Different sensitivity to heatwaves across the life cycle of fish reflects phenotypic adaptation to environmental niche

Diana Madeira, Carolina Madeira, Pedro M. Costa, Catarina Vinagre, Hans-Otto Pörtner, Mário S. Diniz

PII: S0141-1136(20)30484-0

DOI: https://doi.org/10.1016/j.marenvres.2020.105192

Reference: MERE 105192

To appear in: Marine Environmental Research

Received Date: 25 May 2020

Revised Date: 8 October 2020

Accepted Date: 11 October 2020

Please cite this article as: Madeira, D., Madeira, C., Costa, P.M., Vinagre, C., Pörtner, H.-O., Diniz, Má.S., Different sensitivity to heatwaves across the life cycle of fish reflects phenotypic adaptation to environmental niche, *Marine Environmental Research* (2020), doi: https://doi.org/10.1016/j.marenvres.2020.105192.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Ltd.

Author statement

D. Madeira: investigation, formal analysis, data curation, writing – original draft, visualization; C. Madeira: investigation; P.M. Costa: methodology, investigation, formal analysis, visualization, supervision, resources, writing – review and editing; C. Vinagre: conceptualization, methodology, writing – review and editing, supervision; H.O. Pörtner: writing – review and editing; M. S. Diniz: conceptualization, methodology, validation, resources, writing – review and editing, supervision, administration, funding acquisition.

Journal Press

	Journal Pre-proof
1	Running head: Vulnerability of fish to heatwaves
2	
3	Different sensitivity to heatwaves across the life cycle of fish reflects phenotypic
4	adaptation to environmental niche
5	Diana Madeira ^{a,b,*} , Carolina Madeira ^{c,d} , Pedro M. Costa ^d , Catarina Vinagre ^{c,e} , Hans-
6	Otto Pörtner ^f , Mário S. Diniz ^{a,*}
7	
8	^a UCIBIO, Applied Molecular Biosciences Unit, Departamento de Química, Faculdade
9	de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica,
10	Portugal
11	^b CESAM, Centre for Environmental and Marine Studies, Departamento de Biologia,
12	Universidade de Aveiro, Edifício ECOMARE, Estrada do Porto de Pesca Costeira,
13	3830-565 Gafanha da Nazaré, Portugal
14	^c MARE, Marine and Environmental Sciences Centre, Faculdade de Ciências,
15	Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
16	^d UCIBIO, Applied Molecular Biosciences Unit, Departamento de Ciências da Vida,
17	Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516,
18	Caparica, Portugal
19	^e CCMAR, Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
20	^f Alfred-Wegener-Institute for Polar and Marine Research, Am Handelshafen 12, D-
21	27570 Bremerhaven, Germany
22	
23	Email: D.M.* - <u>d.madeira@ua.pt</u> ; M.S.D. * - mesd@fct.unl.pt
24	Telephone: +351 21 2948500, Fax: +351 212948554
25	6861 words (main text)

26 Graphical abstract

42 Abstract (193 words)

Predicting responses of marine organisms to global change requires eco-physiological 43 44 assessments across the complex life cycles of species. Here, we experimentally tested 45 the vulnerability of a demersal temperate fish (Sparus aurata) to long-lasting heatwaves, on larval, juvenile and adult life-stages. Fish were exposed to simulated 46 coastal (18 °C), estuarine (24 °C) summer temperatures, and heatwave conditions (30 47 48 °C) and their physiological responses were assessed based on cellular stress response biomarkers and phenotypic measures (histopathology, condition and mortality). Life-49 stage vulnerability can be ranked as larvae > adults > juveniles, based on mortality, 50 tissue pathology and the capacity to employ cellular stress responses, reflecting the 51 different environmental niches of each life stage. While larvae lacked acclimation 52 capacity, which resulted in damage to tissues and elevated mortality, juveniles coped 53 well with elevated temperature. The rapid induction of cytoprotective proteins 54 maintained the integrity of vital organs in juveniles, suggesting adaptive phenotypic 55 plasticity in coastal and estuarine waters. Adults displayed lower plasticity to heatwaves 56 as they transition to deeper habitats for maturation, showing tissue damage in brain, 57 liver and muscle. Life cycle closure of sea breams in coastal habitats will therefore be 58 59 determined by larval and adult stages.

60

Key words: temperature, phenotypic plasticity, life cycle stages, biomarkers, global
change
63
64

- -
- 65
- 66
- 67

68 Introduction 951 words

69 Average global temperature is predicted to increase by 2-6°C in the next century, owing to anthropogenic climate change (Hansen et al., 2010; IPCC, 2013, 2007). In addition to 70 71 changes in mean temperatures, extreme events like marine heat waves are predicted to expand in frequency and amplitude as well as spatially, acting as strong selection 72 73 pressures with severe and possibly irreversible ecological impacts (Grant et al., 2017; 74 Smale et al., 2019; Stillman, 2019). In literature reviews, fish have been pointed out as 75 one of the main taxonomic groups with a high risk of impact under business-as-usual CO₂ emission scenarios (Gattuso et al., 2015; Nagelkerken and Connell, 2015). 76 77 Distributional shifts, abundance changes, altered migration patterns, lower recruitment success, and changes in trophic cascades have already been reported (Nagelkerken and 78 Connell, 2015; Rijnsdorp et al., 2009; Sims et al., 2004; Ullah et al., 2018; Vinagre et 79 80 al., 2019; Walther et al., 2002). Ultimately, climate warming may lead to a convergence of traits that enable adaptation of fish communities to novel environments. Smaller and 81 82 fast growing species with a preference for higher temperatures and pelagic water column position should be favored in this new scenario (McLean et al., 2019). 83 Temperature drives physiological processes in ectotherms (Brett, 1971), affecting 84 metabolic rates, immune responses, growth, reproduction, foraging and performance 85 (Ettinger-Epstein et al., 2007; Motani and Wainwright, 2015; Pittman et al., 2013; 86 Pörtner and Farrell, 2008). In order to cope with environmental change and maintain 87 homeostasis, organisms can modify their gene expression patterns and physiological 88 89 functions (Hofmann and Todgham, 2010; Logan and Somero, 2011) by up-regulating the minimal stress proteome (Kültz, 2005; Madeira et al., 2017). The main proteins 90 involved in the cellular stress response (CSR) to mitigate cellular damage include i) heat 91 92 shock proteins, which are chaperones with an adaptive value, repairing denatured

93	proteins upon thermal stress and maintaining the integrity of the protein pool (Feder and
94	Hofmann, 1999; Hofmann and Todgham, 2010; D. Madeira et al., 2012; Narum and
95	Campbell, 2015; Sørensen et al., 2003), ii) ubiquitin, which targets irreversibly
96	damaged proteins for proteasome degradation preventing cytotoxic aggregations
97	(Hofmann and Somero, 1995; Logan and Somero, 2011; Madeira et al., 2014; Tang et
98	al., 2014), iii) antioxidant enzymes which neutralize ROS (reactive oxygen species) and
99	oxidation products (e.g. lipid peroxides) that arise due to higher metabolic rates at
100	higher temperatures (Bagnyukova et al., 2007; Heise et al., 2006; Lushchak and
101	Bagnyukova, 2006; Vinagre et al., 2012).
102	Despite the vast literature on thermal eco-physiology of fish most studies have not
102	Despite the vast inclution of the indiana eeo physiology of hish, most studies have not
103	considered their complex life cycles, hampering accurate predictions of climate change
104	impacts on fish populations. Successive life stages have different requirements (habitat,
105	food, physiology, size, form, behavior, thermal niche) and therefore climate change is
106	expected to differently affect eco-physiological traits of organisms throughout their life
107	cycles, impacting mostly survival and dispersal processes in larvae and fitness in adults
108	(Kingsolver et al., 2011; Petitgas et al., 2013; Rijnsdorp et al., 2009; Webster et al.,
109	2013). Constraints in oxygen supply capacity related to body size and the development
110	of tissue functional capacity during ontogeny have been hypothesized to cause
111	differences in thermal ranges across the life cycle of fish and thus thermal stress
112	phenomena at systemic and cellular levels (Dahlke et al., 2020; Pörtner et al., 2017;
113	Pörtner and Farrell, 2008). Accordingly, thermal strategies are known to vary across life
114	cycle stages (Truebano et al., 2018) and an ontogenetic shift in temperature tolerance is
115	expected (Pörtner and Farrell, 2008; Rijnsdorp et al., 2009). In general, thermal window
116	widths are narrower for eggs and larvae while increasing in juveniles and becoming
117	constrained again at a large body size (adult stage) (Pörtner and Farrell, 2008; Truebano

118	et al., 2018). Consequently, determining the life history stage(s) most critical for life
119	cycle closure under ocean warming and heat wave scenarios is essential for
120	understanding the consequences and selection pressures imposed by global change upon
121	organisms. Such studies are especially relevant in commercial species considering that
122	fishing reduces genetic variability and alters the structure and thus reproductive capacity
123	of the population (Anderson et al., 2008; Caddy and Agnew, 2003; Ottersen et al.,
124	2006), leading to increased sensitivity of fish stocks to adverse climate conditions
125	(Ottersen et al., 2006; Planque and Fredou, 1999). The scientific community is thus
126	faced with the challenge of projecting the effect of climate forcing on exploited fish
127	species and subsequently design adequate management guidelines, following a climate-
128	smart conservation strategy (Bozinovic and Pörtner, 2015; Kingsolver et al., 2011;
129	Petitgas et al., 2013; Radchuk et al., 2013; Stein et al., 2014).
400	
130	we hypothesize that plasticity in traits related to thermal physiology is modulated non-
131	linearly in fish species with complex life cycles, in which life stages occupy different
132	environmental niches. Specifically, we aim at disclosing which life stages are most
133	vulnerable to extreme heatwaves by being less metabolically competent to swiftly
134	deploy mechanisms of cellular defense, resulting in deleterious consequences at the
135	whole-organism level and leading to pathophysiological anomalies and increased
136	mortality.
137	To test our hypothesis, we integrate sub-cellular to whole-organism endpoints to
138	compare the vulnerability and acclimation capacity of fish life cycle stages toward long
139	lasting heat waves using a proxy for common demersal predatory fish, the commercial

sea bream *Sparus aurata*. We chose life-stages that transition from open ocean to

141 coastal and estuarine environments (at larval stage) and that exclusively inhabit shallow

142 coastal waters, lagoons and estuarine environments (juveniles), subsequently moving to

143	coastal and open ocean waters again (growing adults). These life stages have a high
144	probability of exposure to extreme temperatures, not only due to the increase in
145	intensity, duration and frequency of heat waves but also due to the small thermal inertia
146	of shallow habitats. Hence, embryos and spawners were excluded as they only occur in
147	colder open sea waters.
148	
149	2. Material and Methods (1838 words)
150	2.1 Ethical statement
151	This study was approved by Direcção Geral de Alimentação e Veterinária and followed
152	EU legislation for animal experimentation (Directive 2010/63/EU).
153	
154	2.2 Assessment of Sparus aurata's thermal environments
155	Temperature data were obtained for both coastal and estuarine waters using several
156	tools: 1) studies in Portuguese coastal waters and estuaries (Minho, Douro, Ria de
157	Aveiro, Mondego, Tejo, Sado, Mira, Ria Formosa, Guadiana; data between 1978-2005,
158	not continuous - Azevedo et al., 2006; Cabral et al., 2007; Costa, 1990; Coutinho, 2003;
159	Madeira et al., 2012); 2) sea temperature database (satellite data available from
160	http://seatemperature.info/portugal-water-temperature.html) which has monthly sea
161	surface temperatures for the main coastal cities of Portugal (2011 to 2015) and 3) the
162	Marine and Environmental Sciences Centre database (data from several estuaries
163	including Tagus' temperatures measured by YSI loggers from 1978 to 2006.
164	
165	2.3 Housing and husbandry of fish
166	Sparus aurata (life cycle stages determined by body size and age: 35d post-hatch

larvae, n=180, 1.0 to 1.5 cm total length (TL); juveniles, n=75, mean \pm sd TL of

168	8.93±1.16 cm and 12.76±4.60 g weight, 5-6 months old; and adults, n=60, mean±sd TL
169	of 13.15 ± 1.40 cm and 45.78 ± 12.25 g weight, 11-12 months old) were obtained from a
170	fish farm (MARESA, Mariscos de Estero .S.A., Ayamonte, Huelva, Spain). All animals
171	were produced from a brood stock of 50 males and 25 females. The first parental fish of
172	the hatchery (collected in the late '90s) were wild fish caught in the nearby coastal
173	lagoon mixed with adults obtained from an aquaculture in Almería region (Spain). The
174	current breeding stock has about 400-600 animals. The breeding scheme consists of
175	replacing the males that turn into females by new males (annual replacement; usually
176	the 200-300 largest of one generation are chosen). Accordingly, the largest 200-300
177	females are removed. Larvae are reared under tightly controlled conditions in indoor
178	tanks (20°C, high water quality) until they reach 0.1 g (approximately at 60 days post-
179	hatch). Afterwards, they are placed in other less controlled indoor tanks but keep being
180	reared at 20°C. When they reach 1g (approximately 90 days post-hatch), they are moved
181	into land-based outdoor ponds (with water from the nearby coastal lagoon) and
182	subjected to a natural temperature regime (temperate climate with seasonal variation:
183	colder during winter and warmer during summer). According to data obtained from the
184	Spanish Agencia Estatal de Meteorologia (from 1984 to 2010), mean air temperatures in
185	the area range from 11 °C in January to 26 °C in July/August. Maximum air
186	temperatures can reach 33 °C and minimum air temperatures can reach approximately
187	6°C.
188	Fish were transported to the laboratory and randomly placed in a re-circulating system
189	(total of 2,000 L, Fig. S1a) as follows:
190	i) Larvae were placed in six transparent polyvinyl containers ($17.5 \times 17.5 \times 15$ cm,
191	approximately 4.5 L; n=30 larvae.tank ⁻¹), each positioned within a 70 L-tank with

192 water gently flowing through small punctures;

193	ii) Juveniles and adults were placed in 70 L white plastic tanks $(35 \times 35 \times 55 \text{ cm})$
194	(juveniles, n=13 individuals.tank ⁻¹ , 6 tanks; and adults, n=10 individuals.tank ⁻¹ , 6
195	tanks).

196	All tanks were filled with clean aerated sea water (95-100 % air saturation), with a
197	stable temperature of 18 ± 0.5 °C, salinity 35‰ and pH 8 ± 0.1 and summer photoperiod
198	15h light: 09h dark. Inflow of clean sea water in each individual tank was 300 mL.min ⁻
199	¹ . All tanks were provided with a filter (ELITE Underwater Mini-Filter Hagen, 220L.h ⁻
200	¹). Fish were conditioned (juveniles and adults: one week; larvae: one day) and their
201	health status was assessed (i.e. wounds or disease symptoms). During the conditioning
202	and experimental trial larvae were exposed to periodic feeding (every 6 h) with Artemia
203	salina metanauplii and two different grain-sized feeds (0.3-0.6 mm and 0.6-1.0 mm).
204	Juveniles and adults were fed with commercial food pellets once a day (BRM3,
205	Aquasoja, Portugal) mixed with cyanobacterium Spirulina sp. (Tropical®, Poland).

207 2.4 Experimental setup

After the conditioning period, temperature was gradually increased (0.25 °C.h⁻¹) until 208 the experimental temperatures were reached (control 18±0.5°C; experimental 209 210 temperatures 24±0.5°C and 30±0.5°C; n=2 tanks for each temperature). Temperatures were maintained for 28 experimental days using thermostats (TetraTec® HT 100, 100-211 150L, Tetra Werke, GmbH, Melle, Germany). Water quality parameters (temperature, 212 salinity, pH, ammonia, nitrites, nitrates) were monitored every 48 h and kept within 213 214 optimum range. Fish were euthanized through cervical transection at day 0 (only 18°C), 215 7, 14, 21 and 28 (all temperatures), following OECD guidelines for ecotoxicology 216 studies (supplemental material, Fig. S1b). At each time point, 4 to 5 individuals were randomly sampled (2 to 3 from each tank) for biochemical and histopathological 217

analyses. The entire body of larvae was collected while several organs were collected
separately in juveniles and adults i.e. brain (b), gills (g), intestine (i), liver (l) and
muscle (m). All analyses were carried out separately for each individual. The total
length of individuals (and weight in juveniles and adults) was measured at each
sampling point.

223

- 224 2.5 Temperature effects on sea breams
- 225 2.5.1 Cellular stress response (CSR)

226 Sample treatment

227 Whole-larvae (n=4-5 per treatment) or approximately 150-200 mg of tissue (brain, gills,

intestine, liver and muscle) of juveniles (n=5 per treatment) and adults (n=4 per

treatment) were homogenized individually in 0.5 and 1 mL (respectively) of cold

phosphate buffered saline (pH 7.4) using a Tissue Master 125 homogenizer (Omni

231 International, Kennesaw, USA). Afterwards, homogenates were centrifuged (10 min at

 $16,000 \times g$) and the supernatant fractions were stored at $-80^{\circ}C$ until further analysis.

233 <u>Biochemical analyses</u>

Total protein content was determined through the Bradford method (Bradford, 1976) for

data normalization and followed the protocol described by (Madeira et al., 2014). Heat

236 Shock Protein 70 (Hsc70/Hsp70) was quantified using an indirect Enzyme Linked

- 237 Immunosorbent Assay (ELISA) (Njemini et al., 2005) in 96-well microplates using a
- primary antibody against Hsp70/Hsc70 (AM03140PU-N, Acris, USA), a secondary
- antibody (anti-mouse IgG, fab specific, alkaline phosphatase conjugate, Sigma-Aldrich,
- 240 USA) and the substrate SIGMA FASTTM p-Nitrophenyl Phosphate Tablets (Sigma-

241	Aldrich, USA). Total ubiquitin was quantified through a direct ELISA in 96-well
242	microplates using the primary antibody Ub P4D1 (sc-8017, HRP conjugate, Santa Cruz,
243	USA) and the substrate TMB/E (Temecula California, Merck Millipore). Both
244	quantifications followed the protocols described by (Madeira et al., 2014). The
245	enzymatic assay of Catalase (CAT) (EC 1.11.1.6) was adapted from (Johansson and
246	Borg, 1988) and performed as described in (Vinagre et al., 2014) in 96-well
247	microplates. Catalase activity was calculated considering that one unit of catalase is
248	defined as the amount that will cause the formation of 1.0 nmol of formaldehyde per
249	minute at 25 °C. The enzymatic assay of glutathione S-transferase (GST) activity (EC
250	2.5.1.18), using the substrate CDNB (1-Chloro-2,4-dinitrobenzene), was adapted from
251	(Habig et al., 1974) and performed as described by (Vinagre et al., 2014) in 96-well
252	microplates and using a molar extinction coefficient for CDNB of 0.0053cmM (adapted
253	for microplates). The enzymatic assay of superoxide dismutase (SOD) activity was
254	adapted from (Sun et al., 1988) and performed using nitroblue tetrazolium (NBT) and
255	xanthine oxidase (XOD), as described in (Vinagre et al., 2014). The lipid peroxides
256	assay was adapted from the thiobarbituric acid reactive substances (TBARS) protocol
257	(Uchiyama and Mihara, 1978) to quantify malondialdehyde bis(dimethylacetal) (MDA)
258	following the procedure described by (Vinagre et al., 2014). For more details see
259	supplementary Table S1.

260 2.5.2 Phenotypic endpoints

261 <u>Mortality and condition index</u>

262 Mortality rates were calculated at the end of the experiment in each tank (n=2 tanks per
263 treatment). Additionally, Fulton's K condition index was calculated using the formula:

264
$$K = 100 M_t/L_t^3$$
 (1)

urnal	Dra	nro	\mathbf{a}
uman		·pro	U.

Where M_t is the total wet mass (mg) and L_t is the total length (mm) (Ricker, 1975). This index was calculated for fish in each temperature treatment after 21 days of exposure (n=5 juveniles and n=4 adults per temperature treatment). No calculations were made at 28 days nor for larvae due to mortality rates.

269

270 <u>Histopathological assessment</u>

Histological sections were obtained from whole-body sections of larvae and tissue 271 272 sections of juveniles and adults fixed in Bouin's solution for 24 h or 48 h at room temperature and embedded in paraplast. Sections (5 µm thick, cut in a Jung RM2035 273 rotary microtome) were stained with Haematoxylin and Eosin (H&E) for general 274 histopathological screening, Periodic Acid-Shiff's (PAS) plus Haematoxylin (for 275 glycogen detection and general structural analysis) and a trichrome stain using 276 277 Weigert's Iron Haematoxylin and van Giesons' dye (Acid Picrofuchsin) in larvae to 278 assist differentiation of multiple structures. More details may be found in (Martins et al., 2015). Histological sections were analyzed with a DMLB model microscope equipped 279 280 with a DFC480 camera, all from Leica Microsystems (Germany). The histopathological 281 analyses were qualitative and based on the presence/absence of lesions, as well as type and extent of the identified lesions. Such assessment was used as phenotypic anchoring 282 283 to help assist the interpretation of biomarker results (Paules, 2003).

284

285 2.5.3 Statistical analysis

286 <u>Cellular Stress Response (CSR) biomarkers</u>

287 Generalized linear models (GLM) and linear discriminant analysis (LDA)

288	Data were analysed through generalized linear models (GLM) and linear discriminant
289	analysis (LDA) using packages 'glm2' and 'MASS' for R (Ihaka and Gentleman, 1996),
290	respectively. Data were fitted to GLMs using a Gamma distribution with log link.
291	Deviance analysis (based on regressive F-tests) was employed to determine the
292	significance of three explanatory variables (life stage, time, and temperature) in the
293	models. A second set of models were run on a subset of the data (only for juveniles and
294	adults) to determine the significance of four explanatory variables (life stage, time,
295	temperature, and organ). All the models were ranked according to Akaike's Information
296	Criterion (AIC). Quality of fit was determined by dispersion of residuals, Cook's h
297	statistic and qq-plots of ordered deviance residuals. Analysis follows McCullagh &
298	Nelder (1989). Linear discriminant analysis was conducted for multi-class classification
299	and separability, after Xanthopoulos, Pardalos, & Trafalis (2013). Quality assessment
300	and visualisation was done through the proportion of trace attributed to each Fisher
301	linear discriminant, percentage of correct classifications and two-dimensional plots of
302	discriminants. Histograms were plotted to compare data distribution per group.

303

304 Integrated Biomarker Response Index (IBR)

To detect which life stage and tissue was more susceptible or responsive to warming,
the Integrated Biomarker Response was calculated according to (Beliaeff and Burgeot,
2002) (see supplementary Table S1 for details). The IBR provides a synthesis of
biomarker responses, providing a numeric value that integrates all responses, previously
standardized. It is represented as the "sum of the area defined by k biomarkers arranged
in a radar diagram" (Devin et al., 2014). A heatmap was constructed in Cluster 3.0 &
Java TreeView to visualize IBR data following the parameters (i) adjust data: log

		10.1	\sim
			C (1) (1)
JUUU			

312	transform, center rows, (ii) hierarchical cluster: cluster rows (correlation uncentered)
313	and cluster columns (Euclidean distance), (iii) clustering method: complete linkage.

315 *Mortality and condition index*

- 316 Data was tested for normality (Shapiro-Wilk's test) and homoscedasticity (Levene's
- test) prior to statistical analysis. Due to invalidation of assumptions, mortality data were
- analysed through non-parametric Kruskal-Wallis analyses to test the effect of
- temperature and life stage on mortality levels. Fulton's K condition index was analysed
- via one-way ANOVA in juveniles (18°C vs 24°C vs 30°C) and the Mann-Whitney U test
- in adults (18°C vs 24°C; mortality at 30°C). All analyses were carried out in Statistica
- v10 (StatSoft Inc., USA), considering a significance level of 0.05.

323

324 **3. Results (1208 + 1081 of tables and legends)**

325 3.1 Assessment of Sparus aurata's thermal environments

- 326 Monthly mean sea surface temperature (SST) along the Portuguese coast registered
- 327 values from 12 (at the Northern coast, Viana do Castelo) to 16°C (at the Southern coast
- of Algarve) during the winter months (December to March). Monthly mean±sd
- 329 (averaging all locations) was 15.6±0.2 °C in December, 14.8±0.3 °C in January,
- 13.9±0.6 °C in February, and 14.2±0.4 °C in March (satellite dataset from 2011 to
- 2015). During summer months (June to September) monthly mean SST ranged from 15
- to 23°C, according to the location as well. The monthly mean±sd averaging all locations
- 333 was 17.9±0.8 °C in June, 18.7±0.8 °C in July, 18.9±0.5 °C in August and 19.3±0.7 °C in
- 334 September. Seasonal variation considering monthly mean coastal SST is around 4 °C,

335	with the lowest and highest temperatures occurring during February and September,
336	respectively. According to regional projections based on the HadRM model (emission
337	scenario IS92a), Portuguese water temperatures will rise by 3-4°C until 2100 (Miranda
338	et al., 2002). Considering a +3°C increase, monthly mean SST will be in the range of 15
339	to 19°C and 18 to 26°C during the winter and summer, respectively (Fig. 1a). Present
340	estuarine temperatures range approximately from 10-11 to 14°C during the winter and
341	20 to 24°C during summer (monthly SST). During heat waves, estuaries can reach
342	maximum temperatures between 25 and 28°C, persisting for over 2 weeks. Following
343	the scenario of a +3°C increase in Portuguese waters by 2100, estuaries' mean
344	temperature during summer would be in the range of 23 to 27°C, reaching over 30°C
345	during heat waves (Fig. 1b).
346	

Fig. 1 Present and projected temperatures for 2100 (+3°C) in (**a**) Portuguese coastal waters (monthly average sea surface temperature for the main coastal cities from 2011-2015) and (**b**) estuaries (based on data from the Tagus estuary considering monthly average temperatures collected from 1978 to 2006).

353

354

355 3.2 Temperature effects on S. aurata throughout its life cycle

356 3.2.1 Cellular stress response (CSR)

- 357 Life stage consistently affected CSR biomarkers (p<0.05 in all GLM models, except for
- 358 GST) (Table 1). The explanatory variable temperature was also consistently significant
- in the models (GST, SOD, LPO, Hsp70, TUB, p<0.0001), except for CAT model

360	(p=0.2). The effect of time was less evident as this explanatory variable was only
361	significant for LPO (p=0.001) and TUB (p<0.0001). Based on AIC, the top three
362	models were those for TUB (AIC=-1907.9), LPO (AIC=-1295.9) and Hsp70 (1018.1)
363	(Table 1). In both TUB and LPO, the three explanatory variables were significant, while
364	in Hsp70, only life stage and temperature were significant (Table 1). A second set of
365	models was run on juvenile and adult data to include organ as a fourth explanatory
366	variable, highlighting that organ has a significant effect on all CSR biomarkers (Table
367	2). Based on AIC, the top three models in this case were still TUB (AIC=-1016.6), LPO
368	(AIC=-719.91) and Hsp70 (AIC=435.93) (Table 2). Model diagnostic plots can be
369	consulted in Figs. S2 and S3.
370	Linear discriminant analysis (LDA) showed a clear separation between life stages,
371	especially larvae from juveniles and adults, with an overall percentage of correct
372	classifications of 87% (correct classifications per group were 97% for adults, 79 % for
373	juveniles and 63 % for larvae) (Fig. 2a). Overall, larvae showed greater inter-individual
374	variation but higher levels of CSR biomarkers, followed by juveniles and the lowest
375	levels were recorded in adults (Fig. 2a, b). Separation of groups by temperature was
376	observed, especially differentiating 30 °C from 18 and 24 °C. Group separation was
377	more evident when only juveniles and adults were analyzed, with an overall percentage
378	of correct classifications of 70 % (correct classifications per group were 76% for 18 °C,
379	68 % for 24 °C and 60% for 30 °C) (Fig. 2c, d). A similar pattern was observed for
380	factor time, in which group separation was only evident after excluding larval data, for
381	which several time-points were missing due to mortality (Fig. 2e, f). The model showed
382	an overall percentage of correct classifications of 78% (correct classifications per group
383	were 40 % for T0, 64 % for T7, 85 % for T14, 85% for T21 and 100% for T28).
384	Separation between organs was also observed, especially liver, muscle, gills and brain

385 (Fig. 2g, h). Intestine highly overlaps with other organs. In summary, fish generally

showed an induction of CSR biomarkers, especially at 30°C, and more noticeable at 7

and 14 days of exposure. A heatmap of individual biomarker data can be consulted in

388 Fig S4. Raw biomarker data have been deposited to the Knowledge Network for

Biocomplexity Repository with the dataset identifier urn:uuid:575bfeee-8df2-4058-

390 9712-8d95c729722b (D. Madeira et al., 2020).

391

392 Table 1. Generalized linear models produced to address the effect of three explanatory variables (life stage: larvae, juveniles, adults; time: 0, 7, 14, 21 and 28 days; and 393 temperature: 18, 24 and 30 °C) on cellular stress response biomarkers in the gilt-head 394 seabream Sparus aurata (CAT - catalase, GST - glutathione-S-transferase, SOD -395 superoxide dismutase, LPO – lipid peroxidation, Hsp70 – heat shock protein 70kDa, 396 TUB – total ubiquitin). Model fit was evaluated by Akaike's Information Criterion 397 (AIC). Significant results are highlighted by asterisks (*** p<0.0001, ** p<0.001, * 398 p<0.01). Models are designated by dependent variable (biomarker endpoint). 399 400

Model	Explanatory variable	F	p-value	Model AIC
CAT	Life stage	53.50	<2e-16***	2695.5
	Time	0.39	0.532	
	Temperature	1.57	0.210	
GST	Life stage	1.58	0.207	4679.4
	Time	1.22	0.270	
	Temperature	12.75	0.0004	
SOD	Life stage	46.31	<2.2 <i>e</i> -16***	3285.2
	Time	0.58	0.464	
	Temperature	43.74	1.063e-10***	
LPO	Life stage	10.06	5.315e-05***	-1295.9
	Time	10.88	0.001**	
	Temperature	19.60	1.195e-05***	

		urnal Pre-proo		
Hsp70	Life stage	153.68	<2.2e-16***	1018.1
	Time	0.03	0.873	
	Temperature	39.95	6.176e-10***	
TUB	Life stage	179.91	<2.2 <i>e</i> -16***	-1907.9
	Time	25.87	5.347e-07***	
	Temperature	11.17	0.0009***	

402

Table 2. Generalized linear models produced for a subset of the data (juveniles and 403 adults) to address the effect of four explanatory variables (life stage: juveniles, adults; 404 time: 0, 7, 14, 21 and 28 days; temperature: 18, 24 and 30 °C; and organ: muscle, brain, 405 gills, liver, intestine) on cellular stress response biomarkers in the gilt-head seabream 406 Sparus aurata (CAT - catalase, GST - glutathione-S-transferase, SOD - superoxide 407 408 dismutase, LPO - lipid peroxidation, Hsp70 - heat shock protein 70kDa, TUB - total ubiquitin). Model fit was evaluated by Akaike's Information Criterion (AIC). 409 Significant results are highlighted by asterisks (*** p<0.0001, ** p<0.001, * p<0.01). 410 411 Models are designated by dependent variable (cellular stress response biomarker). 412

Model	Explanatory variable	F	p-value	Model AIC
CAT	Life stage	32.83	3.384e-08***	1142.7
	Time	0.49	0.482	
	Temperature	1.76	0.186	
	Organ	45.62	2.2e-16***	
GST	Life stage	0.39	0.532	2106.6
	Time	3.19	0.075	
	Temperature	13.55	0.0003***	
	Organ	46.03	2.2e-16***	
SOD	Life stage	19.51	1.586e-054***	1523.3
	Time	0.35	0.552	

	Temperature	29.92	1.250e-07***	
	Organ	15.47	3.938e-11***	
LPO	Life stage	0.67	0.413	-719.91
	Time	1.45	0.230	
	Temperature	8.28	0.004**	
	Organ	9.65	3.313e-07***	
Hsp70	Life stage	187.69	2.2e-16***	435.93
	Time	0.01	0.916	
	Temperature	29.07	1.806e-07***	
	Organ	7.55	1.023e-05***	
TUB	Life stage	227.30	2.2e-16***	-1016.6
	Time	15.43	0.0001***	
	Temperature	17.10	5.069e-05***	
	Organ	7.19	1.873e-05***	
		·		

418 Fig. 2 Plots of linear discriminants per class and corresponding histograms showing the overall profile of cellular stress response (CSR)

biomarkers across life stages of the seabream fish *Sparus aurata* exposed to different temperatures over time. Ellipses represent the 95 %
 confidence intervals to centres assuming a multivariate *t* distribution. Dots represent real observations. Plots for life stages (a, b),

temperatures (\mathbf{c}, \mathbf{d}), exposure times (\mathbf{e}, \mathbf{f}) and organs (\mathbf{g}, \mathbf{h}). Only juvenile and adult data were used for temperature, time and organ plots, as

422 group separation was evident after the removal of larval data. Fish were sampled at day 0 (only 18°C), 7, 14, 21 and 28 days (all temperatures).

423 At each time point, 4 to 5 individuals were randomly sampled (2-3 from each tank, n=2 tanks per temperature). CSR biomarkers were quantified

424 in the whole body of larvae and different organs in juveniles and adults. CSR biomarkers include heat shock protein 70 kDa, total ubiquitin,
 425 catalase, glutathione-S-transferase, superoxide dismutase and lipid peroxidation.

ournal Pre-proof

426 Integrated Biomarker Response (IBR)

- An overview of the response capacity upon exposure to increased temperature was 427
- provided by IBR values, which were similar between larvae exposed to 18°C and 24°C 428
- (Fig. 3). In juveniles, IBR was always higher at 24°C and 30°C when compared to 18°C, 429
- 430 the largest increases occurring in liver, gills and muscle. In adults, IBR was higher at
- 24°C and 30°C in all organs except muscle and liver. In muscle, the IBR at both 24°C 431
- and 30°C was lower than that at 18°C. In liver, the IBRs at 18°C and 30°C were very 432
- 433 similar and lower than 24°C (Fig. 3).

434

436 Fig. 3 Integrated Biomarker Response index (IBR) plotted as a heatmap with clustered data to detect which life stage and tissue was more responsive to warming. Columns 437 438 represent different temperatures (18, 24 and 30°C) and rows represent different life stages and organs (WB – whole body; L – liver; G – gills; M – muscle; I – intestine; B-439 brain). Orange represents higher than mean IBR values and blue represents lower than 440 mean IBR values. Gray cells represent missing values due to mortality. IBR was 441 442 calculated based on data from all time-points (0, 7, 14, 21 and 28 days). At each time point, 4 to 5 individuals were randomly sampled (2-3 individuals from each tank, n=2 443 tanks per temperature). 444

445 3.2.1 Phenotypic endpoints

446 Mortality and condition index

- 447 Significant differences were detected between cumulative mortalities among
- temperature treatments (Kruskal-Wallis, H=6.25 ; p=0.0439), namely 18 and 30 °C
- 449 (multiple comparisons, p<0.05) and life stages (Kruskal-Wallis, H=7.46; p=0.0240),
- 450 namely larvae and juveniles (multiple comparisons, p<0.05). Cumulative mortalities
- 451 (after 28 days of exposure) of sea bream larvae were generally higher than for other life
- 452 stages, namely 67±5% at 18°C, 100±0% at 24°C and 100±0% at 30°C. Cumulative
- 453 mortalities of juveniles were $0\pm0\%$ at 18°C, $14\pm3\%$ at 24°C and 28±11% at 30°C; and
- 454 cumulative mortalities of adults were 0±0% at 18°C, 0±0% at 24°C and 100±0% at 30°C
- 455 (Fig. 4). Fulton's K condition index did not vary with temperature in any of the
- 456 developmental stages tested (juveniles, 18 vs 24 vs 30°C: Kruskal-Wallis, H=1.28,
- 457 p>0.05; adults, 18 vs 24°C: Mann-Whitney, U=7, p>0.05).

Fig. 4 Cumulative mortalities (mean±SD) of Sparus aurata larvae, juveniles and adults 459 exposed to 18°C, 24°C and 30°C for a period of 28 days. The experimental design for 460 each life stage consisted of 2 tanks per temperature (density was based on body size, 461 n=30 larvae tank⁻¹, n=13 juveniles tank⁻¹, and n=10 adults tank⁻¹). Significant 462 differences were detected between temperature treatments (Kruskal-Wallis, H=6.25; 463 p=0.0439), namely 18 and 30 °C (p<0.05) and life stages (Kruskal-Wallis, H=7.46; 464 p=0.0240), namely larvae and juveniles (p<0.05). Illustrations by (Park et al., 2017) 465 and FishWatch.gov. 466

467

468 Histopathology

- 469 Skeletal muscle yielded changes in all three age groups, from larvae (Fig. 5A) to
- 470 juveniles and adults (Fig. 5B), with a clear trend to increase with time and temperature.
- 471 However, muscular dystrophies were more severe and diffuse in adults and juveniles,
- 472 where infiltration of inflammatory cells accompanied focal (towards diffuse in animals

473	subjected to 24°C and higher) autolytic processes of muscle bundles and atrophy of
474	connective tissue. The brain was seemingly affected only in adults (Fig. 5C) exposed to
475	24°C or higher for longer periods of time. However histopathological changes were
476	limited to vacuolation of glial cells in the medulla. The liver (hepatopancreas) was the
477	most affected organ in adults and overall the organ that yielded the most severe
478	histopathological changes, affecting both hepatic and pancreatic tissue, the latter of
479	which presented diffuse dystrophy of acini in animals exposed to 30°C, with a clear
480	time-dependent trend. The main alterations hitherto observed were fat vacuolation,
481	inflammation (revealed by foci of infiltrating inflammatory cells and hyperemia, see
482	Fig. 5D, inset), loss of glycogen storage disclosed by PAS reaction and loss of zymogen
483	granules in acinar cells, which appeared degenerated in shape and size, with loss of
484	acinar structure. Control animals presented the normal structure of the organ throughout
485	the experiment (Fig. 5E). Gills did not reveal any significant changes that could be
486	pinpointed to thermal stress in any of the age groups. Changes observed solely relate to
487	benign infections, mostly by Chlamidia-like bacteria (Fig. 5F). Similarly, no
488	histopathological changes were observed in digestive tracts. Larvae subjected to higher
489	temperatures presented minor alterations to kidneys, namely cuboidal cell vacuolation
490	and loss of tubular shape (not shown). Overall, muscle was the organ that was most
491	consistently affected in all life stages.

492

Fig. 5 Histopathological sections of multiple organs from larva, juvenile and adult 493 Sparus aurata subjected to different temperatures (18, 24 and 30°C). (A) Muscle of a 494 larva subjected to 24 °C for seven days. Note the infiltration of inflammatory cells along 495 496 the junction between skeletal muscle segments (arrowheads). Bundles of disorganized (atrophied) muscle bundles are also visible (arrows). sn) Skin. Staining: Weigert's Iron 497 Haematoxylin + van Gieson. (B) Skeletal muscle of an adult subjected to 24 °C for 21 498 499 days, revealing diffuse atrophy of skeletal muscle (sk) bundles and inflammatory foci (H&E). The subcutaneous adipose tissue (at) was frequently observed to infiltrate 500 affected muscle (H&E). (C) Section through the optic lobe of an adult fish exposed to 501 24 °C for 21 days, revealing low-moderate diffusion of vacuolation (vc) in the medullar 502 area, likely affecting glial tissue (H&E). (D) Liver (hepatopancreas) of an adult fish 503 504 subjected to 30 °C for seven days, with diffuse fat vacuolation (fv) plus inflammation, 505 indicated by hyperaemia and infiltration of inflammatory cells into hepatic tissue (arrow heads). The pancreatic acini are severely affected (arrows), revealing loss of zymogen 506 507 granules (H&E). Inset: Focus of inflammatory cells (likely melanomacrophages) in the 508 vicinity of pancreatic acini in an adult exposed to 24 °C for 14 days. Here the acini (ac) 509 still presented a normal structure. Note zymogen granules (zg). PAS-Haematoxylin. (E) Hepatopancreas of a control (18 °C) adult fish at 21 days, for comparative purposes. 510 These animals presented the normal architecture of hepatic (hp) and pancreatic tissue 511 (pr), similar to juveniles (H&E). (F) Benign bacterial infection by Chlamydia-like 512 bacteria in the interlamellar space in gills of a control fish collected at 14 days of 513 exposure. fl) filament; lm) lamella. Note the absence of inflammation. These benign 514 515 infections were present in virtually all animals, regardless of test or age class (H&E). Scale bars: 25 µm except C (250 µm). 516

517

518

520 4. Discussion (1721 words) Accurate predictions of the impacts of climate change on populations and ecosystems 521 522 ideally require the assessment of thermal tolerance of all life-history stages (Freitas et 523 al., 2010; Levy et al., 2015; Zeigler, 2013). Here, we show that while demersal fish larvae lack the ability to tolerate or acclimate to elevated summer temperatures and heat 524 waves, juveniles were able to cope with all warming scenarios. Larger adult fish 525 526 survived elevated summer temperatures but were also severely affected under future heatwave scenarios predicted for estuaries, despite no differences in condition index. 527 This outcome is supported by the high mortality rates endured by larvae at both 24°C 528 529 and 30°C and endured by adults at 30°C, confirming that high temperatures lead to a 530 bottleneck effect not only in early life stages of fish, in accordance with other studies in marine organisms (Bartolini et al., 2013; Faria et al., 2011; Houde, 1989) but also at 531 532 later mature stages, possibly linked to larger body size. Mortality levels were still elevated for larvae under control conditions, but this was expected as planktonic larval 533 fish are extremely fragile and have critical periods in development that explain 534 significant portions of mortality (Garrido et al., 2015; Sifa and Mathias, 1987). 535 Our findings suggest that molecular mechanisms underpinning thermal tolerance of fish 536 varied with organ as well as with life stage. Tissue-specific expression of the CSR has 537 538 been widely reported and has been associated with the level of oxygenation and metabolic functions of each tissue (Colin et al., 2016; Dietz and Somero, 1993; C. 539 Madeira et al., 2016; Madeira et al., 2014). The most responsive organs in the juvenile 540 phase were liver, gills and muscle, as shown by IBR values, suggesting relevant 541 phenotypic plastic responses. However, in adults, most organs seemed less able to 542 employ efficient cellular protection. Histopathological observations corroborated these 543 results, as juveniles only show mild alterations in muscle whereas relevant 544

545 modifications and potential loss of function were detected in adults' muscle, liver and brain, with potential effects on energy metabolism and neural function. Thus, it seems 546 that juveniles are able to prevent cytotoxic effects of damaged proteins and oxidative 547 548 stress during heatwave events as opposed to adults, which show depletion of energy reserves (namely loss of glycogen storage) and experience function loss in vital organs 549 due to inflammation, dystrophy, and damage to lipids and proteins (mainly in muscle 550 and liver). Like adults, larvae showed reduced molecular plasticity, with a lower ability 551 552 to employ a strong and efficient CSR (as shown by the similar IBRs between 24°C and 30°C), potentially resulting in oxidative damage to lipids and damage to muscle and 553 kidneys. Alterations in muscle contraction and osmoregulatory imbalance could thus be 554 potentially accountable for the elevated mortality rates of larvae. Differences in thermal 555 tolerance and molecular mechanisms between life cycle stages may be associated not 556 557 only with development and functional capacity but also with an ontogenetic shift in thermal scope for activity (see Pörtner et al., 2017), which should be concomitant with 558 559 the habitat transition that usually accompanies metamorphosis and sexual maturation in 560 many fish species.

Divergence in life stage thermal tolerance may be related to oxygen supply constraints 561 related to body size (Dahlke et al., 2020; Pörtner et al., 2017; Pörtner and Farrell, 2008). 562 563 Moreover, it may also relate to different levels of plasticity through epigenetic regulation of the genome in response to the environment that each life stage inhabits 564 565 (Webster et al., 2013). This could lead to different expression of phenotypic plasticity 566 and thus life-stage specific phenotypic landscapes. Such phenotypic plasticity could be adaptive, given that it has an effect on fitness (Arnold et al., 2019) (for instance 567 allowing juveniles to mature and return to spawning areas to reproduce). Still, 568 569 phenotypic plasticity has costs, limits and trade-offs (Arnold et al., 2019; Fox et al.,

2019), possibly related to energy budgets of organisms and physiological constraints.
Ultimately the capacity to be plastic at the individual level and the capacity to adapt at
the population level will determine winners and losers in the Anthropocene (Fox et al.,
2019).

While embryonic and mature adult stages of demersal fish species may depend on stable 574 575 environmental conditions in their spawning habitat (cf. Dahlke et al., 2018), planktonic 576 larval stages switch from oceanic into coastal or estuarine habitats in spring, during or following metamorphosis. The eurythermal and euryhaline traits known for seabream 577 and similar fishes (e.g. seabass) enable this type of migratory behavior (Moyano et al., 578 2017). For example, the Critical Thermal Maximum (CT_{max}) calculated for seabream 579 580 larvae is ~30°C (Madeira et al., 2016), increasing to 35.5 °C in juvenile stages (Madeira et al., 2014). In seabass, CT_{max} values range from 28 to 33 °C during early ontogeny, 581 582 increasing up to 35 °C during juvenile stages (Madeira et al., 2012; Moyano et al., 583 2017). Growth as juveniles during summer months can, however, be stressful especially considering a difference of 4 to 6 °C between oceanic and estuarine waters, not to 584 mention the selective pressure that will be imposed by heat waves in the next century 585 (Stillman, 2019). However, migration into estuaries is not obligatory for the species to 586 complete its life cycle. Hence, populations that remain in coastal waters may have more 587 thermal refugia to escape extreme conditions. 588

589 One could argue that the higher surface-to-volume ratio of early life stages could lead to

a more efficient uptake of oxygen and respiration (see Leiva et al., 2019), especially

591 given that larvae can respire through skin (Yúfera et al., 2011). Skin respiration

592 balances oxygen demand while circulatory and ventilatory capacities of larval fish

593 develop. However, at high temperature extremes, organisms may not be able to sustain

594 metabolic needs, and thus performance and fitness, due to a mismatch between supply

595	and demand. Energy homeostasis depends on physiological traits (oxygen intake
596	capacity, surface-area-specific assimilation rate and efficiency of food-ATP
597	conversion), volume-specific somatic maintenance costs and energy allocation trade-
598	offs, ultimately determining tolerance limits and metabolic strategies (compensation vs
599	conservation, sensu Petitjean et al., 2019) upon exposure to stress (Freitas et al., 2010;
600	Sokolova, 2013; Sokolova et al., 2012). Moreover, parallel increases in protein
601	denaturation, disturbance to neural function and to mitochondrial membrane integrity
602	(Clark et al., 2017; Pörtner, 2012) might be observed during stress, contributing to
603	performance decrements. Thus, respiration dynamics, energy balance and cellular
604	defenses are factors paramount in stress tolerance (Pörtner, 2012; Sokolova, 2013).
COF	Dravious studies on sachman larges showed that algusted temperature induces callular
005	rievious studies on seableann farvae snowed that elevated temperature induces central
606	changes such as cytoskeleton reorganization, protein damage and lowered oxygen
607	transport (Madeira et al., 2016), following the framework of the oxygen and capacity
608	limited thermal tolerance hypothesis OCLTT (Pörtner et al., 2017). Other studies also fit
609	well within the concepts described above; for instance, Truebano et al. (2018)
610	summarized that early life stages may be more susceptible to heat stress (especially
611	acute) due to several complementary reasons including (i) energy is mostly allocated to
612	growth and cellular rearrangements, (ii) thermal tolerance mechanisms such as the heat
613	shock response may be underdeveloped in early life stages possibly because
614	overexpression impairs developmental processes, (iii) cellular defenses prioritize
615	developmental stability and acute stress may disrupt these defenses leading to altered
616	development and mortality. Therefore, all of these interlinked processes combined with
617	high mass-specific oxygen consumption rates typical of fish larvae (see Hess et al.,
618	2015; Motani and Wainwright, 2015) contribute to shape the performance of early life
619	stages in warming seas.

620 Overall, we conclude that the susceptibility of demersal sea breams to ocean warming can be ranked as larvae > adults > juveniles. Despite some study imitations such as the 621 somewhat short laboratory acclimation period and the difficulty in analyzing target 622 623 organs in larval stages, we highlight that larval migration to coastal and estuarine waters might be the most crucial phase of demersal fish life cycle. This migration enables fish 624 to exploit new resources but may coincide with enhanced exposure to warm periods, 625 despite the widened thermal ranges of seabreams. Here we showed that larvae are quite 626 627 sensitive to future estuarine temperatures due to a lack of biochemical acclimation, damage to muscle and kidneys and associated mortality rates. Moreover, larvae could 628 not cope with warming for more than a few days, as opposed to juveniles and adults 629 which were able to endure stressful events for much longer timeframes. Sub-lethal 630 effects of temperature in seabream larvae can arise at ~22°C (D Madeira et al., 2016; 631 632 Polo et al., 1991) supporting the idea that future coastal (~16-23°C during spring and 633 summer) and estuarine thermal regimes (~20-26°C during spring and summer; heat 634 waves 30°C) will impose temperatures beyond the thermal envelope of larvae, 635 negatively affecting sea bream populations through high mortality and lowered recruitment success. Thus, life cycle closure may depend on the success of the first 636 spawning events (autumn/winter) and subsequent migration to nursery grounds before 637 638 heatwaves strike shallow water environments. Adult performance was also strongly 639 affected by extreme warming, with vital organs showing the greatest tissue injury suggesting damage rather than a plastic response. However, adult fish may revert to 640 641 behavioral thermoregulation (Gräns et al., 2010; Pulgar et al., 1999; Thums et al., 2012; 642 Ward et al., 2010) and have thermal refugia available to them in open water to 643 counterbalance the loss of plasticity with age. This could be involved in eliciting return 644 to deep water environments and spawning habitat. Juvenile breams, which are confined

645 to estuaries, proved to be metabolically more competent to deal with warming, showing the greatest survival and acclimation potential. A plastic response to temperature 646 enables juveniles to cope with their habitat's fluctuating conditions and lack of thermal 647 refugia. Recent reports highlight the importance of using physiological data to inform 648 and direct future research and conservation plans of fishes, directing management 649 actions towards the most vulnerable life stages (Rodgers et al., 2019). Based on GLMs, 650 the best biomarkers to assess thermal stress effects on seabreams were Hsp70, TUB and 651 652 LPO. Thus, their potential use in monitoring programs should be addressed in future studies. Finally, it must be pointed out that sea breams and similar demersal species are 653 main targets of traditional fisheries and aquaculture in southern Europe and part of the 654 basic Mediterranean diet. Thus, the successful recruitment and population viability of 655 wild and cultured seabreams will have impacts on both ecosystems and human society. 656 657 Climate-smart strategies in resource management and aquaculture production are thus also paramount to the blue bioeconomy, ensuring the sustainability of fish supply and 658 659 food security.

660

661 Acknowledgements (20 words)

Authors would like to thank MARESA for providing *S. aurata* larvae, juveniles andadults as well as *Artemia salina* nauplii.

664

665 **Funding statement (62 words)**

666 Thanks are due to the Portuguese FCT/MEC for the financial support to CESAM

667 [UIDP/50017/2020+UIDB/50017/2020], MARE [UID/MAR/04292/2019], UCIBIO

668 [UIDB/04378/2020] and CCMAR [UID/Multi/04326/2019] through national funds and

the individual grants awarded [SFRH/BD/80613/2011 to D.M.;

	51 D	nrc	\mathbf{h}
JUUIIIC		$\mathcal{D}\mathcal{I}\mathcal{O}$	נטל

- 670 SFRH/BPD/117491/2016 to D.M., SFRH/BD/92975/2013 to CM;
- 671 CEECIND/01526/2018 to CM and project grants PTDC/MAR/119068/2010 and
- 672 PTDC/AAG-REC/2139/2012]. This work was co-financed by the ERDF under the
- 673 PT2020 Partnership Agreement and Compete 2020.
- 674

675 Author contributions

- 676 **D. Madeira**: investigation, formal analysis, data curation, writing original draft,
- 677 visualization; C. Madeira: investigation; P.M. Costa: methodology, investigation,
- 678 formal analysis, visualization, supervision, resources, writing review and editing; C.
- 679 **Vinagre**: conceptualization, methodology, writing review and editing, supervision;
- 680 H.O. Pörtner: writing review and editing; M. S. Diniz: conceptualization,
- 681 methodology, validation, resources, writing review and editing, supervision, project
- 682 administration, funding acquisition.
- 683

684 Competing Financial Interests Statement

- 685 The authors have no conflicts of interest to declare.
- 686

687 Data accessibility

- 688 Data have been deposited to the Knowledge Network for Biocomplexity Repository
- 689 with the dataset identifier urn:uuid:575bfeee-8df2-4058-9712-8d95c729722b (a final
- 690 DOI will be provided upon publication).

691

692 **References**

Anderson, C.N.K., Hsieh, C., Sandin, S.A., Hewitt, R., Hollowed, A., Beddington, J.,
May, R.M., Sugihara, G., 2008. Why fishing magnifies fluctuations in fish
abundance. Nature 452, 835–839. https://doi.org/10.1038/nature06851

Arnold, P.A., Nicotra, A.B., Kruuk, L.E.B., 2019. Sparse evidence for selection on phenotypic plasticity in response to temperature. Philos. Trans. R. Soc. B Biol. Sci. 374. https://doi.org/10.1098/rstb.2018.0185
Azevedo, I.C., Duarte, P.M., Bordalo, A.A., 2006. Pelagic metabolism of the Douro estuary (Portugal) - Factors controlling primary production. Estuar. Coast. Shelf Sci. 69, 133–146. https://doi.org/10.1016/j.ecss.2006.04.002
Bagnyukova, T. V., Lushchak, O. V., Storey, K.B., Lushchak, V.I., 2007. Oxidative stress and antioxidant defense responses by goldfish tissues to acute change of temperature from 3 to 23 ??C. J. Therm. Biol. 32, 227–234. https://doi.org/10.1016/j.jtherbio.2007.01.004
Bartolini, F., Barausse, A., Pörtner, H.O., Giomi, F., 2013. Climate change reduces offspring fitness in littoral spawners: A study integrating organismic response and long-term time-series. Glob. Chang. Biol. 19, 373–386. https://doi.org/10.1111/gcb.12050
Beliaeff, B., Burgeot, T., 2002. Integrated biomarker response: a useful tool for ecological risk assessment. Environ. Toxicol. Chem. 21, 1316–1322. https://doi.org/10.1897/1551-5028(2002)021<1316:ibraut>2.0.co;2
Bozinovic, F., Pörtner, H.O., 2015. Physiological ecology meets climate change. Ecol. Evol. 5, 1025–1030. https://doi.org/10.1002/ece3.1403
Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
Brett, J., 1971. Energetic Responses of Salmon to Temperature. A Study of Some Thermal Relations in the Physiology and Freshwater Ecology of Sockeye Salmon (Oncorhynchus nerka). Am. Zool. 1, 99–113.
Cabral, H.N., Vasconcelos, R., Vinagre, C., França, S., Fonseca, V., Maia, A., Reis- Santos, P., Lopes, M., Ruano, M., Campos, J., Freitas, V., Santos, P.T., Costa, M.J., 2007. Relative importance of estuarine flatfish nurseries along the Portuguese coast. J. Sea Res. 57, 209–217. https://doi.org/10.1016/j.seares.2006.08.007
Caddy, J., Agnew, D., 2003. A summary of global stock recovery plans for marine organisms, including indicative information on the time to recovery, and associated regime changes that may affect recruitment and recovery success. Ices C. 1–42.
Clark, T.D., Roche, D.G., Binning, S.A., Speers-Roesch, B., Sundin, J., 2017. Maximum thermal limits of coral reef damselfishes are size dependent and resilient to near-future ocean acidification. J. Exp. Biol. 220, 3519–3526. https://doi.org/10.1242/jeb.162529
Colin, N., Porte, C., Fernandes, D., Barata, C., Padrós, F., Carrassón, M., Monroy, M., Cano-Rocabayera, O., de Sostoa, A., Piña, B., Maceda-Veiga, A., 2016. Ecological relevance of biomarkers in monitoring studies of macro-invertebrates and fish in Mediterranean rivers. Sci. Total Environ. 540, 307–323. https://doi.org/10.1016/j.scitotenv.2015.06.099

737 Costa, M., 1990. Expected effects of temperature changes on estuarine fish

	souther the proof
738 739 740	populationse, in: Beukema, J., Wolff, W., Brouns, J. (Eds.), Expected Effects of Climatic Change on Marine Coastal Ecosystems. Kluwer Academic Publishers, Netherlands, pp. 99–103.
741 742	Coutinho, M., 2003. Comunidade fitoplanctónica do estuário do Sado: estrutura, dinâmica e aspectos ecológicos.
743 744	Dahlke, F., Wohlrab, S., Butzin, M., Pörtner, H., 2020. Thermal bottlenecks in the lifecycle define climate vulnerability of fish. Science (80). 369, 65–70.
745	Dahlke, F.T., Butzin, M., Nahrgang, J., Puvanendran, V., Mortensen, A., Pörtner, H.O.,
746	Storch, D., 2018. Northern cod species face spawning habitat losses if global
747	warming exceeds 1.5°C. Sci. Adv. 4, 1–11. https://doi.org/10.1126/sciadv.aas8821
748	Devin, S., Burgeot, T., Giambérini, L., Minguez, L., Pain-Devin, S., 2014. The
749	integrated biomarker response revisited: Optimization to avoid misuse. Environ.
750	Sci. Pollut. Res. 21, 2448–2454. https://doi.org/10.1007/s11356-013-2169-9
751	Dietz, T.J., Somero, G.N., 1993. Patterns and Tissue-specific Synthesis in for Heat-
752	Shock Proteins and HSP90 Fishes Several Teleost Marine. Physiol. Zool. 66, 863–
753	880. https://doi.org/0031-935X/93/6606-9322\$02.00
754 755 756	Ettinger-Epstein, P., Whalan, S., Battershill, C., De Nys, R., 2007. Temperature cues gametogenesis and larval release in a tropical sponge 153, 171–178. https://doi.org/10.1007/s00227-007-0793-y
757	Faria, A.A.M., Chicharo, M.A., Goncalves, E.J., Chícharo, M., Gonçalves, E., 2011.
758	Effects of starvation on swimming performance and body condition of pre-
759	settlement Sparus aurata larvae. Aquat. Biol. 12, 281–289.
760	https://doi.org/10.3354/ab00345
761	Feder, M.E., Hofmann, G.E., 1999. Heat-shock proteins, molecular chaperones, and the
762	stress response: Evolutionary and ecological physiology. Annu. Rev. Physiol. 61,
763	243–282. https://doi.org/10.1146/annurev.physiol.61.1.243
764	Fox, R.J., Donelson, J.M., Schunter, C., Ravasi, T., Gaitán-Espitia, J.D., 2019. Beyond
765	buying time: The role of plasticity in phenotypic adaptation to rapid environmental
766	change. Philos. Trans. R. Soc. B Biol. Sci. 374.
767	https://doi.org/10.1098/rstb.2018.0174
768	Freitas, V., Cardoso, J.F.M.F., Lika, K., Peck, M.A., Campos, J., Kooijman, S.A.L.M.,
769	Van Der Veer, H.W., 2010. Temperature tolerance and energetics: A dynamic
770	energy budget-based comparison of North Atlantic marine species. Philos. Trans.
771	R. Soc. B Biol. Sci. 365, 3553–3565. https://doi.org/10.1098/rstb.2010.0049
772	Garrido, S., Ben-Hamadou, R., Santos, A.M.P., Ferreira, S., Teodósio, M.A., Cotano,
773	U., Irigoien, X., Peck, M.A., Saiz, E., Ré, P., 2015. Born small, die young:
774	Intrinsic, size-selective mortality in marine larval fish. Sci. Rep. 5, 1–10.
775	https://doi.org/10.1038/srep17065
776 777 778 779	 Gattuso, JP., Magnan, A., Bille, R., Cheung, W.W.L., Howes, E.L., Joos, F., Allemand, D., Bopp, L., Cooley, S.R., Eakin, C.M., Hoegh-Guldberg, O., Kelly, R.P., Portner, HO., Rogers, a. D., Baxter, J.M., Laffoley, D., Osborn, D., Rankovic, A., Rochette, J., Sumaila, U.R., Treyer, S., Turley, C., 2015. Contrasting

	Journal Pre-proor
780 781 782	futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science (80). 349, aac4722-1-aac4722-10. https://doi.org/10.1126/science.aac4722
783 784 785 786 787	Gräns, A., Olsson, C., Pitsillides, K., Nelson, H.E., Cech Jr., J.J., Axelsson, M., 2010. Effects of feeding on thermoregulatory behaviours and gut blood flow in white sturgeon (Acipenser transmontanus) using biotelemetry in combination with standard techniques. J Exp Biol 213, 3198–3206. https://doi.org/10.1242/jeb.043570
788 789 790	Grant, P.R., Schmitt, J., Grant, B.R., Huey, R.B., Johnson, M.T.J., Knoll, A.H., 2017. Evolution caused by extreme events. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160146. https://doi.org/10.1098/rstb.2016.0146
791 792	Habig, W., Pabst, M., Jakoby, W., 1974. Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. J. Biol. Chem. 7130–7140.
793 794 795	Hansen, J., Ruedy, R., Sato, M., Lo, K., 2010. Global surface temperature change. Rev. Geophys. 48, RG4004. https://doi.org/10.1029/2010RG000345.1.INTRODUCTION
796 797 798	Heise, K., Puntarulo, S., Nikinmaa, M., Abele, D., Pörtner, HO., 2006. Oxidative stress during stressful heat exposure and recovery in the North Sea eelpout Zoarces viviparus L. J. Exp. Biol. 209, 353–363. https://doi.org/10.1242/jeb.01977
799 800 801	Hess, S., Wenger, A.S., Ainsworth, T.D., Rummer, J.L., 2015. Exposure of clownfish larvae to suspended sediment levels found on the Great Barrier Reef: Impacts on gill structure and microbiome. Sci. Rep. 5, 1–8. https://doi.org/10.1038/srep10561
802 803 804	Hofmann, G.E., Somero, G.N., 1995. Evidence for protein damage at environmental temperatures : Seasonal changes in levels of ubiquitin conjugates and hsp70 in the intertidal mussel Mytilus trossulus. J. Exp. Biol. 198, 1509–1518.
805 806 807	Hofmann, G.E., Todgham, A.E., 2010. Living in the now: physiological mechanisms to tolerate a rapidly changing Environment. Annu. Rev. Physiol. 72, 127–145. https://doi.org/10.1146/annurev-physiol-021909-135900
808 809	Houde, E.D., 1989. Comparative growth, mortality, and energetics of marine fish larvae: temperature and implied latitudinal effects. Fish. Bull. 87, 471–495.
810 811 812	Ihaka, R., Gentleman, R., 1996. R: A Language for Data Analysis and Graphics. J. Comput. Graph. Stat. 5, 299–314. https://doi.org/10.1080/10618600.1996.10474713
813 814 815	IPCC, 2013. Summary for Policymakers. Clim. Chang. 2013 Phys. Sci. Basis. Contrib. Work. Gr. I to Fifth Assess. Rep. Intergov. Panel Clim. Chang. 33. https://doi.org/10.1017/CBO9781107415324
816 817 818 819	IPCC, 2007. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R.K and Reisinger, A. (eds.)]. Geneva, Switzerland.
820	Johansson, L.H., Borg, L. a, 1988. A spectrophotometric method for determination of

	Journal Pre-proof
821 822	catalase activity in small tissue samples. Anal. Biochem. 174, 331–6. https://doi.org/10.1016/0003-2697(88)90554-4
823 824 825	Kingsolver, J.G., Arthur Woods, H., Buckley, L.B., Potter, K.A., MacLean, H.J., Higgins, J.K., 2011. Complex life cycles and the responses of insects to climate change. Integr. Comp. Biol. 51, 719–732. https://doi.org/10.1093/icb/icr015
826 827 828	 Kültz, D., 2005. Molecular and Evolutionary Basis of the Cellular Stress Response. Annu. Rev. Physiol. 67, 225–257. https://doi.org/10.1146/annurev.physiol.67.040403.103635
829 830 831 832	Leiva, F.P., Calosi, P., Verberk, W.C.E.P., 2019. Scaling of thermal tolerance with body mass and genome size in ectotherms: A comparison between water- And air-breathers. Philos. Trans. R. Soc. B Biol. Sci. 374. https://doi.org/10.1098/rstb.2019.0035
833 834 835	Levy, O., Buckley, L.B., Keitt, T.H., Smith, C.D., Boateng, K.O., Kumar, D.S., Angilletta, M.J., 2015. Resolving the life cycle alters expected impacts of climate change. Proc. R. Soc. B Biol. Sci. 282. https://doi.org/10.1098/rspb.2015.0837
836 837 838 839	Logan, C. a, Somero, G.N., 2011. Effects of thermal acclimation on transcriptional responses to acute heat stress in the eurythermal fish Gillichthys mirabilis (Cooper). Am. J. Physiol. Regul. Integr. Comp. Physiol. 300, R1373–R1383. https://doi.org/10.1152/ajpregu.00689.2010
840 841 842 843	 Lushchak, V.I., Bagnyukova, T. V., 2006. Temperature increase results in oxidative stress in goldfish tissues. 2. Antioxidant and associated enzymes. Comp. Biochem. Physiol C Toxicol. Pharmacol. 143, 36–41. https://doi.org/10.1016/j.cbpc.2005.11.018
844 845 846 847	Madeira, C., Madeira, D., Diniz, M.S., Cabral, H.N., Vinagre, C., 2016. Thermal acclimation in clownfish: An integrated biomarker response and multi-tissue experimental approach. Ecol. Indic. 71, 280–292. https://doi.org/10.1016/j.ecolind.2016.07.009
848 849 850 851	Madeira, D., Araújo, J.E., Vitorino, R., Capelo, J.L., Vinagre, C., Diniz, M.S., 2016. Ocean warming alters cellular metabolism and induces mortality in fish early life stages: A proteomic approach. Environ. Res. 148, 164–176. https://doi.org/10.1016/j.envres.2016.03.030
852 853 854 855	 Madeira, D., Araújo, J.E., Vitorino, R., Costa, P.M., Capelo, J.L., Vinagre, C., Diniz, M.S., 2017. Molecular plasticity under ocean warming: Proteomics and fitness data provides clues for a better understanding of the thermal tolerance in fish. Front. Physiol. 8. https://doi.org/10.3389/fphys.2017.00825
856 857 858	Madeira, D, Costa, P., Vinagre, C., Diniz, M., 2016. When warming hits harder: survival, cellular stress and thermal limits of Sparus aurata larvae under global change. Mar. Biol. 163. https://doi.org/10.1007/s00227-016-2856-4
859 860 861	Madeira, D, Fernandes, J., Jerónimo, D., Santos, A., Domingues, M., Calado, R., 2020. Whole-body proteome of the marine annelid Hediste diversicolor LC-MSMS [Data set].

862 Madeira, D., Madeira, C., Costa, P.M., Vinagre, C., Diniz, M.S., 2020. [Dataset] Effect

	Journal Pre-proof
863 864	of heatwaves on the fish Sparus aurata from the Iberian Peninsula: molecular data. Knowledge Network for Biocomplexity Repository.
865 866 867	Madeira, D, Narciso, L., Cabral, H., Vinagre, C., 2012. Thermal tolerance and potential impacts of climate change on coastal and estuarine organisms. J. Sea Res. 70, 32– 41. https://doi.org/10.1016/j.seares.2012.03.002
868 869 870	Madeira, D., Narciso, L., Cabral, H.N., Vinagre, C., Diniz, M.S., 2012. HSP70 production patterns in coastal and estuarine organisms facing increasing temperatures. J. Sea Res. 73, 137–147. https://doi.org/10.1016/j.seares.2012.07.003
871 872 873 874	Madeira, D., Vinagre, C., Costa, P.M., Diniz, M.S., 2014. Histopathological alterations, physiological limits, and molecular changes of juvenile Sparus aurata in response to thermal stress. Mar. Ecol. Prog. Ser. 505, 253–266. https://doi.org/10.3354/meps10794
875 876 877 878	Martins, C., Alves de Matos, A.P., Costa, M.H., Costa, P.M., 2015. Alterations in juvenile flatfish gill epithelia induced by sediment-bound toxicants: A comparative in situ and ex situ study. Mar. Environ. Res. 112, 122–130. https://doi.org/10.1016/j.marenvres.2015.10.007
879 880	McCullagh, P., Nelder, J.A., 1989. Generalized Linear Models., 2nd editio. ed. Chapman and Hall, London.
881 882 883 884	McLean, M., Mouillot, D., Lindegren, M., Villéger, S., Engelhard, G., Murgier, J., Auber, A., 2019. Fish communities diverge in species but converge in traits over three decades of warming. Glob. Chang. Biol. 25, 3972–3984. https://doi.org/10.1111/gcb.14785
885 886	Miranda, P., Pires, C., Ramalho, C., 2002. 20 th Century Portuguese Climate and Climate Scenarios 23–83.
887 888	Motani, R., Wainwright, P.C., 2015. How warm is too warm for the life cycle of actinopterygian fishes? Sci. Rep. 5, 11597. https://doi.org/10.1038/srep11597
889 890 891 892	Moyano, M., Candebat, C., Ruhbaum, Y., Álvarez-Fernández, S., Claireaux, G., Zambonino-Infante, J.L., Peck, M.A., 2017. Effects of warming rate, acclimation temperature and ontogeny on the critical thermal maximum of temperate marine fish larvae. PLoS One 12, 1–23. https://doi.org/10.1371/journal.pone.0179928
893 894 895	Nagelkerken, I., Connell, S.D., 2015. Global alteration of ocean ecosystem functioning due to increasing human CO 2 emissions. Proc. Natl. Acad. Sci. 2015, 201510856. https://doi.org/10.1073/pnas.1510856112
896 897 898	Narum, S.R., Campbell, N.R., 2015. Transcriptomic response to heat stress among ecologically divergent populations of redband trout. BMC Genomics 16, 103. https://doi.org/10.1186/s12864-015-1246-5
899 900 901	Njemini, R., Demanet, C., Mets, T., 2005. Comparison of two ELISAs for the determination of Hsp70 in serum. J. Immunol. Methods 306, 176–182. https://doi.org/10.1016/j.jim.2005.08.012
902 903	Ottersen, G., Hjermann, D.O., Stenseth, N.C., 2006. Changes in spawning stock structure strengthen the link between climate and recruitment in a heavily fished

	Journal Pre-proof
904	cod (Gadus morhua) stock. Fish. Oceanogr. 15, 230–243.
905	https://doi.org/10.1111/j.1365-2419.2006.00404.x
906	Park, JM., Han, KH., Kang, SW., Lee, JT., 2017. External Morphological
907	Development of Post-larvae and Juveniles of Red Seabream, Pagrus major. Dev.
908	Reprod. 21, 63–69. https://doi.org/10.12717/dr.2017.21.1.063
909	Paules, R., 2003. Phenotypic anchoring: linking cause and effect. Environ. Health
910	Perspect. 111, 338–339. https://doi.org/10.1289/ehp.111-a338
911 912 913 914 915 916 917	 Perez-Riverol, Y., Csordas, A., Bai, J., Bernal-Llinares, M., Hewapathirana, S., Kundu, D.J., Inuganti, A., Griss, J., Mayer, G., Eisenacher, M., Pérez, E., Uszkoreit, J., Pfeuffer, J., Sachsenberg, T., Yilmaz, Ş., Tiwary, S., Cox, J., Audain, E., Walzer, M., Jarnuczak, A.F., Ternent, T., Brazma, A., Vizcaíno, J.A., 2019. The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Res. 47, D442–D450. https://doi.org/10.1093/nar/gky1106
918	Petitgas, P., Rijnsdorp, A.D., Dickey-collas, M., Engelhard, G.H., Peck, M.A.,
919	Pinnegar, J.K., Drinkwater, K., Huret, M., Nash, R.D.M., 2013. Impacts of climate
920	change on the coplex life cycles of fish. Fish. Oceanogr. 22, 121–139.
921	https://doi.org/10.1111/fog.12010
922	Petitjean, Q., Jean, S., Gandar, A., Côte, J., Laffaille, P., Jacquin, L., 2019. Stress
923	responses in fish: From molecular to evolutionary processes. Sci. Total Environ.
924	684, 371–380. https://doi.org/10.1016/j.scitotenv.2019.05.357
925	Pittman, K., Yúfera, M., Pavlidis, M., Geffen, A.J., Koven, W., Ribeiro, L., Zambonino-
926	Infante, J.L., Tandler, A., 2013. Fantastically plastic: Fish larvae equipped for a
927	new world. Rev. Aquac. 5. https://doi.org/10.1111/raq.12034
928	Planque, B., Fredou, T., 1999. Temperature and the recruitment of Atlantic cod (Gadus
929	morhua). Can. J. Fish. Aquat. Sci. 56, 2069–2077. https://doi.org/10.1139/cjfas-56-
930	11-2069
931	Polo, A., Yúfera, M., Pascual, E., 1991. Effects of temperature on egg and larval
932	development of Sparus aurata L. Aquaculture 92, 367–375.
933	https://doi.org/10.1016/0044-8486(91)90042-6
934	Pörtner, H.O., 2012. Integrating climate-related stressor effects on marine organisms:
935	Unifying principles linking molecule to ecosystem-level changes. Mar. Ecol. Prog.
936	Ser. 470, 273–290. https://doi.org/10.3354/meps10123
937	Pörtner, H.O., Bock, C., Mark, F.C., 2017. Oxygen- & capacity-limited thermal
938	tolerance: Bridging ecology & physiology. J. Exp. Biol. 220, 2685–2696.
939	https://doi.org/10.1242/jeb.134585
940	Pörtner, H.O., Farrell, A., 2008. Physiology and climate change. Science (80). 322,
941	690–692. https://doi.org/10.1126/science.1163156
942	Pulgar, J., Bozinovic, F., Ojeda, F.P., 1999. Behavioral thermoregulation in the
943	intertidal fish Girella laevifrons (Kyphosidae): The effect of starvation. Mar.
944	Freshw. Behav. Physiol. 32, 27–38. https://doi.org/10.1080/10236249909379035

945 946 947 948	Radchuk, V., Turlure, C., Schtickzelle, N., 2013. Each life stage matters: The importance of assessing the response to climate change over the complete life cycle in butterflies. J. Anim. Ecol. 82, 275–285. https://doi.org/10.1111/j.1365-2656.2012.02029.x
949 950	Ricker, W.E., 1975. Computation and interpretation of biological statistics of fish populations. Bull. Fish. Res. Board Canada 401. https://doi.org/10.1038/108070b0
951 952	Rijnsdorp, A., Peck, M., Engelhard, G., Möllmann, C., Pinnegar, J., 2009. Resolving the effect of climate change on fish populations. ICES J. Mar. Sci. 66, 1570–1583.
953 954 955 956 957	 Rodgers, E.M., Poletto, J.B., Gomez Isaza, D.F., Van Eenennaam, J.P., Connon, R.E., Todgham, A.E., Seesholtz, A., Heublein, J.C., Cech, J.J., Kelly, J.T., Fangue, N.A., 2019. Integrating physiological data with the conservation and management of fishes: a meta-analytical review using the threatened green sturgeon (Acipenser medirostris). Conserv. Physiol. 7, 1–22. https://doi.org/10.1093/conphys/coz035
958 959	Sifa, L., Mathias, J.A., 1987. The critical period of high mortality of larvae fish – a discussion based on current research. Chinese J. Oceanol. Limnol. 5, 80–96.
960 961	Sims, D.W., Mouth, V.J.W., Genner, M.J., Southward, A.J., Hawkins, S.J., 2004. Low-temperature-driven early spawning migration of a temperate marine fish 333–341.
962 963 964 965 966 967	Smale, D.A., Wernberg, T., Oliver, E.C.J., Thomsen, M., Harvey, B.P., Straub, S.C., Burrows, M.T., Alexander, L. V., Benthuysen, J.A., Donat, M.G., Feng, M., Hobday, A.J., Holbrook, N.J., Perkins-Kirkpatrick, S.E., Scannell, H.A., Sen Gupta, A., Payne, B.L., Moore, P.J., 2019. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Chang. 9, 306– 312. https://doi.org/10.1038/s41558-019-0412-1
968 969 970	Sokolova, I.M., 2013. Energy-limited tolerance to stress as a conceptual framework to integrate the effects of multiple stressors. Integr. Comp. Biol. 53, 597–608. https://doi.org/10.1093/icb/ict028
971 972 973 974	Sokolova, I.M., Frederich, M., Bagwe, R., Lannig, G., Sukhotin, A.A., 2012. Energy homeostasis as an integrative tool for assessing limits of environmental stress tolerance in aquatic invertebrates. Mar. Environ. Res. 79, 1–15. https://doi.org/10.1016/j.marenvres.2012.04.003
975 976 977	Sørensen, J.G., Kristensen, T.N., Loeschcke, V., 2003. The evolutionary and ecological role of heat shock proteins. Ecol. Lett. 6, 1025–1037. https://doi.org/10.1046/j.1461-0248.2003.00528.x
978 979 980 981 982	Stein, B., Edelson, N., Beard, T., Boyce, D., Cohen, E., Cross, M., Glick, P., Griffis, R., Gross, J., Hall, K., Hoffman, C., Hoffman, J., Johnson, K., Johnson, Z., Jones, K., Julius, S., Koppman, M., Koslow, M., Rowland, E., Schlafmann, D., Staudt, A., Wagner, P., West, J., 2014. Climate-Smart Conservation: Putting Adaptation Principles into Practice. National Wildlife Federation, Washington, D.C.
983 984 985	Stillman, J.H., 2019. Heat waves, the new normal: Summertime temperature extremes will impact animals, ecosystems, and human communities. Physiology 34, 86–100. https://doi.org/10.1152/physiol.00040.2018

986 Sun, Y., Oberley, L.W., Li, Y., 1988. A simple method for clinical assay of superoxide

	Journal Pre-proof
987	dismutase. Clin. Chem. 34, 497–500.
988	Tang, CH., Leu, MY., Shao, K., Hwang, LY., Chang, WB., 2014. Short-term
989	effects of thermal stress on the responses of branchial protein quality control and
990	osmoregulation in a reef-associated fish, Chromis viridis. Zool. Stud. 53, 21.
991	https://doi.org/10.1186/s40555-014-0021-7
992	Thums, M., Meekan, M., Stevens, J., Wilson, S., Polovina, J., 2012. Evidence for
993	behavioural thermoregulation by the world's largest fish. J. R. Soc. Interface 2–6.
994	https://doi.org/10.1098/rsif.2012.0477
995	Truebano, M., Fenner, P., Tills, O., Rundle, S.D., Rezende, E.L., 2018. Thermal
996	strategies vary with life history stage. J. Exp. Biol. 221, jeb171629.
997	https://doi.org/10.1242/jeb.171629
998	Uchiyama, M., Mihara, M., 1978. Determination of malonaldehyde precursor in tissues
999	by thiobarbituric acid test. Anal. Biochem. 86, 271–278.
1000	https://doi.org/10.1016/0003-2697(78)90342-1
1001	Ullah, H., Nagelkerken, I., Goldenberg, S.U., Fordham, D.A., 2018. Climate change
1002	could drive marine food web collapse through altered trophic flows and
1003	cyanobacterial proliferation. PLoS Biol. 16, 1–21.
1004	https://doi.org/10.1371/journal.pbio.2003446
1005	Vinagre, C., Costa, M.J., Wood, S.A., Williams, R.J., Dunne, J.A., 2019. Potential
1006	impacts of climate change and humans on the trophic network organization of
1007	estuarine food webs. Mar. Ecol. Prog. Ser. 616, 13–24.
1008	https://doi.org/10.3354/meps12932
1009	Vinagre, C., Madeira, D., Mendonça, V., Dias, M., Roma, J., Diniz, M.S., 2014. Effect
1010	of increasing temperature in the differential activity of oxidative stress biomarkers
1011	in various tissues of the Rock goby, Gobius paganellus. Mar. Environ. Res. 97, 10–
1012	14. https://doi.org/10.1016/j.marenvres.2014.01.007
1013	Vinagre, C., Madeira, D., Narciso, L., Cabral, H.N., Diniz, M.S., 2012. Impact of
1014	climate change on coastal versus estuarine nursery areas: Cellular and whole-
1015	animal indicators in juvenile seabass Dicentrarchus labrax. Mar. Ecol. Prog. Ser.
1016	464, 237–243. https://doi.org/10.3354/meps09885
1017	Walther, G., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T.J.C., Fromentin,
1018	J., I, O.H., Bairlein, F., 2002. Ecological responses to recent global change. Nature
1019	416, 389–395. https://doi.org/10.1038/416389a
1020 1021 1022	Ward, A.J.W., Hensor, E.M.A., Webster, M.M., Hart, P.J.B., 2010. Behavioural thermoregulation in two freshwater fish species. J. Fish Biol. 76, 2287–2298. https://doi.org/10.1111/j.1095-8649.2010.02576.x
1023 1024 1025	Webster, N., Pantile, R., Botté, E., Abdo, D., Andreakis, N., Whalan, S., 2013. A complex life cycle in a warming planet: Gene expression in thermally stressed sponges. Mol. Ecol. 22, 1854–1868. https://doi.org/10.1111/mec.12213
1026	Xanthopoulos, P., Pardalos, P.M., Trafalis, T.B., 2013. Linear Discriminant Analysis.,
1027	in: Robust Data Mining. Springer Briefs in Optimization. Springer, New York,
1028	NY, pp. 27–38. https://doi.org/10.1007/978-1-4419-9878-1_4

- Yúfera, M., Conceição, L., Battaglene, S., Fushimi, H., Kotani, T., 2011. Early
 development and metabolism., in: Pavlidis, M., Mylonas, C. (Eds.), Sparidae.
 Biology and Aquaculture of Gilthead Sea Bream and Other Species. WileyBlackwell, Chichester, UK.
- 1033 Zeigler, S., 2013. Predicting responses to climate change requires all life-history stages.
- 1034 J. Anim. Ecol. 82, 3–5. https://doi.org/10.1111/1365-2656.12032
- 1035

Journal Prevention

Highlights

- 1. Life-cycle assessments are crucial to forecast global change impacts on biota
- 2. Heatwave effects were tested in seabreams across their life cycle
- 3. Sub-cellular, cellular and whole organism indicators were assessed
- 4. The vulnerability of life cycle stages can be ranked as larvae>adults >juveniles
- 5. Life-cycle closure may be in jeopardy due to the sensitivity of larvae to heat

rit

Conflict of Interest

The authors have no conflicts of interest to declare.

Journal Pre-proof