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Highlights

• Detail description and comparison of several parameter identification method-

ologies;

• Methodologies applied to elasticity and their extension to elasto-plasticity;

• Inclusion of implementation details and simple examples for sake of clarity:

• Gather in one paper the 4 most used and promising methodologies for

parameter identification for mechanical constitutive models;

• Comparison of the robustness of each method even with increasing levels

of noise;

• It is a paper indicated for researchers and starter engineers in the prob-

lematic of constitutive models calibration;
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Abstract

The calibration of phenomenological constitutive material models has been

a constant need, because the parameters differ for each material and the ability

of a model to mimic the real behaviour of a material is highly dependent on the

quality of these parameters. Classically, the parameters of constitutive models

are determined by standard tests under the assumption of homogeneous strain

and stress fields in the zone of interest. However, in the last decade, Digital

Image Correlation techniques and full-field measurements have enabled the de-

velopment of new parameter identification strategies, such as the Finite Element

Model Updating, the Constitutive Equation Gap Method, the Equilibrium Gap

Method and the Virtual Fields Method. Although these new strategies have

proven to be effective for linear and non-linear models, the implementation pro-

cedure for some of them is still a laborious task. The aim of this work is to

give a detailed insight into the implementation aspects and validation of these

methods. Detailed flowcharts of each strategy, focusing on the implementation

aspects, are presented and their advantages and disadvantages are discussed.

Moreover, these modern strategies are compared for the cases of homogeneous

isotropic linear elasticity and isotropic plasticity with isotropic hardening. A
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simple numerical example is used to validate and compare the different strate-

gies.

Parameter identification, Inverse problem, Full-field

measurements, Finite Element Method, Linear Elasticity, Elasto-plasticity

00-01, 99-00

1. Introduction

With the innovation surge currently happening in industry, reliable and

fast solutions for engineering problems are more important than ever. Nu-

merical simulation has been a valuable tool for their resolution and is now

well-established. However, it is essential for these tools to keep a continuous

improvement of their predictive capabilities. One of the areas for potential im-

provement is mechanical modelling of materials and the respective calibration

procedure. The quest for more accurate models has been particularly intense

regarding the elasto-plastic behaviour of sheet metals. Indeed, many advanced

and more complex mechanical models have been developed to accurately de-

scribe phenomena such as hardening and anisotropy. However, this increase in

complexity usually means a tedious process of parameter calibration, due to

long experimental campaigns. For example, the yield criterion Yld2000 [1] de-

pends on 8 material parameters, which requires three uniaxial yield stresses and

three uniaxial anisotropy coefficients, the biaxial yield stress and anisotropy

coefficient. Consequently, in industrial practice, simpler models are still pre-

ferred to avoid such experimental campaign and complex identification process

[2]. Therefore, there is a clear demand for new processes of calibration that can

simplify the experimental campaign without compromising the accuracy of the

models.

Nowadays, there are two main approaches to conduct the identification pro-

cess: a classical approach and a more recent one based on full-field measurements

[3, 4]. The classical approach relies on simple tests, that provide near homoge-

neous strain and stress states over the zone of interest. It is taken advantage
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of this homogeneity to retrieve the material parameters from simple analytical

solutions. This kind of approach has several drawbacks, : (i) the limited

exploitation of experimental tests, since homogeneous stress and strain state as-

sumption can no longer be used after the onset of necking; (ii) the large number

of tests required when complex constitutive models have to be calibrated; and

(iii) the stress and strain fields do not resemble the ones obtained in forming

operations.

The second approach is increasingly being used, mainly because of the rapid

development of full-field measurements techniques, such as digital image corre-

lation [5]. These techniques allow a more flexible design of mechanical tests and

take advantage of the heterogeneous displacement/strain fields [6]. Indeed, due

to the heterogeneity, each material point experiences a different stress and strain

history, hence the number of material parameters governing the field is generally

greater than those driving homogenous strain fields [7]. Therefore, this second

approach enables to reduce the number of experiments required to calibrate a

model. Furthermore, it enables to extend the exploitation limits of a test, since

the heterogeneous fields are no longer a problem. However, effective inverse

strategies to extract the material parameters from full-field measurements are

required.

Accordingly, the development of inverse strategies in computational mechan-

ics has evolved rapidly in recent years, leading to an interesting number of strate-

gies based on full-field measurements, e.g. [3, 4, 8, 9]. The most well-known

methods are the Finite Element Model Updating (FEMU) [10], the Constitu-

tive Equation Gap Method (CEGM) [11], the Equilibrium Gap Method (EGM)

[12, 13] and the Virtual Fields Method (VFM) [14]. These four strategies prove

to be effective in identifying parameters associated with linear and non-linear

models and, therefore, these will be the focus of this work. However, it should

also be mentioned that more strategies have emerged recently with promising

results, such as the Constitutive Compatibility Method (CCM) [15], the Dissi-

pation Gap Method [16], the Self-Optimizing Method (Self-OPTIM) [17] and

the Integrated Digital Image Correlation Method (Integrated-DIC) [18].

5
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To the best of the authors knowledge, studies on the implementation as-

pects of these strategies, as well as comparative studies, are rare, specially in

elasto-plasticity. Since the mentioned strategies rely on different principles, it is

interesting to evaluate their performance in the same conditions, as well as their

sensitivity to noise. Thus, the aim of this study is to introduce the four strate-

gies mentioned above, discuss the implementation details and finally, present a

comparative study for quasi-static loading conditions. For the sake of simplicity,

the scope of this study lies within the framework of infinitesimal small strains.

The extension to large strains can be tedious [19, 20], with the exception of

FEMU, and is out of the scope of this article.

The outline of this work is as follows. A brief description of the inverse

problem and the constitutive models used in this study is presented in section2

. The four inverse strategies selected, FEMU, CEGM, EGM and VFM, are

presented in section 3, as well as flowcharts for each one and a discussion of the

main advantages and drawbacks. Finally, in section 4, the performance of these

strategies is compared for two different constitutive models. This performance

study starts with a simple case of an isotropic linear elastic model that is after-

wards extended for an elasto-plastic model with isotropic non-linear hardening.

Moreover, the comparative studies are performed with and without noise.

2. Identification/Inverse Problem

Consider a continuum solid body whose reference configuration occupies the

domain Ω and is bounded by Ω (see Figure 1). It is assumed that the material

within the domain Ω is homogeneous. The boundary of this body is composed

of two sub-boundaries Γ and Γ , such that Ω = Γ ∪ Γ and Γ ∩ Γ = .∅

A surface external force is prescribed over Γ , possibly with a null value, and

a displacement field is prescribed over Γ . Neglecting the body forces and

assuming static equilibrium, a linear elastic behaviour and infinitesimally small

displacements, the mechanical state of the body is governed by three sets of

6
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equations: the equilibrium equations,

div = 0 in Ω

· n = f̄ on Γ
(1)

the kinematic compatibility equations,

= u x( ) + u x( ) in Ω

u = ū on Γ

(2)

and the constitutive equation,

= : C in Ω (3)

where denotes the Cauchy stress tensor, f̄ is the prescribed vector of external

forces over Γ , is the displacement vector field,u ū is the prescribed displace-

ment vector field over Γ , is the infinitesimal strain tensor and the unitn 

normal vector to Ω.

The stress and strain are related through Eq. 3, for which is the consti-C 

tutive material tensor. It is assumed to be function of a vector that gathers all

the unknown constitutive material parameters = { } ( is the number

7
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of material parameters). In case of isotropic linear elastic behaviour, ( ) rep-C

resents the Hooke’s elasticity tensor and contains two parameters: Poisson’s

ratio and Young’s modulus , = , respectively.{ }

For the direct problem of continuum mechanics, the initial shape of the solid

body, the material parameters and the set of boundary conditions, f̄ and ū, are

assumed to be known. Accordingly, the unknowns are the fields ( ), whichu

must satisfy the three previous sets of equations (Eqs. 1, 2 and 3). For the

inverse problem of parameter identification using full-field measurements, the

aim is to retrieve the material parameters given a discrete observation of the

displacement field û and information concerning the boundary conditions, f̄ and

ū. The measured displacement field û can be obtained, for instance, through a

non-contact measurement technique, such as DIC, and the strain field required

to calculate the stress field can be calculated using Eq. 2. The idea behind

the inverse problem is to explore an implicit relationship between the measured

displacement field and the parameters of the constitutive model.

Typically, full-field measurements are performed on the surface of the body

and this limits the identification through the volume. Therefore, the inverse

problem in linear and non-linear cases is usually seen as a in-plane problem,

for which the plane stress assumption can be adopted. This assumption im-

plies that the body with domain Ω is a thin flat body, with volume and a

constant thickness that is assumed much smaller than the other dimensions.

Furthermore, the body only undergoes in-plane loading.

For the case of non-linear elasto-plastic behaviour, the linear relation be-

tween stress and strain is no longer valid, and the constitutive equations are

obtained within the classical incremental theory of plasticity. In the following,

these equations are briefly recalled.

Consider the additive decomposition of the total strain tensor increment ,

in terms of elastic and plastic components, which can be written as

= + (4)

Moreover, consider an hypoelastic relationship to describe the stress-strain re-

8
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lation, as follows

= : (C − ) (5)

where is the stress increment. The plastic strain increment can be

defined by means of three key concepts: a yield criterion, a hardening law and

a plastic flow rule. The von Mises yield criterion is adopted here, thus the yield

condition can be expressed as

( ¯ ) = ¯( ) − (¯ ) = 0 (6)

where (¯ ) is the yield stress as a function of the equivalent plastic strain ¯

and ¯( ) is the equivalent von Mises stress, which under plane stress conditions

assumes the following form

¯( ) =
3

2
( ) : ( ) = + − + 3 (7)

where ( ) is the deviatoric stress tensor and , and are the compo-

nents of the stress tensor. The evolution of the yield stress is governed by the

Swift’s isotropic hardening law, with the following form

(¯ ) = ( + ¯ ) (8)

which depends on three material parameters, , and .

The classical associated flow rule is adopted, which can be introduced as

= (9)

it defines the plastic strain increment. The direction of the plastic flow is defined

by the term and the magnitude is given by the plastic multiplier .

Based on this, Eq. 5, which gives the stress increment, can be updated to

= :C − (10)

For the von Mises yield criterion, the plastic multiplier is equivalent to the

increment in the equivalent plastic strain ¯ [21], which is defined as

¯ =
2

3
: (11)

9
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The plastic multiplier is explicitly determined using the consistency condition,

which imposes that the current stress state remains on the yield surface after

yielding and can be written as

= : +
¯

: ¯ = 0 (12)

By replacing the stress increment (Eq. 10) in the consistency condition (Eq. 12)

and after some algebra manipulation, the plastic increment can be explicitly

obtained:

=
: : C 

: :C − :
(13)

Finally, Eq. 10 for the stress increment can be updated and gives

= C −
: C   ⊗C :

: :C − :
: (14)

or

= C : (15)

where C is the so-called elasto-plastic tangent stiffness matrix. This matrix is

a function of the unknown material parameters, so it can be defined as function

of the material parameters C ( ). For this elasto-plastic model, the material

parameters vector gathers five parameters = { }.

In this case, the inverse problem must take into account the history depen-

dent behaviour of plasticity. Therefore, deformation history during the exper-

iment must be acquired, which means measurements of displacement field for

different time instants û x( ) (for which ∈ [0 ]) must be performed and used

to solve the inverse problem. Thus, the total strain is discretized along the time,

as well as the boundary conditions.

3. Inverse Strategies based on full-field measurements

Among all inverse strategies available for identifying material parameters,

Finite Element Model Updating (FEMU) is the most used. Since the introduc-

tion of this strategy by Kavanag and Clough [10], a significant number of studies

10
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have been published. It was used with a wide range of models, e.g. elasticity

[22, 23], plasticity with emphasis on sheet metal forming [3, 24, 25, 26] and

viscoplasticity [27, 28].

The idea behind this strategy is to infer the unknown material parameters

after comparing numerical predictions with experimental measurements. There-

fore, it requires a finite element (FE) model of the mechanical test, to generate

numerical predictions of the response of the material. Based on the compari-

son between experimental and numerical data and by means of an optimization

method, the material parameters are adjusted iteratively until the numerical

results match the experimental ones as closely as possible.

The data used with this strategy can be of different kinds: displacements,

strains, force, temperatures, etc. FEMU is easily adapted to the available ex-

perimental data. In fact, it is not mandatory to use full-field measurements

with FEMU, partial measurements of the complete field can also be used. The

choice of the data has been a widely discussed subject on this strategy and the

literature reveals a lack of consensus [3]. Another widely discussed point is how

the experimental data are compared with the numerical data. This comparison

is usually performed using an objective function that evaluates the gap between

experimental and numerical results. However, this objective function can as-

sume different formulations [29, 30]. An example of an objective function based

on the measured strains on the surface of the sample can be defined as

F ( ) = (ˆ − ( )) + (ˆ − ( )) + (ˆ − ( ))

(16)

This objective function is formulated based on the sum of the squares of the gap

between experimental (ˆ ˆ ˆ ) and numerical ( ) data, consid-

ering the different components of the in-plane strain tensor. The experimental

data (full strain field) are usually made of a discrete number of values repre-

senting the measurement points on the surface of the sample for different time

instants ( (̂ )). The variables x and , in Eq. 16, represent the number

of measurement points on the surface of the sample and the number of time

11
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instants for which measurements are performed, respectively.

It is a common practice to use weighting coefficients in the formulation of

the objective function (e.g. [31]), but their selection is not intuitive and usually

depends on the user [30]. Therefore, the use of weights will be avoided in this

work.

Another important remark regarding the evaluation of the objective function

is that the numerical data must be calculated at the exact same locations as

the experimental points. Otherwise, the numerical data must be interpolated

to match these locations.

A detailed flowchart for FEMU strategy is presented in Figure 2. In the

flowchart, B.C. stands for boundary conditions. It starts with an initial set of

material parameters ( ) arbitrarily chosen used to run the first FE analysis.

The evaluation of the objective function is then performed. If the value of the

objective function is above a threshold value, the iterative process starts and the

12
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optimization method generates a new (or updated) set of material parameters

( ). The process is repeated until the value of the objective function reaches a

value below the threshold or until the set of parameters stagnates. The threshold

value is defined by the user and represents the admissible global gap between

numerical and experimental results.

Within the iterative cycle of FEMU, the update of the material parameters

is performed by searching for a minimum in the objective function. Coupling an

optimization method with the objective function is the usual way to do it. The

type of optimization methods used in this kind of problem lies within two main

families: (i) the gradient-based methods (e.g. the Gauss-Newton method or the

Levenberg-Marquardt method) and (ii) the direct methods (e.g. evolutionary

and simplex) [3, 30, 32]. The first family of methods is the most used. It

requires the value of the objective function and its gradient to take a decision,

whereas the direct methods only use the value of the objective function. The use

of gradient-based methods is related to its computational efficiency, since they

usually require less evaluations of the objective function. However, this type of

methods has a major disadvantage. They do not guarantee the location of the

global minimum and depend on the initial set of material parameters chosen to

initiate the identification procedure [25]. Other methods that will be described

also require the coupling with optimization methods, so whenever invoked in

the context of other methods the reader can review this section.

As mentioned before, FEMU is not limited to full-field measurements, which

gives an even wider range of applications. Another important feature of FEMU

is that it can be adapted to complex specimen shapes and loads. For instance,

a curved sample cut from a coil steel [33]. These advantages and the ease of the

implementation make FEMU very atractive. However, the major drawback that

has been pointed out over the years and that motivated researchers to develop

other strategies is the excessive computational cost (e.g. [34]), consequence of

the FE analysis at each evaluation of the objective function. In addition, the

analysis requires a FE model that represents the experimental test as close as

possible to reality, which can be difficult to attain depending on the geometry

13
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and load conditions. However, it is strictly necessary to avoid undesired errors.

Moreover, the results can also be mesh sensitive, which is an aspect inherent to

every method that makes use of FE analysis.

The Constitutive Equation Gap Method (CEGM) (also called as, Error in

the Constitutive Equation) was first proposed by Ladevèze and Leguillon [11],

as an error estimation procedure for FE analysis. It was applied in a variety of

fields [35, 36], before being adapted to identify material parameters of an elastic

isotropic model based on full-field measurements [37], with significant efforts

for heterogeneous materials [38, 39]. More recently, Guchhait and Banerjee [40]

extended it for anisotropic elasticity. Moreover, it has also been used in the field

of plasticity [41] and damage [42].

CEGM objective function is based on the evaluation of the error between a

statically admissible stress field, denoted , and a stress field calculated from a

measured displacement/strain field ˆ = ( û) and a chosen constitutive model.

This error is quantified by means of an energy norm. In the case of linear

elasticity, it leads to the following objective function

F ( ) =
1

2
[ ( ) :− C ]̂ : C ( ) : [ ( ) :− C ]̂ dΩ (17)

If the statically admissible stress field describes correctly the stress state of the

body and the material parameters fit the description of the material behaviour,

the objective function value should be close to zero.

The flowchart for the CEGM is presented in Figure 3. The first step is to

define an initial set of material parameters ( ), followed by the determination

of a statically admissible stress field with this initial set of material parameters.

Then, the objective function is evaluated. If its value is above a threshold the

optimization method generates a new set of material parameters ( ). This

process is repeated until the value of the objective function reaches a value

below the threshold or until the process stagnation. After that, the statically

admissible stress field is updated. It is updated in accordance to a user defined

14
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criterion and using the new set of material parameters. The whole process is

repeated again for the new statically admissible stress field. The convergence

criterion for the statically admissible stress field can be checked by comparing

the stress in the current and the last iteration [41].

The statically admissible stress field is a key requisite of this strategy.

This stress field must verify the force boundary conditions of the experimental

test, as well as the equilibrium equation (Eq. 1). It can be determined, for

specific geometries and boundary conditions, by an analytic solution or, in a

more general way, through a FE model [42]. Special techniques have also been

15
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developed to determine it when heterogenous materials are analyzed [38, 39]. In

the present work, a FE model is adopted and the determination of the statically

admissible stress field is performed before the minimization of the objective

function (Figure 3) . Note that, in case of homogeneous materials the admissible

stress field is uniquely determined by the force boundary conditions, , it is

independent of the material parameters. Therefore, it is not required to update

it along the process.

Regarding the implementation of the CEGM, Eq. 17 can be converted in

a more practical form which benefits from the discrete nature of experimental

measurements acquired, for example, by DIC. In fact, displacements or strain

fields are measured in a discrete number of points, which are usually associated

to a mesh that results from a non-overlapping decomposition of the surface of

the domain Ω. Therefore, each measurement point is representative of a small

area or small element in this mesh. Moreover, measurements are acquired for

a finite number of time instants during the experimental test. Considering this

discrete nature of experimental measurements, the objective function (Eq. 17)

can be rewritten as follows

F ( ) =
1

2
[ − C( ) : ˆ ] : C ( ) : [ − C( ) : ˆ ]

(18)

where is the representative area of each measurement point. Eq. 17 is inte-

grated over the volume, but as plane stress conditions are assumed, the stress

distribution is considered constant through the thickness of the body. Note

that the same mesh can be used to determine the statically admissible stress

field, thus preventing an additional step for interpolation.

Until now CEGM has been described with focus on linear elasticity. Con-

cerning the identification of material parameters for non-linear models, the de-

termination or reconstruction of the stress field from the measured displace-

ment/strain field is more challenging than in linear elasticity, due to the history

dependent behaviour. In this case, a stress update algorithm to reconstruct

16
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the actual stress field is required. It is a common point with other identifica-

tion strategies and FE codes, thus, different algorithms have been proposed,

e.g. [9, 20, 43]. Here, considering the assumptions of section 2 for plane stress

elasto-plasticity, it will be adopted an implicit backward-Euler algorithm pre-

sented in [44]. This step is included on the evaluation of the objective function,

hence the flowchart presented in Figure 3 is also valid for the non-linear case.

However, the objective function (Eq. 17) assumes a different form, as follows

F ( ) =
1

2
[ (− )̂] : C : [ (− )̂] dΩ (19)

The stress field ( )̂ is now calculated by the stress update algorithm,

taking into account the history dependent behaviour of plasticity. This formu-

lation differs from the ones presented in [41], because it uses the inverse of the

elastic stiffness matrix instead of the elasto-plastic tangent/secant stiffness ma-

trices. This kind of formulation can be used when elastic material parameters

are known .

Regarding the advantages of CEGM, it can be applied to any constitutive

model, although proper algorithms must be implemented to reconstruct the

stress field from the measured data. Moreover, as FEMU, it is not restricted to

full-field measurements [32]. The major drawback of CEGM is the calculation of

a statically admissible stress field. It can be a laborious task, particularly when

a heterogeneous distribution of the material properties is considered. When a

FE model is used to generate this stress field, CEGM is affected by the same

drawbacks related to the construction of a FE model. Compared with FEMU, it

requires a lower number of simulations. Consequently, in terms of computational

cost, CEGM is more efficient than FEMU. However, the implementation of the

algorithm (Figure 3) is not so intuitive as the one of FEMU (Figure 2) .

The Equilibrium Gap Method (EGM) was first proposed by Claire et al.

[12, 13] with the aim of identifying isotropic damage fields in heterogeneous
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materials resorting only to full-field measurements (the force boundary condi-

tions were not taken into account). In this first attempt, the degradation of

the elastic stiffness depended on a damage sacalar variable [12, 13]. Roux and

Hild extended this method to more complex damage laws [45]. Later, Péríe et

al. [46] have proposed the extension of EGM to anisotropic damage. Moreover,

Florentin and Lublineau [38] have used EGM as a reference to compare with

CEGM in the identification of isotropic elastic parameters in heterogeneous ma-

terials. Although it has not yet been extended to elasto-plasticity, it could be

performed by means of a method that captures the history dependent behaviour

of non-linear models [45].

The implementation of the EGM can be performed following two different

frameworks: finite-difference or finite element based formulations [47]. In this

work, it is adopted a finite-difference version inspired from [38],which is adapted

to homogeneous isotropic material behaviour.

To better describe the EGM, consider that the surface of a specimen is

discretized in small subdomains that represent a measurement grid, as shown in

Figure 4. It is assumed that the experimental strain field (ˆ = ( û)) is provided

at the nodes of each subdomain (circles in Figure 4). The EGM consists on

the minimization of the gap in local equilibrium on the boundaries of each

18
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subdomain. The local equilibrium is expressed by assessing the continuity of

the stress vector at the interfaces. For instance, considering the two subdomains

Ω and Ω represented in Figure 4, the local equilibrium for the boundary Γ

can be expressed as

· n + · n = (20)0

where n and n are the unit normal vectors to the boundaries of Ω and

Ω , respectively. is the zero vector. For the elasticity case, 0 and are

calculated with Eq. 3 and the given measured strain field. Note that Eq. 20

results in two equations for each interface, one for each direction and .

A key point is that the strain measurements must be interpolated for the

locations where the equilibrium is prescribed, the interfaces of the subdo-

mains. In Figure 4, the interface of each subdomain is marked with triangular

and quadrangular marks. The interpolation can be performed using finite ele-

ment shape functions [38].

In case of a boundary where a force boundary condition is prescribed, thef 

equilibrium is prescribed as

· n f = (21)

This condition can be difficult to impose since the distribution of the force needs

to be known. However, there are other ways to verify the local equilibrium that,

for example, make use of a weak form of Eq. 21. The weak form allows to use

the resultant of the force , but the left-hand side of Eq. 21 must be integratedf

over the boundary Γ [47].

In case of a free boundary, the force boundary condition is equal to zero

( = ). For the boundaries with prescribed displacements (the imposed force isf 0

unknown), the stress vector continuity cannot be evaluated, hence these bound-

aries are not taken into account. Finally, the objective function can be written
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in a least-square based formulation, as follows

F ( ) = · n + · n · · n + · n (22)

+ ( )· − n f · · − ( n f )

where and are the number of interface/interior nodes within the domain

Ω and at the boundary Γ, respectively.

Figure 5 shows a flowchart for this strategy. The algorithm starts with an

initial set of material parameters ( ) that can be arbitrarily chosen. Follows the

interpolation of the strain field to the interface boundaries of each subdomain,

which can be performed using finite element shape functions. Then, the equi-

librium equations are written for each boundary and the objective function is
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evaluated. In case of reaching a minimum value of the objective function or the

process stagnation, the algorithm is interrupted and the set of material parame-

ters ( ) is determined. Otherwise, a new iteration is initiated and, by means of

an optimization method, a new set of material parameters ( ) is determined.

Unlike the other methods, the EGM will not be extended to non-linear mod-

els. However, as mentioned before, the key point behind this process is to adopt

a method that captures the history dependent behaviour of non-linear models,

such as the stress update algorithm adopted for CEGM.

The EGM has a major advantage compared with FEMU and CEGM, it does

not require the costly computations of a FE model. Consequently, it is less time

consuming. Nevertheless, the implementation of this method is more laborious

than in FEMU strategy. It also requires the availability of a strain field within

the whole solid body (full-field measurements). Therefore, it is not so flexible

as the FEMU and CEGM. In addition, the applied force distribution must be

known, as for FEMU and CEGM, which can be difficult to obtain, unless the

weak form of Eq. 21 is used.

The Virtual Fields Method (VFM) has received significant attention from

the scientific community in the recent years. It was first introduced by Grédiac

[14] and since then its effectiveness has been proved in a large range of appli-

cations. The complete theory of VFM and its applications can be found in

[48]. The most recent applications, organized by constitutive behaviours, are:

anisotropic thermo-elasticity [49], hyperelasticity [50], plasticity (anisotropic

hardening, non-linear kinematic hardening and damage) [34, 51, 52], viscoplas-

ticity [53] and temperature dependent viscoplasticity using isothermal tests [54].

The key elements behind VFM are the Principle of Virtual Work and a suit-

able choice of virtual fields. For the solid body shown in Figure 1, in the absence

of body-forces and assuming infinitesimal small displacements, the Principle of

Virtual Work expresses that the internal virtual work must equal the external
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virtual work performed by the external forces and can be written as follows

( )̂ : = f̄ u · (23)

where is a virtual strain field and u is a virtual displacement field. and

are the infinitesimal volume and area for the current domain of the solid

body, respectively. The principle of virtual work is independent of any constitu-

tive model, which, theoretically, allows to apply VFM to all types of constitutive

models. Furthermore, the force distribution (f̄) is not required. Instead, the

resultant of the applied force can be used with a suitable choice of virtual fields.

Thus, the only unknown of the problem is the Cauchy stress tensor ( )̂,

which depends on the set of material parameters. Considering elasticity case,

the Cauchy stress tensor is computed using Eq. 3 and the measured displace-

ment/strain field (ˆ = ( û)). For this case, the material parameters can be

evaluated directly from a system of equations. The system of equations has the

same number of equations as number of unknown material parameters of the

model.

For simplicity’s sake, a different notation for the Eq. 3 is considered here

[48, 55]. Thus can be written in the matrix notation as

=

0

0

0 0 

ˆ

ˆ

ˆ

(24)

Replacing Eq. 24 in the principle of virtual work (Eq. 23) and after some alge-

braic manipulation, it can be written

ˆ + ˆ + ˆ (25)

+ ˆ + ˆ = ¯ · + ¯ · 

where the variables , , , , have been moved out of the inte-

grals, since these are assumed as constants. In case of isotropic linear elasticity,
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the following relation exists between the terms: = , = and

= ( − ) 2. Accordingly, the Poisson’s ratio and the Young’s mod-

ulus can be expressed as = and = (1 − ).

In order to retrieve the two unknown material parameters ( = ), it{ }

is required two independent virtual fields. The number of virtual fields must

be equal to the number of unknown material parameters and Eq. 25 must be

written for each selected virtual field. The calculation of integrals in Eq. 25

can be approximated by discrete sums, as performed for the CEGM (section

3.2). The result is a linear system of two equations with two unknowns, 

and , respectively. Provided that the measured strain field is heterogeneous

and the chosen virtual fields are independent, the system of equations is linearly

independent and can be written as

Aq P= (26)

where is a square matrix composed by the strain terms, is a vector of theA q 

unknown material coefficients { } and is the vector of virtual externalP 

work of the applied forces. This linear system of equations is solved with a low

computational cost.

For the case of a non-linear model, it is no longer possible to derive the

linear system of equations and the identification process turns into an iterative

procedure, which relies on the minimization of an objective function [48, 56].

This objective function expresses the gap between the internal and the external

virtual works and can be defined in a least square based formulation as

F ( ) = ( )̂ : − f̄ u· (27)

The calculation of the stress field is performed through a stress update algo-

rithm, as the one adopted for CEGM [44].

A detailed flowchart for VFM is presented in Figure 6. Two different paths

are represented. The first one (black lines) includes the main steps for the identi-

fication of material parameters of linear models. As mentioned above, for linear
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constitutive models the material parameters are retrieved after solving a system

of linear equations (Eq. 26). The second path (red lines) corresponds to non-

linear constitutive models. In this case, the material parameters are retrieved

after the cost function value reached a minimum or the process stagnation. The

search for the minimum value is performed by means of an optimization method.

The choice of the virtual fields is part of the VFM identification process. An

infinite number of virtual fields can be used, but a proper choice facilitates the

identification process and can improve the quality of the final set of parameters.

The suitable choice of the virtual fields has been pointed out as the major weak-

ness of VFM, specially in non-linear cases [3, 25]. It should be emphasized that,

the virtual displacement and strain fields are just mathematical test functions

and can be seen as weights [48, 57]. Moreover, they can be defined indepen-

dently of the measured displacement/strain strain field [48]. However, due to a

matter of convenience, the virtual fields are usually defined in accordance with
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two conditions. First, the displacement boundary conditions must be satisfied,

, at the boundary Γ the virtual displacement field must be zero (u = )0

[32, 48]. The second condition is related to the use of the resultant of the applied

force, instead of its distribution. Therefore, the virtual displacement fields must

be chosen in order to be constant along the boundary Γ and, to eliminate the

components of the resultant force that are unknown, u must be collinear with

f̄ [48, 52]. Moreover, it is required that the virtual fields assure a continuity.

Regarding the use of the applied force in VFM, in special cases such as dynamic

testing, obtaining accurate measurements of the applied force can be difficult.

A different formulation of Eq. 23, which includes the virtual work of the inertial

forces, can then be used and the external virtual work term can be cancelled

out using suitable virtual fields [48, 58, 59]. This approach has been exclusively

applied to the identification of dynamic mechanical characteristics, thus it will

not be addressed in this work.

A great effort has been made to suppress the major weakness of VFM and

currently there are three strategies available for the choice of the virtual fields,

which are:

i. : This procedure is the most used in non-

linear cases [34, 51, 57]. Usually, polynomials or sine/cosine functions

are used [48]. This strategy is the easiest to implement, but it is user-

dependent. Therefore, the search for a function that meet the conditions

mentioned above depends on the expertise of the user. Moreover, there is

no guarantee that the chosen virtual fields produce the best results.

ii. : This second procedure has been a great step

to overcome the previous drawbacks. It was first proposed by Avril et al.

[60] for anisotropic elasticity and then extended to elasto-plasticity [56].

In this case, the calculation of the virtual fields requires the derivation

of the tangent stiffness-matrix (in elasto-plasticity, the tangent elasto-

plastic stiffness matrix (Eq. 14)). This strategy relies on a statistical

approach to quantify the uncertainty of the identified parameters due to
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noise on the measurements. Based on this, an automatic procedure to

derive virtual fields that minimizes the effect of noise is designed. However,

the implementation is a cumbersome task due to the calculation of the

tangent elasto-plastic stiffness matrix.

iii. : Recently proposed by Marek et al. [57],

this strategy offers an easier implementation procedure. In this case, the

virtual fields are determined according to a sensitivity stress map, ,

the virtual fields are determined to give more weight to the locations of

the specimen where more information about a parameter is encoded [57].

Thus, the sensitivity of the stress field to each parameter must be tested

to define a virtual field for each unknown material parameter.

The major advantage of VFM is that it does not need FE analysis. There-

fore, when compared with strategies such as FEMU and CEGM, a superior

computational effiency is expected. Indeed, Zhang et al. [50] reported a signif-

icant drop on the time required to retrieve the material parameters. In their

case, the VFM was 125 faster than the FEMU. Another important advantage

of VFM is that it does not require the exact distribution of the applied force

on the boundary Γ . With a proper choice of virtual fields, it only requires the

force resultant in one direction, which is usually measured during experiments.

Like EGM, the main disadvantage of VFM is that it requires full-field ex-

perimental data over the entire domain, which is not as flexible as FEMU and

CEGM. Moreover, in non-linear cases, like CEGM, VFM requires a tool for the

calculation of the stress field from the measured strain field, often based on

return-mapping algorithm.

4. Comparison of the different inverse strategies

The aim of this section is to compare the inverse strategies described in

section 3. Robustness in the presence of noisy data and computational efficiency

are the two main aspects to be evaluated. Full-field measurements are generated
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with the aid of the FE method and a single numerical test with a heterogeneous

strain field is used.

This section is presented in two parts. In the first part, the different strate-

gies are evaluated in isotropic linear elasticity, for which Young’s modulus and

Poisson’s ratio ( = ) are the unknown material parameters. In the sec-{ }

ond part, the different strategies are evaluated in isotropic elasto-plasticity for

the model presented in section 2, and the set of parameters = { } is

identified. For this last part, the elastic parameters are considered to be known

.

The analysis was carried out with a standard computer, with an Intel(R)

Core(TM) i7-4770 (3.40GHz) processor and 8.00 GB of RAM memory. The

computational time presented for each strategy is the or 

, which means the total time of a task including input/output activities.

In order to easily and clearly compare the different strategies, a numerical

test is designed to be simple, but also to generate a heterogeneous strain field.

It consists of a solid with dimensions 3 3 mm× in-plane and thickness of = 0 1

mm. The solid is discretized with 4-node bilinear elements, ma in  a t tal of 9k g o

pla stress e ments an  1  nodes. Figure 7 (a) presents the initial geometryne- le d 6

and the boundary conditions, as well as the finite element mesh. and are

the local coordinates along the horizontal and vertical axes, according to the

reference system. The boundaries = 0 and = 0 are fixed and the force

boundary condition is applied on the boundary = 3 mm. The force boundary

condition has a non-uniform distribution along the coordinate and a single−

component in the direction. The distribution of this load changes linearly−

with , as: ( ) = + . The variables and control the distribution.

Although tension is the main stress state corresponding to this load, the other

components of the stress tensor are also active. Regarding the identification

process, the force distribution is assumed to be known. This is useful to build

up the FE model for FEMU and CEGM, and also for the EGM, since to estab-
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lish the local equilibrium at the boundary Γ , Eq. 21 must be determined. In

contrast, VFM does not require the force distribution, which is an important

aspect to alleviate constraints in the design of a mechanical test.

In this part, the reference material assumed for the model of Figure 7 (a)

is considered homogeneous and isotropic linear elastic. The reference material

parameters, Poisson’s ratio and Young’s modulus, are = 0 3 and = 210 00

GPa, respectively. The distribution of the force boundary condition is defined

by = 10 Nmm and = 50 N. The numerical results are generated using
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an in-house FE code dedicated to linear elastic problems. The distribution of

the components of the infinitesimal strain tensor are shown in Figure 7 (b), (c)

and (d). It can be seen that the test is heterogeneous, which results from the

non-uniform distribution of the applied force. T  strai  te sor, used i  t  di -he n n n he f

f ent strat gies  is d rived from the di plac ment fiel  u in  the deri tives ofer e , e s e d s g va

th  FE shap  fun tions  I  is ca c late  a  the i t gr tio  point  an  ou put ate e c . t l u d t n e a n s d t

th  nodes  This leads t  an i fo m tio  at 16 points  i stead of  i  t  ce troide . o n r a n , n 9 f he n

o  the e ments was used.f le

To perform the identification using FEMU, CEGM and EGM, an initial

set of material parameters is required, so the following set was defined: =

{ } { }= 0 2 100 00 GPa . Regarding the determination of a statically admis-

sible stress field for CEGM, the same initial set of material parameters is used.

This stress field is not updated during the process, since the material proper-

ties are homogeneous over the body. A gradient-based optimization algorithm,

called Generalized Reduced Gradient (GRG) [61], is chosen. The threshold value

for the cost function and for the variation of each parameter between iteration

is set to 1 10× .

In contrast to the former strategies, VFM does not require an optimization

method, but requires a suitable choice of virtual fields. Following the manual

approach (see section 3.4), two different virtual fields are chosen, which can be

written as

u =
= 

= 0

⇒ =

= 1

= 0

= 0

(28)

u =
= 0

= 

⇒ =

= 0

= 1

= 0

(29)

The selected virtual fields have the simplest possible form. Both virtual fields

satisfy the displacement boundary conditions and the first one reduces the use
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of the applied force to its resultant along the direction. It is also noteworthy−

that, with the selected virtual fields, the same weight is given to each measure-

ment point ( = 1 and = 1).

[GPa] Iterations Normalized wall-time

Reference parameters 210.00 0.3000

FEMU 210.00 0.3000 10 1.000

CEGM 210.00 0.2993 12 0.444

EGM 210.97 0.2874 9 0.167

VFM 210.00 0.3000 (-) (-)

The results of the identification process for each strategy are presented in

Table 1. FEMU, CEGM and VFM accurately retrieve the material parameters.

EGM leads to good results for Young’s modulus, but the deviation for Poisson’s

ratio is around 4 % . This small error can be attributed to the interpolation

process. According to the presented results, it is possible to conclude that the

four strategies were implemented correctly.

The number of iterations for each method is also evaluated and is presented

in Table 1. CEGM requires a larger number of iterations than the other strate-

gies. However, when compared with FEMU, CEGM requires a single FE sim-

ulation to determine the admissible stress field, whereas FEMU needs a FE

simulation at each evaluation of the cost function. This is reflected in the

normalized wall-time, also presented in Table 1. The wall-time of the FEMU

strategy is used for normalization, since it has the highest value. The normal-

ization is adopted here because the values are too low. In terms of the iterative

strategies (FEMU, CEGM and EGM), EGM presents the lowest value for the

wall-time. The wall-time for VFM is close to zero, indeed, it just requires time

for the inversion of a 2 2 matrix and its multiplication by the vector of virtual×
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external work (Eq. 26), which are simple operations.

[GPa] - Error[%] - Error[%]

Reference Parameters 210.00 0.3000

FEMU 203.90 0.2706 2.90 9.798

CEGM 204.55 0.2728 2.59 9.058

EGM 195.10 0.2356 7.09 21.436

VFM 205.14 0.2753 2.31 8.207

E pe me ta  me sur ments a quired by DI  ar  i evitably a fected byx ri n l a e c C e n f

e ror  fro  di f ent sources, such as ou o plane m ments, qua i  of ther s m f er t- f- ove l ty

speckle, i t p l tio  e ror  an  so on  These e rors have an i po tant e fectn er o a n r s d . r m r f

o  th  me sur  di plac ment fiel  an  then on the co puted strain field. Thisn e a ed s e d d m

a fects th  qua ity of the ide t fie  m t rial p ra ters  The fore  tes ing thef e l n i d a e a me . re , t

r bus ness an  s bi ity of th  ide t c tio  strat gies when fed wit  dat  co -o t d ta l e n ifi a n e h a r

rupt  wi  e rors is an i po tant a pect   thi  p pose  Ross  et al. [62]ed th r m r s . To s ur , i

pr pos   s l to  able t  me call  r produc  t  e tir  chain of a qu -o ed a imu a r o nu ri y e e he n e c i

s tion o  e pe me tal me sur ments with DIC, which can b  use  to ide tifyi f x ri n a e e d n

th  e fect o  this e ror  in t  ide t c tio  process  Here, a si pl  a proach,e f f r s he n ifi a n . m e p

thoug  enoug  to eva ate t  pe fo mance of the ide t c tio  stra gies inh h lu he r r n ifi a n te

th  pre ence o  e rors, i  adopte  which co sists i  addi  a ra dom e ror toe s f r s d, n n ng n r

th  c pute  strain field. The random error with a zero-mean Gaussian distri-e om d

bution and standard deviation of 1 is added to the reference strain field used

above. The magnitude of the error is of the order 1 10× . The results with

noisy data are presented in Table 2. It is also presented the relative error for

each parameter, which is calculated relatively to the reference values. The CPU

normalized times for each strategy are similar to the one presented in Table 1.

Table 2 shows that EGM presents the highest level of error for both param-
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eters, with almost 21% of error for Poisson’s ratio and 7% for Young’s modulus.

EGM has the highest sensitivity to noise in this case. The other three strategies

give similar results, with an error lower than 3% for Young’s Modulus and lower

than 10% for Poisson’s ration. Nevertheless, VFM presents the lowest level of

error for both parameters, followed by CEGM and finally, FEMU. In conclusion,

for this specific case, VFM is the most robust strategy in the presence of noisy

data and EGM is the least robust.

Although not addressed in this study, it should be mentioned that the results

obtained for noisy data with VFM, according to [48], could be improved through

the use of stiffness-based virtual fields, which are specially designed to minimize

the effect of noise (see section 3.4).

In this second part, it is addressed the identification of the material param-

eters for non-linear models, namely the isotropic elasto-plastic model presented

in Section 2. The material parameters for the elastic part are the same of

the last section ( = 210 GPa and = 0 3) and it is assumed that they are

known . Thus, the material parameters to be identified are the param-

eters of the Swift’s Law (Eq. 8), for which the following reference values are

adopted: = { } {= 565 MPa 7 81 10× 0 26 . The numerical results}

are generated using the FE code ABAQUS standard. The numerical model is

built up using an element CPS4 (bilinear shape functions and full integration)

along with the mesh of Figure 7 (a). A small displacement formulation is also

adopted. Regarding the force boundary condition applied to the model, the

following parameters are adopted: = 10 Nmm and = 270 N.

The input data for all the methods is still the strai  field  b  t  strainn , ut he

t sor is ou pu  at th  c troi  of t  e ments. Therefore, only 9 points areen t t e en d he le

available. The force resultant is extracted on the boundary Γ .

The FE analysis is discretized in five equal increments, with a constant incre-

ment size of 0 2. As a result, five strain fields are available for the identification.
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For the first two increments, the body undergoes only elastic deformations and

the yielding process starts in the third increment. The distributions of the von

Mises stress and the equivalent plastic strain field at the end of the test are

shown in Figure 8.

Due to the non-linearity of the model, VFM assumes the form of the objective

function presented in section 3.4. Nevertheless, it requires the selection of a

virtual field to write the principle of virtual work. Only one virtual field is

chosen in order to keep the process as simple as possible. Hence, the first

virtual field presented in Eq. 28 (u ) is adopted.

The objective functions of the different methods (FEMU, CEGM and VFM)

are minimized with the Levenberg-Marquardt optimization method [63]. This is

a least-square gradient-based optimization method which requires the derivative

of the objective functions. Forward differences are adopted for the calculation

of the derivatives. The convergence criterion is similar to the one used in sec-

tion 4.2, but with a value of 1 10× . Generally, constraints on the domain of

the material parameters are assigned . However, in this work, this will

be avoided, unless required for a strategy to achieve a solution.

CEGM and VFM require the reconstruction of the stress field from the

numerically generated strain field. For both strategies, it is adopted an implicit

backward-Euler stress update algorithm presented in [44].
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Parameters [MPa] 

Reference 565 7 81 10× 0.26

1-Set 165 2 00 10× 0.08

2-Set 965 1 76 10 × 0.35

Such an identification is a more difficult process than the previously per-

formed one, mainly due to the non-linear nature of the model, the coupling

between the parameters and also the number of parameters. The presence of

local minima in the objective function is one of the aspects that can stop the

process and lead to erroneous solutions. Therefore, in order to evaluate the

robustness of the presented strategies, two different initial sets of material pa-

rameters are arbitrarily selected. The two sets are presented in Table 3 and the

respective flow stress curves given by Swift’s law are presented in Figure 9.

The results of the identification process for the different strategies are sum-

marized in Table 4. CEGM and VFM correctly retrieve the three parameters,
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Parameters [MPa] Iterations Wall-time [s]

Reference 565 7 810 10× 0.260

FEMU
1-Set 564.998 7 809 10× 0.259 41 4407.5

2-Set 565.000 7 808 10 × 0.260 20 2048.9

CEGM
1-Set 564.317 7 761 10× 0.259 22 38.5

2-Set 564.985 7 819 10 × 0.260 23 36.9

VFM
1-Set 565.080 7 795 10× 0.260 19 10.3

2-Set 565.085 7 795 10 × 0.260 18 7.8

independently of the initial set of parameters. This indicates that the reference

solution is a global minimum within the interval delimited by the selected ini-

tial sets (see Table 3). Figures 10 and 11 present the evolution of the material

parameters along the identification process, as well as the evolution of the value

of the objective functions, for both strategies. These figures reveal that both

strategies have fast convergence.

FEMU strategy is able to retrieve the material parameters when the identi-

fication starts from the 2-Set of initial parameters. However, for the 1-Set, the

presence of a local minimum in the cost function for the values of the parame-

ters = 386 691 MPa and = 0 113 leads to negative values of the parameter

, which is not admissible for Swift’s law. The presence of this local minimum

can be seen in Figure 12. Therefore, in order to guarantee positive values for

the solution parameters, a constraint on the material parameters domain must

be added and kept through the remaining part of this study. Besides, the con-

vergence of FEMU is not so fast as in the case of CEGM and VFM, as can be

observed in Figure 13.

The iterations and wall-time are also presented in Table 4. VFM provides the
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lowest wall-time, with an average of 0.48 s per iteration. CEGM is more than 3

times slower than VFM and has an average of 1.7 s per iteration. FEMU presents

the worst results for the wall-time. For the 1-Set, VFM is almost 428 times faster

than FEMU and for the 2-Set, VFM is 263 times faster than FEMU, which are

significant differences. The choice of the initial set of parameters strongly affects

the wall-time in the case of FEMU, a consequence of the required number of

iterations. The identification which starts from 1-Set is clearly hampered by

the presence of local minima, which led to an increase of the iterations number

and, consequently, to the increase of the wall-time.

As performed for the elastic case, the effect of noise on the identification

process is also addressed in this case and the sensitivity of the different strate-

gies is evaluated. A random error with a zero-mean Gaussian distribution and
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standard deviation of 1 is added to the reference strain fields used in the pre-

vious results. Two levels of noise are tested, the first one with a magnitude of

order 1 10× and the other with a magnitude of order 1 10× . The results

for each noise level are presented in Tables 5 and 6.

For the first level of noise (magnitude of order 1 10× , Table 5), the three

strategies retrieve the material parameters with a good accuracy, independently

of the initial set of parameters. This indicates that the reference set of param-

eters gives a global minimum. Nevertheless, VFM has a slight deviation on the

parameter , but the error is below 1 4%.

For the second level of error (magnitude of order 1 10× , Table 6), FEMU

correctly retrieves the material parameters, with errors below 0 5%. The initial

set has no influence on the accuracy of the results. CEGM underestimates the
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values of the three parameters for both initial sets and has the highest error for

the parameter , with an error around 97%. VFM has reasonable results for

the parameters and , with errors below 4%. Nevertheless, it overestimates

the parameter .

The parameter dictates the beginning of the plastic regime, , it defines

the initial yield stress ( = ). As the number of time steps used is reduced

and these do not capture the exact instant of transition between elastic and

plastic regime, it can be difficult to retrieve this parameter. Nevertheless, using

the results obtained with VFM to calculate the initial yield stress, the following

values are obtained: 162.71 MPa and 162.84 MPa for the 1-Set and 2-Set,

respectively. Comparing these with the reference value, which is 160 MPa,

gives an error around 0.02%, which is admissible. It is also possible to see in

Figure 14 that the identified material parameters capture the correct evolution

of the reference yield stress curve. In the case of CEGM, the obtained values for

the initial yield stress are: 105.98 MPa and 107.87 MPa for the 1-Set and 2-Set,

respectively. The errors for these two values are around 33 %, which continues

to be a significant difference. Moreover, the solutions obtained are also plotted

in Figure 14. It is possible to see the difference for the reference solution in

the initial yield stress, but for higher values of equivalent plastic strain, the

evolution of Swift’s law is close to the reference one. For the case of FEMU the
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results are in good agreement with the reference, which is also highlighted in

Figure 14.

In Tables 5 and 6 is also presented the objective function value for the

obtained solutions. Comparing the values of Table 5 with their counterparts in

Table 6, an increase in the objective function value and parameters deviation

with increasing values of noise can be observed. This is expected because the

strain fields used as input data are no longer exact solutions of the direct problem

and move away from this solution with the noise increase. The question that

arises here is, for noisy data, whether the reference set remains a minimizer

of the objective functions and whether the solutions obtained are only local

minima. The results in Table 5 indicate that the reference set remains the
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Parameters [MPa] Iterations Obj. Func

Reference 565 7 810 10× 0.260

FEMU
1-Set 564.912 7 806 10× 0.259 42 1 29 10× 

0.016% 0.051% 0.385%

2-Set 564.912 7 806 10× 0.259 18 1 29 10× 

0.016% 0.051% 0.385%

CEGM
1-Set 565.421 7 852 10× 0.260 34 4 36 10× N

0.074% 0.537% 0.156%

2-Set 566.536 7 904 10× 0.261 20 4 36 10× N

0.272% 1.203% 0.425%

VFM
1-Set 566.135 7 915 10× 0.261 15 17 9 N · m

0.201% 1.344% 0.363%

2-Set 566.186 7 916 10× 0.261 13 17 9 N · m

0.209% 1.357% 0.367%

global minimizer for the noise magnitude of 1 10× , since the reference set has

been retrieved by the three strategies with small values of error, independently

of the initial set of parameters. However, for Table 6, the results of CEGM

and VFM have a higher error, particularly for CEGM. Therefore, in order to

understand whether the reference solution remains a minimizer for this level

of noise, the objective functions have been evaluated for the reference set and

the values are: F = 1 284 10× , F = 3 243 10× N mm and· 

F = 2031 2 N mm. The result for the objective function of FEMU is close· 

to the ones presented in Table 6, which supports that for FEMU the reference
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Parameters [MPa] Iterations Obj. Fun

Reference 565 7 810 10× 0.260

FEMU
1-Set 564.128 7 783 10× 0.259 38 1 29 10× 

0.154% 0.345% 0.385%

2-Set 564.127 7 783 10× 0.259 16 1 29 10× 

0.154% 0.345% 0.385%

CEGM
1-Set 441.906 1 838 10× 0.166 62 2 96 10× N

21.787% 97.646% 36.309%

2-Set 464.445 2 617 10× 0.177 143 3 08 10× N

17.797% 96.649% 31.954%

VFM
1-Set 576.854 9 203 10× 0.269 11 1796 1 N ·

2.098% 17.839% 3.826%

2-Set 577.413 9 212 10× 0.270 10 1795 1 N ·

2.197% 17.951% 3.866%

set remains a minimizer for this level of error. For the other two strategies,

these values of the objective functions are higher than the final values presented

in Table 6, indicating that the reference set of material parameters is no longer

the global minimizer in both strategies and the obtained results are the new

ones. It means that higher values of noise can modify the objective functions of

CEGM and VFM, thus preventing the correct parameters from being retrieved.

As mentioned at the end of section 4.2, the results of VFM could be improved

if stiffness-based or sensitivity-based virtual fields had been used [57].

In conclusion, it seems that FEMU exhibits the lowest sensitivity to the
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presence of noisy data, in this example. The CEGM revealed the highest sensi-

tivity to noise. The higher sensitivity to noise presented by CEGM and VFM

when compared with FEMU, can be explained by the fact that, with FEMU

the strain field is used directly to build up the objective function, whereas with

CEGM and VFM, it is required the computation of the stress field that may

lead to an amplification of the noise effect.

In terms of computational efficiency, the VFM has reached the best results

with a significant margin for the other strategies, particularly for FEMU.

5. Conclusions

The calibration of constitutive models performed with full-field measure-

ments is an increasingly used approach. Over the years, several strategies have

been reported with successful results for linear and non-linear models. There-

fore, it is important to understand and realize the advantages and drawbacks

of each strategy, as well as their implementation aspects. This work is fo-

cused on four identification strategies based on full-field measurements, namely

the Finite Element Model Updating (FEMU), the Constitutive Equation Gap

Method (CEGM), the Equilibrium Gap Method (EGM) and the Virtual Fields
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Method (VFM). A brief overview of these strategies is presented, including their

flowcharts and implementation details.

A comparative study is then performed. Two types of constitutive models

are used: an isotropic linear elastic model and an elasto-plastic model with

isotropic hardening described by Swift’s law. In order to identify the material

parameters of these two models, a FE model with a simple geometry is designed.

The heterogeneous response of the FE model is generated by applying a non-

uniform load distribution. The strain fields resultant from the solution of the

direct problem are used as input for the different strategies. Hence, the four

strategies are compared in the same conditions. Moreover, for both models, the

robustness of the different strategies is tested against noisy data.

The results show an accurate performance of the different methods in elas-

ticity, with the exception of EGM, which reveals a higher sensitivity to noise

than the other methods. For the case of elasto-plasticity, FEMU achieves the

most accurate results in the presence of data polluted with noise. Neverthe-

less, the computational time is significantly higher for FEMU. Moreover, in this

specific case, it requires the use of constrains on the parameters domain to ob-

tain admissible solutions. CEGM shows the highest sensitivity to noise, but in

terms of computational cost, it is more efficient than FEMU. VFM has reason-

able results in the presence of noise, and the best results for the computational

cost. Moreover, improvements on VFM concerning noise sensitivity have al-

ready been performed and the results presented in this article could be further

improved through the use of more advanced virtual fields. Therefore, VFM can

be a perfect candidate when is expected a reasonable balance between quality

of the identification procedure and computational cost.
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de l’univers, Sciences de la Terre 309 (1) (1989) 1–5.

45



ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

[15] A. Moussawi, G. Lubineau, E. Florentin, B. Blaysat, The constitutive com-

patibility method for identification of material parameters based on full-

field measurements, Computer methods in applied mechanics and engineer-

ing 265 (2013) 1 – 14. .

[16] B. Blaysat, E. Florentin, G. Lubineau, A. Moussawi, A dissipation gap

method for full-field measurement-based identification of elasto-plastic ma-

terial parameters, International journal for numerical methods in engineer-

ing 91 (7) (2012) 685–704. .

[17] G. J. Yun, S. Shang, A self-optimizing inverse analysis method for estima-

tion of cyclic elasto-plasticity model parameters, International Journal of

Plasticity 27 (4) (2011) 576 – 595. .
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