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Abstract: This article deals with a class of nonlinear fractional differential equations, with initial
conditions, involving the Riemann–Liouville fractional derivative of order α ∈ (1, 2). The main
objectives are to obtain conditions for the existence and uniqueness of solutions (within appropriate
spaces), and to analyze the stabilities of Ulam–Hyers and Ulam–Hyers–Rassias types. In fact, different
conditions for the existence and uniqueness of solutions are obtained based on the analysis of an
associated class of fractional integral equations and distinct fixed-point arguments. Additionally,
using a Bielecki-type metric and some additional contractive arguments, conditions are also obtained
to guarantee Ulam–Hyers and Ulam–Hyers–Rassias stabilities for the problems under analysis.
Examples are also included to illustrate the theory.
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1. Introduction

Given the importance that fractional derivatives and integrals [1–7] have shown to
have in the optimization and improvement of mathematical models of real events or even
of those associated with other areas of knowledge (namely through making these models
more accurate when compared to what they effectively model), we have recently witnessed
a large development in the mathematical analysis of classes of fractional order differential
and integral equations.

In this context, it is essential to know about the possible existence of several solutions
to the problems in question, possible sufficient conditions to obtain a unique solution and
even conditions that eventually guarantee distinct forms of stability of the solutions (this
being a crucial aspect, in particular, for the study of approximate solutions to the problems
in analysis). The most used techniques in these problems involve the consideration and
identification of operators that (in a sense) represent the problem (in some “equivalent”
way) and usually involve different principles of contraction, as well as different estimates,
usually framed, or dependent, on norms (or metrics), within the spaces framework most
suited to the problems under study.

For this type of problem, the analysis of their eventual stability is also a study of sig-
nificant importance. Namely, through the Ulam–Hyers and Ulam–Hyers–Rassias stabilities
[1,8–17] which, with their specific characteristics, make it possible to identify forms of a
slight disturbance in the system (that defines the problem) does not have a too disturbing
effect on that system.
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Having this general framework in mind, we would like to start by emphasizing that
in [18], Chai studied the existence of solutions to the boundary value problem{ CDα

0+x(t) + rCDα−1
0+ x(t) = f (t, x(t)), t ∈ (0, 1),

x(0) = x(1), x(ξ) = η, ξ ∈ (0, 1),

where CDα
a+ and CDα−1

a+ denote the standard Caputo derivatives of order α and α− 1, re-
spectively, in this case with 1 < α ≤ 2, and r 6= 0. Additionally, more recently, Xu et al. [19]
considered the existence of solutions and the Ulam–Hyers stability for the fractional bound-
ary value problem{

λDα
0+x(t) +Dβ

0+x(t) = f (t, x(t)), t ∈ (0, T),

x(0) = 0, µDγ1
0+x(T) + Iγ2

0+x(η) = γ3,

whereDϑ
0+ denotes the Riemann–Liouville fractional derivative operator of order ϑ, 1 < α ≤ 2,

1 ≤ β < α, 0 < λ ≤ 1, 0 < µ ≤ 1, 0 ≤ γ1 ≤ α − β, γ2 ≥ 0, Iγ2
0+ denotes the

Riemann–Liouville fractional integral operator of order γ2, and 0 < η < T. Moreover,
in [20], Ahmad et al. investigated the existence of solutions and the Ulam–Hyers stability
for a fractional initial value problem given by{

(CDα
a+x(t) + λ1

CDα−1
a+ x(t) + λ2

CDα−2
a+ x(t) = f (t, x(t)), t ∈ [a, T],

x(k)(a) = bk, k = 0, 1, 2,

where CDα
a+ is again the Caputo fractional derivative of order α ∈ (2, 3), and λ1 and λ2

are nonzero constants. In [21], Alvan et al. investigated the existence of solutions for the
fractional boundary value problem{ CDα

0+x(t) + 2rCDα−1
0+ x(t) + r2CDα−2

0+ x(t) = f (t, x(t),Dσ−1
0+ ), r > 0, t ∈ (0, 1),

x(0) = x(1), x′(0) = x′(1), x′(ξ) + rx(ξ) = η, ξ ∈ (0, 1),

where 2 ≤ α < 3 and η is a positive real number. Bilgici and Şan [22] considered the
existence and uniqueness of solutions to the problem{

λDα
0+x(t) = f (t, x(t),Dα−1

0+ x(t)), t > 0,

x(0) = 0, Dα−1
0+ x(t)|t=0 = b,

where α ∈ (1, 2) and b 6= 0.
Motivated by the analysis and the results already achieved for the above-mentioned

problems (included in the works [18–22]), we investigate in this paper the stabilities of
Ulam–Hyers and Ulam–Hyers–Rassias types [1,8–11,14,16], and the existence and unique-
ness of solutions to the following initial value problem of fractional order (IVPFO){

Dα
a+x(t) + λ(Dα−1

a+ x)(t) = f (t, x(t)), t ∈ [a, b],

x(a) = x′(a) = 0,
(1)

where 1 < α < 2, λ is a nonzero constant, a, b ∈ R (with a < b) and f : [a, b]×R → R
is a continuous function. Thus, this problem can also be viewed as a class of problems
depending on the parameter λ, and with the form of a single-point boundary problem “a”
of a two-term fractional differential equation.

The remaining part of the work is organized as follows: Section 2 contains the nec-
essary definitions and the fundamental tools that are used in the sections that follow; in
Section 3, we derive different conditions for the existence and uniqueness of solutions
for the IVPFO (1); in Section 4, we discuss the Ulam–Hyers and the Ulam–Hyers–Rassias
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stabilities and obtain conditions for their existence. Finally, some examples are included to
describe the obtained results in a more concrete way.

2. Preliminaries and Background Material

We start this section by presenting the known basic definitions of the main objects that
we will use.

Definition 1. The Riemann–Liouville fractional integral of order α ∈ R+ of a function x (on [a, b])
is defined by

Iα
a+x(t) =

1
Γ(α)

∫ t

a
(t− s)α−1x(s)ds (a ≤ t ≤ b)

provided the right-hand side is pointwise defined and where Γ denotes the Euler Gamma function
(given by Γ(α) =

∫ ∞
0 tα−1e−tdt, α > 0).

Definition 2. The Riemann–Liouville fractional derivative of order α > 0 of a function x (on [a, b])
is defined by

Dα
a+x(t) =

1
Γ(n− α)

dn

dtn

∫ t

a
(t− s)n−α−1x(s) ds,

with n = [α] + 1.

In what follows, we denote by L1([a, b]) the Banach space of Lebesgue integrable func-
tions from [a, b] into R with the norm ‖x‖L1 =

∫ b
a |x(t)|dt and by C([a, b]) the Banach space

of all continuous functions g : [a, b]→ R endowed with the norm ‖g‖ = supt∈[a,b] |g(t)|.

Lemma 1 ([3]). Assume that x ∈ C([a, b])∩ L1([a, b]) with a fractional derivative of order α > 0.
Then

Dα
a+ Iα

a+x(t) = x(t)

and
Iα
a+Dα

a+x(t) = x(t) + c1(t− a)α−1 + c2(t− a)α−2 + · · ·+ cn(t− a)α−n,

for some ci ∈ R, i = 1, 2, . . . , n, where n is the smallest integer greater than or equal to α.

For the reader’s convenience, let us recall some classic principles of contraction and
inequalities that we will use later.

Theorem 1 (Banach contraction principle). Let (X, d) be a generalized complete metric space,
and consider a mapping T : X → X which is a strictly contractive operator, that is

d(Tx, Ty) ≤ Ld(x, y), ∀x, y ∈ X,

for some constant 0 ≤ L < 1. Then:

(a) the mapping T has a unique fixed point x∗ = Tx∗;
(b) the fixed point x∗ is globally attractive, namely, for any starting point x ∈ X, the following

identity holds:
lim

n→∞
Tnx = x∗;

(c) we have the following inequalities:

d(Tnx, x∗) ≤ Lnd(x, x∗), n ≥ 0, x ∈ X;

d(Tnx, x∗) ≤ 1
1− L

d(Tnx, Tn+1x), n ≥ 0, x ∈ X;

d(x, x∗) ≤ 1
1− L

d(x, Tx), x ∈ X.
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Theorem 2 (Schauder’s fixed point theorem). If Ω is a closed, bounded, convex subset of a
Banach space X and the mapping T : Ω → Ω is completely continuous, then T has a fixed point
in Ω.

Keeping in mind some parts of the proofs of the next results, let us recall an important
integral inequality that we will actually use later.

Theorem 3 ([23], [Theorem 11.2]). Let u(t), b(t), σ(t) and k(t, s) be nonnegative continuous
functions for a ≤ s ≤ t ≤ b and suppose that

u(t) ≤ c1 + σ(t)
(

c2 +
∫ t

a
b(s)u(s)ds +

∫ t

a

∫ s

a
k(s, τ)u(τ)dτds)

)
,

for t ∈ [a, b], where c1, c2 ≥ 0 are constants. Then,

u(t) ≤ c2e
∫ t

a B(s)σ(s)ds +
∫ t

a
c1B(s)e

∫ t
s B(τ)σ(τ)dτds,

where B(s) = b(s) +
∫ s

a k(s, τ)dτ.

We denote by C2([a, b]) the space of functions x which are 2-times continuously
differentiable on [a, b] endowed with the norm

‖x‖C2 =
2

∑
k=0

sup
t∈[a,b]

|x(k)(t)|.

It is well-known that (C2([a, b]), ‖ · ‖C2) is a Banach space.
In our next analysis of the existence and uniqueness of solutions for the IVPFO (1),

we will make use of the following auxiliary property (which may be considered as a very
natural and expectable property; cf., e.g., [24]).

Lemma 2 (See also [24]). Let α ∈ (1, 2) and x ∈ C2([a, b]) with x(a) = x′(a) = 0. Then
Dα

a+x ∈ C([a, b]) and

(Dα
a+x)(t) =

1
Γ(2− α)

∫ t

a
(t− s)1−αx′′(s)ds.

Moreover,
(Dα

a+x)(t) = (Dα−1
a+ x′)(t). (2)

Proof. For the reader’s convenience, we have chosen to include here a proof of this lemma.
Within the stated conditions, we simply have to use integration by parts to obtain∫ t

a
(t− s)1−αx(s)ds =

1
2− α

∫ t

a
(t− s)2−αx′(s)ds,∫ t

a
(t− s)2−αx′(s)ds =

1
3− α

∫ t

a
(t− s)3−αx′′(s)ds.

And so, it follows
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(Dα
a+x)(t) =

1
Γ(2− α)

(
d
dt

)2 ∫ t

a
(t− s)1−αx(s)ds

=
1

Γ(3− α)

(
d
dt

)2 ∫ t

a
(t− s)2−αx′(s)ds

=
1

Γ(4− α)

(
d
dt

)2 ∫ t

a
(t− s)3−αx′′(s)ds

=
1

Γ(2− α)

∫ t

a
(t− s)1−αx′′(s)ds.

Since under the present conditions
∫ t

a (t− s)1−αx′′(s)ds is continuous on [a, b], we conclude
that Dα

a+x is continuous on [a, b].
Moreover,

(Dα
a+x)(t) =

1
Γ(2− α)

(
d
dt

)2 ∫ t

a
(t− s)1−αx(s)ds

=
1− α

Γ(2− α)

d
dt

∫ t

a
(t− s)−αx(s)ds.

Integrating by parts, and using the circumstance that x(a) = 0, we obtain

(Dα
a+x)(t) =

1
Γ(2− α)

d
dt

∫ t

a
(t− s)1−αx′(s)ds = (Dα−1

a+ x′)(t),

which concludes the proof.

Remark 1. Proceeding in a similar way as in the previous lemma, for α ∈ (1, 2), x ∈ C2([a, b])
and x(a) = x′(a) = 0, it follows that Dα−1

a+ x ∈ C([a, b]) and

(Dα−1
a+ x)(t) =

1
Γ(3− α)

∫ t

a
(t− s)2−αx′′(s)ds.

3. Different Conditions for the Existence and Uniqueness of Solutions

In the present section, we will analyse conditions to ensure the existence of solutions
to the IVPFO (1) and also conditions to guarantee the uniqueness of the solution. In view
of this, let us first start to “translate” the IVPFO (1) through a fractional integral equation.

Proposition 1. As before, let α ∈ (1, 2), f : [a, b] × R → R be a continuous function and
λ 6= 0. A function x ∈ C2([a, b]) is a solution of the IVPFO (1) if and only if x satisfies the
integral equation

x(t) =
e−λt

Γ(α− 1)

∫ t

a

∫ u

a
(u− s)α−2eλu f (s, x(s))dsdu. (3)

Proof. Let x ∈ C2([a, b]) be the solution of IVPFO (1). By Lemma 2, we have that
Dα

a+x, Dα−1
a+ x ∈ C([a, b]) and Dα

a+x = Dα−1
a+ x′. Thus, we can rewrite our main equation

in (1),
(Dα

a+x)(t) + λ(Dα−1
a+ x)(t) = f (t, x(t)),

in the form
(Dα−1

a+ x′)(t) + λ(Dα−1
a+ x)(t) = f (t, x(t)). (4)

In view of Lemma 1, one has

(Iα−1
a+ Dα−1

a+ x)(t) = x(t) + c1(t− a)α−2,

(Iα−1
a+ Dα−1

a+ x′)(t) = x′(t) + d1(t− a)α−2, t ∈ [a, b].
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Thus, applying Iα−1
a+ to both members of Equation (4), we obtain

x′(t) + λx(t) + (λc1 + d1)(t− a)α−2 = [Iα−1
a+ f (·, x(·))](t). (5)

Since x(a) = x′(a) = 0, we conclude that

λc1 + d1 = 0,

and so it follows
x′(t) + λx(t) = [Iα−1

a+ f (·, x(·))](t). (6)

Let y(t) = eλtx(t). One has that

x′(t) = −λe−λty(t) + e−λty′(t).

Substituting the last two identities in (6), we obtain

y′(t) = eλt[Iα−1
a+ f (·, e−λ ·y(·))](t). (7)

Since x ∈ C2([a, b]), we have that y′ ∈ C1([a, b]). Moreover, Iα−1
a+ f is a continuously

differentiable function. Thus, integrating Equation (7) from a to t, we obtain

y(t) = y(a) +
1

Γ(α− 1)

∫ t

a

∫ u

a
(u− s)α−2eλu f (s, e−λsy(s))dsdu.

Taking into account that y(t) = eλtx(t), it follows that

x(t) = e−λ(t−a)x(a) +
e−λt

Γ(α− 1)

∫ t

a

∫ u

a
(u− s)α−2eλu f (s, x(s))dsdu,

and using the initial conditions, we conclude that

x(t) =
e−λt

Γ(α− 1)

∫ t

a

∫ u

a
(u− s)α−2eλu f (s, x(s))dsdu.

Conversely, assume that x is given by (3), and thus

eλtx(t) =
1

Γ(α− 1)

∫ t

a

∫ u

a
(u− s)α−2eλu f (s, x(s))dsdu. (8)

It is clear that x(a) = 0 and since x is continuously differentiable on [a, b], differentiating
both sides of (8), we get

eλtx′(t) + λeλtx(t) =
eλt

Γ(α− 1)

∫ t

a
(t− s)α−2 f (s, x(s))ds,

which is equivalent to

x′(t) + λx(t) =
1

Γ(α− 1)

∫ t

a
(t− s)α−2 f (s, x(s))ds. (9)

Thus x′(a) = 0 and since x ∈ C2([a, b]), accordingly to Lemma 2, we have that Dα
a+x and

Dα−1
a+ x exist. Applying Dα−1

a+ to both sides of Equation (9), using Lemma 1 and (2), we
also obtain

(Dα
a+x)(t) + λ(Dα−1

a+ x)(t) = f (t, x(t)),

which completes the proof.
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Having in mind Proposition 1, we realize that studying the solutions of IVPFO (1) is
the same as studying the solutions of

x = Tx,

where T is the fractional integral operator given by

(Tx)(t) =
e−λt

Γ(α− 1)

∫ t

a

∫ u

a
(u− s)α−2eλu f (s, x(s))dsdu, (10)

for x ∈ C2([a, b]) and λ ∈ R\{0}.

Remark 2. Another way to discover an integral form of x(t) is to consider the integral equation

x(t) = −λ
∫ t

a
x(s)ds +

1
Γ(α)

∫ t

a
(t− s)α−1 f (s, x(s))ds. (11)

In fact, applying Iα
a+ to both members of equation (Dα

a+x)(t) + λ(Dα−1
a+ x)(t) = f (t, x(t)), and

using Lemma 1, we obtain

x(t) + a1(t− a)α−1 + a2(t− a)α−2 + λ
∫ t

a

(
x(s) + b1(s− a)α−2

)
ds = [Iα

a+ f (·, x(·))](t)

(a1, a2, b1 ∈ R), which is equivalent to

x(t) = −
(

a1 + λ
b1

α− 1

)
(t− a)α−1 − a2(t− a)α−2 − λ

∫ t

a
x(s)ds + [Iα

a+ f (·, x(·))](t).

Since x(a) = 0, it follows that a2 = 0. Observing that

x′(t) = −((α− 1)a1 + λb1)(t− a)α−2 − λx(t) + [Iα−1
a+ f (·, x(·))](t),

and using the initial condition x′(a) = 0, we also conclude that a1 + λ b1
α−1 = 0, and thus,

Equation (11) is obtained.

Let us fix the following notation

k− =
(b− a)α−1

λΓ(α)

[
1− (1− λ + λ2)e−λ(b−a)

]
,

k+ =
(b− a)α−1

λΓ(α)

[
1 + 2λ + 2λ2 − (1 + λ + λ2)e−λ(b−a)

]
,

and

K = K(λ) :=
{

k−, λ < 0
k+, λ > 0

. (12)

Theorem 4. If f : [a, b]×R→ R is continuously differentiable, then the IVPFO (1) has at least
one solution in C2([a, b]).
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Proof. We will use the Schauder fixed point theorem for the fractional integral operator
T, defined in (10). The continuity of Tx follows from the continuity of f . Moreover, we
have that

(Tx)′(t) =
−λe−λt

Γ(α− 1)

∫ t

a

∫ u

a
eλu(u− s)α−2 f (s, x(s))dsdu

+
1

Γ(α− 1)

∫ t

a
(t− s)α−2 f (s, x(s))ds

=
−λe−λt

Γ(α− 1)

∫ t

a

∫ u

a
eλu(u− s)α−2 f (s, x(s))dsdu

+
1

Γ(α)

(
(t− a)α−1 f (a, 0) +

∫ t

a
(t− s)α−1 f ′(s, x(s))ds

)
,

and

(Tx)′′(t) =
λ2e−λt

Γ(α− 1)

∫ t

a

∫ u

a
eλu(u− s)α−2 f (s, x(s))dsdu

− λ

Γ(α− 1)

∫ t

a
(t− s)α−2 f (s, x(s))ds

+
1

Γ(α− 1)

(
(t− a)α−2 f (a, 0) +

∫ t

a
(t− s)α−2 f ′(s, x(s))ds

)
.

Since f is continuously differentiable, there exist positive constants A and B such that
| f (t, x(t)| ≤ A and | f ′(t, x(t))| ≤ B, t ∈ [a, b]. Define Ω = {x ∈ C2([a, b]) : ‖x‖C2 ≤ R}
with R being a positive real number satisfying

R ≥ KA +
(b− a)α−2

Γ(α− 1)
f (a, 0) +

(b− a)α−1

Γ(α)
B.

It is clear that Ω is a closed, bounded and convex subset of C2([a, b]). Moreover, we
have that

|(Tx)(t)| =

∣∣∣∣ e−λt

Γ(α− 1)

∫ t

a

∫ u

a
(u− s)α−2eλu f (s, x(s))dsdu

∣∣∣∣
≤ e−λt

Γ(α− 1)

∫ t

a
eλu

∫ u

a
(u− s)α−2| f (s, x(s))|dsdu

≤ e−λt A
Γ(α− 1)

∫ t

a
eλu

∫ u

a
(u− s)α−2dsdu

≤ e−λt

Γ(α)
A(b− a)α−1

∫ t

a
eλudu

=
(b− a)α−1

λΓ(α)
(1− e−λ(t−a))A,

|(Tx)′(t)| ≤
∣∣∣∣ −λe−λt

Γ(α− 1)

∫ t

a

∫ u

a
(u− s)α−2eλu f (s, x(s))dsdu

∣∣∣∣
+

∣∣∣∣ 1
Γ(α− 1)

∫ t

a
(t− s)α−2 f (s, x(s))ds

∣∣∣∣
≤ (b− a)α−1

λΓ(α)

(
|λ|(1− e−λ(t−a)) + λ

)
A,
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and

|(Tx)′′(t)| ≤
∣∣∣∣ λ2e−λt

Γ(α− 1)

∫ t

a

∫ u

a
eλu(u− s)α−2 f (s, x(s))dsdu

∣∣∣∣
+

∣∣∣∣ λ

Γ(α− 1)

∫ t

a
(t− s)α−2 f (s, x(s))ds

∣∣∣∣
+

∣∣∣∣ 1
Γ(α− 1)

(
(t− a)α−2 f (a, 0) +

∫ t

a
(t− s)α−2 f ′(s, x(s))ds

)∣∣∣∣
≤ (b− a)α−1

λΓ(α)

(
λ2(1− e−λ(t−a))λ|λ|

)
A +

(b− a)α−2

Γ(α− 1)
f (a, 0) +

(b− a)α−1

Γ(α)
B.

Thus, we have that

‖Tx‖C2 ≤ sup
t∈[a,b]

{
(b− a)α−1

λΓ(α)
(1− e−λ(t−a))A

}

+ sup
t∈[a,b]

{
(b− a)α−1

λΓ(α)

(
|λ|(1− e−λ(t−a)) + λ

)
A
}

+ sup
t∈[a,b]

{
(b− a)α−1

λΓ(α)

(
λ2(1− e−λ(t−a)) + λ|λ|

)
A

+
(b− a)α−2 f (a, 0)

Γ(α− 1)
+

(b− a)α−1

Γ(α)
B
}

.

Thus, if λ < 0, we have that

‖Tx‖C2 ≤ (b− a)α−1

λΓ(α)

[
1− λ + λ2 − (1− λ + λ2)e−λ(b−a) + λ− λ2

]
A

+
(b− a)α−2

Γ(α− 1)
f (a, 0) +

(b− a)α−1

Γ(α)
B

= k−A +
(b− a)α−2

Γ(α− 1)
f (a, 0) +

(b− a)α−1

Γ(α)
B ≤ R,

and if λ > 0, we have

‖Tx‖C2 ≤ (b− a)α−1

λΓ(α)

[
1 + λ + λ2 − (1 + λ + λ2)e−λ(b−a) + λ + λ2

]
A

+
(b− a)α−2

Γ(α− 1)
f (a, 0) +

(b− a)α−1

Γ(α)
B

= k+A +
(b− a)α−2

Γ(α− 1)
f (a, 0) +

(b− a)α−1

Γ(α)
B ≤ R.

Consequently, we conclude that T is a bounded operator on Ω ⊂ C2([a, b]).
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Let us prove that operator T : Ω → Ω is completely continuous. For t1, t2 ∈ [a, b],
t1 < t2, one has

|(Tx)(t2)− (Tx)(t1)| =

∣∣∣∣ e−λt2

Γ(α− 1)

∫ t2

a

∫ u

a
(u− s)α−2eλu f (s, x(s))dsdu

− e−λt1

Γ(α− 1)

∫ t1

a

∫ u

a
(u− s)α−2eλu f (s, x(s))dsdu

∣∣∣∣
≤ e−λt2

Γ(α− 1)

∫ t2

t1

∫ u

a
|(u− s)α−2eλu f (s, x(s))|dsdu

+
|e−λt2 − e−λt1 |

Γ(α− 1)

∫ t1

a

∫ u

a
|(u− s)α−2eλu f (s, x(s))|dsdu,

which tends to zero as t2 → t1 (independently of x and λ). In the same way, we get

|(Tx)′(t2)− (Tx)′(t1)|

= |λ||(Tx)(t2)− (Tx)(t1)|+
1

Γ(α− 1)

∫ t2

t1

(t2 − s)α−2| f (s, x(s))|ds +

+
1

Γ(α− 1)

∫ t1

a
[(t2 − s)α−2 − (t1 − s)α−2]| f (s, x(s))|ds,

which tends to zero as t2 → t1. Finally, we observe that

|(Tx)′′(t2)− (Tx)′′(t1)|

= |λ||(Tx)′(t2)− (Tx)′(t1)|+
1

Γ(α− 1)

∫ t2

t1

(t2 − s)α−2| f ′(s, x(s))|ds +

+
1

Γ(α− 1)

∫ t1

a
[(t2 − s)α−2 − (t1 − s)α−2]| f ′(s, x(s))|ds

+
(t2 − a)α−2 − (t1 − a)α−2

Γ(α− 1)
f (a, 0)

tends to zero as t2 → t1. Thus, we conclude that TΩ is equicontinuous. Following Arzelà-
Ascoli Theorem, we obtain that T is completely continuous. Applying Schauder’s fixed
point theorem (cf. Theorem 2), we conclude that the operator T has at least one fixed point,
which means that the IVPFO (1) has at least one solution and the proof is completed.

We will now exhibit other conditions under which, besides the existence of solutions,
we will also guarantee the uniqueness of the solution to the IVPFO (1).

Theorem 5. Let f : [a, b]×R → R be a continuously differentiable function and suppose that
there are L1 and L2 ≥ 0 such that, for t ∈ [a, b],

| f (t, x(t))− f (t, y(t))| ≤ L1|x(t)− y(t)|, (13)

| f ′(t, x(t))− f ′(t, y(t))| ≤ L2
(
|x(t)− y(t)|+ |x′(t)− y′(t)|

)
. (14)

If

KL1 + L2
(b− a)α−1

Γ(α)
< 1,

then the problem (1) has a unique solution on C2([a, b]).
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Proof. Since f is a continuously differentiable function, according to Theorem 4, the
IVPFO (1) admits at least one solution. Let us assume that conditions (13)–(14) hold.
Thus, we can obtain that, for x, y ∈ C2([a, b]),

|(Tx)(t)− (Ty)(t)| ≤ e−λt

Γ(α− 1)

∫ t

a
eλu

∫ u

a
(u− s)α−2| f (s, x(s))− f (s, y(s))|dsdu

≤ L1e−λt

Γ(α− 1)

∫ t

a
eλu

∫ u

a
(u− s)α−2|x(s)− y(s)|dsdu

≤ L1‖x− y‖C2
(b− a)α−1(1− e−λ(t−a))

λΓ(α)
,

|(Tx)′(t)− (Ty)′(t)| ≤ 1
Γ(α− 1)

∫ t

a
(t− s)α−2| f (s, x(s))− f (s, y(s))|ds

+
|λ|e−λt

Γ(α− 1)

∫ t

a
eλu

∫ u

a
(u− s)α−2| f (s, x(s))− f (s, y(s))|dsdu

≤ L1

Γ(α− 1)

∫ t

a
(t− s)α−2|x(s)− y(s)|ds

+
L1|λ|e−λt

Γ(α− 1)

∫ t

a
eλu

∫ u

a
(u− s)α−2|x(s)− y(s)|dsdu

≤ L1‖x− y‖C2

(b− a)α−1
(

λ + |λ|(1− e−λ(t−a))
)

λΓ(α)
,

and

|(Tx)′′(t)− (Ty)′′(t)| ≤ λ2e−λt

Γ(α− 1)

∫ t

a

∫ u

a
eλu(u− s)α−2| f (s, x(s))− f (s, y(s))|dsdu

+
|λ|

Γ(α− 1)

∫ t

a
(t− s)α−2| f (s, x(s))− f (s, y(s))|ds

+
1

Γ(α− 1)

∫ t

a
(t− s)α−2| f ′(s, x(s))− f ′(s, y(s))|ds

≤ L1λ2e−λt

Γ(α− 1)

∫ t

a

∫ u

a
eλu(u− s)α−2|x(s)− y(s)|dsdu

+
|λ|L1

Γ(α− 1)

∫ t

a
(t− s)α−2|x(s)− y(s)|ds

+
L2

Γ(α− 1)

∫ t

a
(t− s)α−2(|x(s)− y(s)|+ |x′(s)− y′(s)|

)
ds

≤ L1‖x− y‖C2

(b− a)α−1
(

λ2(1− e−λ(t−a)) + λ|λ|
)

λΓ(α)

+L2‖x− y‖C2
(b− a)α−1

Γ(α)
.

Thus, we conclude that, for λ > 0

‖Tx− Ty‖C2

= sup
t∈[a,b]

|(Tx)(t)− (Ty)(t)|+ sup
t∈[a,b]

|(Tx)′(t)− (Ty)′(t)|+ sup
t∈[a,b]

|(Tx)′′(t)− (Ty)′′(t)|

≤ ‖x− y‖C2

[
L1

(b− a)α−1[1 + 2λ + 2λ2 − (1 + λ + λ2)e−λ(b−a)]

λΓ(α)
+ L2

(b− a)α−1

Γ(α)

]

=

(
k+L1 + L2

(b− a)α−1

Γ(α)

)
‖x− y‖C2 ,
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and for λ < 0,

‖Tx− Ty‖C2

≤ ‖x− y‖C2

[
L1

(b− a)α−1[1− e−λ(b−a) + λe−λ(b−a) − λ2e−λ(b−a)]

λΓ(α)
+ L2

(b− a)α−1

Γ(α)

]

=

(
k−L1 + L2

(b− a)α−1

Γ(α)

)
‖x− y‖C2 .

Since KL1 + L2
(b−a)α−1

Γ(α) < 1, we have that T is a contractive operator. Thus, by Banach
contraction principle (cf. Theorem 1), we conclude that T has a unique fixed point, which
from Proposition 1 means that the IVPFO (1) has a unique solution on C2([a, b]).

4. Ulam–Hyers and Ulam–Hyers–Rassias Stabilities

In this section, we analyse the Ulam–Hyers and the Ulam–Hyers–Rassias stabilities of
the above class of problems. In fact, since from Proposition 1 we have a new Equation (3)
to describe the IVPFO (1) equivalently, we may choose to discuss the stabilities of (1) or (3).
Thus, in here, we choose to exhibit, in detail, conditions for the Ulam–Hyers stability of (1)
and the Ulam–Hyers–Rassias stability of (3). To this purpose, let us first point out what are
the definitions of such stabilities in each of those cases.

Definition 3. The IVPFO (1) is Ulam–Hyers stable if there exists a real constant k > 0 such that,
for each ε > 0 and for each solution y ∈ C2([a, b]) of the inequality problem

∣∣∣Dα
a+y(t) + λ(Dα−1

a+ y)(t)− f (t, y(t))
∣∣∣ ≤ ε, t ∈ [a, b],

y(a) = y′(a) = 0,
(15)

there exists a solution x ∈ C2([a, b]) of the problem (1) (or, equivalently, of (3)) such that

|y(t)− x(t)| ≤ kε, t ∈ [a, b].

Remark 3. If we look at what is inside the modulus function in (15) as a single “new” function h,
it directly follows that a function y ∈ C2([a, b]) is a solution of the inequality in (15) if and only if
there exists a function h ∈ C([a, b]) (which depends on y) such that

(i) |h(t)| ≤ ε, t ∈ [a, b],
(ii) y(a) = y′(a) = 0,
(iii) Dα

a+y(t) + λ(Dα−1
a+ y)(t)− f (t, y(t)) = h(t), t ∈ [a, b].

Definition 4. The fractional integral Equation (3) is Ulam–Hyers–Rassias stable with respect to
ϕ : [a, b]→ R+ if there exists a real constant kϕ > 0 such that, for each ε > 0 and for each solution
y of ∣∣∣∣y(t)− e−λt

Γ(α− 1)

∫ t

a

∫ u

a
(u− s)α−2eλu f (s, y(s))dsdu

∣∣∣∣ ≤ εϕ(t), t ∈ [a, b], (16)

there exists a solution x of the problem (3) with

|y(t)− x(t)| ≤ kϕεϕ(t), t ∈ [a, b].

4.1. Ulam–Hyers Stability

As indicated above, we will start by identifying conditions that guarantee the Ulam–
Hyers of the IVPFO (1).
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Theorem 6. Let the continuously differentiable function f satisfy the Lipschitz conditions (13)–(14),
for all t ∈ [a, b], and assume that

KL1 + L2
(b− a)α−1

Γ(α)
< 1. (17)

If y ∈ C2([a, b]) satisfies the inequality and initial conditions (15) (with ε > 0), for all t ∈ [a, b],
then there exists a unique solution x ∈ C2([a, b]) of the IVPFO (1) such that

|y(t)− x(t)| ≤ kε, t ∈ [a, b],

for

k =
(b− a)α−1

α− 1
eL1

(1−e−λ(b−a))(b−a)α−1

λΓ(α) (18)

which, in particular, means that the IVPFO (1) is Ulam–Hyers stable.

Proof. According to the hypothesis, there exists a unique solution of the IVPFO (1).
Let y ∈ C2([a, b]) be any solution of the inequality of (15). By Remark 3, following the

procedure of Proposition 1, one has that

y(t) =
e−λt

Γ(α− 1)

∫ t

a

∫ u

a
(u− s)α−2eλu f (s, y(s))dsdu

+
e−λt

Γ(α− 1)

∫ t

a

∫ u

a
(u− s)α−2eλuh(s)dsdu,

with |h(t)| < ε. Thus, we have that

|x(t)− y(t)| =

∣∣∣∣ e−λt

Γ(α− 1)

∫ t

a

∫ u

a
(u− s)α−2eλu( f (s, x(s))− f (s, y(s)))dsdu

− e−λt

Γ(α− 1)

∫ t

a

∫ u

a
(u− s)α−2eλuh(s)dsdu

∣∣∣∣
≤ e−λt

Γ(α− 1)

∫ t

a

∫ u

a
(u− s)α−2eλu| f (s, x(s))− f (s, y(s))|dsdu

+
e−λt

Γ(α− 1)

∫ t

a

∫ u

a
(u− s)α−2eλu|h(s)|dsdu

≤ L1
e−λt

Γ(α− 1)

∫ t

a
eλu

∫ u

a
(u− s)α−2|x(s)− y(s)|dsdu

+ε
e−λt

Γ(α− 1)

∫ t

a
eλu

∫ u

a
(u− s)α−2dsdu

≤ L1
1− e−λ(t−a)

λΓ(α− 1)

∫ t

a

∫ u

a
(u− s)α−2|x(s)− y(s)|dsdu

+ε
(1− e−λ(t−a))(b− a)α−1

λΓ(α)

≤ 1− e−λ(t−a)

λΓ(α− 1)

(
ε
(b− a)α−1

α− 1
+
∫ t

a

∫ u

a
L1(u− s)α−2|x(s)− y(s)|dsdu

)
≤ 1− e−λ(b−a)

λΓ(α− 1)

(
ε
(b− a)α−1

α− 1
+
∫ t

a

∫ u

a
L1(u− s)α−2|x(s)− y(s)|dsdu

)
.



Mathematics 2023, 11, 297 14 of 22

Thus, according to Theorem 3, we have that

|x(t)− y(t)| ≤ ε
(b− a)α−1

α− 1
e

1−e−λ(b−a)
λΓ(α−1) L1

(t−a)α−1
α−1

≤ ε
(b− a)α−1

α− 1
eL1

(1−e−λ(b−a))(b−a)α−1

λΓ(α) ,

and we conclude the above claimed inequality and that the IVPFO (1) is Ulam–Hyers stable.

4.2. Ulam–Hyers–Rassias Stability

We will now consider the Ulam–Hyers–Rassias stability. For that purpose, we consider
the space C([a, b]) equipped with the Bielecki type metric

d(x, y) = sup
t∈[a,b]

|x(t)− y(t)|
σ(t)

,

where σ is a non-decreasing continuous function σ : [a, b] → R+. It is known that
(C([a, b]), d) is a complete metric space (cf. [25]).

Theorem 7. Let f : [a, b]×R→ R be a continuous function satisfying the Lipschitz condition

| f (t, ρ1)− f (t, ρ2)| ≤ L|ρ1 − ρ2|, ρ1, ρ2 ∈ R, t ∈ [a, b],

with L > 0. Additionally, let σ : [a, b]→ R+ be a nondecreasing function and suppose that exist a
constant ξ ∈ [0, 1) such that

e−λt

Γ(α− 1)

∫ t

a

∫ u

a
(u− s)α−2eλuσ(s)dsdu ≤ ξσ(t), t ∈ [a, b].

If y satisfies∣∣∣∣y(t)− e−λt

Γ(α− 1)

∫ t

a

∫ u

a
(u− s)α−2eλu f (s, y(s))dsdu

∣∣∣∣ ≤ εσ(t), t ∈ [a, b],

and Lξ < 1, then there exist a solution x of the fractional integral Equation (3) such that

|x(t)− y(t)| ≤ εσ(t)
1− Lξ

, t ∈ [a, b],

i.e., under the present conditions, the fractional integral Equation (3) has the Ulam–Hyers–
Rassias stability.

Proof. Having in mind the fractional integral Equation (3), we will consider (in the frame-
work of the above presented Bielecki type metric) the operator T : C([a, b], d)→ C([a, b], d)
defined by

(Ty)(t) =
e−λt

Γ(α− 1)

∫ t

a

∫ u

a
(u− s)α−2eλu f (s, y(s))dsdu.
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Let us first prove that T is strictly contractive in C([a, b], d). For any v, w ∈ C([a, b], d),
we have

d(Tv, Tw) = sup
t∈[a,b]

∣∣∣ e−λt

Γ(α−1)

∫ t
a

∫ u
a (u− s)α−2eλu( f (s, v(s))− f (s, w(s))dsdu

∣∣∣
σ(t)

≤ L sup
t∈[a,b]

∣∣∣ e−λt

Γ(α−1)

∫ t
a

∫ u
a (u− s)α−2eλuσ(s) |v(s)−w(s)|

σ(s) dsdu
∣∣∣

σ(t)

≤ Lξd(v, w).

Consequently, for Lξ < 1, we have that T is strictly contractive in the present framework,
and we have a unique solution x to the equation Ty = y.

Let us now identify ε as an upper bound for d(Ty, y), and use this knowledge. Indeed,
from the hypothesis, we have

|y(t)− Ty(t)| =
∣∣∣∣y(t)− e−λt

Γ(α− 1)

∫ t

a

∫ u

a
(u− s)α−2eλu f (s, y(s))dsdu

∣∣∣∣ < εσ(t),

which allows us to conclude that

d(x, y) ≤ 1
1− Lξ

d(y, Ty) ≤ ε

1− Lξ
,

and so
|x(t)− y(t)| ≤ ε

1− Lξ
σ(t), t ∈ [a, b].

The Ulam–Hyers stability is a particular case of the Ulam–Hyers–Rassias stability in
the sense that instead of having a function ϕ controlling the differences in the last stability,
we simply have a constant k in the first one. Thus, attending that

e−λt

Γ(α− 1)

∫ t

a

∫ u

a
(u− s)α−2eλudsdu ≤ (b− a)α−1

λΓ(α)
(1− e−λ(b−a)), t ∈ [a, b],

and proceeding in an identical way to the proof of Theorem 7, we would pass from an
upper bound that depends on a function (of the variable t) to an upper bound in the form
of a constant, which is here directly concluded (following the proof of Theorem 7) in the
next result:

Corollary 1. Let f : [a, b]×R→ R be a continuous function satisfying the Lipschitz condition

| f (t, ρ1)− f (t, ρ2)| ≤ L|ρ1 − ρ2|, ρ1, ρ2 ∈ R, t ∈ [a, b],

with L > 0. Let

η =
(b− a)α−1

λΓ(α)
(1− e−λ(b−a)). (19)

If Lη < 1 and y satisfies∣∣∣∣y(t)− e−λt

Γ(α− 1)

∫ t

a

∫ u

a
(u− s)α−2eλu f (s, y(s))dsdu

∣∣∣∣ ≤ ε, t ∈ [a, b],

then there exist a solution x of the fractional integral Equation (3) such that

|x(t)− y(t)| ≤ ε

1− Lη
, t ∈ [a, b], (20)
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i.e., under the above conditions, the fractional integral Equation (3) has the Ulam–Hyers stability.

Remark 4. Please, note that the constants k in (18) and 1
1−Lη in (20) cannot be compared for all the

values of the parameters. Consider, for example, the following cases. Admit that L = L1 = L2 = 1
20 ,

α = 7
4 and consider two intervals, one of amplitude equal 1 and another one with amplitude 0.8.

With these values, we have that, for λ ∈]− 2, 0[∪]0, 5[ condition (17) is verified and also, Lη < 1
for η as defined in (19). For the case b− a = 1, it is possible to observe that k > 1

1−Lη (cf. Figure 1,

where p(λ) > q(λ)). For the case b− a = 0.8, we verify that k < 1
1−Lη (cf. Figure 2, where

p(λ) < q(λ)).

Figure 1. The graphs of p(λ) = k(λ) and q(λ) = 1
1−Lη(λ)

for λ ∈ [−2, 0] ∪ [0, 5]: case b− a = 1.

Figure 2. The graphs of p(λ) = k(λ) and q(λ) = 1
1−Lη(λ)

for λ ∈ [−2, 0] ∪ [0, 5]: case b− a = 0.8.

4.3. Concrete Examples

Let us now consider some concrete examples to illustrate the above theory.
We start by considering the following IVPFO{

(D 3
2 x)(t) + λ(D 1

2 x)(t) = t
75 (x(t) + sin(t)),

x(2) = x′(2) = 0,
(21)

for t ∈ [2, 3]. Thus, in the previous notation, we have in here α = 3
2 , a = 2, b = 3 and

f (t, ρ) =
t

75
(ρ + sin(t)),

being clear that f is a continuously differentiable function.
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According to Theorem 4, there exists, at least, one solution of the IVPFO (21). In ad-
dition, having in mind that f ′(t, x(t)) = 1

75 (x(t) + t x′(t) + sin(t) + t cos(t)), for t ∈ [2, 3],
one has that

| f (t, x(t))− f (t, y(t))| ≤ 1
25
|x(t)− y(t)|,

| f ′(t, x(t))− f ′(t, y(t))| ≤ 1
25
(
|x′(t)− y′(t)|+ |x(t)− y(t)|

)
.

Following Theorem 5 and its notation, we have in here L1 = L2 = 1
25 . Thus, for a = 2 and

b = 3, we obtain that

KL1 + L2
(b− a)α−1

Γ(α)
< 1,

for λ ∈ [−1, 0] ∪ [0, 9] (cf. (12) and Figure 3). Thus, for these cases of λ, the IVPFO (21)
admits a unique solution in C2([2, 3]). Moreover, from Theorem 6, we also know that for
those λ the IVPFO (21) is Ulam–Hyers stable.

Figure 3. The graphs of z1(λ) = K(λ)L1 +
L2

Γ( 3
2 )

and z2 = 1.

The example we have just analyzed allows us to see that there really are classes of
problems, dependent on λ, in which the conditions required in Theorem 5 are met, and
there are still other cases (for different parameters λ) in which this is not the case. In view
of this, and keeping in mind that the conditions of Theorem 5 are just sufficient conditions,
an open analysis eventually involves obtaining other weaker conditions according to which
the uniqueness of solution for those classes of problems can still be guaranteed. The same
can be envisaged for Theorem 6 and its sufficient conditions to guarantee the stability of
the Ulam–Hyers type.

Let us now investigate the Ulam–Hyers–Rassias stability of

x(t) =
e−λt

Γ( 3
2 − 1)

∫ t

2

∫ u

2
(u− s)

3
2−2eλu t

75
(y(s) + sin(s))dsdu, (22)

for t ∈ [2, 3] and λ = 3.
Letting σ(t) = et, we have that σ is a non-decreasing function and

e−3t

Γ( 1
2 )

∫ t

2

∫ u

2
(u− s)

3
2−2e3uσ(s)dsdu ≤ 1

5
σ(t), t ∈ [2, 3]

(cf. Figure 4). Thus, for the notation of Theorem 7, we have L = 1
25 , ξ = 1

5 and so
Lξ = 1

125 < 1.
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Figure 4. The graphs of p1(t) = 1
5 σ(t) = 1

5 et (the upper one), and p2(t) = e−3t

Γ( 1
2 )

∫ t
2

∫ u
2 (u −

s)
3
2−2e3uσ(s)dsdu, t ∈ [2, 3].

Take y(t) = 1
10 (t− 2)2. We have that y ∈ C2([2, 3]) and y(2) = y′(2) = 0. We have that

(cf. Figure. 5)∣∣∣∣∣y(t)− e−3t

Γ( 3
2 )

∫ t

2

∫ u

2
(u− s)−

1
2 e3u s

75
(y(s) + sin(s))dsdu

∣∣∣∣∣ ≤ 1
200

σ(t), t ∈ [2, 3].

Figure 5. The graphs of q1(t) = 1
200 σ(t) (the upper one) and q2(t) =∣∣∣∣y(t)− e−3t

Γ( 3
2 )

∫ t
2

∫ u
2 (u− s)−

1
2 e3u s

75 (y(s) + sin(s))dsdu
∣∣∣∣, t ∈ [2, 3].

Thus, according to Theorem 7, the problem (22) is Ulam–Hyers–Rassias stable with
respect to σ(t) = et and

|y(t)− x(t)| ≤ 5et

992
, t ∈ [2, 3].

Moreover, we can also observe that∣∣∣∣∣y(t)− e−3t

Γ( 3
2 )

∫ t

2

∫ u

2
(u− s)−

1
2 e3u s

75
(y(s) + sin(s))dsdu

∣∣∣∣∣ ≤ 1
10

, t ∈ [2, 3].

Thus, applying Corollary 1 and the respective notation, we have that ε = 1
10 . Additionally,

η = 1−e−3

3Γ( 3
2 )
≈ 0.36 and we conclude that

|x(t)− y(t)| ≤ 0.1.
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In this last example, it is relevant to emphasize the importance of the function σ in
the whole process, with special predominance, from the outset, in the determination of the
exhibited upper bounds. In this case, we chose to work with the exponential function, and
this had expected consequences given the growth that the function presents. Incidentally,
the importance of the choice and the impact that the σ function has is well evidenced by
the fact that the same problem can be Ulam–Hyers–Rassias stable for a given σ1 function
and not Ulam–Hyers–Rassias stable for another σ2 function. Thus, it is precisely for this
reason that the Ulam–Hyers–Rassias stability is determined depending on the chosen σ
function (and it is also for this reason that this is explicitly mentioned in the name of this
type of stability).

Let us now consider the following different IVPFO{
(D 6

5 x)(t) + λ(D 1
5 x)(t) = t

10 x(t)− e−t, t ∈ [0, 1],

x(0) = x′(0) = 0.
(23)

Accordingly to the previous notations, we have now α = 6
5 , a = 0, b = 1 and

f (t, x(t)) = t
10 x(t) − e−t. It is clear that f is a continuously differentiable function in

[0, 1]×R. Thus there exists, at least, one solution of the IVPFO (23) (cf. Theorem 4). More-
over, one has that

| f (t, x(t))− f (t, y(t))| ≤ 1
10
|x(t)− y(t)|,

| f ′(t, x(t))− f ′(t, y(t))| ≤ 1
10
(
|x′(t)− y′(t)|+ |x(t)− y(t)|

)
.

Following Theorem 5, we have L1 = L2 = 1
10 . Since a = 0 and b = 1, we obtain that for

λ ∈]− 1, 0[∪
]
0, 5

2
[
, the condition

KL1 + L2
(b− a)α−1

Γ(α)
< 1

is verified (cf. Figure 6), which means that the IVPFO (23) admits a unique solution in
C2([0, 1]) when considering those values of λ (cf. Theorem 5).

Figure 6. The graphs of h1(λ) = K(λ)L1 +
L2

Γ( 6
5 )

and h2 = 1.

Thus, for these cases of λ, the IVPFO (23) admits a unique solution in C2([0, 1]). More-
over, from Theorem 6, we also know that for those λ the IVPFO (23) is Ulam–Hyers stable.
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Let us now analyse the Ulam–Hyers–Rassias stability of

x(t) =
e−λt

Γ( 6
5 − 1)

∫ t

0

∫ u

0
(u− s)

6
5−2eλu

( s
10

x(s)− e−s
)

dsdu, (24)

for t ∈ [0, 1], λ = 2, and with respect to σ(t) = t. Let x ∈ C2([0, 1]) be the exact solution
of the IVPFO (23), and let us consider y(t) = sin(t)− t. It follows that y ∈ C2([0, 1]) and
y(0) = y′(0) = 0. We have that σ is a nondecreasing function and

e−2t

Γ( 1
5 )

∫ t

0

∫ u

0
(u− s)−

4
5 e2uσ(s)dsdu ≤ 1

4
σ(t), t ∈ [0, 1]

(cf. Figure 7).

Figure 7. The graphs of m1(t) = e−2t

Γ( 1
5 )

∫ t
0

∫ u
0 (u− s)−

4
5 e2uσ(s)dsdu and m2(t) = 1

4 σ(t) = t
4 , t ∈ [0, 1].

For the notation of Theorem 7, we have L = 1
25 and ξ = 1

4 , and so Lξ = 1
100 < 1. Thus,∣∣∣∣∣y(t)− e−2t

Γ( 1
5 )

∫ t

0

∫ u

0
(u− s)−

4
5 e2u

( s
10

y(s)− e−s
)

dsdu

∣∣∣∣∣ ≤ 7
50

σ(t), t ∈ [0, 1]

(cf. Figure 8).

Figure 8. The graphs of w1(t) =
∣∣∣∣y(t)− e−2t

Γ( 1
5 )

∫ t
0

∫ u
0 (u− s)−

4
5 e2u( s

10 y(s)− e−s)dsdu
∣∣∣∣ (the lower one)

and w2(t) = 7
50 σ(t), t ∈ [0, 1].
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Therefore, according to Theorem 7, the problem (24) is Ulam–Hyers–Rassias stable
with respect to σ(t) = t and

|y(t)− x(t)| ≤ 14
99

σ(t), t ∈ [0, 1].

In this last example, we deliberately chose σ(t) = t to work with y(t) = sin(t)− t,
which can be considered not the most ideal choice (which, by the way, can be easily noticed
when we look at Figure 8 and see, on the right, the “greatest” distance between the two
functions represented there). Anyway, we consider this example important because it
emphasizes that the theoretical conditions obtained earlier are robust enough to guarantee
stability in less favorable or obvious choices.

Moreover, according to Corollary 1, we can also conclude the Ulam–Hyers stability.
Using the respective notation of the Corollary, we have that ε = 7

50 , η = 1−e−2

2Γ( 6
5 )
≈ 0.47 and

L = 1
25 . Thus, we conclude that |x(t)− y(t)| ≤ 7

50 .

5. Conclusions

We conclude this article by summarizing the results obtained. We analyze a class of
nonlinear fractional differential equations, with initial conditions, characterized by having
the Riemann–Liouville fractional derivative of order α ∈ (1, 2). Having made use of distinct
fixed-point arguments, we were able to deduce conditions that guarantee the existence
and uniqueness of solutions in a frame of adequate spaces, and we also obtained sufficient
conditions to have the Ulam–Hyers and Ulam–Hyers–Rassias stabilities of the problems
in the analysis (where the use of a Bielecki-type metric and some additional contractive
arguments were of crucial importance). In the last section, some examples were included
mainly to illustrate that the conditions obtained in the theoretical part really exist and can
be considered in particular cases.
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