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Abstract

The aminophospholipids (APL), phosphatidylethanalem(PE) and phosphatidylserine
(PS)are widely present in cell membranes and lipopnsteGlucose and reactive oxygen species
(ROS), such as the hydroxyl radicaDH), can react with APL leading to an array of asédi,
glycated and glycoxidised derivatives. Modified ARlave been implicated in inflammatory
diseases and diabetes, and were identified aslangn@olecules in regulating cell death. However,
the biological relevance of these molecules hasbeain completely established, since they are
present in very low amounts, and new sensitive atkilogies are needed to detect them in
biological systems. Few studies have focused orcliagacterisation of APL modifications using
liquid chromatography-tandem mass spectrometry MM$IMS), mainly using C5 or C18 reversed
phase (RP) columns. In the present study, we peompsnew analytical approach for the
characterisation of complex mixtures of oxidiselycgted and glycoxidised PE and PS. This LC
approach was based on a reversed-phase C30 colombined with high-resolution MS, and
higher energy C-trap dissociation (HCD) MS/MS. RP-LC separated short and long fatty acyl
oxidation products, along with glycoxidised APL kiag oxidative modifications on the glucose
moiety and the fatty acyl chains. Functional isesnég.g. hydroxy-hydroperoxy-APL and tri-
hydroxy-APL) and positional isomers (e.g. 9-hydrgXyL and 13-hydroxy-APL) were also
discriminated by the method. HCD fragmentation grag allowed unequivocal structural
characterisation of the modified APL, and are ti@able into targeted MS/MS fingerprinting of

the modified derivatives in biological samples.

Keywords. phosphatidylethanolamine, phosphatidylserine, datxbn, glycation, mass
spectrometry, lipidomics
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I ntroduction

The aminophospholipids (APL), phosphatidylethanalem(PE) and phosphatidylserine
(PS), are main constituents of mammalian cell mamds and lipoproteins, displaying both
structural and signalling functions [1]. Upon oxXigla stress, reactive oxygen species (ROS) such
as the hydroxyl radical’@H), mediate the oxidation of APL, resulting in iGal oxidation of
unsaturated lipids fatty acyl chains and polar keaidh the formation of oxygenated derivatives
and truncation products, overall leading to a methof new oxidized or glycated/glycoxidised

molecular species [2—6].

Oxidised APL might lose the activity of the non-nifetl precursor or acquire new
biological functions. Oxidised PE and PS are kndaibeinvolved in critical events, such as cell
death and the regulation of the inflammatory respoiror example, it is known that hydroperoxy-
PE derivatives are involved in the mediation ofrdptotic cell death [7]. Also, oxidised PS,
including long chain oxidation products such asrbyg-PS and hydroperoxy-PS, contribute to
apoptotic cell recognition by macrophages [8,9].id»ed PE has been associated with a pro-
inflammatory phenotype in human peripheral blood,I1]. The role of oxidised PS in
inflammation was also described and was relatdabth pro-inflammatory and anti-inflammatory
outcomes [11,12,13]. Both oxidised PE and PS wetteatkedin vivo in various diseases. For
example, mono-oxygenated PE derivatives were dstdat fibrocystic bronchoalveolar lavage in
humans [14], and on activated platelets, monocji&$, and macrophages [16]. Hydroxy-PS,
hydroperoxy-PS and hydroxy-hydroperoxy-PS were astected in post-mortem human brains
with Alzheimer’'s disease [17], whereas PS oxidisedthe polar head were found in human

keratinocytes stimulated with oxidative stress [18]

Due to the presence of a free amino group in tHargeead, APL are also prone to form
covalent adducts with glucose [19]. Once formegcafied APL can be further oxidised, leading to

glycoxidised APL, also known as advanced glycoxatatend products (AGE) [20,21]. Some
3
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authors reported that glycated and glycoxidisedpRinotes lipid peroxidation via generation of
ROS [21,22]. Similarly to oxidized PE, glycated agigicoxidised PE were found to promote an
inflammatory phenotype in peripheral blood [10,23lycated and glycoxidised PE have also been
identified as factors modulating the expressionseveral proteins in rat cardiomyocytes [21].
Glycated PE was detected in the plasma of patiast®ciated with hyperglycemic conditions
[19,22]. Glycated and glycoxidised PE were alseded in red blood cells and plasma samples
from healthy and diabetic subjects [19,22,24-28, diabetic rats [29], and mitochondrial
membranes of several mammalian species [30]. Howewestly because of their low abundainte
vivo, the potential of oxidised, glycated and glycogatl APL as biomarkers for disease is still far

from being clarified and deserves to be explored.

Several studies suggest that there is a structinatg relationship for oxidised PE and
oxidised PS [7,8,10,14,15]. Indeed, the detectidnspecific isomers of modified APL in
inflammatory diseases could confirm their rolehe tlisease pathogenesis, validate biomarkers for
early diagnosis, and highlight new targets for ddegelopment. Thus, there is a need to develop
sensitive and selective liquid chromatography-tamaeass spectrometry (LC-MS/MS) platforms
that can lead to a more detailed characterisationanlified APL in complex mixtures or matrices.
As reviewed elsewhere, LC-MS/MS has been widelydusecharacterise oxidised PC [4,5], but
little work has been done to investigate modifi&l[B1—-35] and modified PS [36,20,37]. In studies
reporting the LC-MS/MS analysis of oxidised PE &%l columns packed with C5 [20,32,37], and
C18 [27,15,38,28,14] were the most commonly emmoyde first application of a C30 column for
the analysis of APL was proposed by Houjou and wbas [39], which have identified 110
species (PC, PE, PI and PS) from rat liver. Moreemdly, C30 columns were successfully
employed in the lipidomic analyses of human plaga@®, rat plasma and rat liver [41]. C30
reversed phase (RP) LC has not yet been used dy stodified APL. In the present study, we

propose an LC-MS/MS approach based on C30 RP-Lgh-f@solution MS identification and
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higher energy C-trap dissociation (HCD) MS/MS fbe tanalysis of the oxidised, glycated and
glycoxidised derivatives of four different APL stiards — two from the PE class and two from the
PS class. This method, herein tested for thetfiret on complex mixtures of modified APL, could

separate positional and functional isomers of @eadj glycated and glycoxidised PE and PS, which

showed characteristic HCD-type fragmentation pastéor each group of modified derivatives.

Materialsand Methods
Reagents/ chemicals

Phospholipid standards 1-palmitoyl-2-ole@gl3-glycerophosphoethanolamine (POPE), 1-
palmitoyl-2-linoleoylsn-3-glycerophosphoethanolamine (PLPE), 1-palmiteylébyl-sn-3-
glycerophosphoserine (POPS) and 1-palmitoyl-2-&ogl-sn-3-glycerophosphoserine (PLPS) were
purchased from Avanti Polar Lipids, Inc. (Alabast&L, USA) and used without further
purification. Acetonitrile, isopropanol, water, rhahol, ammonium formate (Optifth LC/MS
grade) and chloroform (LC-MS grade) were obtairmednf Fisher Scientific (Schwerte, Germany).
Formic acid (LC-MS grade) was purchased from Sigxthich (Sigma-Aldrich, Munich,
Germany). FeGland hydrogen peroxide £B,) (30%, w/v) used for the Fenton reaction were
acquired from Merck (Darmstadt, Germany). Glucasé ammonium bicarbonate were purchased

from Sigma-Aldrich (Saint Louis, MO, USA).
Phospholipid glycation and oxidation

Glycated PL samples were synthesised by addingtongy of glucose, dissolved in 150 pL
of methanol, to 0.5 mg of dry PL. The solution waixed thoroughly, and the reaction glass was

introduced in boiling KO with continuous magnetic stirring, for 45 minufg8,37].
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Non-modified and glycated phospholipids were oxadi®y Fenton reaction. Briefly, 128
of phospholipid previously dried under nitrogereatn were resuspended in 6215 ammonium
bicarbonate buffer (pH 7.4) containing 50 mMQ4 and 40uM FeCh. The suspension was
incubated in the dark at 550 RPM, 37 °C, durindn4Bhospholipids were analysed by C30 RP-LC-
MS/MS after 24h and 48h from the beginning of tleatén reaction. For the detailed experimental
procedures of PL oxidation, the reader is refetoegreviously published works in which the same

protocol was appliefl1,37]
C30 RP-LC-MSMS

The oxidation, glycation and glycoxidation produetere analyzed by RP-LC-MS/MS
performed on a Thermo Fisher Scientific UltiMateBBH UHPLC system (Thermo Fisher
Scientific, Germering, Germany) coupled to a Q HExaé“ HF hybrid quadrupole-Orbitrap mass
spectrometer (Thermo Fisher Scientific, Bremen,n@gry) using the conditions recently reported
by Criscuoloet al, with slight modifications [42]. The reaction mixé was diluted in methanol to
the final concentration of 250 ng/uL, and 5 pLétsolution were introduced into an Accucdte
C30 column (150 x 2.1 mm) equipped with 2.6 um ditenfused-core particles (Thermo Fisher
Scientific, Germering, Germany). The mobile phasassisted of KO /acetonitrile 50/50 v/v with
0.1% formic acid and 5 mM ammonium formate (phage aad isopropanol/acetonitrile/ @
85/10/5 viviv with 0.1% formic acid and 5 mM ammami formate (phase B). The solvent gradient
was set up with an initial ramp from 10% B to 86%@B20 min, followed by a linear increase to
95% B at 22 min, which was isocratically held fomdhutes. The percentage of B was decreased to
10% at minute 26.1 and maintained isocraticallyl uné end of the run at minute 32. The flow rate

was 300 pL/min.

During full MS experiments, the Q Exactive™ HF hybruadrupole-Orbitrap mass
spectrometer operated on a mass range comprisegdret/z 400 andnv/z 1600, with a 120000

resolution setting, an injection time of 100 ms andAGC target of 1€ in positive (electrospray
6
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voltage +3.5 kV) and negative (electrospray voltaé& kV) ion modes, through a polarity
switching method. The capillary temperature was Z30the vaporiser temperature was 300 °C, the
S-Lens RF level was at 35%, and the sheath gashenduxiliary gas flows were respectively 45

arbitrary units (AU) and 15 AU.

Tandem mass spectra of [M+Hind [M-HJ precursor ions were generated through polarity
switching and HCD fragmentation, with cycles cotisgs of one full scan mass spectrum plus five
data-dependent MS/MS, scans for each mode, witlis@ation window of 1m/z, a dynamic
exclusion of 10 seconds and an intensity threshb@l3E". Normalised collision energy™ (NCE)
was stepped between 10, 20 and 30 eV. The insttuoperated with the resolution setting of
15000, an injection time of 150 ms and an AGC tarmge 1E° throughout all the MS/MS

acquisitions.

Resaults

In this work, we have analysed oxidised PLPE, PLFRSPE and POPS, and their glycated
derivatives by reversed-phase liquid chromatographly high-resolution MS, and HCD MS/MS
fragmentation detection using a C30 LC column (C89MS). Lipid species were oxidised bQH
generated under Fenton reaction, as reported ingue studies [11,37]. Several types of oxidation
and glycoxidation products were analysed for th& fime using C30 LC-MS and characterised by
HCD MS/MS. These oxidation and glycoxidation praguincluded long chain products (mono-,
di- and tri-oxygenated derivatives), short chainducts (APL esterified with oxononanoic and
azelaic acid), and glycoxidised APL with polar headdation, i.g, APL adducted to end products
of glucose oxidation [44]. All the modified APL dgsed in the present study were summarised in

Table 1.

Table 1. The ion identities, measured (Exp'z), theoretical masses (Thewz), mass
measurement errors (Error ppm) and retention tiR€) (for the oxidation and glycoxidation

products of PE and PS analysed by C30 LC-MS.
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Phosphatidylethanolamine (X=E) Phosphatidylserine (X=S)
Derivative Exp m/g Theom/+z Error RT Exp m/g Theom/+z Error RT

[M+H]" | [M+H]" | [ppm] | [min] | [M+H]" | [M+H]" | [ppm] | [min]
PLPX-(9-OH) 732517 732.518| -1.4| 14.0 776.506/76.508| -2.6 12.8
PLPX-(13-OH) 732,517 732.518| -1.4| 13.8 776.506776.508| -2.6 12.6
PLPX-(9-O0H) 748,511 748.513| -2.7| 13.1 792.501792.503| -2.5 9.9
PLPX-(12-O0OH) 748.511 748.513| -2.7| 12.8
PLPX-(13-O0H) 792.501 792.503| -2.5 9.6
PLPX-(9-OH,14-OH) 7485111 748.513| -2.7| 11.3] 792.501792.503| -2.5| 10.3
PLPX-(12-OH,15-0OH) 748.511748.513| -2.7| 11.1 792.501792.503| -25 | 10.3
PLPX-(13-OH,15-0OH) 748511748513 -2.7| 11.1
PLPX-(9-OH,12-0OH,15-0OH) 764.506764.508| -2.6 9.6| 808.496808.498| -2.5 8.6
PLPX-(9-OH,12-O0H) 764.506764.508| -2.6| 11.2 808.496808.498| -2.5| 10.3
PLPX-(9-O0H,12-0OH) 764.506764.508| -2.6| 11.21 808.496808.498| -2.5| 10.3
POPX-(8-OH) 734532 734.534| -2.7| 13.4
POPX-(9-OH) 734532 734.534| -2.7| 14.8 778522778523 -1.3 13.6
POPX-(10-OH) 734.532734.534| -2.7| 14.8 778.522778.523| -1.3 13.6
POPX-(8-O0OH) 750.52Y 750.529| -2.7| 13.8) 794.517794.518| -1.3 12.3
POPX-(9-O0H) 750.527 750.529| -2.7| 13.8 794.517794.518| -1.3 12.3
PONPX 608.391 608.393| -3.3 8.8| 652.3§1652.383| -3.1 7.5
PAzPX 624.386 624.388| -3.2 8.1| 668.375668.377| -3.0 6.9
Glycated PLPX 878.576878.576| 0.0 | 17.4 922.569922.566| -1.1 15.8
Formyl-PLPX 744518 744518 0.0| 16.3
Carboxymethyl-PLPX 774.528774.529| -1.3| 16.2
Glycated PLPX-(9-OH) 894.570894.571| -1.1| 14.6
Glycated PLPX-(13-OH) 894.570894.571| -1.1| 14.3
Glycated PLPX-(9-OH,14-OH)| 910.56%010.566| -1.1| 11.1
Glycated PLPX-(12-OH,15-OH)910.565| 910.566| -1.1| 11.6
Glycated POPX 880.591880.592| -1.1| 18.1] 924.581924.581| 0.0 16.8
Formyl-POPX 746.534 746.533| 1.3 | 17.3 790.523790.523| 0.0 17.0
Carboxymethyl-POPX 776.544776.544| 0.0 17.2] 820.534820.534| 0.0 14.6
Glycated POPX-(9-OH) 896.586896.586| 0.0 | 15.4
Glycated PONPX 770.446770.446| 0.0 8.5
Glycated PAzPX 786.440786.440| 0.0| 7.8| 830.430830.430| 0.0] 6.2

Separation of oxidised derivatives of APL by C30 LC and characterisation by MS and

HCD MS/MS

A comparison of the total LC-MS base peak chronraimg of the oxidised APL is depicted
in Figure 1. Non-modified APL eluted at the highBst, between 15.1 - 17.5 min. Modified APL

showed different elution profiles and eluted atéoVRT when compared with non-modified APL:



172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

Mono-hydroxy derivatives (APL+0O, mass shift:16.995 Da) eluted with an RT between 12.9 -

14.9 min, hydroperoxy and di-hydroxy derivativesP(&20, mass shift: +31.990 Da) eluted

between 10.1 and 13.6 min, hydroxy-hydroperoxy &mtlydroxy derivatives (APL+30, mass

shift: + 47.985 Da), observed only in ox-PLPS amdPb.PE, eluted between at 8.6 min and 11.3

min. Short chain oxidation products were also oaobserved in ox-PLPS and ox-PLPE, as

previously reported [32,33,45]. These short charivdtives, esterified to an oxidatively cleaved

sn-2 fatty acid chain, eluted with the lowest RT vibe¢n 6.5 min and 8.0 min (azelaoyl derivative

at 6.9 min and 9-oxo-nonanoyl derivative at 7.5)mNon-modified APL esterified to linoleic acid,

along with their hydroxy, di-hydroxy and hydropeyoderivatives, eluted on average 1.05 minutes

before the correspondent species esterified tc al&d.

SHORT CHAIN
SHORT CHAIN PRODUCTS LONG CHAIN
PRODUCTS LONG CHAIN PLPE PRODUCTS
8.0 min PRODUCTS 7.0 min
624.\386 ] 175‘5]6 g-,2|? 668.375\
™ : T 8.6 mi PLPS
100 ox.PLPE YT 100 Jox.PLPS 4 808496 1
80 8.6 min| ™ 748.512 80~ 7.5min {10.01 min 15.1 min
D 4 608.391 o 60 1 652.381. ‘ | 792.501 760.511
) 6.5 min . 11.3 min ' 414 09 min 1. i ) ; *
C 404 454292 || [764.506 } 73 40 b 12.9min|
. | 004 782517 | Nl ;
® - N v H e ‘ C UL P 776.506] |
° 2 VLA A 2 ], = \‘ AM A T
S I 1 VAN F N T Y L WA e L
C 0 T 1 T T ] T T T T T 0 1 T Y T T T T T T T {1 T T T T ]
3 5 10 15 20 5 10 15 20
. 16.0 min
< e o 762.526
G>3 100 0x-POPE ‘l | 100 5 Ox-POPS ]
= |
= & . ‘ PoPE 80 “‘ POPS
[ 14.9 min ‘ |
< 60 734532 ‘ 60 G ‘\
TN 12.2 min 13,9 min |
_ 1somn ‘ 40 794516 778.522) ||
20 6.5 min RN U 20 |
454.292 N I ) | *
0+ —_— e —_— e 10 T — Ad ot~ N
5 10 15 20 5 10 15 20
Time (min)

Figure 1. Comparison of the LC-MS base peak profiles of PLPERS, POPE and POPS

subjected to Fenton reaction for 24 h, acquiregdasitive ion mode. *Uncharacterized impurities

eluting at 18 min.

The extractedon current (XIC) chromatograms of PLPS and itsmaxidation products,

acquired in positive ion mode, were plotted in Fgg@ as an example. As depicted in Figure 2, the

9



188  XIC chromatograms plotted for eaalvz of interest often resulted in more than one peak,
189  suggesting the presence of functional and positi@mners. Whenever the separation of these
190 isomers was possible using C30 LC, the HCD MS/Mé&:sp for each isomer were acquired, thus
191  enabling the analysis of their characteristic fragtation patterns and the identification of common

192  and specific product ions.
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(PAzPS)
50
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Figure 2. XIC chromatograms (x 5 ppm) of PLPS and its naidation products acquired

in positive ion mode.

Identification and structural characterisation of different isomers of oxidised APL by HCD-

MSMS

Oxygenated products having the same elemental ceittggg namely positional or
functional isomers, showed different retention bea €30 column. HCD MS/MS data acquired in
positive ion mode provided information about thpetyf oxygenated moieties and their position on
the fatty acyl chains. HCD MS/MS acquired in negation mode are not described in this

manuscript, since no additional information coudddbtained.

The hydroxy-PLPS ([M+H], m/z 776.506) eluted in two major peaks at 12.6 an8 ihdn,
corresponding to different positional isomers (Fegg2). The MS/MS spectra of the two isomers
(Figure 3), showed ions arising from the neutrasIgNL) of water (18 Da), and combined NL of

water and the phosphoserine polar head (185+18 @3bB2) (Table 2).

11
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Figure 3. HCD MS/MS spectra and proposed fragmentationvpays of hydroxy-PLPS

isomers ([M+H], m/z 776.506) that eluted at 12.6 min (A) and 12.8 (&)

In the MS/MS spectra of PLPS+O acquired at 12.6 (Rigure 3A), it is possible to see a
minor diagnostic product ion at'z 491.409 indicating the insertion of the hydroxpup at C-13
(13-hydroxy-PLPS isomer); in the MS/MS spectruniPePS+0 at 12.8 min (Figure 3B), the minor
product ion atm/z 467.370 pinpointed the hydroxy group at C-9 (9+byg-PLPS isomer). Product
ions observed ai/z 491.409 andnz 467.370 resulted from the cleavage between thieooar
bearing the hydroxy functional group and the unsadal carbon in vinylic position, after the NL of

the polar head (185 Da) [23,32].

Hydroxy-PLPE derivatives ([M+H] m/z 732.517) eluted in two major peaks at RT 13.8 min
and 14.0 min (Supplementary Figure 1). Both MS/M&ctra showed the NL of water (18 Da), NL
of phosphoethanolamine (141 Da) and the combinedofNWwater and the phosphoethanolamine
polar head (141+18 Da) (Table 2). In the MS/MS #jpedt was also possible to observe the

12
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diagnostic product ions that suggested the formaticthe 13-hydroxy-PLPEn{z 491.409) and 9-
hydroxy-PLPE (Vz 467.368) isomers, respectively for the isomers ¢hated at 13.8 min and 14.0

min (Supplementary Figure 4), as observed for PLPS.

Besides positional isomers, oxidation of APL casodkead to the formation of functional
isomers, which occurred for poly-oxygenated APLPBE20O derivatives ([M+H] nVz 792.491)
eluted in two minor peaks at RT 9.6 and 9.9 mird ane major peak at RT 10.3 min (Figure 1).
The MS/MS spectra acquired at 9.6 min and 9.9 mowed the NL of the serine polar head (185
Da) and the combined NL of the polar head and w@@3 Da) (Figure 4). In both MS/MS spectra,
it was possible to observe the NL of water (18 Baj the NL of HO, (34 Da), which confirmed
the presence of the hydroperoxy moiety. The minagrmbstic product ions at'z 491.410 (Figure
4A) andm/z 467.368 (Figure 4B) indicated that the compoundsng at RT 9.6 min and 9.9 min
were modified by a hydroperoxy moiety at C-13 an8,Cespectively. The MS/MS spectrum of
PLPS+20 at 10.3 min (Figure 4C) showed the NL 0% IZ3a, combined NL of water and
phosphoserine (203 Da), and multiple NL of watedaooles (18 Da and 36 Da), which overall
indicated the presence of a di-hydroxy-PLPS (T&bleAdditionally, the minor diagnostic product
ions observed at/z 507.403 andm/z 467.372 indicated the presence of the isomers512,1

dihydroxy-PLPS and 9,14-dihydroxy-PLPS, respectivebeluting at RT 10.3 min.

POPS+20 ([M+H], m/z 794.518) eluted in one broad peak at 12.3 mirpgBumentary
Figure 2). The MS/MS spectrum showed the NL eDF(34 Da), which confirmed the formation
of a hydroperoxy derivative (hydroperoxy-POPS), amtoduct ion formed by the combined NL of
H,O, and phosphoserine (219 Da), as base peak (Talblig@e 4D). This intense NL of 219 Da
was not observed in the MS/MS spectra of hydropefRIXPS (Figures 4A, 4B), nor in the MS/MS
spectra of di-hydroxy-PLPS (Figure 4C). The min@agdostic product ions at'z 453.538 anan/z
467.372 indicated the coelution of two positiorsaimers, 8-hydroperoxy-POPS and 9-hydroperoxy

POPS, respectively.
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Figure 4. HCD MS/MS spectra of di-oxygenated PLPS isomgvis-H] *, m/z 792.501) that

eluted at 9.6 min (A). 9.9 min (B) and 10.3 min @@ di-oxygenated POPS ([M+H}Vz 794.518)

that eluted at 12.3 min (D).
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The PLPE+20 derivatives ([M+H] mvz 748.512) eluted in four peaks at RT 11.1, 11.3,
12.8 and 13.1 min (Figure 1). The discriminatiordehydroxy-PLPE from hydroperoxy-PLPE was
confirmed by the same set of product ions repdidedLPS+20 (Table 2, Supplementary Figures
5 and 6). Using the same approach, the presenttee &-hydroperoxy positional isomer was also
confirmed at RT 13.1 min (Supplementary Figure B)e 12,15-dyhydroxy and 9,14-dihydroxy
isomers were also identified at RT 11.1 min an® Iiin (Supplementary Figure 6). All PLPE+20
and PLPS+20 species yielded a characteristic ardsa product ion formed by the combined NL

of water and the polar head (NL of 203 Da for P& #59 Da for PE).

The POPE+20 derivatives eluted in one broad pedlB& min (Supplementary Figure 3).
The MS/MS spectrum featured the NL of®] HO,, and the combined NL ofJ@, and polar head
(NL 175 Da) which confirmed the presence of hydrogg-POPE (Table 2, Supplementary Figure
7). The minor diagnostic product ionsnaiz 453.357 anan/z 467.372 indicated the coelution of the
8-hydroperoxy and 9-hydroperoxy positional isomassdescribed for hydroperoxy-POPS. Overall,
the same positional isomers were found to occurhjairoperoxy-POPS and hydroperoxy-POPE

and these were confirmed with a similar set of pobdons.

The PLPS+30 derivatives eluted in two major peaksRE 8.6 and 10.3 min
(Supplementary Figure 1). The MS/MS spectrum aeguat 8.6 min showed the NL of polar head
(185 Da), multiple NL of water molecules (18 Da @&lDa), and combined NL of phosphoserine
with 1 and 2 water molecules (203 Da and 221 Dspeetively), which overall indicated the
presence of a tri-hydroxy derivative (Table 2, FegbA). The diagnostic product ions @iz
467.372,m/z 505.387 andn/z 523.398 indicated the location of the hydroxy geat C-9, C-12,
and C-15, respectively (9,12,15-trihydroxy-PLPSmgo). The MS/MS spectrum acquired at 10.3
min showed ions arising from the combined NL ¢fOsland phosphoserine (219 Da) as the most
abundant product ions. The NL of phosphoserine Q8pwas also observed. The NL of®4 (34

Da), and HO, and water (52 Da) revealed that this isomer wagdroxy-hydroperoxy-derivative;
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the diagnostic product ions mz 467.372 pinpointed the hydroxy group at C-9; tlagdostic ions
atm/z 523.399 suggested the insertion of the hydropegoayp at C-12, whose loss of® would
generate the ions a¥z 505.387 (9-hydroxy-12-hydroperoxy-PLPS) (Figure.3Bowever, the data

does not exclude the formation of the isomer wlii lhydroxy group at C-12 and the hydroperoxy

group at C-9.
HiC
MR CN
NL 18 Da o OH OH 0 O.
HiC Z Z (o}
9,12,15-trihydroxy-PLPS
RT 8.6 min -203 Da [M+H]*  we
® \
o | -185 Da OH |OH |OH
2 80 467.372\\52\3.398 \ 623.487 HoC A7 e oo,
2 60 - gg; 5)?9'-,‘ 36 Da 8D m/z 467.372
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Figure 5. HCD MS/MS spectra and proposed fragmentationvpayb of tri-oxygenated

PLPS isomer ([M+H], m/z 808.496) that eluted at 8.6 min (A) and 10.3 niih (

PLPE+30 derivatives ([M+H] m/z 764.506) eluted in two peaks at RT 9.6 and 1112 mi
(Supplementary Figure 1). The first peak to el@® (nin) was 9,12,15-tri-hydroxy-PLPE, which
MS/MS spectrum included the same set of product that were analysed for 9,12,15-tri-hydroxy-
PLPS (Table 2, Supplementary Figure 8). The iotirejuat 11.2 min was assigned as a 9-hydroxy-

12-hydroperoxy-PLPE, which also yielded the sames idescribed above for 9-hydroxy-12-
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305

hydroperoxy-PLPS. The same positional isomers (25t&i-hydroxy- and 9-hydroxy-12-

hydroperoxy-) were formed for both PLPE+30 and PLKS.

Each of the short chain oxidation products of P& BB eluted in one peak, as observed for
1-palmitoyl-2-oxononanoyl-PS (PONPS), 1l-palmitoy&2elaoyl-PS (PAzPS), 1-palmitoyl-2-
oxononanoyl-PE (PONPE) and 1-palmitoyl-2-azeladyl{PAzPE), that eluted at 7.6, 7.0, 8.7 and
8.1 min, respectively (Figure 2, Supplementary Fegl). The elution of each species in one peak
suggests the presence of only one short chainatemvisomer. The MS/MS spectra of these short
chain products essentially showed the NL of theapbkad groups, thus hindering any additional
information on the structure of the oxidatively aled fatty acid (Supplementary Figure 9).
However, the MS/MS spectra of PONPE and PONPS sthalwe NL of HO, indicating the

presence of the terminal aldehydic function.

Table 2. Summary of the most important diagnostic prodanos observed in the positive

ion mode HCD MS/MS spectra of oxidised PS and PE?S?and PLPE were chosen as an

example.
PLPS PLPS PLPS PLPS PLPS
(OH) (OOH) (OH), [(OH)(OOH)|(OH)3 (m/z
(m/z776) | (m/z792) | (M/z792) | (m/z808) 808)
NL polar head group (-185 Da) m/z 591 m/'z 607 m/'z 607 Nz 623 m'z 623
NL H,O (-18 Da) mz 758 mz774 nmz774 m'z 790 m'z 790
NL H,0,(-34 Da) m/z 758 miz 774
NL n H,O (h=2-3, -36 Da, -54 Da) n/z 756 mz772
NL H,O + H0O,(-52 Da) m/z 756
NL (polar head group + @) (-203 Da) m/z 573 m/z 589 m/z 589 m/z 605 m/z 605
NL (polar head group + #,) (-219 Da) m/z 589
m/'z 467
m/z 467 m/z 467 m/z 467 m/z 467
NL polar head group + Cleavage C9'C10(c9-0H) (C9-00H) | (C9-OH) (C9-OH or (C9-OH)
C9-O0H)
m/z674.4
Cleavage C12-C13 (C12-OH)
m/z 523
NL polar head group + Cleavage C12-G1 2491 mz491 Mz 507 (C12-OH or mz523

13-OH) | (C13-O0H)| (C12-OH) (C12-OH)

C12-O0H)
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307

308

309

310

311

312

313

314

315

316

m/z 505

l(\l:liz(pgllagr head group + 40) + Cleavage (C12-OH or ((T{ZZSSSH)
C12-O0H)
NL polar head group + Cleavage C13-G14
PLPE- PLPE- PL PE- PLPE- PLPE-
(OH) (OCH) (OH),  |(OH)(OCH)|  (OH)s
(m/z732) | (M/z748) | (M/z748) | (m/z764) | (m/z764)
NL polar head group (-141 Da) m/z 591 m/z 607 m/z 607 m/z 623 m/'z 623
NL H,O (-18 Da) miz 714 m/z 730 m/z 730 m/z 746 m/z 746
NL H,0,(-34 Da) m/z714 m/z 730
- m/z 728,
NL n H,O (n=2-3, -36 Da, -54 Da) miz712 mz710
NL H,O + NL H,0,(-52 Da) miz712
NL polar head group + NL 4@ (-159 Da)| m/z573 m/z 589 m/z 589 m/z 605 m/z 605
NL polar head group + NL 4@, (-175 Da m/'z573 m/z 589
m/'z 467
m/z 467 m/z 467 m/z 467 m/z 467
NL polar head group + Cleavage C9-C10(C9_OH) (C9-00H) | (C9-OH) (gg_—ggl_%r (C9-OH)
Cleavage C12-C13 m/z630.4 | m/z630.4
2491 | mz507 | mizso7 | 2523 | 1y;503
NL polar head group + Cleavage C12-G1 13-OH) | (C12-O0H)| (C12-OH) (C12-OH or (C12-OH)
C12-O0H)
m/z 505
NL (polar head group + @) + Cleavage m/z 505
C12-C13 (C12-OH orl (15 oy
C12-O0H)
m/z521
NL polar head group + Cleavage C13-G14 (C13-O0H)

Separation of glycoxidised derivatives of PLPE, PLPS, POPE and POPS by C30 RP-LC

The XIC of the glycoxidised derivatives of PLPE aitgd in positive ion mode were plotted

in Figure 6. All the glycoxidation products wereufa to elute earlier than non-modified PLPE,

indicating that glycoxidation always led to an i&@sed polarity of the modified APL. Glycated

PLPE (wz 878.576), along with the two glycoxidation produdtearing an oxidatively cleaved

glucose moiety on the polar head/4 744.518 andwz 774.528) eluted 0.3 min, 1.1 min and 1.2

min earlier than the non-modified PLPE, respecjiv@lycoxidised PLPE products with oxidation

on the fatty acyl chains and an intact glucose mdi®/'z 894.570,m/z 910.565,m/z 770.445 and

Mz 768.440) eluted up to 10 min earlier than the matified PLPE. The glycoxidised derivatives

of PLPS, POPE and POP$owed this same trend of RT (Table 1).
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317
318 Figure 6. XIC chromatograms (5 ppm) of PLPE and its maiypcgxidation products
319 acquired in positive ion mode.
320
321 Identification and structural characterization of glycoxidised APL with oxidation in the
322 polar head.
323 Several glycoxidised derivatives of APL with oxidet in the polar head were identified, as

324 summarised in Table 1. These glycoxidation prodcatsbe formed by the oxidative cleavage of
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338

339
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343

the glucose moiety adducted to the amino grougshtf, or by the reaction of the products derived
from glucose oxidation (e.g. glyoxal or methylglabxwith the free polar head group of APL. In
this last case, the glycoxidised derivatives aferred to as glucose-derived oxidation products.
Regardless of the mechanisms involved, these dixidiation products cannot be discriminated by

MS [20].

As described previously, it was not possible tontdg glycoxidation occurring in the polar
head for PLPS [37]. For PLPE, glycoxidised productedified in the polar head were only
identified after 48 h of oxidation. Finally, glycakzed polar head products were identifiable for

POPE and POPS after 24 h Fenton oxidation (Table 1)

The MS/MS spectra acquired in positive and negatwemode of carboxymethyl-POPE,
formed by the oxidative cleavage between C-2 artl €@-glucose, are shown in Figure 7, as an
example of the fragmentation pattern of these gligised APL. The only product ion observed in
positive ion mode MS/MS spectrum (Figure 7A) wasrnfed by the NL of the
phosphoethanolamine polar head adducted to theoxoariethyl moiety (199 Da). The MS/MS
spectrum in negative ion mode showed a NL of vilygige (101 Da) (Figure 7B); the carboxylate
anions of the non-modified fatty acyl chains colle observed (’RCOO and RCOQ). The
combined NL of vinylglycine with RCOOH and RCOOH was also observed mtz 417.241 and

m/z 391.226, respectively (Figure 7B) (Table 3).
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Figure 7. HCD MS/MS spectra and proposed fragmentationvpayh of the glycoxidation
product of POPE formed by the oxidative cleavagevben C2 and C3 of glucose (carboxymethyl-

POPE) that eluted at 17.2 min: [M+Hjvz 776.544 (A); and [M-H] m/z 774.529 (B).

Identification and structural characterisation of glycoxidised APL with oxidised fatty acyl

chains.

Glycoxidized APL bearing the oxidative modificationthe fatty acyl chains, but not in the
polar head groups, were identified in glycated POPEPE and PLPS. The glycoxidised products
of POPE esterified with oxygenated fatty acyl ckaoould be identified only after 48 h Fenton
oxidation. On the other hand, these derivativeseveatensively formed during the glycoxidation of
PLPE. Glycoxidized derivatives of POPS were noteobsd, while glycoxidation of PLPS
exclusively led to the formation of glycated PAzPRable 1). The positive ion mode MS/MS
spectrum of glycated PAzPS, acquired at RT 6.2 nshpwed the NL of glycated
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phosphoethanolamine polar head (303 Da) and NL aienv In negative ion mode, the MS/MS
spectra showed the carboxylate anions arising fpaimitic acid (RCOO) and azelaic acid
(R,’COQ), along with products ions arising from the NL gificose (162 Da), and the NL of

C4HsO4 (120 Da) (Table 3) [46,47].

Glycoxidised PLPE with one hydroxy group on lincleicid ((M+H], m/z 894.571) eluted
in two peaks at RT 14.3 and 14.6 min (Figure 6) MS/MS spectrum of the derivative at 14.6
min (Figure 8A) showed four NL of water moleculéBiree of these NL were due to the
fragmentation of the non-modified glucose moiety,§&], and the other NL of water was therefore
due to the presence of the hydroxy moiety on thigy facyl chain. The NL of glycated
phosphoethanolamine (303 Da), and glycated phosiplioglamine plus O (321 Da) were also
observed. The product ionsratz 467.371 located the hydroxy group at C-9 of thelgoyl chain,
as reported for hydroxy-PLPE. The MS/MS spectrunthef glycoxidised PLPE derivative at 14.3
min (Figure 8B) showed the same product ions desdriabove for the other isomer, but the

presence of the ion a¥z 491.409 located the hydroxy group at C-13 (Table 3

A glycoxidised derivative with di-oxygenated fatigyl chain was identified exclusively for
PLPE, glycoxidised PLPE+20 ([M+H]nvz 910.566), which eluted in several peaks between RT
10 and 12.5 min (Figure 6). The MS/MS spectrumlat Inin (Figure 8C) showed two NL of water
(18 Da, 36 Da), one combined NL of®O and water (84 Da) and a NL of the glycated pl&ad
(303 Da). The product ion formed by the combiness lof the glycated polar head and water (321
Da) was the base peak. Altogether, the fragmemtgdaitern of glycoxidised PLPE+20 was very
similar to the one reported above for PLPE+20 ($ampntary Figures 5 and 6). The presence of
the consecutive NL of water suggested the formatiba glycoxidised PLPE with two hydroxy
groups on the linoleic acid chain. The absence ML af H,O, (34 Da) excluded the presence of a
hydroperoxy group. The product ions mfz 467.374 located the first hydroxy group at C9,

indicating the formation of the 9,14-dihydroxy-isem The MS/MS spectrum of glycoxidised
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PLPE+20 at 11.6 minutes showed essentially the saodhict ions as described earlier. However,
the presence of the product ionsnalz 507.405 suggested the formation of the 12,15-diwyd
isomer (Figure 8D). The same isomers (9,14-dihygliemd 12,15-dihydroxy) were observed for di-

hydroxy-PLPE (Supplementary Figure 6) and di-hygr&% PS (Figure 4) (Table 3).
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Figure 8. HCD MS/MS spectra and proposed fragmentation vpayk of glycoxidised
PLPE + 10 isomers ([M+H] m/z 894.570) that eluted at 14.6 min (A) and 14.3 (@hand of the

glycoxidised PLPE + 20 isomers ([M+HJwz 910.565) that eluted at 11.1 min (C) and 11.6 min

(D).
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Table 3. Summary of the most important diagnostic prodans observed in the positive

ion mode HCD MS/MS spectra of glycoxidised PLPE.

Formyl-PLPE | Carboxymethyl- Glycated
GL{CSEw (Glucose cleavage | PLPE (Glucose PfllayECigj_') PL PE-(OH-
C1-C2) cleavage C2-C3) OH)
NL modified polar
head group i mz 575 mz575 mz575 mz 591 mz 607
NL H,O
(18 Sa) Mz 860 mz876 mz892
NL nH,0 (n=2-3, -36 mz858, | mz874,m7z
Da, -54 Da) m/'z 840 858
(1) NL modified polar
head group mz 573 m/z 589
(2) NL H,O
(1) NL modified polar
head group m'z 467 m/z 467 (C9-
(2) Cleavage C9-C10 (C9-OH) OH)
(1) NL modified polar
head group m'z491 | m/z507 (C12-
(2) Cleavage C12-C13 (C13-OH) OH)

Discussion

In the present work, C30 RP-LC-MS and HCD MS/MS evesed for the first time to
separate and identify the structural and functigmaup isomers of oxidised and glycoxidised APL.
The structural identification was based on the ersss measurements, RT, and specific fragment
ions formed under HCD MS/MS. The retention of mdiflipids on the C30 column changed
clearly with the type of modification, and in soesses with the location of the modifications along
the fatty acyl chain. Long chain oxidation producfsAPL eluted earlier than non-modified APL,
and short chain oxidation products eluted everiegahan long chain products. These observations
were in accordance with previous studies on RP-L.Gxaised PE [32] and PS [37]. As expected,
the insertion of more than one oxygen progressivedakened the interaction of the oxidation

product with the C30 column. Several oxygenatedvdieves (APL+ nO, n= 1-3), were also
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identified for APL including the APL bearing linateacid. It is known that oleic acid is much less
prone to radical oxidation than linoleic acid arttler polyunsaturated fatty acids because it lacks
bis-allylic carbons. However, oleic acid has twiylal positions that can react with radicals sush a
'OH, and oxidation products of oleic acid esterifiedPC [48], PE [45] and PS [20] were identified
previously. In the case of linoleic acid esterifidphospholipids, the presence of both bis-allylic
and allylic positions allows the abstraction of lpgkens from more than one carbon, and thus the
oxidation in different positions in the same fa#tgyl chain. Poly-oxygenated APL esterified to

linoleic acid were already reporteuvitro [32] and in apoptotic cells [9].

The separation of functional isomers was achiewethis work, with hydroxy derivatives
eluting earlier than hydroperoxy APL. Previouslygrbingues et al. [32] attained the separation of
hydroperoxy-PLPE and di-hydroxy-PLPE on C5 LC-MS/NL&ter, C5 RP-LC was again proposed
for the chromatographic separation of two isobahort chain oxidation products of PS, namely a
gamma-hydroperoxy aldehyde and a gamma-hydroxyogglio acid [37]. Also, the present C30
LC method attained the separation of positionaies of several oxidised APL, for example, 9-
hydroxy-PLPS and 13-hydroxy-PLPS, or 9,14-dihydr@YPE and 12,15-dihydroxy-PLPE. A
similar result has never been achieved during tiatyais of oxidised APL with C5 columns, but
one study reported the separation of six positis@hers of hydroxy-SAPE using a C18 column

[49].

For glycoxidised APL, the oxidative cleavages odagyin the glycated polar head slightly
increased the polarity of the derivatives, whichtedl approximately 1 minute earlier than the
correspondent non-modified APL. When the oxidatiaffected the fatty acyl chain, the
glycoxidised derivatives eluted up to 10 minutedieathan the non-modified APL. Glycoxidised
APL with a truncated fatty acyl chain were the mpskar derivatives, eluting with the lowest RT.
Other studies with C5 LC-MS analysis of both glyclised PE [33] and PS [37] observed a similar

trend. In these studies, all the derivatives mediin the fatty acyl chains eluted at lowest RT whe
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compared with the derivatives modified at the gheconoiety or in the polar head. However,
neither of these studies succeeded to resolveiguaiisomers. Notably, the C30 column achieved
the separation of positional isomers of glycoxidigeLPE bearing oxidative modifications at

distinct positions of the fatty acyl chain.

In this work, specific HCD-MS/MS fragmentation patis were identified for modified
APL, as summarised in Figure 9, that illustratedtlaé fragmentation pathways observed for
oxidised and glycoxidised PE and PS. The NL of watel HO, discriminated functional isomers
as poly-hydroxy-APL and hydroperoxy-APL, as alreadgorted in other studies carried out using
CID as fragmentation method [32,45,48]. Fragmentsng from the NL of water and polar heads
(159 Da and 203 Da for PE and PS, respectively)ewd6/MS signatures characterising all
hydroxy derivatives. For these molecules, the Nithef polar head (141 Da and 185 Da for PE and
PS, respectively) originated the most abundantniexg ions, as already observed in previous
reports that used CID [5,44]. However, in the calsdi-hydroxy and hydroperoxy derivatives, the
base peak in the MS/MS spectra arose from the ceedNL of water and polar heads (159 Da and
203 Da for PE and PS, respectively), which appeabd intense MS/MS signatures of all di-
oxygenated derivatives of APL. Finally, the comliriéL of H,O, and polar head (175 Da and 219
Da for PE and PS, respectively) were the most amin®1S/MS fragments in all hydroxy-
hydroperoxy APL. The assignment of the positiorthef oxygenated moieties defining positional
isomers was always achieved using the informatremfthe positive ion mode fragmentation
between the oxygenated carbon and the carbon iegdlv the double bond in a vinylic position

[23,32].

Glycoxidized APL with an oxidatively cleaved glueosioiety showed specific positive ion
mode HCD MS/MS fragment ions, formed by the NL tnodified polar head [33,35]. Glycated
PE and glycoxidised PE modified only at the fattylachains showed positive ion mode MS/MS

characteristic fragment ions arising from the NLgbfcated phosphoethanolamine (303 Da), along
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456  with several NL of water [21,33]. The fragmentatipatterns that allowed the assignment of the
457  position of the functional group along the fattyylachain were the same in oxidised and

458  glycoxidised APL (Tables 2 and 3).

459
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461 Figure 9. A comprehensive overview of all the fragmentatmathways observed and described in the preserk feoroxidised and

462  glycoxidised PE and PS. The fragmentation pathwefyke oxidative modifications occurring on the atnsated sn-2 fatty acyl chain (shaded red
463  box) are summarised into dashed red boxes (A-Dg. flfiigmentation pathways of the glycoxidative migdiions occurring on the polar head

464  (shaded green box) are summarised into dashed goe@s (E-K). A, NL of HO and fragmentation of the C12-C13 bond (occurgositive ion
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mode for 13-hydroxy-PLPE and PLPS after the NLhef polar head). B, NL of ¥ and fragmentation of the C9-C10 bond (occursositve ion
mode for 9-hydroxy-PLPE and PLPS after the NL &f plolar head). C, multiple NL of 8@ and fragmentation of the C9-C10 and C12-C13 bonds
(occurs in positive ion mode for 9,12,15-trihydreRiPE and PLPS after the NL of the polar head)ND of H,O and HO, and fragmentation of
the C9-C10 and C12-C13 bonds (occurs in positivemmde for 9-hydroxy-12-hydroperoxy PLPE and PLB&] 12-hydroxy-9-hydroperoxy-
PLPE and PLPS, after the NL of the polar headNIEof the phosphoethanolamine and phosphoserira pelads (occurs in positive ion mode for
PE and PS species, respectively). F, NL of theagat polar head (occurs in positive ion mode fgcatied PE species and glycoxidised PE species
with oxidative modifications on the fatty acyl chg). G, NL of modified polar head (occurs in pastion mode for glycoxidised PE after the
oxidative cleavage of the glucose moiety) (C1-G2)NL of modified polar head (occurs in positivenimode for glycoxidised PE after oxidative
cleavage of the glucose moiety) (C2-C3). I, NL hfcgse (occurs in negative ion mode for glycatedaR& PS and glycoxidised PE and PS species
with oxidative modifications on the fatty acyl chg). J, NL of 2-formamidoacrylic acid (occurs irgagve ion mode for glycoxidised PS after the
oxidative cleavage of the glucose moiety) (C1-@2)NL of vinylglycine (occurs in negative ion modier glycoxidised PE after the cleavage of

the glucose moiety) (C2-C3).
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The potential of C30 LC-MS and MS/MS for the sepiaraand identification of isomers
of modified APL can be further explored to screen these low abundant lipids in complex
biological samples. Some of the oxidation produdésntified herein were already detecied
vivo and reported to have many specific biological solBifferent positional isomers of
oxidized PE (5-hydroxy, 12-hydroxy and 15-hydroXgymed by lipoxygenase (LOX) were
detected by LC-MS/MS in activated monocytes/macagels [14—-16,50,51], neutrophils [50—
52] and platelets [15,50,51,53,54)d were correlated with blood coagulation [54]dulation
of inflammation [14], and ferroptosis [7], suggestia structure-activity relationship. Radical-
driven oxidation of APL was also reported to ocguthe retina from rats [31], lung from mice
exposed ta radiation [43], and brain from humans with Alzherr's disease [17]. Also, radical
oxidised PE and PS were associated with apoptelicleath [9,55] and with several functions

resulting in a multifaceted modulation of the imrawgystem [11-13,56,57].

Conclusions.

Oxidised and glycoxidised PE and PS represent apgod molecules which biological
relevance has been increasingly reported overatsteybars. However, their analysis still faces
several difficulties, such as the large structw@inplexity of isomers of modified APL, and
their low relative abundanga vivo. In this work, an LC-MS/MS analytical platform cpnsed
of C30 RP-LC, high-resolution MS, and HCD MS/MSijtable for lipidomic studies, was
applied for the analysis of oxidised and glycoxadisAPL. This LC platform accomplished the
separation of non-modified APL from oxidised angogixidised APL, along with with the
separation of functional isomers, and the discratiom of positional isomers of modified APL,
solving the issue of co-eluting species that afféctnany other previously tested RP-LC
protocols. Fragmentations involving the NL of waterd HO, were MS/MS signatures that
confirmed functional group isomers of oxidised ghgtoxidised APL. Specific fragmentations

occurring along the oxidised fatty acyl chains wieidicators of the position of the functional
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group. Overall, the results gathered herein areomapt in the lipidomic analyses of biological
samples and in the development of new targeted ISIM® methods that can perform highly
accurate, selective and sensitive analysis of sedliand glycoxidised APL in biological and

clinical samples.
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Analysis of oxidised and glycated aminophospholipids. complete structural characterisation

by C30 liquid chromatography-high resolution tandem mass spectrometry

Highlights

The new highlights are:

C30 LC-MS dlows long- and short-chain oxidation products of APL to be separated
C30 LC-MSallows glycated APL, oxidised on fatty acids or glucose, to be separated
C30 LC-MS resolved functional/positional isomers of oxidised and glycoxidised APL

HCD-MS/MS fragmentation confirmed the identity of each isomer after LC separation



