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Abstract 19 

Abandoned mining and quarry areas are sources of potentially toxic elements (PTEs), through lixiviates 20 

or transfer processes of bioavailable fractions from mining wastes and tailings. In this study, earthworms 21 

(Eisenia fetida Savigny, 1826) were exposed for 28 days to two mining soils from a lead/zinc mine and 22 

two quarry soils from an old serpentine quarry. Despite their pseudo total metal contents, a previous 23 

characterization of these soils pointed out for a low chemical availability of PTEs. Therefore, a 24 

multibiomarker approach was used and the response of E. fetida to soils was assessed through the analysis 25 

of neurotoxic, oxidative stress, energy metabolism and DNA damage biomarkers (acetylcholinesterase, 26 

catalase, glutathione-s-transferase, lactate dehydrogenase, lipid peroxidation and DNA strand breaks). 27 

Metal bioaccumulation was also assessed to evaluate bioavailability and organism’s exposure. Results 28 

showed that high contents of PTEs were recorded in the whole body of earthworms exposed to lead/zinc 29 

mine. However, the bioaccumulation factors for worms exposed to soils from both sampling sites were < 30 

1 due to the high PTEs contents in soils. Earthworms exposed to both types of soils displayed neurotoxic 31 

and energy metabolism effects. However, significant levels of oxidative stress and DNA damage were 32 

recorded only for earthworms exposed to lead/zinc mine soils. This study demonstrated that despite the 33 

low availability of PTEs showed by previous sequential chemical extractions, the results obtained from 34 

the direct toxicity assessment performed in this study, highlight the importance of a multibiomarker 35 

approach using soil organisms to provide a better evaluation of soils pollution.  36 

 37 

Keywords: mild extractions; comet assay; metals; neurotoxicity; oxidative stress; risk assessment  38 

 39 

Abbreviations: AChE, Acetylcholinesterase; BAF, Bioaccumulation factor; CAT, catalase; GST, 40 

glutathione-S-transferase; LDH , Lactate dehydrogenase; LPO, Lipid peroxidation; NW , Northwest; OM , 41 

organic matter; PTEs, Potentially Toxic Elements; TBARS, thiobarbituric acid reactive substances. 42 
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1. Introduction 43 

Mining and quarrying activities are the third source of Potentially Toxic Elements (PTEs) in European 44 

soils. High amounts of waste materials are deposited after mine processing, often without any 45 

environmental mitigation actions (Panagos et al. 2013; Arenas-Lago et al. , 2018). These tailings are 46 

usually exposed to weathering conditions, which can accelerate meteorization processes, and become a 47 

source of PTEs to the surrounding ecosystems. The new soils, which are a consequence of the alteration 48 

of original soils by mining activities, are classified as spolic technosols according to WRB classification 49 

(IUSS Working Group WRB 2015) and have adverse characteristics to microorganisms, animals and 50 

plants development, such as low content of organic matter, extreme pH values or unfavourable structure 51 

and texture (Arenas-Lago et al. 2018). 52 

The bioavailability of PTEs to ecosystems and soil organisms can be determined by indirect (e.g., 53 

single or sequential extractions) or direct measures (e.g., bioaccumulation of PTEs in plant and soil 54 

organisms) (Lanno et al. 2004). In addition, the assessment of biological effects through organism's stress 55 

responses to PTEs improves our knowledge on toxicant’s bioavailability and mode of action (Lourenço et 56 

al. 2011; Arenas-Lago et al. 2018; Mkhinini et al. 2019). 57 

In previous studies, different measurements of PTE’s availability and of bioavailability were done for 58 

soils from an abandoned lead/zinc mine (contaminated by Cd, Pb and Zn) (Arenas-Lago et al. 2014; 59 

Lago-Vila 2017) and from an abandoned serpentine quarry (contaminated by Cr, Co and Ni) (Arenas-60 

Lago et al. 2016; Lago-Vila et al. 2015; 2017). This was made through selective and sequential 61 

extractions, and through the assessment of accumulated metals by plants species growing spontaneously 62 

in the study areas (Cytisus scoparius and Festuca rubra for lead/zinc mine and quarry area, respectively). 63 

A low availability of studied PTEs (up to 20% of pseudo total concentrations) was recorded, with some 64 

exceptions, for all the soils. In both cases, Fe/Mn oxides and Mg silicates had a strong influence on the 65 

retention of studied elements (Arenas-Lago et al. 2014; 2016), and this was likely responsible by the 66 

lower uptake by native plants (Lago-Vila et al. 2015; 2017). However, the bioavailability and toxicity for 67 

soil invertebrates were not evaluated for these soils. Earthworms are excellent model organisms to assess 68 

the bioavailability and toxicity of PTEs as they are directly exposed through both ingestion of soil 69 

particles and absorption by dermal contact (Becquer et al. 2005; Sizmur et al. 2009). Thus, in this study 70 

earthworms (Eisenia fetida Savigny, 1826) were exposed for 28 days to soils from an abandoned 71 

lead/zinc mine and a serpentine quarry, with different physicochemical characteristics and PTEs contents. 72 
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After exposure, the bioaccumulation of PTEs was determined through the quantification of earthworm’s 73 

body burdens. PTE’s toxicity was determined through the evaluation of changes in the activity of 74 

severalbiomarkers of neurotoxicity [acetylcholinesterase (AChE)], oxidative stress [catalase (CAT)], 75 

biotransformation and oxidative stress [glutathione-S-transferases (GST)], energy metabolism[lactate 76 

dehydrogenase (LDH)], and lipid peroxidation [thiobarbituric acid reactive substances-TBARS (LPO)]. 77 

The analysis of DNA damages also was measured by the alkaline comet assay. These biomarkers are 78 

sensitive, time- and cost-effective and have been used in a wide range of scenarios, species and toxicity 79 

assessment approaches (e.g. Cataldo et al. 2011; Colacevich et al. 2011; Lourenço et al. 2011; Bessa et al. 80 

2016; Boughattas et al. 2016; Correia et al. 2017; Rodríguez-Seijo et al. 2018). 81 

Thus, the main objectives of this study were: i) to assess the bioavailability of PTEs on both soils, 82 

through the assessment of their bioaccumulation on earthworms and also their potential to induce toxicity; 83 

ii) to compare the results recorded for direct bioavailability measurements (with earthworms as 84 

bioindicators)  with those obtained for the chemical availability by a mild extraction and by a sequential 85 

chemical extractions (Arenas-Lago et al. 2014, 2016). 86 

 87 

2. Materials and methods 88 

2.1. Study sites and soil properties 89 

This study was carried out with four contaminated soil samples from Galicia (NW Spain): i) two soils 90 

from an old serpentine quarry (Penas Albas, Moeche, NW Spain) (Soils S1 and S2), and ii) two soils from 91 

an abandoned lead/zinc mine (Rubiais mine, NW Spain) (Soils S3 and S4) (Fig. 1). The selected soils 92 

from each area have different physicochemical characteristics, pseudo total contents of studied PTEs (Co, 93 

Cr, Ni, Cd, Pb and Zn), and degrees of plant cover. The physical and chemical properties (soil pH, total 94 

Kjeldahl-N, organic matter content and effective cation exchange capacity) of these lead/zinc mine soils 95 

and quarry areas, were already described in previous studies (Rodríguez-Seijo et al. 2014) (Lago-Vila et 96 

al. 2015) (Table 1). An OECD artificial soil with 5% of organic matter (pH 6.25 ± 0.18), adjusted with 97 

CaCO3, was used as a control soil for the ecotoxicological assays.  98 

 99 

2.2. Determination of pseudo total and available PTEs content in soil samples 100 

Pseudo total PTEs contents were extracted from 0.2 g of soil by acid digestion (aqua regia procedure) 101 

with a mixture of HNO3 and HCl (1:3 v/v) in a microwave oven (Ethos 1; Milestone) (experimental 102 
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conditions: 9 bar, 190°C and 45 min) (Lago-Vila et al. 2017). A single CaCl2 extraction was performed to 103 

determine the available content of PTEs in the studied soils (0.01 M CaCl2 acidified with HCl 0.1 M, 1:10 104 

w/v soil to extractant ratio, 2 h shaking) (Houba et al. 2000) (Table 1). In both cases, the concentration of 105 

PTEs in the extracts was determined by ICP-OES (Perkin Elmer Optima 4300 DV) at CACTI-106 

Universidade de Vigo (Vigo, Spain).  107 

Fig. 1. Location of study areas. Penas Albas quarry area (S1 and S2) and Rubiais Pb/Zn mine (S3 and S4) 108 

(Source: SIGPAC 2015). 109 

2.3. Earthworms analysis 110 

2.3.1. Experimental procedure 111 

Earthworms (E. fetida) were selected for this study and obtained from a laboratory culture kept under 112 

environmentally controlled conditions (photoperiod 16hL:8hD; temperature 20 ± 2 ˚C). The organisms 113 

from the culture are fed with defaunated horse manure and oatmeal once a week and grown in plastic 114 

boxes in a medium composed of sphagnum peat, horse manure, and deionised water. 115 

Ten clitelated adult earthworms (weight ranging between 300 and 600 mg) were added to each soil 116 

sample and control-CTL replicates (four replicates by soil sample), after being acclimatized to OECD 117 

artificial soil for 24h. Soils water holding capacity (WHC) was previously adjusted to 40% of their 118 

WHCmax (OECD 1984, ISO 2008). Plastic containers were kept at 20 ± 2ºC with a light cycle of 16/8 h 119 

light/dark for 28 days. Dry and defaunated horse manure (± 5 g) was added every week during the test 120 

period, as well as deionised water, whenever necessary, to maintain a constant soil water content. 121 

After 28 days of exposure, the earthworms from each test vessel were removed, rinsed with deionised 122 

water and, to allow total clearance of the gut content, left to depurate for 24 h in a plastic container with 123 

Milli-Q water moistened filter paper. Survival and weight change were assessed at the end of the test 124 

period.  125 

 126 
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2.3.2. Potentially Toxic Elements exposure and accumulation by earthworms 127 

Earthworms were thawed at room temperature and dried at 60ºC until constant weight. Hence, a pool of 128 

two worms from each replicate (4 replicates per soil tested) was digested with a mixture of 1 ml H2O2 129 

(30%) and 3 ml (HNO3) (70%) (Ultra-pure reagents) (Rodríguez-Seijo et al. 2017). The solution was 130 

filtered and diluted to 50 ml with Milli-Q water. Sample blanks were obtained following the same 131 

procedure but without the biological sample. All samples were analysed using an ICP-OES. The Cd, Co, 132 

Cr, Ni, Pb and Zn concentrations were expressed as mg kg-1 dry weight. 133 

The bioaccumulation factor (BAF) of studied PTEs was calculated according to BAF = Cb/Cs, where 134 

Cb is the concentration of a given element in earthworms, while Cs is the concentration of the element in 135 

the soil sample (OECD, 2010). 136 

 137 

2.3.3. Neurotoxicity and oxidative stress biomarkers 138 

The neurotoxicity and oxidative stress responses were assessed through the determination of the activity 139 

of specific enzymes (Sanchez-Hernandez 2006; Lionetto et al. 2012). Briefly, the activity of 140 

acetylcholinesterase (AChE), catalase (CAT), glutathione -S-transferases (GST), lactate dehydrogenase 141 

(LDH) were determined according to the methodologies proposed by Ellman et al. (1961), Aebi (1984), 142 

Habig (1974) and Vassault (1983), respectively. Lipid peroxidation (LPO) was assessed through the 143 

quantification of thiobarbituric acid reactive substances (TBARS) according to Buege and Aust (1978). 144 

Details about the methodology used for the enzymatic assays was well described by previous papers 145 

published by our research group (e.g. Correia et al. 2017; Rodríguez-Seijo et al. 2018). 146 

Three earthworms from each replicate, randomly selected and previously depurated (24 h), were 147 

pooled and homogenised in an ice-cold phosphate buffer (50 mM, pH = 7.0 with 0.1% Triton X-100) 148 

using a tissue homogeniser (T 10 basic ULTRA-TURRAX®). The homogenates were then centrifuged 149 

(3000rpm for 15 min, at 4 °C). Finally, the obtained supernatant was separated and used for biochemical 150 

analyses. The same procedure was followed for all the experimental replicates. All biomarkers were 151 

measured in triplicate for each replicate using a spectrophotometer equipped with a microplate reader 152 

(Thermo Scientific™ Multiskan™ GO UV/Vis microplate spectrophotometer). For all assays, the protein 153 

concentration of the samples was determined by Bradford’s method (Bradford, 1976), adapted to the 154 

microplate reader and measured spectrophotometrically at 595 nm in triplicate (Thermo ScientificTM 155 

MultiskanTM Go UV/Vis microplate spectrophotometer). Results were expressed as nmol min-1 mg-1 156 
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protein (AChE, CAT and GST), µmol min-1 mg-1 protein (LDH) and nmol MDA equivalents by mg-1 of 157 

protein (LPO). 158 

 159 

2.3.4. Coelomocytes extrusion and DNA damage quantification 160 

DNA damage quantification was performed in earthworm coelomocytes (five worms from each 161 

replicate), obtained following the methodology described by Lourenço et al. (2012) and Correia et al. 162 

(2017). Finally, DNA damage was visually scored, thought the observation of one-hundred nucleoids, 163 

randomly selected, and graded into five classes (García and Mandina 2005; Correia et al. 2017): from 0 to 164 

4, being 0 a nucleoid without damage and 4 a nucleoid with almost all the DNA in the tail (most damaged 165 

cells). The results were reported as arbitrary units, calculated by multiplying the number of observed 166 

comets (0−100) by the comet classification (0−4). 167 

 168 

2.4. Statistical analyses 169 

All the statistical analyses were performed with IBM SPSS Statistics v23.0 software. To assess significant 170 

differences among earthworms exposed to the different soils for the measured parameters (AChE, CAT, 171 

GST, LDH, LPO, DNA damage and PTEs content), one-way analysis of variance (ANOVA) was carried 172 

out, after checking the homoscedasticity of variances and the normality with Levene's and Shapiro-Wilk 173 

tests, respectively. A significance level of p < 0.05 was chosen to reject the null hypothesis (no 174 

differences between each group of exposed earthworms). When significant differences were recorded, 175 

Dunnett’s test was applied to determine which soil sample induced significant responses in earthworms 176 

when compared to the CTL (OECD soil). 177 

 178 

3. Results and discussion 179 

3.1. Soil properties and PTEs content in selected soil samples 180 

The studied soils are classified as sand or sandy loam soils according to USDA classification, with 181 

slightly alkaline or alkaline pH values (Table 1). The organic matter (OM) and the Total Kjeldahl 182 

Nitrogen contents were very low in the lead/zinc mine soils (S3 and S4). Also, soil samples from the 183 

quarry area had low levels of nitrogen, however, the OM contents were within the range described for 184 

Galician regional soils and Spanish topsoils (Calvo de Anta et al. 2015; Rodríguez-Martín et al. 2015). 185 

All samples had low levels of ECEC (effective cation exchange capacity (< 7 cmol (+) kg-1), except S2 186 
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(19.59 cmol (+) kg-1). The studied soils presented a base saturation between 99.8 and 100%, due to parent 187 

rock material, and in the case of quarry soils, they had an imbalance of Ca/Mg (Rodríguez-Seijo et al. 188 

2014; Lago-Vila et al. 2015). 189 

The studied soils also had high levels of pseudo total PTE concentrations above the generic reference 190 

limits for ecosystem protection and industrial uses, established for the Galician region (DOG 2009). In 191 

each area, samples have differences between them because they originate from different grades of activity 192 

(Table 1). As expected, the levels of available PTEs were lower than the pseudo total contents (< 20% for 193 

mine soils and 12 to 17% for quarry soils). The exception was recorded for Pb (up to 46% for S3) and Co 194 

(23% for S1), respectively) (Table 1). The PTEs with higher levels were Ni, Pb and Zn (Table 1). 195 

 196 

3.2. Exposure and accumulation of PTEs by earthworms  197 

At the end of the 28 days of exposure, there was no mortality and weight loss as not statistically 198 

significant differences in exposed organisms were recorded when compared to the control (OECD soil) 199 

(ANOVA: F: 1.808; df: 4, 14; p = 0.1834). Significantly, higher levels of PTEs were found in exposed 200 

organisms when compared to the control (Table 2). This was probably due to both direct dermal contact 201 

with PTEs in interstitial water and the ingestion of soil particles. Soil ingestion may increase PTEs 202 

bioavailability, due to pH variability in the different compartments of the gastrointestinal tract of 203 

earthworms, potentially increasing mobilization (Peijnenburg and Jager 2003; Becquer et al. 2005; 204 

Hobbelen et al. 2006; Sizmur et al. 2009; Lourenço et al. 2011; Boughattas et al. 2016). According to 205 

Song et al. (2002), the threshold concentrations in earthworm’s tissues that can lead to increased mortality 206 

in E. fetida are 300, 1300, 1700 and 300 mg kg-1 dw for Cu, Zn, Pb, and Cd, respectively. The 207 

concentrations found in this study were lower than those required to induce death, except for Zn levels 208 

(average value of 1405 mg kg-1 dw for S4) (Table 2). 209 
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Table 1. Physical and chemical properties and PTEs concentrations for each studied soil (adapted from 210 

Rodríguez-Seijo et al. 2014 and Lago-Vila et al. 2015). 211 

Parameter  Sampling sites 
  S1 S2 S3 S4 

Soil use Control soil 
Quarry tailings. 
Serpentine quarry 

Mine tailings. 
Lead/Zinc mine 

pH H2O 6.25 ± 0.3 7.94 ± 0.04 7.80 ± 0.05 7.13 ± 0.11 7.91 ± 0.15 
Organic matter (%) 4.53 ± 0.25 3.68 ± 0.11 5.70 ± 0.13 0.43 ± 0.03 0.14 ± 0.02 
TKN (g kg-1) 2.24 ± 0.2 Bdl 0.42 ± 0.03 0.33 ± 0.02 0.30 ± 0.02 
ECEC (cmol+ kg-1) 8.25 ± 0.97 5.19 ± 0.17 19.75 ± 0.37 6.56 ± 0.19 4.91 ± 0.31 
Water holding 
capacity (%) 

28.16 ± 3.1 22.9 ± 2.1 21.9 ± 2.5 54.33 ± 5.4 22.71 ± 2.9 

Soil porosity (%) - 26.13 ± 0.02 46.91 ± 0.2 43.39 ± 0.03 29.68 ± 0.1 
Bulk density (g cm-3) - 1.84 ± 0.01 1.35 ± 0.01 1.44 ± 0.01 1.8 ± 0 
 Particle size distribution 
Sand (%) 75.05 ± 0.72 89.55 ± 0.14 59.73 ± 0.04 90.32 ± 0.07 88.48 ± 0.49 
Silt (%) 17.39 ± 0.72 6.62 ± 0.14 26.06 ± 0.04 7.90 ± 0.07 11.52 ± 0.49 
Clay (%) 8.43 ± 0.53 4.05 ± 0.45 14.10 ± 0.1 1.78 ± 0.01 Bdl 
USDA classification Sandy Loam Sand Sandy Loam Sand  Sand 
 Pseudo total content of studied PTEs (mg kg-1) 
Co - 109 ± 1 147 ± 1.2 92 ± 3.8 141± 1.7 
Cr - 1672 ± 110 2604 ± 38 78 ± 2.1 82 ± 3.5 
Ni - 2039 ± 107 1861 ± 62 36 ± 2.9 29 ± 1.2 
Cd - Bdl Bdl 14 ± 0.6 43 ± 0.7 
Pb - Bdl Bdl 2137 ± 370 6761 ± 1352 
Zn - 33 ± 3 63 ± 5 12000 ± 559 32000 ± 3570 
 CaCl2 available contents of studied PTEs (mg kg-1) 
Co - 26 ± 0.8 25.2 ± 0.19 Bdl Bdl 
Cr - 4.02 ± 0.05 7.65 ± 0.17 Bdl Bdl 
Ni - 274 ± 6.7 153 ± 3.2 Bdl Bdl 
Cd - Bdl Bdl 0.35 ± 0.01 0.80 ± 0.01 
Pb - Bdl Bdl 987 ± 42 1022± 38 
Zn - Bdl Bdl 2688 ± 33 4390 ± 26 

Average values ± standard deviation (n ≥ 3). Bdl Below detection level; TKN Total Kjeldahl  212 

Nitrogen; ECEC Effective cation exchange capacity. Values in italics and bold letter highlight values above the 213 

guidelines for soils delivered by the Galician regional government considering ecosystems protection and 214 

industrial uses, respectively, for Cd (1 and 20 mg kg-1), Co (40 and 150 mg kg-1), Cr (80 and 300 mg kg-1), Ni 215 

(75 and 200 mg kg-1), Pb (80 and 500 mg kg-1) and Zn (200 and 1000 mg kg-1) (DOG 2009). 216 
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Table 2. Concentration of Cd, Co, Cr, Ni, Pb and Zn (mg kg-1 dry weight) in E. fetida exposed to control 217 

soil (OECD), quarry area (S1 and S2) and lead/zinc mine (S3 and S4) sampling sites. 218 

Element Sampling Sites 
 OECD S1 S2 S3 S4 
Co Bdl 3.40 ± 0.95 a 3.10 ± 0.74 a - - 
Cr Bdl 18.76 ± 4.4 a 15 ± 3.7 a - - 
Ni Bdl 43.71 ± 10.6 a 35.7 ± 8.4 a - - 
Cd Bdl - - 1.63 ± 0.34 a 1.7 ± 0.6 a 
Pb Bdl - - 23.5 ± 6.3 b 398.4 ± 108.4 a 
Zn Bdl - - 250 ± 66.1 b 1405 ± 368 a 
Values are expressed as mean ± standard deviation; Bdl: below detection level. “-” not measured. 219 

For each row, different letters in different samples means significant differences from the worms exposed 220 

to the control soil (one-way ANOVA test, LSD post hoc test, p <  0.05). 221 

Soil physicochemical properties have a great influence in metal’s bioavailability and therefore, PTEs 222 

uptake and accumulation by soil organisms. For example, earthworms exposed to S2 had similar PTEs 223 

content in their bodies, when compared to those exposed to S1 (Table 2), although S2 has a higher 224 

content of PTEs than S1. This could be explained by the higher ECEC levels and by the higher clay, 225 

organic matter (Table 1) and Fe/Mn oxides content of S2 compared to S1 (15.65 vs 2.24 g kg-1, 226 

respectively), that contributed for reducing the bioavailability of PTEs (Owojori et al. 2010; Arenas-Lago 227 

et al. 2016). The solubility of PTEs is also influenced by soil pH however, this factor was not of major 228 

relevance in these soils as pH values were similar between soils and slight to moderately basic.  229 

In fact, and as mentioned above, Arenas-Lago et al. (2014; 2016) showed through sequential 230 

extractions that only a small proportion of soil PTEs was associated with exchangeable and organic 231 

matter fractions for both sampling areas; therefore it was not the organic matter that had the main role in 232 

reducing the chemical availability of PTEs in these soils. However, earthworms can ingest soil particles 233 

and contaminants sorbed to poorly labile fractions (bound to oxide and organic fractions), and their 234 

passage through the gut can change the availability from sorbed to exchangeable PTEs (Becquer et al. 235 

2005; Sizmur et al. 2009; Nannoni et al. 2011; Sizmur et al. 2011a,b) also observed that the ingestion of 236 

PTEs bounded to soil components (mineral or oxidable fractions) was an uptake route more significant 237 

than the dermal uptake of dissolved ions from the soil solution. This could explain why higher levels of 238 

PTEs were found in earthworms exposed to soils with a low levels  of bioavailable PTEs. Despite the 239 

exposure, in all cases, the BAFs levels were all below 1, pointing for no bioaccumulation of these 240 

elements in the organisms (Table 3). 241 
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Table 3. Bioaccumulation Factor (BAF) values for earthworms exposed to control (OECD), quarry area 242 

(S1 and S2) and lead/zinc mine (S3 and S4) samples. 243 

Element 
Sampling Sites 
OECD S1 S2 S3 S4 

Co - 0.04 ± 0.01a 0.02 ± 0 b - - 
Cr - 0.01 ± 0 a 0.01 ± 0 a - - 
Ni - 0.02 ± 0 a 0.02 ± 0.01 a - - 
Cd - - - 0.11 ± 0.02 a 0.04 ± 0.01 b 
Pb - - - 0.01 ± 0 b 0.06 ± 0.01 a 
Zn - - - 0.02 ± 0.01 b 0.04 ± 0.01 a 
Values are expressed as mean ± standard deviation. “-” not measured. 244 

For each row, different letters in different samples means significant differences from the worms exposed 245 

to the control soil between (one-way ANOVA test, LSD post hoc test, p < 0.05). 246 

Similar results were also shown by several authors, as BAFs values decline with increasing PTEs 247 

concentrations in soils (e.g., Nahmani et al. 2007, Peijnenburg and Vijver 2009, Colacevich et al. 2011, Li 248 

et al. 2018), as it was observed for BAF levels of Zn, despite the high levels of Zn found in the body of 249 

organisms exposed to quarry soils. Alike results were also reported for earthworms exposed to 250 

metalliferous soils with levels of contamination similar to those found in our studies (e.g., Morgan and 251 

Morgan 1998, Andre et al. 2009, Colacevich et al. 2011). Earthworms also did not bioaccumulate some of 252 

the studied PTEs, probably because of their ability to regulate and excrete them efficiently.  253 

In general, BAF values were consistent with those provided by the sequential extraction carried out by 254 

Arenas-Lago et al. (2014, 2016) consistently pointing for the low chemical availability and low 255 

bioavailability of PTEs in the studied soils. 256 

 257 

3.3. The neurotoxic and oxidative stress responses of earthworms exposed to PTEs rich soils 258 

Increased uptake of PTEs does not always mean increased toxicity for earthworms. Uptake and adverse 259 

effects of PTEs can be modified by earthworms’ physiological factors involved into regulation of metal 260 

levels in their tissues or in their ability to eliminate the excess of PTEs, such as, an increment of 261 

chloragosomes for metal sequestration or metal biotransformation into less toxic species (Dai et al. 2004, 262 

Nahmani et al. 2007, Stankovic et al. 2014, Wang and Cui 2016, Li et al. 2018). 263 

The impact of PTE concentrations on neuromuscular interactions and in the oxidative stress system of 264 

E. fetida is shown in Fig. 2 for organisms exposed to samples from the quarry and mining area. 265 

Although the acetylcholinesterase (AChE) has been proposed as a biomarker of exposure to 266 

neurotoxic compounds such as organic contaminants, PTEs may also inhibit AChE activity (Labrot et al. 267 
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1996; Gaitonde et al. 2006; Lionetto et al. 2012; Dongxing et al. 2016). However, stimulatory effects of 268 

metals mixtures (Cr, Cu, Ni, Pb, Zn) on AChE activity were also reported (Zheng et al. 2013). In the 269 

present study, a significant inhibition of AChE activity compared to the control group (OECD soil) was 270 

observed for earthworms exposed to samples from the quarry area (ANOVA: F=65.60; d.f.=2, 26; p < 271 

0.0001; Fig. 2a) and lead/zinc mine area (ANOVA: F= 29.6; d.f.=2, 26; p < 0.0001; Fig. 2a). Inhibitions 272 

of AChE in exposed earthworms were ranged from 47% (S3) to 68% (S2), and inhibitions of AChE 273 

activity above 20% has been proposed as indicative of exposure to anticholinesterase agents (Ludke et al. 274 

1975; Menéndez-Helman et al. 2015; Fajardo and Ocampo 2018). Different PTEs such as Cd, Co, Cr, Pb 275 

and Zn have been proposed as inhibitors of AChE (Elumalai et al. 2002; Frasco et al. 2005; Gaitonde et 276 

al. 2006; Dongxing et al. 2016; Hayat et al. 2017; Mkhinini et al. 2019), while Ni has shown 277 

contradictory results (Frasco et al. 2005; Hayat et al. 2017). Our results indicate that the exposure to both 278 

types of soils displayed neurotoxic effects on earthworms. 279 

Catalase is an important component of the antioxidant defence system, an antioxidant enzyme that 280 

regulates the amount of H2O2, protecting cells from their toxic effects (Ghribi et al. 2019). In our assay, 281 

CAT activity was significantly inhibited on S2 from the quarry area (ANOVA: F=5.719; d.f.=2, 15; p = 282 

0.0143; Fig. 2b), but their activity was significantly increased in the S3 sample from the lead/zinc mine, 283 

(ANOVA: F=9.789; d.f.=2, 12; p =0.003; Fig. 2b).  284 

In the earthworms exposed to quarry soils, other enzymes may have been activated to avoid an 285 

oxidative stress response (Zhang et al. 2009; 2013, Santana et al. 2018; Yin et al. 2018; Ghribi et al. 286 

2019). In fact, despite the inhibition of CAT activity, no significant increase in lipid peroxidation was 287 

recorded in these samples, as a reduction on the MDA concentration was observed (ANOVA: F=54.52; 288 

d.f.=2, 28; p < 0.0001; Fig. 2e). 289 

Earthworms exposed to the lead/zinc mine samples showed a different enzymatic activity profile with 290 

an increase in CAT activity, but only significant for S3 (Fig. 2b). These results suggest that earthworms’ 291 

exposure to high levels of Cd, Pb and Zn may induce an oxidative stress response and, consequently, 292 

catalase activation (Ghribi et al. 2019). Such response was able to prevent lipid peroxidation on exposed 293 

organisms, as lipid peroxidation levels were significantly decreased for exposed organisms (ANOVA: 294 

F=6.744; d.f.=2, 34; p = 0.0034; Fig. 2e). Although other enzymes of the anti-oxidant system may have 295 

been involved in oxidative stress response, this was not the case of GST, because no significant 296 

differences, between worms exposed to control and contaminated soils, were detected in our study (Fig. 297 
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2c). According to Grelle and Descamps (1998) or Dhainaut and Scarps (2001), GST activity in E. fetida, 298 

is not affected by PTEs, but that is not supported by other studies (e.g., Cataldo et al. 2011; Wang and Xie 299 

2014; Ojo et al. 2016). Therefore, there is still no consensus in the usefulness of GST as a biomarker of 300 

PTEs exposure. Similar results have been previously described by other authors for multi-metallic 301 

contamination on marine and terrestrial invertebrates (Rodríguez-Ariza et al. 1992, Labrot et al. 1996, 302 

Ramos-Gómez et al. 2008, Babić et al. 2016). In any case, our results, suggest that these variations could 303 

be indicative of compensatory antioxidant defence or adaptative mechanisms for long-term exposures and 304 

high PTE concentrations, as indicated by Labrot et al. (1996) and Babić et al. (2016). 305 

The energy metabolism was affected in earthworms exposed to the most contaminated sample from 306 

the quarry area (S2) (ANOVA: F= 5.465; d.f.=2, 15; p = 0.0165) (Fig. 2d), while the LDH activity was 307 

also reduced in earthworms exposed to both samples from the lead/zinc mine (ANOVA: F=42.31; d.f.=2, 308 

17; p < 0.0001) (Fig. 2d). These results suggest an increment in the anaerobic metabolism under PTEs 309 

stress (Diamantino et al. 2001, Bessa et al. 2016), that was more evident for samples from the lead/zinc 310 

mine (Cd, Pb, and Zn as primary contaminants) than for the quarry area (Co, Cr and Ni as primary 311 

contaminants). 312 

 313 

3.4. DNA damage 314 

The effect of PTEs exposure on DNA was evaluated through comet assay for earthworms exposed to both 315 

study areas (Fig. 3). An increase in DNA damage was observed for earthworms exposed to both areas, 316 

although with some differences. While no significant differences were observed between worms exposed 317 

to samples from the quarry area and control soils (ANOVA, F: 0.747; d.f.: 2,6; p = 0.5129) (Fig. 3), 318 

significant differences were detected between earthworms exposed to lead/zinc mine samples and those 319 

exposed to the control (ANOVA, F: 5.277; d.f.: 2,6; p = 0.0476) (Fig. 3). 320 
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321 

Fig. 2. Mean activity of acetylcholinesterase (a), catalase (b), glutathione S-transferase (c), lactate 322 

dehydrogenase (d) and lipid peroxidation (e), in E. fetida following 28 days exposure to control (OECD 323 

soil), quarry (S1 and S2) and mine soils (S3 and S4). The error bars represent the standard deviation. 324 

Asterisks indicate a significant differences to the control (p < 0.05). 325 
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Fig. 3. Mean DNA damage score values (arbitrary units), in E. fetida following 28 days exposure to 326 

control (OECD soil), quarry (S1 and S2) and mine soils (S3 and S4).. The error bars represent the 327 

standard deviation. Asterisks above the bar indicate a significant difference between the samples and the 328 

control (p < 0.05). 329 

Earthworms exposed to samples from the lead/zinc mine (Cd, Pb and Zn as contaminants) showed a 330 

higher frequency of cells with more considerable DNA damage (classes 2, 3 and 4) than organisms 331 

exposed to samples from the quarry area (Co, Cr and Ni) (Fig. 4). The differences observed between the 332 

soils analysed, may be explained by the differences of soil properties and available contents between both 333 

areas, as the bioavailable fraction of PTEs was higher for the lead/zinc mine area (up to 20%, although Pb 334 

showed up to 43% of Pb for soil S3) than for the quarry area (around a 12-17%, although Co showed up 335 

to 23% for S1). 336 

 337 
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Fig. 4. Percentage of coelomocytes with various levels of DNA damage in Eisenia fetida after exposure 338 

to control (OECD soil), quarry (S1 and S2) and mine soils (S3 and S4).. 339 

The higher concentration of PTEs observed in earthworms exposed to S3 and S4 may have increased 340 

oxidative stress, which in turn may have increased DNA damage (Reinecke and Reinecke 2004; Taze et 341 

al. 2016; Wu et al. 2016), however other factors may also be involved. According to Bigorgne et al. 342 

(2010) in a study performed with OECD soils spiked with Cr and Ni, soil properties can also have 343 

significant impact for the occurrence of genotoxic effects in E. fetida. The interaction between soil 344 

components and PTEs, depending on their nature and speciation, may change metal availability and their 345 

genotoxicity, as some metal species interact with DNA more efficiently than others, conferring them a 346 

higher genotoxic potential (Reinecke and Reinecke 2004; Manerikar et al. 2008; Bonnard et al. 2010). In 347 

this case, for lead/zinc mine (Fig. 4), DNA damage results may be related to Cd toxicity, rather than Pb or 348 

Zn, as indicated by Li et al. (2009), Muangphra and Gooneratne (2011) or Wu et al. (2012). These authors 349 

reported, for soils contaminated by Cd and Pb, that DNA damage was more severe under Cd exposure 350 

than Pb for earthworms (E. fetida and Pheretima peguana), under monometallic and combined exposure 351 

of these metals. Wu et al. (2012) indicated that the combination of Cd and Pb can give antagonist results, 352 

due to the competition of both elements by the same receptors at the biomembrane. Voua Otomo et al. 353 

(2014) described a similar situation with E. andrei exposed to an artificial soil spiked with Cd, Zn and 354 
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Cd/Zn, where Cd was more genotoxic than Zn, and that antagonist interactions were also indicated for the 355 

metal mixture. 356 

Regarding the response observed for oxidative stress biomarkers and the DNA damage observed, it 357 

was expected that the inhibition of CAT and LDH activities recorded in earthworms exposed to S2 from 358 

the quarry area (Fig. 2b, 2d), would increase DNA vulnerability to oxidative damage. However, that was 359 

not observed in this study. Also, the increment in CAT activity observed for S3 from lead/zinc mine was 360 

expected to contribute to the protection of DNA against oxidative stress in earthworms exposed to this 361 

mine soil. However, significant DNA damage was detected in the organisms exposed to S3 soil. These 362 

results suggest that alterations in CAT activity did not play a significant role in the protection of DNA. 363 

The lack of extensive DNA damage, in the organisms exposed to quarry soils (Fig. 4), despite the 364 

known genotoxicity of Cr and Ni (Bigorgne et al. 2010), may be explained by their low availability and 365 

also the presence of metals species that may not interact with DNA so efficiently. 366 

 367 

4. Conclusions 368 

In the previous works, sequential chemical extractions for both areas showed that the proportion of soil 369 

PTEs levels associated with exchangeable and organic matter fractions were very low, pointing for the 370 

low bioavailability of PTEs. However, in this study a mild salt extraction showed a clear difference 371 

between the quarry and mine soils, as the latter showed a higher chemical availability of Cd, Pb and Zn in 372 

parallel with higher contents of these metals in the body of earthworms. This was also coincident with the 373 

observed neurotoxic and oxidative stress effects, as well as with the detection of significant DNA damage 374 

in earthworms exposed to mine soils. The opposite was recorded for the quarry soils, as the low chemical 375 

availability was coincident with no oxidative stress and no DNA damages. Only neurotoxic effects were 376 

recorded in earthworms exposed to the quarry soils. BAF values never indicated a significant PTEs 377 

bioaccumulation, given the high concentration of these elements in the soils. However, this study, 378 

demonstrates that depending on the method, chemical availability may give a wrong perception of the 379 

risks posed by contaminated soils. Therefore, studies for risk assessment of abandoned mining areas 380 

should be performed using an integrated approach that includes chemical and biological analyses, to 381 

obtain a realistic perspective on the toxicity posed to exposed organisms. 382 

Complex contaminated environments such as abandoned quarry and mining areas, with a mixture of 383 

contaminants, chemical transformations, inherent environmental factors, and the potential for contaminant 384 
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interactions, can cause a myriad of effects on exposed organisms. Multibiomarker assessments should be 385 

carried out to improve the knowledge and reduce uncertainties on complex environments such as those 386 

that involve metal mixtures. 387 
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Highlights: 

- Sequential chemical extractions may underestimate the hazard of soils contaminated with PTEs.  

- A multibiomarker approach provides a better evaluation of PTEs bioavailability in complex soils. 

- BAF values may provide misleading conclusions about soils hazardous to earthworms. 
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