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Abstract: Floods are one of the natural disasters not ptabén affecting people and causing
significant damage to economic activities and stiactures. Thus, it is of foremost importance
to, within a disaster risk-reduction strategy, depea useful flood forecast and alert system to
prevent people from suffering flood disasters aritiigate its consequences. This article presents
the Flood Forecast and Alert System in operatiomadle since 2019 for the Agueda river basin
located in Portugal’s centre region. This systeteafinologically advanced, differing from others
since it uses a coupled real-time hydrologic and [Bdrodynamic modelling supported on
numerical weather prediction and a high-resolutitigital terrain surface model. The system
components are automatically activated and linked: rainfall forecasting model (WRF), ii) a
hydrological model (HEC-HMS), iii) a hydraulic mddgHEC-RAS 2D), and a iv) Web-GIS
platform. The hydrological model is forced with égast precipitation for the next three days and
updated every six hours, which is crucial to geteepae-flood hazard maps. It also includes a
Web GIS service for flood hazard dissemination lalée for civil authorities and citizens. A
flood forecast and alert system is highly relevémtthe community since, by enhancing
knowledge, it provides the authorities responsiiole assessing and managing the flood risk,
responsiveness to disasters and timely decisionagakhich is even more evident in the context

of climate change.
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1 Introduction

Flood events are one of the natural disasters mvdhe impact, affecting people and causing
casualties and high economic losses [1-4], whasguBncy is likely to increase globally [3, 5-8].
The European Parliament and Council, Directive 2600/EC on the assessment and management
of flood risk, requires state members to prepavedihazard and risk maps. Nonetheless, despite
the potential that these maps have to help idengfyadverse consequences associated with
different flood scenarios, the reality is that wheflood event occurs, often citizens barely have

time to save their goods or their lives.

Hydrometeorological forecasting is a complex sogetiat links numerical meteorological,
hydrological (rainfall-runoff), and hydrodynamic aels (flood routing) to forecast the water
levels that a flood is expected to reach at pderdocations and times [9]. Hydrological models
are simplified conceptual representations of thérdipgic cycle and are widely used to produce
streamflow forecasts. Hydrodynamic models represeater flow motion using the so-called

Navier-Stokes equations, which describe fluid satsts’ motion in physics [10].

The hydrological models can use as input rainfatadrom various sources like rain gauges
network, RADAR or simulated precipitation from numcal weather models [11]. Weather
forecast is a key component of any forecastingesydtecause it provides timely flood forecast
by estimating river flows with sufficient lead-timeligh-resolution weather prediction models
are now being coupled with hydrological and hydroalpic models to provide flood hazard
forecast assessments at longer lead times incaegbiato operational flood forecasting systems
[12] such as the European Flood Awareness Systed3h §hd the NOAA’s Operational
Hydrologic Ensemble Forecast Service [14].

Flood forecast, alert and response are essentmpa@aoents of modern flood preparedness
systems. They fall into the category of non-streadtélood protection measures, saving lives and
reducing material losses and human suffering [I5abidl are essential in a decision support
system for operational flood hazard management 1988, Forecast and alert systems can be
considered good-practice for Disaster Risk Rednc{ibRR), and their importance has been

highlighted in global policies like the Sendai Feamork for Disaster and Risk Reduction 2015-
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2030 [20]. Incorporating forecasting and alert syt into DRR strategies increase community

resilience to natural disasters empowering citizerscommunities to respond appropriately.

Flood forecast and alert systems are increasingjtygodeveloped and used worldwide [21].
Frequently, an Early Warning System (EWS) is baiitflood projections based on either real-
time automatic water level monitoring [22], reah@ hydrologic modelling [11, 13, 23-25], real-
time hydrodynamic modelling [26, 27] or real-timgdnologic and hydrodynamic modelling [28,
29] with a lead time depending on the basin hydjickal response. Several systems are based on
meteorological weather forecast [13, 25, 27, 29,08®n using high-resolution altimetric data as
Light Detection And Ranging (LIDAR) [27, 28]. TheoRuguese EWS with the designation
SVARH [22] and available on (https://snirh.apamigept/index.php?idMain=2&idltem=5.1)
does not contain weather forecast or flood modgllinstead, the flood forecast is made in real-
time as they rely on water levels observations. Dedt-FEWS [31] provides aoperational
forecasting platform through which different modsldes can be brought to the operational
domain. These models can then be linked with dapited from various external databases and
many different file formats. This platform has aris community in several countries of the

world.

There are several zones regularly flooded in Paffugften with severe consequences.
Agueda, a small town in Portugal’s centre regioith & drainage area of 408 kris included in
the national list of the critical flooded zones J[3Bs urban area, crossed by the river with the
same name, is one of the areas with the highesbeuof flood occurrences causing property
damage and even human losses [33]. Agueda murifgipels made, in 2015, a considerable
investment of around two million euros in the comstion of a secondary river channel to divert
the river flow. This channel on the left bank o thgueda river has an extension of 791 m, 2.68
m depth and a 22 m width. It was designed to prefleods for a 20 years return period (231.06
m>/s) together with the main river. Regrettably, id dot totally mitigate the impact of flooding.
Three of the most significant flood events from &t 15 years affected the region in February
2016, February 2019 and December 2019. The shaxdittime between the rain and the flood
makes it very difficult to issue early warningstake safety measures once the rain starts. The
best option is to forecast the possibility of aofldbefore it occurs, enabling defensive actions to
be taken well in advance. Thus, this paper’'s majeaive is to present the Flood Forecast and
Alert System (FFAS) developed to forecast well dvance fluvial floods in the Agueda river
basin using meteorological forecasting. The mawvaathge of this system is that it coupled real-

time hydrologic and 2D hydrodynamic modelling suped on Numerical Weather Prediction
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(NWP), a high-resolution digital terrain surfacedab and the flood forecasts are disseminated
through a Web-Gl8pdated every 6 hours

2 Study area and data

The study area is located in Agueda municipalitghie centre of Portugal (Figure 1a). It
corresponds to 560 ha, crossed by a stretch drf.8f the River Agueda, including Agueda city
centre and the artificial channel constructed taate the riverbed water. The area was delimited
considering the 100 years return period flood extiefined by the National Water Authority and
extended to include the steep slopes ensuringuth@dssible flood extent. The river is mainly
surrounded by agricultural fields bordering hiljsés that are typically steep, with angles of 16—
25% and >25% in, respectively, 9 and 14% of thex 484]. The river margins have riparian
vegetation with an elevated density, consistingreds such as the alder, elm, oak, chestnut, and
shrubs such as elderberries, holly, laurel, blad&raheather, and gorse. The study area elevation

varies between 1 to 70 m (Figure le).

The river basin contributing to the study area piesi 408 krfy and the elevations of the
catchment range between 10 and 1070m (Figure tibyréa, crossed by Agueda River, has the
highest number of flood occurrences facilitated $srra do Caramulo steep slopes, where
Agueda River rises, having mainly large impervialBivial areas in its entire catchment.
According to the Koéppen e Geiger climatic index tkgion is classified as Csb (Warm-summer
Mediterranean climate). The mean annual rainfall880mm.y*, with a strong interannual
variability ranging from 1,100 to 2,760m.y *. There is a strong seasonal contrast with 70% of
the rainfall in autumn and winter. Stormflow genenais driven by saturationexcess in the wet
season due to higher rainfall amounts and wettethogent conditions. The land use of the
catchment consists of eucalypts and maritime pioest (76%), small agricultural fields (10%),
scrub (9%) and urban areas (4%) (Figure 1c). Sodsgenerally shallow, and the main soil type
is Cambisols (Figure 1d), developed over schistgradite bedrocks and characterised by a high
saturated hydraulic conductivity of about 30mh.H* [35].

Besides the aspects that tamper the runoff floereths still the side effect of forest fires
ravaging Caramulo, occurring almost every year wifferent burned area extent. During the last
years, significant forest fires occurred; 2013 94 'ha), 2016 (5 698 ha) and 2017 (8 458 ha),
corresponding respectively to 19%, 14% and 21 %hefiver basin. As the vegetation is burned,
the precipitation contributes to significant saib&on, dragging eroded and burned material into

the river. This material accumulates and hindeesftbw that can reach hydrometric historical



127  levels with minor quantitative precipitation. THedding probability is expected to increase due
128 to the climate change projections, with the amaeitainfall expected to be concentrated in
129  smaller periods [36, 37].
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131 Figure 1. a) Location of Agueda River basin. b) DTM of Agaailer basin, including water level and rainfall
132 gauges and flood extension for the 100 years reteriod. c) Agueda river basin main land uses; giiéda river

133 basin soil types. e) DTM of the flood forecast stadea and water level gauges location.
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The data presented here are needed to calibratevalithte the meteorological and
hydrodynamic models and run the system in an opetmode. The meteorological model
(section 3.1) and the hydrological model (3.2) wabbrated and validated with rainfall data
from the National Environmental monitoring netwadlected from the Varzielas rainfall gauge
in the Caramulo mountain (Figure 1b)). For calilmratand validation, the hydrological model
uses streamflow data from three water level ga(iggsire 1b) from the National Environmental
monitoring network: i) Ponte de Agueda (in the aitgwntown), ii) Ponte Redonda (in the
Agueda River upstream the city centre), iii) anthd®io (in the Alfusqueiro River, a tributary of
the Agueda River upstream the city centre). Tha dat included hourly data from all the gauges
for 2007 to 2018. During the FFAS development, dewdevel gauge was installed in 2018
(Alhandra Figure 1b and 1le) near the upstream boundary dfiydeodynamic study area, 3 km
upstream of the Ponte de Agueda gauge to provittefdathe hydrodynamic model calibration
and validation. The flow curve was estimated foattlocation based on the pair values of
hydrometric height and flow measured in the rivect®n. The hydrodynamic model was

calibrated and validated against the Ponte de Amyaed Alhandra water level records.

For the river basin hydrological modelling, theréém topography is represented by a Digital
Terrain Model (DTM), Figure 1b, obtained from SheitRadar Topography Mission (SRTM)
version 3.0 with a spatial resolution of 30 me{86. The land cover and soil type spatial data to
compute the Curve Number (CN) (section 3.2) ared®&2018 and the European Soil Database
v2 Raster. COS2018 is a land cover map availabla &t25,000 scale and has a minimum
mapping unit of 1 ha and a classification systenthvd3 classes [39]. The European Soill
Database v2 Raster is a raster data with a cellagiz km x 1 km [40].

The topographic and land use data used in the dydemic modelling were obtained with
LIDAR and aerial images, both acquired by UAV (Unmad Aerial Vehicles). The terrain
surface is a critical factor in flood modelling bese the hydrodynamic model conditions the
flood hydrograph and the flood extent [41-44]. Genming the study area, the terrain topography
and thematic information were derived from LiDARtaland aerial images, both acquired by
UAV. LIDAR data provide high-resolution altimetridata and characterise the surface
topography of flood-prone areas, which are impdriaput data for flood modelling [41, 45-47].
The LIDAR data acquisition was carried out betw22rand 25 January 2018, and it involved 42

flights at a mean flying height of 50 m.

The system used consisted of a platform, the UAV Nddtrice 600 Pro Hexacopter, the
LIDAR system Scout-16 that has a Velodyne VLP-16ltiple spinning sensors (technical
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specification in Table 1), the Inertial Measurem®nit (IMU) OEM-ADIS16488 and 3 Global

Navigation Satellite System (GNSS) antennas NovA#EMG6. The overlap between flight strips
was 20%, and the mean velocity of the UAV was 5. iBig recording two returns, and after
quality control of the point cloud (see [34]) in ame 97.14 points/frwere captured in a total of
713,777,230 points that occupied 19 GB of disk spac

Table 1 — Technical specifications of the LIDAR system ¢Bhix LIDAR Systems, 2018).

Sensor Laser Pe”_‘"f mance Other
Specifications
LiDAR sensor Class 1 Measurement rate Net weight
VLP-16 Eye safe ~300,000 pts/s 590 g
No. of lasers/planes Wavelength Max. operation range Power consumption
16 903 nm 100 m 8w

Horizontal field of view
360°

Dual Returns (strongest and last)

Max range accuracy
+3cm

Vertical field of view
-15° to +15°

Beam Divergence
3mrad

Range resolution
2 mm

Horizontal Resolution
0.1°-0.4°

Firing Repetition Rate
55.296 s/18.2 kHz

Vertical resolution
20

Maximum output energy

Footprint at 100m
30 cm

Rotation Rate 31 watts (0.19 micro joules)

5Hz-20Hz

The software LIDARMIll of Phoenix LIDAR Systems wased to combine the IMU and
GNSS data to generate smoothed and accurate tnagsctAfterwards, it automatically detected
and omitted turns and calibration patterns. Thegssing was completed by geo-referencing the
data, minimising offsets from multiple flight lingstrip adjustment), and exporting the aligned
data into the industry-standard LAS format. The-ggferencing of the data in the projection
system PT-TM06 ETRS89 and the Altimetric Datum @is€ais, was done by using 25 GNSS
base stations and the closest national networlemhanent GNSS stations. The method used was
the Post-Processed Kinematic (PPK). The LIDAR paloud was then processed with the
software TerraScan of Terrasolid. By filteringatDigital Terrain Model (DTM) was produced,
and it's quality assessed by using 277 ground obpivints. The residuals in Z were obtained
using the software TerraScan by which the Z vafeespoints located at the same X and Y
locations as the ground control points were intlied using the triangle facets made with the
three closest points in the filtered cloud. Tabldéis®s the obtained Root Mean Square Error
(RMSE) and other related quality data. It shouldhb&ced that the filtering process has a high

impact on the final accuracy. Filtering based oe #hxelsson filter [48], implemented in
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TerraScan, was used. A Digital Surface Model (DSWM} also produced in a raster format with
both ground and non-ground points.

Table 2 — Final RMSE in altimetry and other related qyadiata.

Mean RM SE Minimum and maximum residuals Per centage of theresiduals smaller
(m) (m) (m) than 0.40 m
-0.04 0.15 -0.49;0.60 99%

The laser sensor used, with a wavelength of 903Trahle 1) does not penetrate water and,
therefore, is not appropriate to characteriseitrer channel [41, 49]. Thus, the topography of the
river and the artificial channel was carried oubtlgh a bathymetric survey using a single beam
sonar system. The integration of a Digital Terrsiadel (DTM), produced with LIDAR, with a
river bathymetric survey is recognised to provide bdtterd model outputs [50]. Cross-sections
of the channel (Figure 2a) surveyed approximatelgrye 75 m by the Portuguese National
Hydrographic Institute were merged to the LIDAR DTNWb characterise the flood-prone area
topography for hydrodynamic modelling, a DTM witb40m spatial resolution was produced
(Figure 2Db).
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Figure 2 — a) Bathymetry cross-sections along the rivenok§ b) Detailed final cross-section used in thed
model.

The thematic information related to the study areaneeded to derive the Manning’s
coefficients used to calibrate, validate and rue tiydrodynamic model. To this end, an
orthophoto was produced. Its integration with thBAR data allows one to produce a 3D land
cover map. The orthophoto with an average groumdpbag distance equal to the image pixel
size of 3.5 cm was produced with the software BRelTo this end, there were used 4,565
images acquired with the camera FC6310_8.8 486488&B) mounted on a Phantom 4 Pro,
in October 2017, with two flights for redundancyaataverage height of 110 m and 150 m.

According to the characteristics of the study aseaen land cover classes concerning seven
object types were considered to be sufficient ratterise the terrain obstacle to the flow: three
related to vegetation, namely, low vegetation, Birwand trees; three related to human-made
objects, i.e., roads, walls, and buildings; anddtieer type being water (treated separately). The
3D land cover map production starts with a coalsssdication using a normalised Digital
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Surface Model (hnDSM) produced by subtracting theAR DTM from the LIDAR DSM so that

Normalised Heights (NH) are obtained. These ard tsgroup first the land cover obstacles into
three height classes based on their height valb@geahe bare terrain surface. The classification
is then fine-tuned by further subdividing eachhd three height classes into two for a total of six

classes. This fine-tuning is done using a Greeff ibel@x image produced with the orthophoto.

The three height classes contain; one low featuhespther near-ground features and the
third high features. Thus, a height class imagaasluced by assigning the pixels in the LIDAR
nDSM to a height class depending on their NH vaBie.pixels with NH < 0.2 m are assigned to
the low features class, like roads and low vegatatPixels with NH heights between 0.2 m and
2.0 m are assigned to the near-ground featureswidls and shrubs, whereas pixels with NH >
2.0 m are assigned to the high features class,blikielings and trees. A “Green Leaf Index”
(GLI) image can then be produced using the refhectifference between the orthophoto’s red,
blue and green channels. The green channel isotinénednt channel in vegetation. Therefore, the
GLI is calculated to emphasise the green coloudistinguish healthy vegetation from other

features. It is based on the following expresshi].|

GLI = (2 GREEN — RED — BLUE) /(2 * GREEN + RED + BLUE)
1)

The resulting pixel values range from between dn@ 1.0, while positive values tend to
represent healthy vegetation, and negative onesr ddatures. Due to changing light and
environmental conditions, the threshold to distisguhe classes is not always located around
zero [52]. The integration of the height classethwhe Green Leaf index image allows one to
classify the features into six classes further ngmgfor the low features class: low vegetation
and roads, ii) for the near-ground features clagdts and bushes, and iii) for the high features

class: trees and buildings.

To obtain a reliable classification of the riverdaartificial channel without interfering with
other areas’classification, their margins were radypudigitised using the orthophoto. With
ArcMap software, polygons were created accordinthéoriver channel boundaries, which were
then transformed into raster data to be used amhe layer for classification. All the pixels
inside the polygons were classified as water. Besido this 3D cover map were added the
bridge’s pillars of 5 bridges. These were manudifitised with the Microstation software using
the LIiDAR point cloud.
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3 Design of the Flood Forecast and Alert System

FFAS proposes a framework for flood forecastinging advantage of state-of-the-art
technology to acquire high-resolution and high aacy terrain data, like LIDAR, NWP data, and
Web-GIS services.

Water level observations from Alhandra hydromegiatige are measured in real-time using
the datalogger Gealog SG. This gauge is equipp#d®@FPRS transmission data and programmed
to automatically send the data to an FTP server ugetfor the purpose. The National
Environmental monitoring network data is obtainetbtigh a programming routine and sent to
the FTP server. The system runs the NWP automigticabmputing hyetographs (with 15
minutes resolution) used as input to the calibrddgdrologic Engineering Center - Hydrologic
Modeling System (HEC-HMS) [53] and the Hydrologiadineering Center - River Analysis
System (HEC-RAS) [54, 55] models. Coupling thesed¢hmodels is a powerful tool to assess
water levels and flood extent due to a high préaign event. Runoff forecasting is
accomplished using the HEC-HMS model that deals$ wite basic water balance equation
considering the critical processes that governffuened can model a rainfall-runoff event. HEC-
RAS 2D hydrodynamic model can simulate the chasrigdiv [54].

FFAS outputs are hourly depth, velocity and floodeat maps forecasts for the next 72
hours (3 days). FFAS takes about 90 minutes toigeedvourly forecasts for water level and flood
extents for the next 72 hours. Along with the updaif the NWP (section 3.1) from Clima@UA
(http://climetua.ua.pt, Group of Meteorology andn@tology), simulation results are updated
promptly (every six hours). Using a Web-GIS seryibe water depth information is assigned to
cells of 0.4 x 0.4 fand aggregated into three classes of alert I¢setsion 3.4) displayed on the
forecast flood extent map. Users can freely acttes$Veb-GIS platform to view those alert maps
and decide whether to prepare for possible floadgers registered at the platform can also
choose buildings that, when within the forecasodlie@xtent, will trigger the system to send an
email to the user. Furthermore, whenever the wadépth reaches specific values in predefined
strategic hot spots , alerts are released to thi Biotection Authorities that have determined
them. The system’s general layout is presentedgar€ 3, and the system components will be
described in the following sections.
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The FFAS was completed in July 2019 and is now rgadeg operational tests. The continually
recorded data are also likely to improve the hyaymal and hydrodynamic models’ calibration.

3.1 Numerical weather prediction

The ability of Numerical Weather Prediction (NWP)odels to forecast rainfall has
increased significantly in recent years [11, 56-3%e NWP model used in FFAS is the Weather
Research and Forecasting (WRF) Model with AdvarRedearch WRF (ARW) dynamic core
version 2.2 [60]. WRF is a next-generation, limieg@éa, non-hydrostatic mesoscale modelling
system, with vertical terrain-following eta-coordie designed to serve operational and
forecasting and atmospheric research needs. The-WR¥ model has been widely used for
simulating precipitation processes, both in thedast [61] and in diagnostic modes [62]. It has
also been successfully used in Portugal to testithaty to parameterisations of two different

model operational configurations [63].

The WRF-ARW model was forced with the 6-hourly fmast meteorological fields of the
Global Forecast System (GFS) from the United StatesAmerica’s National Center for
Environmental Prediction (NCEP). The GFS model dmaspproximated horizontal resolution of
0.5° x 0.5°, and the vertical domain extends frosaréace pressure up to 0.27 hPa, discretised in
64 vertical unequally-spaced sigma levels, fromowHi5 levels are below 800 hPa, and 24 levels
are above 100 hPa.

The WRF-ARW model was configured with two nestedndms, with resolutions of 25 km
and 5 km, respectively. The vertical discretisatammsists of 27 terrain levels, following eta
levels.

The following physical parameterisation schemesewesed: WRF Single Moment 6 class
scheme microphysics [64]; Dudhia shortwave radm{®5]; Rapid Radiative Transfer Model
(RRTM) longwave radiation model [66]; MM5 similaritsurface layer scheme [60], Yonsei
University (YSU); planetary boundary layer scher@é]{ Noah Land Surface Model [68]; Grell-
Freitas Ensemble scheme for cumulus parametems4€6]; MM5 similarity surface layer
scheme [70]; and Yonsei University Planetary Bouynddayer [64]. These sets of
parameterisations have been tested and used impbeational weather forecast system for
Portugal available at the University of Aveiro fhifclimetua.ua.pt, Group of Meteorology and
Climatology), and several other studies of extrewents [71-73].

Nevertheless, post-processing must be performeedbas observations to derive predictive
fit and the numerical weather model performancg. [Fdrecasts with WRF are performed every

6 hours for a temporal horizon of 72 hours. Préafjn is extracted at 15-minute intervals. The
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validation of these forecasts was performed basedhe national meteorological network
observations for the Varziela meteorological statievents (Figure 1b). The validation
methodology was as follows:

- Every day the system received four forecasts ranthe next eight days;

- For each forecast, 1 hour, 3 hours, 6 hours, 12Zshand 24 hours of precipitation

accumulation was calculated, resulting in 5 foresases for each forecast run;

- For each forecast series, a lagged series wasrgotest;

- Integrated and lagged precipitation series were @lisained for the observations;

- Model performance is evaluated by comparing sinedlatith measured hourly rainfall

above a minimum 0.1mm/h threshold;

- The forecast results were computed for a grid élerriver basin. As the observation

data available are only for one rain gauge, thremearical experiments were made to

compare the forecast with the observation ser)esei grid forecast results interpolated

by IDW; ii) the grid forecast results interpolatbg Thyssen Polygons, and iii) the

nearest grid point;

- The results were assessed with the statisticapteatue (p=0.001; p=0.01 and p=0.05).

The results are promising, although more events ieiissessed. According to the results
achieved so far, the numerical experiment with Tigssen polygons interpolation technique
gave the best results in the forecast validation.
For example, the correlation for the different faihintegrations corresponding to the period

between 00:00UTC 7 March 2019 and 00:00UTC 29 A¥l9 is presented in Figure 4.
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Figure 4. Statistical p-value (p=0.001; p=0.01 and p=0.G8he correlations (R)between forecast and observed
rainfall with 1- a), 3- b), 6- ¢), 12- d) and 24ths e) accumulation for the period betwe&m¥March and 29 April
2019.

For 1 hour accumulation, the correlations betweeredasts and observations were
considered statistically significant until the 154, which corresponds to 2.25 days lead time. For
the 3 hours accumulation, the lead time statidyicgignificant is four days (lag 32). For the 6
hours accumulation, the lead-time statisticallyngigant is 5.5 days (lag 22). For the 12 and 24
hours accumulation, the lead time statisticallyngigant is eight days forecast. According to

these results, the chosen lead time was three days.

3.2 Hydrological modelling

Rainfall-Runoff models help to visualise water sys$’ response to meteorological events
and are crucial to increase flood-warning timelaod alert systems. The HEC-HMS model is an
event-based hydrological model that computes deoadwatersheds’ runoff response by
describing physical and meteorological propertlesncludes mathematical models for all the
hydrological components that conceptually represeatershed behaviour such as infiltration
loss, precipitation transformation into runoff hgdraphs (direct runoff), channel routing, and
baseflow. Hydrographs can be used either direatlynoconjunction with other software for
several studies, including flood forecasting.

HEC-HMS uses separate models to represent eachoc@mipof the runoff process. The
meteorological component is the computational bgitwhich precipitation input is distributed
spatially and temporally over the basin.

The precipitation is subject to losses modelledH®y precipitation loss component. In this
study, the Soil Conservation Service (SCS) Curvenbler (CN) loss method was used. The CN
for each sub-basin was computed using land usesaildtype data. The resulting excess
precipitation contributes either to direct runoff to baseflow. The transformation of excess
precipitation into runoff was performed using th€SSunit hydrograph (UH) method, and the
baseflow constant monthly method was selected. rbéing component simulates the direct
runoff and baseflow entering the river channels tredtranslation and flow attenuation. The lag
(time difference between the maximum peak of pitatipn and the maximum peak of flow)
routing model was implemented.

The hydrologic elements shown in Figure 5 are @erivom the DTM presented in section 2
for the basin. The CN uses the thematic map fob#sin, also discussed in section 2. Four of the

sub-basins have water level records.
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Figure 5. HEC-HMS Agueda River basin model including all thé-basins, junctions and river elements.

Eleven years (2007-2018) of hourly rainfall dataorded at the three rainfall gauges
mentioned in section 2 (Ponte de Agueda, Ponte iizdand Ribeiro) were used to calibrate the
hydrologic model (eight events). The calibrationgass was executed automatically by the HEC-
HMS “Optimization Trial” tool, with the UnivariateGradient optimisation algorithm and
minimising the Peak-Weighted RMSE objective functfor each river section, as well as for all
sub-basins. An independent set of data (five eyevds used to validate the model.

A hydrologic parameter sensitivity analysis wasdimted to assess the parameters that the
calibration process must fine-tune to increasentbelel’s predictive accuracy. The calibration is
focused on the most sensitive parameters, incluttiegCurve Number (CN), initial abstraction
(la), SCS lag, lag routing and recession consa) (

Initial parameters values were set according todsted hydrology textbooks. Several
statistical model performance evaluation criteriee a&mployed for model parameters’
optimisation (in the sense of calibration) and domparing the models’ accuracy [75-78]. The
Nash-Sutcliffe Efficiency (NSE) index is a relialgtatistic for assessing the hydrologic model’s
goodness-of-fit. NSE values ranging from 69% to 88%ing calibration and 63% to 77% during
validation indicate that the model runoff estimatesild be considered in good agreement with

the observed runoff.
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3.3 Hydrodynamic modelling

River Analysis System (RAS) is a modelling tool deped by the U.S. Army Corps of
Engineering’s Hydrologic Engineering Center (HEG) &nalysing hydraulics of river systems.
HEC-RAS can perform one (1D) and two-dimensiondD)(2insteady flow simulations. The
model includes two computational solvers, the 2Bulion Wave and the 2D Saint Venant using
an Implicit Finite Volume solution algorithm. Thenplicit solution method allows for larger
computational time-steps than explicit solution moels. In addition, the finite volume method
provides a greater degree of stability and robsstrever traditional finite difference and finite
element methodologies.

The computations were made with the full 2D unsgeflalv model that can predict flow,
velocity and water levels. Figure 6a) present2benesh of the domain, including the upstream
and downstream boundary conditions (red lines)thadreak lines (brown lines) associated with
high ground or roads in the study area. From Figbeit is possible to differentiate the 2D mesh
cell size and a detail of the refinement zonesgines) that encompass the river and artificial

channels and the river banks.
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Figure 6. a) HEC-RAS computational domain representing fherzsh, the break lines (light blue), refinement
regions (yellow) and boundary conditions (red)Die}ail of the 2D mesh in the river and the floodipla

The primary input of HEC-RAS 2D for performing hwditic analysis are geometric and
flow data. All the geometric data were importeitEC-RAS 2D, and the quality of data was
verified. Since the selected flow regime was suioali the boundary condition was defined only
at the river’'s downstream end (Figure 6a) by thenab depth (considering the river bed’s slope).
In this study, the 2D Diffusion Wave solver was sidered since it takes a shorter computational
time than the Full Momentum equation. In developting 2D model, the computational runtime
must be considered because FFAS must update thet fiboecasts every 6 hours. Taking this into
consideration, and after several model verificatests, the final model features are:

- The 2D mesh with 38 544 cells;

- The 2D mesh with a cell size of 50 m in the floogeaand 5 m in the river (Figure 8b);

- The hydrograph output interval of 1 hour;

- The computation time step interval of 10 secondss Time step enables the Courant
number of 1.0 (or less), which is required for aecy and stability;

- The simulation with a duration of 72 h plus 48 warm-up.

The model upstream boundary requires a volumetflow rate (gauges during calibration
and HEC-HMS hydrograph during forecast). The madgb requires an imposed water surface
elevation at the downstream boundary conditionutated at the downstream outflow using a
normal depth condition, with a slop of down readitev surface set at 0.0024 m/m, the same as
the bed slope.
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Calibration of the riverbed and banks Manning’sgimess is performed against the hourly-
observed water levels at the gauge Ponte Agued#idise?) for the same hydrological model
calibration period (eight events). The calibrateddel was then validated for five other events.
The objective function used for calibration wasoalse NSE. The NSE efficiency values range
from 56% to 75% during calibration and from 48% #@2% during validation. The channel
roughness was fixed at 0.055"#s, a value considered consistent with tables ofiNtay’'s n

values in standard texts [79].

3.4 Design of client-server application

The client-server application displays the floodefrast extent and water levels and sends
alert messages. Its server component consists Ge@Server [80] that runs on a Tomcat
application server [81] and a website developedgutiaravel [82] that is hosted on an Apache
server [83] running PHP. This component is respmedor receiving and storing the results of
the hydrometric model's execution, namely the GeeSeusing the Postgresql Database
Management System (DBMS) [84].

In turn, the client application is executed in theer’'s browser. This component provides a
graphical interface that is built using OpenLayi@5], Bootstrap [86] and AngularJS [87]. The
information made available to the client is acagiitbrough the invocation of Web Services
published on the server. These services allow adoethe forecasts and Web Services published
by the Laravel website permitting registered userahagement.

Users can access the web site with two differensgeetives: assessing the forecast water
level and visualise the flood extent, and/or thay make a registration with an email address and

a selection of buildings to be alerted about ifythee forecast to be flooded (Figure 7).
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Figure 7. FFAS membership window where the end-users cattsttle buildings’ locations to receive email flood

alerts.

The Web-GIS module receives the water level outfrats the hydrodynamic model and
classifies them into three predefined classes:
- Medium hazard: 0 m <water depth < 0.5 m;
- High hazard: 0.5 mwater depth < 1.0 m;
- Very High hazard: water depth1.0 m.
Users can access the website http://ffas.web.peeptsao (Figure 8) and scroll the hourly

water level and flood extent for three days forecas

& FFAS - Flood Forecast
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457 Figure 8. Hourly flood extent and water level FFAS Web-G&gdut.
458 The user can make a zoom to their area of concetndue to the high-resolution DTM, it is

459  possible to apprehend the flooded areas (Figugu@kly and, if necessary, undertake individual
460 flood resilience measures. FFAS high resolutioaoved! the end-users to be more identified with
461 the flood hazard in their community.

462
463 Figure 9. Detail of a flood extent and water level classeAgueda downtown taken from the FFAS system
464 (flood event between $Uanuary and®lof February 2019).

465 4 Mode performance analysisin operational forecasting

466 The first operational results are very encouragiRGAS has already demonstrated its
467 potential. The system forecasts performance wassasd with a rainfall event between 31
468 January and 1 of February of 2019. Figure 8 shtwdlood extent forecast for that flood event
469  six-hour in advance. The system successfully ptedithe flooding that struck Agueda almost 72
470  hours in advance.

471 Post-flood maximum water levels were surveyed anday of the event by a team of the
472 Topographic Services of Agueda municipality halleTcomparison between the forecasts and the
473  observations is based on flood extent measureseTimeasures are the fit statisticg@guation

474 1), P (equation 2) and the Bias (equation 3)
A

1 —

475 F'(%) = —5rc X 100 1)
2 _ A-B

476 F*(%) = 5.0 < 100 2

477 Bias(%) = 5= x 100 3)
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where A represents the area being flooded accotdirigpth the system and observations (true
positive), B is the overestimated area by the sygfalse positive), and C is the underestimated
area by the system (false negative).

The fit statistics have been used in many previstuslies [45, 88-93] and are useful to
validate models against binary (wet/ dry) patteatad The Bias gives a measure of over-or
underestimation of the system in terms of the tottl area. A Bias value of 100% implies that
the estimated wet area has the same size as thevetdsvet area; however, it does not provide
information on these two areas (Figure 10). Thedasures allow a quantitative comparison of
the estimated flood extent to the maximum wateelegurveyed. The'fhas been modified in“F
to penalise, additionally, overestimation of floextent [94].

Figure 10 shows that the fit statistics and bidsescalculated for 13 flood extent forecasts
from 00:00UTC January 29 until 00:00UTC Februarg@]9 (for the period between 00:00UTC
February 1 and 00:00UTC February 2, 2019) corrdbotlae good performance of the system
considering the percentage of the flood area faitefca the given flood event. Although the first
and tenth forecasts, respectively, 72 and 18 hiquseuo the peak flood event, present a similarity
with the peak flood extent of only about 50% andbo/Qespectively, the statistic measures
improved substantially for the other forecastshwibme variations between 80% and 90%. These
results allow concluding that the system accurdtalgcasts the flood event with an appropriated
lead time, which allows the authorities and the ysafion to take the necessary protection
measures. The scientific community can easily wtdad that the results come with a certain
level of uncertainty due to the inherent uncertaiot the input data, e.g. the DTM and the
structure and parameterisation of the weather &stedydrological and hydrodynamic models.
For ordinary citizens and even for the authoritieegt may not be so straightforward, the Web-

GIS platform has a disclosure statement alertingeéadisplayed information’s uncertainties.
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503 Figure 10. Chronological forecasts flood extent fit statistieasures (£ F* and Bias) for the event between
504 January 31 and February 1, 2019.
505
506 In the flood forecast area, two water level gaugesavailable with hourly observations in

507 the study area: Ponte deueda and Alhandra. To assess FFAS performanceeatscale, a
508 comparison between the water level observationsl8rdrecasts for the period mentioned above
509 is made and presented in Figure 11.
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Figure 11. Water level observations (black line) and chrogalal forecasts (grey gradient lines) for the event
between January 31 and February 2, 2019, at Perdgydeda (a) and Alhandra (b) water level gauges.

The last forecast run (00:00 UTC on February 1,92Cdccurately forecast the maximum
water level in both water level gauges. Severagothns (with the exception for runs 1 and 10,
respectively 72 h and 18 h before the peak flooghf simulated accurately (-8% to 12% at
Ponte de Agueda and -8% to 10% at Alhandra) themavel at its maximum depth which is
concordant with the results in Figure 10. During tlow recession, the system overestimates the
water level, namely at Alhandra but not to levélattmeant flooding over the riverbanks. At the
Ponte de Agueda water level located at Agueda aitytre (the most flood-prone area), the
forecast post-peak water level inaccuracy is moeref. With the continuous data gathering done
by the implemented system, both hydrological andrdgynamic models will be improved, and

these inaccuracies will certainly decrease.

5 Discussion

In this section, the FFAS is discussed by compairintp other EWS available in an
operational mode. It is important to emphasise tha study's framework is an operational
system and not an experimental one. FFAS aims @ teehnical solution to a frequent problem
in Agueda city and elsewhere. When replicatingstystem, costs must be taken into account; the
system is developed with freely available softwacethat the main costs will relate to the

acquisition of terrain and bathymetric topography.
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The system described in [29] can be consideredlaino FFAS using NWP and freely
available hydrologic and hydrodynamic (2D) modalsvertheless, it is nhot known if bathymetry
is used, and although the simulation time is simitathat of FFAS, it is for a much smaller
numerical simulation domain. Furthermore, the weatbrecast is only updated once a day, and
it is not clear whether the results are dissemthaté-AS differs from Delft-FEWS because it
relies on pre-established models, but both havedutar approach and allow for high-resolution
flood forecast.

Another key element of an EWS to produce an aceuflmiod forecast is the terrain
topography that should portray all the relevantaierfeatures that interfere with the water flow.
One way to achieve this requirement is to use a DVit¥ high-resolution in the inundation area
and river bed. The DTM used by FFAS was producet data acquired with LIDAR in a UAV,
which is still a relatively new technology. The LAR data acquired with a UAV was four times
less expensive than that acquired with an airekdifte resulting in comparable accuracy. The
obtained accuracy of 15 cm in altimetry is conforgnio the standards for the production of DTM
at large scales. It is superior to that obtainetth WIAV photogrammetry with a consumer-grade
camera for LIDAR penetrates through vegetation.[95]

Another aspect that should be highlighted is thel&idl cover map. It describes the surface
in the form of topographic objects. These objeotsciearly defined and associated with one type
of land use embedded in the hydrodynamic model svilefined roughness. Usually, a roughness
map is produced manually by associating manninghoass coefficients to a land cover map. In
the FFAS a very detailed 3D land cover map prodaedgdmatically is used, although, due to the
lack of events with water levels available at thendation area, the roughness was not yet
calibrated.

The HEC-HMS is a fully-featured multiple purposafane hydrologic model that can be
used to perform flood forecasting, successfullylengented worldwide in several research works
[24, 28, 29, 96-98]. The HEC-RAS has been succkgsipplied, showing to be suitable for
studying and analysing flood propagation and flomabping [26, 27, 45, 99-102]. The models
HEC-HMS and HEC- RAS were chosen due to severabifathat have a significant impact on
the flood forecast: a) forecasting time step vetbestime of concentration; b) the robustness of
the models, which allows avoiding sudden instabditand consequently lack of forecasts; c) the
low computational time since FFAS updates forecasexy 6 hours. Despite the uncertainty
associated with modelling, the hourly NSE duringibzation and validation could be considered
suitable, as shown by other EWS [26, 27]. The systthough in operational mode, needs to be

continuously assessed when recent flood events.o8awe the system was implemented, only
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two flood events took place (February and Decenabe2019), but water levels from Ponte de
Agueda gauge were not available during the secorahte The system will need to be
periodically assessed; in case of large foress fij@ other significant land-use change), the
hydrological model parameterisation must be charagmbrdingly. The same continuous effort
must be undertaken with the hydrodynamic modelnsuee that flood events, flood extent, and
water levels will be accurately forecast for thiédwing flood events. As more flood events occur
and are assessed, it is expected that system eanédutcomes increases and more citizens will
use it.

While NWP data can be downloaded in a few secaamt$ the hydrologic model can runin a
few minutes, the system’s real bottleneck is theérbgynamic model. The FFAS hydrodynamic
model was set up to optimise simulation time withcampromising the numerical stability. The
mesh dimension, the equation set, the time stepywdrm-up period, and all the parameterisation
were optimised to a maximum Courant number of anertsure the numerical stability and run
with a lead-time suitable for operational decisinaking. The WRF model is one of the world
references and most used; nevertheless, it nedmsddjusted to perform best for the region. The
results obtained so far indicated that the NWP ddndecast the intense precipitation. As FFAS is
operational and more flood events occur, precipitaforecasts can be improved, considering the
integration with radar to increase flood warninggicuracy. Several forecast systems use
probabilistic forecasting models considered moruskhan deterministic forecasting [103-107].
Computational constraints still affect the resantiof the probabilistic forecasts. For the time
being, including probabilistic forecasting is nodEBAS priority. Due to the high-resolution of the
hydrodynamic model and the current computationphbdities, the deterministic approach has
advantages due to the high hydrodynamic detailt@dime to provide the 72h forecasts updated
every 6 hours. Some of the systems that presesélyayprobabilistic approach use low-resolution
and only hydrological modelling [13], 1D-hydrautiwodels [108] and flood threshold [109, 110].

The European Flood Awareness System (EFAS) [13 aseensemble of weather forecasts
and a hydrological model to provide twice-dailydoasts of river flow and flood warnings as
early as ten days before a flood event [111-118 Weather forecasts are used to drive the
hydrological model set up on a 5 km grid cell ot tBFAS domain. The EFAS forecast and
products are only available to EFAS partners. Qné/ EFAS forecasts and products more than
30 days old are freely available to all. For thé 3anuary 2019 event forecast, and as may be
seen in Figure 9, whereas FFAS shows a signifidatail in the flood extension (and water
level), the resolution of EFAS is coarser due ®%Hkm grid cell. FFAS forecast the flood with a

three days lead-time, although when consultingBRAS historical forecast records, only on the
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31% was issued a flood warning with a 10% probabilitghe next 48h (in the two previous days,
no flood forecast was issued for the next 48h).id&=s there are no forecast water levels.
Notwithstanding EFAS being very important at théoral level, the flood-prone areas’ forecasts

must be complemented at a local level with systighes=FAS.

6 Conclusions

The technological developments implemented in FF&SAgueda city include numerical
weather forecasting coupled with hydrodynamic miaagl the usage of very high-resolution
spatial data, and full integration of the systeto ia Web-GIS platform highlight the advances in
operational fluvial flood forecasting. This modedii framework is essential in the context of the
legislative drivers’ alterations made for flood doasting and alert. The system is currently
operational, and the preliminary results are careid acceptable.

FFAS manages to couple WRF with the hydrologic HE@S rainfall-runoff and the HEC-
RAS 2D hydrodynamic models. This coupling procdayga pivotal role to accurately forecast
water levels and flood extents for three days wiffdates every six hours. All models were
calibrated to obtain the parameters’ values repiteggflood event responses over the study area.
Furthermore, the models were validated with otlvenes.

FFAS uses Web-GIS services to create a platforne wer forecast water levels aggregated
into three alert levels are overlaid on the foreflasd extent and visualised in an image. Agueda
civil protection services and citizens can freatgess the Web-GIS platform to view those alert
maps. If they choose to register at the platforegrsi can also choose buildings that will trigger
the system to send an email if within the foredlastd extent. Furthermore, whenever the water
depth reaches specific values in predefined sti@atiegt spots, alerts are released to the civil
protection authorities. At the moment, the emergesgrvices are the primary end-user, although
several citizens are already registered. As thdesysis operational, we intend to take
participatory meetings with the community to in@eahe application’s penetration rate and
inform them how to understand and make the besbtifiee forecasts. With the increased lead-
time, the civil protection authorities, environmanauthorities, and citizens can gain time to
reduce damage and protect property and lives.

A reliable FFAS has to account for forecast unaetya Errors in forecast quality may be
due to uncertainty in hydrological data, potentlata errors, and improper optimisation of the
models’ parameters and model structure (spatiatemgoral resolution). An important aspect of
further research is the calibration of the NWP nhodeomparing forecast and observed

precipitation is decisive to the accuracy of theutes. Some investment is needed to implement a
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rainfall gauge in the drainage basin and a watezl Igauge in the river near the city centre, so the
system does not rely only on the Portuguese sysSS8fARH data. Future work will also
continuously assess the results as flood events @@ proceed to the models’ parameterisation
update whenever necessary. New features are imtelodbe implemented so FFAS will self-
assess its performance by comparing observatiotex(Wavel, rainfall and flood extent) to
forecasts in specific locations chosen accordinthéir flood risk based on the site vulnerability
and damage costs.

Accurate flood modelling at high spatial-tempomrdalution remains a significant challenge
in hydrologic and hydraulic studies. It will unddadly require high-resolution terrain data.
FFAS uses as input a DTM produced with a high-dgnsiDAR point cloud (around 100
points/nf). LIDAR offers high density and very accurate a@mr data by penetrating the
vegetation. Accurate flood maps help design andement flood risk management strategies and
longer-term development plans. Preparedness aesi\and timely response can be undertaken if
the forecast information also comes with the foseflaod level. The proposed flood forecast and
alert system implemented on a Web-GIS is flexibleduple with pluvial hydrodynamic models
as long the computational time is made compatiliile the warning necessary lead-time.

We expect FFAS to be a useful decision supportfarofigueda civil protection that can be
replicated elsewhere. Furthermore, the informatotained from FFAS, together with
vulnerability assessment and damage curves, al@nestimation of flood damage that can be
used by the insurances companies in the evaluafitime flood risk. By being a valuable tool to
manage flood risk, we hope that it will also in@edhe citizens’ resilience living in flood-prone
areas. In the context of climate change, this dspe&ven more relevant.

Funding: This work is supported by the Operational Progranohéhe Centre Region, in its
FEDER component, in the ambit of the project Ceftte0145-FEDER-023566 and by
FCT/MCTES financial support to CESAM(UIDP/50017/202JIDB/50017/2020), through

national funds.
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