in a hybrid triple quadrupole-linear ion trap (4000 Q-Trap)	[38]
Nitrohydrox	y-Docosapentaeno	bic acid (NO ₂ OH-DPA)	C19 HDLC ESLMS and	
NO ₂ OH- DPA		with peroxynitrite donor 3- morpholinosydnonimine (SIN- 1)	MS/MS in a hybrid triple quadrupole-linear ion trap (4000 Q-Trap)	[38]
Nitro-conjug	ated linoleic acid	(NO ₂ -cLA)		
NO ₂ -cLA	9-NO ₂ -cLA 12-NO ₂ -cLA	Pancreatic lipase-digested EVOO	MS/MS in an API 4000 triple quadrupole and LTQ Orbitrap Velos	[56]
NO ₂ -cLA	9-NO ₂ -cLA 12-NO ₂ -cLA β-oxidation- metabolic derivatives of NO ₂ -cLA	Urine of healthy humans	C18-HPLC-ESI-MS and MS/MS in a LTQ Velos Orbitrap and AB 5000 or API4000 Q-trap triple quadrupole	[7]
NO2-cLA	9-NO ₂ -cLA 12-NO ₂ -cLA	Rodents urine, plasma, and tissues (stomach, small intestine, colon, liver) after supplementation with cLA + NO_2^- and gastric acidification Rodents liver and cardiac mitochondria incubated with NO_2^- in acidic conditions Rodents cardiac tissue under ischemia-reperfusion Raw 264.7 macrophages stimulated with LPS/IFNy Healthy human plasma	C18-HPLC-ESI-MS and MS/MS in an API 5000 triple quadrupole, API Q-Trap 4000, and Velos Orbitrap	[3]
NO ₂ -cLA	9-NO ₂ -cLA 12-NO ₂ -cLA	RAW264.7 macrophages stimulated with LPS/IFNγ and	C18-HPLC-ESI-MS and MS/MS in an API 5000 or a Q-	[13]

	Reduction and β-oxidation- metabolic derivatives	M1, M2 and M0 polarized bone marrow-derived macrophages (BMDM) treated with cLA	Trap 6500+ and LTQ Velos Orbitrap	
		Mice Peritoneal exudates after zymosan-A induced peritonitis and cLA supplementation		
NO ₂ -cLA	NO ₂ -cLA and β-oxidation- metabolic derivatives	Urine and plasma healthy humans after ingestion of nitrite, nitrate and cLA	C18-HPLC-ESI-MS and MS/MS in a 5000 triple quadrupole	[58]
Cholesteryl-ni	tro linoleic acid (Chol-NO ₂ -LA)		
Chol-NO ₂ - LA		Human blood plasma and lipoproteins from normolipidemic/healthy subjects	C18-HPLLC-ESI/MS/MS in a Quattro II triple quadrupole	[9]
Chol-NO ₂ - LA		J774.1 macrophages timulated with LPS/IFN γ	C18-HPLC-ESI–MS and MS/MS in a 2000 Q-Trap	[66]

Table 2. Modulation of target signaling pathways by NO₂-FA and related biological

properties.

Anti-inflammatory

- NF-kB \downarrow [1,13,108,15,21,23,46,60,66,86,90]
- TL4R signaling \downarrow [107]
- PG H synthase ↓ [86,109]
- 5-LOX ↓ [45]
- STAT1 ↓ [87,92]
- Cytokine production 1,1,5,110-112,7,13,20,21,23,24,66,86]
- MPO ↓ [24]
- Leukocyte recruitment, adhesion and infiltration \$\[13,23,24,87,108,112]]
- iNOS ↓ [13,24,36,51,60,66,86,112]
- COX-2↓[112]
- $PGE_2 \downarrow [112]$
- Leukocytes number and activity \downarrow [5,13,18,108]
- TNF- $\alpha \downarrow [23]$
- Xanthine oxidoreductase (XOR) \downarrow [73]
- MKP-1 ↑ [92]
- PPAR $\gamma \uparrow [6, 15, 21, 65, 100]$
- TRPA-1 ↑ [98]
- CD36 expression ↑ [100]
- Heme oxygenase 1 (HO-1) ↑ [17,19,22,23,60,66,67,89,93]
- STING↓[16]

- PDI↓[95]
- NADPH oxidase (NOX 2) ↓ [24,74,113]

Vasorelaxation

- Nitric oxide ↑ [29–31,51]
- eNOS ↑ [114]
- Ang II-induced vasoconstriction \downarrow [28]

Antioxidant

- Lipid peroxidation \downarrow [71,86]
- Nrf2 ↑ [13,15,22,46,60,88]
- HO-1 ↑ [17,19,22,60,66,89]
- Reduction of protein nitration and oxidation [87]
- Heat shock response (HSP) proteins [22]
- XOR ↓ [73]
- NOX 2 ↓ [24,74,113]
- O_2^- , ONOO⁻ and NO production \downarrow [36,48,86,108,111,113]

Anti-hypertensive

- $AT_1R \downarrow [28]$
- sEH ↓ [32]
- Smooth muscle cell proliferation \downarrow [111]
- Prostaglandin F2↓ [111]
- Differentiation of myofibroblast through Smad2 \downarrow [113]

Anti-hyperglycemic

- PPARγ ↑ [6,28,100]
- Glucose uptake \uparrow [110]
- Insulin sensitivity ↑ [6,28,100]

Anti-thrombotic

- Platelets activation and clotting \downarrow [18,31,33]
- Platelet production of thromboxane↓ [109]
- Thrombin-induced aggregation \downarrow [33]
- PGHS ↓ [109,115,116]

Cytoprotective

- ANT1 ↑ [2,34]
- UCP-2 ↑ [2]
- Mitochondrial dysfunction \downarrow [36,37]
- Mitochondrial respiratory complex [↑] [48]
- Metabolic shift † [48]

Anti-tumorogenic

- Tumor cell proliferation, migration and invasion↓ [90]

Table 3. Nitro-fatty acids lipoxidation adducts identified in biological samples and *in vitro*mimetic model systems by using mass spectrometry-based approaches.

Protein/Peptide	Model system	Method	Molecular mechanism Signaling action	Biological Role	Ref.
Nitro-oleic acid (NO ₂ -OA)				
	Incubation of NO ₂ - OA and cysteine	C18-HPLC-MS and MS/MS in a triple quadrupole API 4000		O.	[56]
Cysteine	Incubation of NO ₂ - OA and cysteine	C18-HPLC-MS and MS/MS in a triple quadrupole	C C		[43]
	Whole olives, mesocarp and peel	C18-HPLC-MS and MS/MS in a triple quadrupole API 4000	5		[56]
	NO ₂ -OA-Cys adduct generation after incubation between NO ₂ -OA and GSH	nitroalkylation + C18- HPLC-ESI-MS and MS/MS in a Q trap 4000			[62]
	NO ₂ -OA-Cys adduct generation after incubation between NO ₂ -OA and GSH	(BME trans- nitroalkylation +) C18-HPLC-ESI-MS and MS/MS in a hybrid triple quadrupole API 4000 or API 5000 triple quadrupole			[59]
GSH	Plasma from NO ₂ - OA-treated mice	(BME trans- nitroalkylation) C18- HPLC-ESI-MS and MS/MS in a hybrid triple quadrupole API 4000 or API 5000 triple quadrupole ESI-MS in LCQ ion			[59]
	NO ₂ -OA-Cys adduct generation after incubation between NO ₂ -OA and GSH	trap tryptic digestion + C18-HPLC-ESI-MS and MS/MS in an ESI-LCQ ion trap C18-HPLC-ESI- MS/MS in a Q-Trap 4000			[42]

	Red blood cells obtained from healthy humans	C18-HPLC-ESI- MS/MS in a Q-Trap 4000	Translocation to membrane	Regulation of enzyme function, cell signaling, and protein trafficking	[42]
GAPDH Cys149 His303	Cytosolic and membrane- associated protein fractions from red blood cells obtained from healthy humans	SDS-PAGE under non-reducing and denaturing conditions + Tryptic digestion + C18-nanospray LC- MS and MS/MS in a LTQ ion trap MALDI-TOF MS (Voyager DE PRO system)	Translocation to membrane	Regulation of enzyme function, cell signaling, and protein trafficking	[42]
		C18-HPLC-MS in a LTQ ion trap		8	
GAPDH Cys149 Cys153 Cys244 His108 His134 His327	Incubation of NO ₂ - OA and GAPDH	Tryptic digestion and MALDI-TOF MS (Voyager DE PRO system) tryptic digestion + C18-HPLC-ESI-MS in an ESI-LCQ ion trap	USCI		[42]
GAPDH	Incubation of NO ₂ - OA and GAPDH	Tryptic digestion + C18-nanospray LC- MS and MS/MS in a LTQ ion trap electrophoresis under reducing conditions + BME trans- nitroalkylation + C18- HPLC-ESI-MS and MS/MS in a 4000 Q trap hybrid triple quadrupole-linear ion trap			[62]
5-LOX Cys416 Cys418 His125 His360 His362 His367 His372 His432	Incubation of NO ₂ - OA and human recombinant 5-LOX Incubation of NO ₂ - OA and human polymorphonuclear leukocytes (PMNL) (intact and cell lysates)	tryptic digestion and C18-nanoHPLC-ESI- MS and MS in an Orbitrap XL	irreversible inhibition of 5- LOX activity and prevention of lung injury and systemic immune responses	Anti- inflammatory	[45]

	NO ₂ -OA treatment in murine model of LPS-induced inflammation (lung injury and cellular infiltration)				
Keap1 Cys38 Cys151	OA and recombinant Keap1		Release of Nrf2 tracsription factor to the		
Cys226 Cys273 Cys288 Cys257 Cys489	Human embryonic kidney (HEK)-293T cells transfected with recombinant Keap1 and treated with NO ₂ -OA	tryptic digestion C18- HPLC-MS and MS/MS in a LTQ	nucleous for induction of expression of antioxidant phase II enzymes	Antioxidant	[46]
Catephsin S (Cat S) Cys25	Incubation of NO ₂ - OA with a synthetic Cat S peptide (Cat S23-29)	C18-HPLC-MS and MS/MS in a Q Exactive Hybrid Quadrupole-Orbitrap tryptic digestion and C18-HPLC-MS and	Downregulation of Cat S expression and activity	Tissue Protection Anti- inflammatory	[5]
Fp subunit of mitochondrial complex II His2 His5 His6 Cys9	Incubation of NO ₂ - OA with recombinant human complex II Fp subunit Rat heart mitochondria treated	MS/MS in a LTQ-XL blue native electrophoresis, BME trans- nitroalkylation, C18- HPLC-MS amd MS/MS in a hybrid	Inhibition of mitochondrial respiration complex II and $O_2^{\bullet^-}$ production Promotion of	Cytoprotective Antioxidant	[48]
Cys9 Cys14	HEK293 cells overexpressing AT ₁ R treated with NO ₂ -OA	triple-quadrupole linear ion trap mass spectrometer (4000 Q trap) immunoprecipitation of AT ₁ R from cell lysates, BME trans- nitroalkylation reaction of AT ₁ R- bound NO ₂ -OA, and C18-HPLC-MS and MS/MS in a 4000 Q- Trap triple quadrupole C18-HPLC-ESI-MS	glycolysis Inhibits AT ₁ R- dependent vasoconstriction by reduction of heterotrimeric G-protein coupling and inhibition of IP ₃ and calcium mobilization	Anti- hypertensive	[28]
MMP-7 Cys70 MMP-9 Cys100	Incubation of NO ₂ - OA with recombinant human proMMP-7 and proMMP-9	and MS/MS in a LTQ-XL C18-HPLC-ESI-MS and MS/MS in a hybrid triple quadrupole-linear ion trap 4000 Q-Trap	Modulation of proteolytic activity Decrease of enzyme expression	Anti- inflammatory	[75]

		alactrophorosis under			
		reducing conditions +			
	Dl C	BME trans-			
	Plasma from	HDLC ESL MS and			[67]
	Ω_{Λ} trastad mice	MS/MS in a 4000 O			[02]
	OA-meated mile	tran hybrid trinle			
		auadrupole-linear ion			
albumin		tran			
		electrophoresis +			
		BME trans-			
		nitroalkylation + C18-			
	Plasma from NO ₂ -	HPLC-ESI-MS and			[50]
	OA-treated mice	MS/MS in a hybrid			[39]
		triple quadrupole API			
		4000 or API 5000			
		triple quadrupole	•		
		C18-HPL C-MS and	Activation of		
		MS/MS in a LTO	PPARy-related		
	Incubation of NO ₂ -		gene expression		
	OA with human		for glucose		
ΡΡΑΚγ Cys 285	I BD	immunoprecipitation,	regulation and	anti-	
His266	LDD	gel electrophoresis,	adipogenesis	hyperglycemic	
His323	HEK 293T cells	BME- trans-	Decrease in	anti-	[47]
His425	were transfected	nitroalkylation and	adipogenesis	adipogenic	
His449	with PPARy and	in a hybrid triple	Increase	effect	
	treated with NO ₂ -	auadrupole-linear ion	glucose uptake		
	OA	trap mass			
		spectrometer (4000 Q	Restore insulin		
		Trap,	sensivity		
			Deregulation of		
	Incubation human	Purification with	SIING		
STING	STING-transfected	magnetic heads	Inhibition of		
Cys88	HEK293T	tryptic digestion and	STING	Anti-	[16]
Cys91	cells with 10-NO ₂ -	MALDI LTQ	signaling	inflammatory	L - J
HISTO	OA	Orbitrap XL	Inhibition the		
			release of type I		
			IFN		
Nitro-linoleic ac	cid (NO ₂ -LA)				
	NO ₂ -LA-Cys adduct				
	generation after	(C18-HPLC)-ESI-MS			
cysteine	incubation between	and MS/MS in a triple			[107]
	NO ₂ -LA and	quadrupole			
	cysteine				
	NO ₂ -LA-Cys adduct	ESI-MS in LCQ ion			
GSH	incubation between	C18-HPI C-FSI-			[42]
	NO ₂ -LA and GSH	MS/MS in a O-Trap			[74]
		4000			

	NO ₂ -LA-Cys adduct generation after incubation between NO ₂ -LA and GSH	BME trans- nitroalkylation + C18- HPLC-ESI-MS and MS/MS in a Q trap 4000			[62]
	NO ₂ -LA-Cys adduct Generation after	C18-HPLC/ESI/MS			[76]
	incubation between NO ₂ -LA and GSH	in Micromass Quattro II triple quadrupole			
	Red blood cells obtained from healthy humans	C18-HPLC-ESI- MS/MS in Q-Trap 4000			[42]
	MCF7/WT and MCF7/MRP1-10 cells treated with NO2-LA	C18-HPLC/ESI/MS in Micromass Quattro II triple quadrupole		.ot	[76]
	NO2-LA-treated	Immunoprecipitation + SDS-PAGE + in-gel			
ANT1 Cys57	intact perfused hearts	digestion tryptic digestion + ABSciex 5800 MALDI-TOF- TOF MS and MS/MS	Mitochondrial uncoupling	Cytoprotective	[34]
Nitro-conjugate	ed linoleic acid (NO ₂ -cL	A)			
	NO ₂ -cLA-Cys	C18-HPLC-MS and			
	adduct generation after incubation	MS/MS in LTQ velos Orbitrap and AB 5000 or API4000 Q-trap			[7]
	and cysteine	triple quadrupole C18-HPLC-MS and			
	Urine from healthy	MS/MS in LTQ Velos			
cysteine	humans	or API 4000 Q-trap			[7]
		triple quadrupole			
	NO ₂ -cLA-Cys adduct generation	C18-HPLC-MS and			
	after incubation	MS/MS in API 5000			[44]
	between NO ₂ -cLA and cysteine	triple quadrupole			
V	Urine from healthy humans	C18-HPLC-MS and MS/MS in API 5000			[44]
Nitro-arachido	nic acid (NO2-AA)	triple quadrupole			
		C4-HPLC-MS of			
		intact protein in a hybrid triple	T 1 11 1.1		
PDI	Incubation of human	quadrupole/linear ion	reductase and	Anti-	[0 7]
Cys397 Cys400	recombinat PDI with NO ₂ -AA	trap mass spectrometer (Q-trap 4500)	chaperone activity of PDI	inflammatory	[95]
		digestion tryptic			
		••			

digestion and C18-HPLC-MS and MS/MS

Highlights

• Nitro-fatty acids (NO₂-FA) are endogenous bioactive lipids

Accepter

- NO₂-FA form reversible Michael adducts with proteins leading to PTMs
- Adduction of NO₂-FA with proteins culminates to anti-inflammatory, antihypertensive, and cytoprotective effects
- Mass spectrometry (MS)-based approaches allows to identify NO₂-FA-protein adducts and to unveil their biological effects.