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Abstract

Recently, it has been shown that the radial stability of a light-ring (LR) in a spacetime gener-
ated by a stationary, axisymmetric, asymptotically flat object with a Z2 symmetry determines the
possibility and radial stability of timelike circular orbits (TCOs) around the LR. In this paper, we
generalise this result by also considering the vertical (angular) stability of the orbits through the
study of the radial and vertical epicyclic frequencies. We show that the vertical stability of the LR
only determines the vertical stability of the TCOs around it. A relation between the sum of the
squared epicyclic frequencies and the Ricci tensor is also provided. With such relation, we show that
objects with radially and vertically unstable LRs (TCOs) violate the null (strong) energy condition.
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1 Introduction

The study of the structure of null and timelike circular orbits around a given generic ultracompact object
is important to access several of its phenomenology properties. These properties can, in principal, be very
different from the ones found for the paradigmatic General Relativity black hole (BH) – the Kerr BH [1].
Such differences are opportune to know given the recent measurements of gravitational waves (GWs) by the
LIGO/Virgo/KAGRA collaboration [2–5] and the shadow and lensing of light around the M87* and Sgr A*
supermassive BHs provided by the EHT collaboration [6, 7]. Furthermore, with the advances towards the
construction and implementation of the future Laser Interferometer Space Antenna (LISA), designed to be able
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to detect GW signals with much lower frequencies than the LIGO/Virgo/KAGRA collaboration, such as the
ones produced by extreme mass ratio inspirals (EMRIs) [8], it will be possible to probe the structure of timelike
circular orbits around these ultracompact objects, that can be BHs or other ultracompact objects that could
mimic a BH – eg. scalar and vector boson stars [9–16].

To get a sense of what structures of circular orbits one can find, we start by recalling three remarkable works
developed recently in [17–19]. In the first work [17], the authors showed, using a topological argument, that
a generic stationary, axisymmetric and asymptotically flat ultracompact horizonless object must have at least
two null circular orbits – otherwise known as light-rings (LRs) –, where one of them is stable. In the second
work [18], the authors used a similar topological argument as in the previous one to prove that a stationary,
axisymmetric, asymptotically flat and non-extremal BH must have at least one unstable LR outside of its event
horizon. In the last work [19], it was shown that by using the previous two results together with a careful
analyse of the boundary behaviour of some key quantities, it is possible to further conclude that, for both types
of ultracompact objects mentioned (with or without an horizon), if the object possesses an ergoregion then, at
least, one LR must exist outside its ergoregion. All these results define precisely the structure of null circular
orbits for generic (within the assumptions mentioned) ultracompact objects, with or without an horizon.

A natural question to ask now is the following: does the existence of a LR establish any structure for timelike
circular orbits (TCOs) around it? An answer to this question was given in [20], where it was shown that, for a
generic ultracompact object with the same assumptions as mentioned previously, together with a Z2 symmetry
fixing an equatorial plane, the radial stability of the existing LRs determines the localisation and radial stability
of TCOs in their vicinity. However, this work only mentions and studies the radial stability of the circular orbits,
and it leaves open an opportunity to perform a more complete study where the vertical stability of the circular
orbits is also included.

In this paper, we shall take the aforementioned opportunity. For that, we will study the radial and vertical
epicyclic frequencies of null and timelike particles following circular orbits on a spacetime generated by a
generic ultracompact object with the same assumptions mentioned in the previous paragraph. These epicyclic
frequencies are computed by perturbing the circular orbits in the radial and vertical directions, and are tightly
connected with the stability of the orbits. With them, we shall arrive at the same result present in [20], together
with its generalisation, where we also look at the vertical stability of the orbits.

Throughout the first part of this paper, we do not impose any further assumption upon the ultracompact
object in question. The generic ultracompact object may or may not be a BH, and it is a solution of an
undefined set of equations of motion obtained from an undefined theory of gravity. However, it is expected that
the matter which composes the object obeys the energy conditions. Therefore, in the second part of this paper,
we establish connections between the epicyclic frequencies, and consequently the structure of circular orbits,
with the energy conditions.

The first study of its kind was done in [21], where the authors found that the sum of the squared epicyclic
frequencies of TCOs around a Maclaurin spheroid [22, 23] in the Newtonian regime, could be written only in
terms of the angular velocity of the timelike particles, Ω, and the density of the spheroid, ρ, as [21],

ω2
r + ω2

θ = 2Ω2 + 4πGρ , (1)

where ωr and ωθ are the radial and vertical epicyclic frequencies, respectively, and G is Newton’s constant. In
the same work, the authors also found that, for the case of a Kerr BH, the sum vanishes when computed at the
LR.

Some years later, a proof developed in [24] showed that, for a very generic static, axisymmetric and asymp-
totically flat object, the sum of the squared epicyclic frequencies of TCOs could be written at the expense of a
linear combination of the components of the Ricci tensor [24],

ω2
r + ω2

θ =
[
Rtt + Ω2Rϕϕ

]
+

Ω2

2grr

dgϕϕ
dr

1

r̃2
dr̃2

dr2
, (2)

where, r̃2 = −gϕϕ/gtt. They also found, through the above equation, that if the object obeys the strong energy
condition (SEC) then ω2

r + ω2
θ > 0.

In the second part of this paper, we shall generalise the work done in [24] by considering a more generic
stationary ultracompact object. We shall obtain a similar result to the one presented in Eq. (2) and we shall
consider the SEC as well as the null energy condition (NEC). If the matter which compose the object in question
obeys the SEC and NEC, then the sum of the epicyclic frequencies of LRs and TCOs will always be non negative.

This work is organised as follows. In Section 2, we start by introduction and defining all quantities of interest
for the null and timelike circular orbits, namely, their radial and vertical epicyclic frequencies. Then, in Section
3, we show, together with the work done in [20], that the epicyclic frequencies of the timelike particle coincide
with the epicyclic frequencies of the null particles when both of them are computed at the LRs. The four
possible structure of TCOs surrounding a LR are presented. Section 4 provides the relation between the sum of
the squared epicyclic frequencies and the Ricci tensor. Connections with the null and strong energy condition
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are also provided and analysed. Finally, in Section 5, we close the present paper with the conclusions and final
remarks.

2 Epicyclic frequencies of equatorial circular orbits

To study the epicyclic frequencies, we shall follow a similar setup as the one described in [20]. Let us consider
a stationary, axisymmetric, asymptotically flat, 1+3 dimensional spacetime, (M, g), that describes a generic
ultracompact object with a Z2 symmetry that may or may not have an event horizon. No assumption is made
on the field equations (M, g) solves.

Stationarity and axial symmetry imply the existence of two Killing vectors field, {η1, η2}, that commune,
[η1, η2] = 0, thanks to a theorem develop by Carter (together with asymptotic flatness) [25]. Such result open
the possibility to choose a coordinate system, (t, r, θ, ϕ), that can be adapted to the Killing vector fields such
that η1 = ∂t and η2 = ∂ϕ. We also assume that the metric associated to the spacetime is, at least, C2-smooth
on and outside the possible horizon, and circular. This implies, for asymptotically flat spacetimes, that the
geometry possesses a 2-space orthogonal to the Killing vector fields (c.f. theorem 7.11 in [26]). Therefore, the
discrete symmetry (t, ϕ)→ (−t,−ϕ) is present on the spacetime.

By a gauge choice, we can defined spherical-like coordinates (r, θ) in the orthogonal 2-space that are or-
thogonal to each other. An extra gauge choice can be used to fix the localisation of the horizon at a constant
positive radial coordinate, r = rH , for the case of ultracompact objects with a horizon. With these choices,
grθ = 0, grr > 0 and gθθ > 0 (outside the possible horizon). One can also impose that (r, θ) must reduce to
the standard spherical coordinates as one approaches spatial infinity, r →∞. The range of the coordinates are,
t ∈ (−∞,+∞); r ∈ (rH ,+∞), if a horizon exists, or r ∈ [0,+∞), if no horizon exists; θ ∈ [0, π]; and ϕ ∈ [0, 2π).
The rotating axis is located at θ = {0, π}, and the equatorial plane can be found at θ = π/2. Outside of a
possible horizon, causality implies that gϕϕ ≥ 0.

In the end, due to all the assumptions, gauge choices, and using a Lorentzian signature (−,+,+,+), we can
write the following line element,

ds2 = gtt(r, θ)dt
2 + 2gtϕ(r, θ)dtdϕ+ gϕϕ(r, θ)dϕ2 + grr(r, θ)dr

2 + gθθ(r, θ)dθ
2 . (3)

Note that we shall consider that the radial coordinate is a faithful measurement of the distance to the ultra-
compact object.

The motion of test particles in the above geometry can be described through the following effective La-
grangian,

2L = gµν ẋ
µẋν = ε , (4)

where the dot denotes the derivation with respect to an affine parameter, and ε = {−1, 0} for timelike and
null particles, respectively. The effective Lagrangian will depend on the spherical-like coordinate, and can be
written as follows,

2L = gtt(r, θ)ṫ
2 + 2gtϕ(r, θ)ṫϕ̇+ gϕϕ(r, θ)ϕ̇2 + grr(r, θ)ṙ

2 + gθθ(r, θ)θ̇
2 = ε . (5)

The existence of Killing vector fields give raise to constants of motion that we can be introduce into the
Lagrangian. Those are the energy, E, and angular momentum, L, of the test particle,

−E ≡ gtµẋµ = gttṫ+ gtϕϕ̇ , L ≡ gϕµẋµ = gϕtṫ+ gϕϕϕ̇ . (6)

The effective Lagrangian reads now,

2L = −A(r, θ, E, L)

B(r, θ)
+ grr(r, θ)ṙ

2 + gθθ(r, θ)θ̇
2 = ε , (7)

where

A(r, θ, E, L) = gϕϕ(r, θ)E2 + 2gtϕ(r, θ)EL+ gtt(r, θ)L
2 , and B(r, θ) = gtϕ(r, θ)2 − gtt(r, θ)gϕϕ(r, θ) . (8)

Eq. (7) suggests the introduction of an effective potential, Vε(r, θ), defined in the following way,

Vε(r, θ) ≡ grr(r, θ)ṙ2 + gθθ(r, θ)θ̇
2 = ε+

A(r, θ, E, L)

B(r, θ)
. (9)

In this work, we are interested in objects with a Z2 symmetry and in circular orbits in the equatorial plane,
θ = π/2, meaning that θ̇ = 0. With these additional assumptions, the effective potential will only have a radial
dependency, and can be written as,

V rε (r) ≡ grr(r, π/2)ṙ2 = ε+
A(r, π/2, E, L)

B(r, π/2)
. (10)
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An equatorial circular orbit can be easily computed through this new effective potential, by imposing that
the following two equations must be true simultaneously,

V rε (rcir) = 0 ⇔ A(rcir, π/2, E, L) = −εB(rcir, π/2) , (11)

and
∂rV

r
ε (rcir) = 0 ⇔ ∂rA(rcir, π/2, E, L) = −ε∂rB(rcir, π/2) . (12)

Note that we have used Eq. (11), to obtain the Eq. (12).
Beside knowing where and how to find circular orbits, it is equally important to know their stability. This

can be analysed by computing both their radial and vertical epicyclic frequencies.

2.1 Radial and vertical epicyclic frequencies

The epicyclic frequencies can be computed by perturbing a circular orbit in either the radial or vertical direction.
Through the former, we compute the radial epicyclic frequency, whereas through the latter, we obtain the vertical
epicyclic frequency.

Let us start by consider that x is one of the spheroidal coordinates, x = {r, θ}, and y is the remaining
spheroidal coordinate. Moreover, let us also consider that we are on a circular orbit, such that x = xc and y = yc.
We shall fix y and introduce a perturbation in x around xc, such that y = yc ⇔ ẏ = 0 and x = xc+δx⇔ ẋ = ˙δx.
Under these assumptions, the perturbed effective potential reads,

V xε (xc + δx, yc) = gxx(xc + δx, yc) ˙δx
2
. (13)

The left-hand side of the above equation can be expanded to,

V xε (xc + δx, yc) = V xε (xc, yc) + ∂xV
x
ε (xc, yc)δx+

1

2
∂2xV

x
ε (xc, yc)δx

2 +O(δx3) . (14)

The first two terms will always vanish because we are both on a circular orbit (if x = r : V rε (rcir) = ∂rV
r
ε (rcir) =

0) and on the equatorial plane of a Z2 symmetric object (if x = θ : V θε (π/2) = ∂θV
θ
ε (π/2) = 0). Thus, equation

(13) becomes1,
1

2
∂2xV

x
ε (xc, yc)δx

2 = gxx(xc + δx, yc) ˙δx
2
. (15)

Expanding now the right-hand size of the above equation, and considering only terms up to second order in ˙δx,
we arrive at,

1

2
∂2xV

x
ε (xc, yc)δx

2 = gxx(xc, yc) ˙δx
2
. (16)

By performing a dot derivative of both sizes, we can write a more instructive result,

δ̈x+ (ωxε )2δx = 0 , where (ωxε )2 ≡ −1

2

∂2xV
x
ε (xc, yc)

gxx(xc, yc)
(17)

This is an harmonic oscillator, which means that if the frequency ω2
x is negative (positive), the perturbation

grows exponentially (remains a small perturbation) leading to unstable (stable) circular orbits. This frequency
is known as the epicyclic frequency. Going back to the spheroidal coordinates, we have the radial and vertical
epicyclic frequencies, respectively,

(ωrε )
2 ≡ −1

2

∂2rV
r
ε (rcir, π/2)

grr(rcir, π/2)
, (ωθε )2 ≡ −1

2

∂2θV
θ
ε (rcir, π/2)

gθθ(rcir, π/2)
. (18)

These epicyclic frequencies are measured with respect to the proper time of a comoving observer. However, in
the following computations, it proved useful to use the epicyclic frequencies measured by an observer at spatial
infinity, rather than by a comoving observer. To obtain the frequencies measured by such observer, one only
has to divide the frequencies in Eq. (18) by the squared redshift factor, ṫ2,

(νrε )2 ≡ (ωrε )
2

ṫ2
= −1

2

∂2rV
r
ε (rcir, π/2)

grr(rcir, π/2)

[
B(rcir, π/2)

Egϕϕ(rcir, π/2) + Lgtϕ(rcir, π/2)

]2
, (19)

(νθε )2 ≡ (ωθε )2

ṫ2
= −1

2

∂2θV
θ
ε (rcir, π/2)

gθθ(rcir, π/2)

[
B(rcir, π/2)

Egϕϕ(rcir, π/2) + Lgtϕ(rcir, π/2)

]2
. (20)

Henceforth, we shall drop the explicit dependency of the several functions, and it shall be understood that all
quantities are computed at r = rcir and θ = π/2, unless stated otherwise.

We shall now compute the epicyclic frequencies for null and timelike circular orbits.

1Note that, for simplicity and notation ease, we dropped the error term, O(δx3).
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2.2 Null particles

For null particles, ε = 0, circular orbits are known as LRs. In order to obtain them, we will use Eqs. (11)
and (12). Both equations can be rewritten in terms of the inverse impact parameter, σ± = E±/L±, where ±
represents the two possible solutions due to the rotation of the ultracompact object and they are associated
with prograde (+) and retrograde (−) orbits,

A = 0 ⇔
[
gϕϕσ

2
± + 2gtϕσ± + gtt

]
LR

= 0 , (21)

∂rA = 0 ⇔
[
∂rgϕϕσ

2
± + 2∂rgtϕσ± + ∂rgtt

]
LR

= 0 . (22)

The first equation gives an algebraical equation for the inverse impact parameter,

σ± =

[
−gtϕ +

√
B

gϕϕ

]
LR

, (23)

whereas the second equation gives the radial coordinate of the LR, r = rLR.
The epicyclic frequencies of the LRs, can be easily computed through Eqs. (19) and (20),

(νr0)2 = −1

2

[
∂2rgϕϕσ

2
± + 2∂2rgtϕσ± + ∂2rgtt

grr

]
LR

(24)

(νθ0 )2 = −1

2

[
∂2θgϕϕσ

2
± + 2∂2θgtϕσ± + ∂2θgtt

gθθ

]
LR

(25)

Since grr and gθθ are always positive outside of a possible horizon, the epicyclic frequencies are real (complex)
if their numerator are negative (positive).

2.3 Timelike particles

For timelike particles, ε = −1, the same analysis can be done. In order to simplify the following computations, it
is convenient to introduce the angular velocity of timelike particles along circular orbits (measured with respect
to an observer at infinity),

Ω =
dϕ

dt
= − Egtϕ + Lgtt

Egϕϕ + Lgtϕ
. (26)

With this result and Eq. (11), one can obtain an analytical expression for the energy and angular momentum
of the timelike particle written in terms of the metric functions and the angular velocity,

E± = −

[
gtt + gtϕΩ±√

β±

]
rcir

, L =

[
gtϕ + gϕϕΩ±√

β±

]
rcir

, (27)

where β± ≡ −gtt−2gtϕΩ±−gϕϕΩ2
±. An expression for the angular velocity can be obtained by solving equation

(12),

Ω± =

[
−∂rgtϕ ±

√
C

∂rgϕϕ

]
rcir

, (28)

where C ≡ (∂rgtϕ)2 − ∂rgtt∂rgϕϕ.
With Eqs. (27) and (28), we have defined all possible timelike circular orbits (TCOs) in a given spacetime

(with the assumptions presented in the beginning of this section). Their stability can be analysed through their
epicyclic frequencies,

(νr−1)2 = −1

2

[
(∂2rgϕϕΩ2

± + 2∂2rgtϕΩ± + ∂2rgtt)B − 2Cβ±

Bgrr

]
rcir

, (29)

(νθ−1)2 = −1

2

[
∂2θgϕϕΩ2

± + 2∂2θgtϕΩ± + ∂2θgtt

gθθ

]
rcir

. (30)

Similar as to the case of LRs, the epicyclic frequencies of TCOs are real (complex) is the numerator of the above
expressions are negative (positive), since B, grr and gθθ are always positive outside a possible horizon.
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3 Connection between null and timelike particles

We shall show now that the epicyclic frequencies of TCOs coincide with the epicyclic frequencies of LRs when
we compute the former on a LR.

We start by recalling the results derived in [20]. Firstly, the authors showed that the function β± always
vanishes on a LR, by proving that Eqs. (21) and (22) identically vanish when β± = 0. A consequence of
this result is that the angular velocity of a timelike particle on such a TCO is the same as the inverse impact
parameter of a null particle on the LR, [Ω± = σ±]LR. Secondly, they showed that the localisation and radial
stability of the regions that can harbour TCOs around the LR, depend exclusively on the radial stability of
said LR. Such statement is verified by looking at the sign of β± to find the regions where TCOs are allowed,
and by studying the stability of those allowed regions. In short, a radially stable (unstable) LR accommodates
radially stable (unstable) TCOs in the regions radially below (above) the LR. A schematic representation of
these results is presented in Fig. 1.

Figure 1: Structure of the equatorial TCOs in the immediate vicinity of an unstable (top panel) and stable
(bottom panel) LR. Adapted from [20].

These results can now pave the way for us to generalise them, by also including the vertical stability of the
allowed TCOs. For that, let us consider a spacetime with a LR. If we compute the epicyclic frequencies of a
TCO infinitely close to the LR, such that we can use β±|LR = 0 and [Ω± = σ±]LR, we obtain,

(νr−1)2 = −1

2

[
∂2rgϕϕσ

2
± + 2∂2rgtϕσ± + ∂2rgtt

grr

]
LR

= (νr0)2 , (31)

(νθ−1)2 = −1

2

[
∂2θgϕϕσ

2
± + 2∂2θgtϕσ± + ∂2θgtt

gθθ

]
LR

= (νθ0 )2 . (32)

Here we see that the epicyclic frequencies, and hence the stability of a TCO infinitely close to a LR are precisely
the same as the ones for the same LR. Therefore, the full stability (both radial and vertical) of a LR determines
the full stability of a TCO infinitely close to that LR.

This result, however, it is only true infinitely close to the LR, where β±|LR = 0 and [Ω± = σ±]LR are valid.
To analyse the stability of the allowed TCOs in the vicinity of the LR, where β±|LR = 0 and [Ω± = σ±]LR are
no longer valid, we need to investigate what happens to the epicyclic frequencies on those regions. Fortunately,
this analyse is rather simple to do. One only has to use the continuity properties of the epicyclic frequencies.

Imagine a spacetime with a radial unstable LR. By Eq. (31) we know that a timelike particle on a TCO
infinitely close to the LR is radially unstable, hence, νr−1(rLR)2 < 0. If we analyse the epicyclic frequency of an
allowed TCO adjacent to the LR, one can argue that the epicyclic frequency squared will continue to be negative
(however one does not know if it increases or decreases). Such argument can be done by assuming that the
epicyclic frequencies are continuous on the allowed regions for TCOs, which is a fair assumption to make since
we assumed that all metric functions are, at least, C2-smooth and all remaining quantities are well-behaved.
Hence, the allowed region of TCOs adjacent to the radially unstable LR will harbour radially unstable TCOs.
Such result is consistent with the results provided in [20].

The same argument can be done regarding a radially stable LR, recovering the same results found in [20],
or regarding a vertically stable and unstable LR. In the last two cases, the allowed region of TCOs continues
to the determined by the radial stability of the LR, but their vertical stability is entirely determined by the
vertical stability of the LR. We can summarise all the main results in the following list:
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• Spacetime with a radially unstable LR.

For such spacetime, the region immediately inwards of the LR can not accommodate TCOs, whereas the
outward region can. To know the full stability of the allowed TCOs we need to know the full stability of
the LR, therefore, let us assume that the LR is,

– Vertically unstable.

In this case, the allowed TCOs will be both radially and vertically unstable.

Figure 2: Structure of the equatorial TCOs in the immediately vicinity of a radially and vertically unstable LR.

– Vertically stable.

Here, the allowed TCOs will be radially unstable but vertically stable.

Figure 3: Structure of the equatorial TCOs in the immediately vicinity of a radially unstable and vertically
stable LR.

• Spacetime with a radially stable LR.

For such spacetime, the region immediately outwards of the LR can not accommodate TCOs, whereas the
inward region can. Similar as the previous case, the full stability of the allowed region is determined by
the full stability of the LR. Let us assume that the LR is,

– Vertically unstable.

For this case, the allowed TCOs with be radially stable but vertically unstable.

Figure 4: Structure of the equatorial TCOs in the immediately vicinity of a radially stable and vertically
unstable LR.

– Vertically stable.

In this particular case, the allowed TCOs will be both radially and vertically stable.

Figure 5: Structure of the equatorial TCOs in the immediately vicinity of a radially and vertically stable LR.

7



4 Epicyclic frequencies and energy conditions

We have showed, so far, that the structures of TCOs around a LR for a generic stationary, axisymmetric and
asymptotically flat object with a Z2 symmetry can be characterised in 4 different ways. This, however, does
not assume any type of constrain regarding the matter composing the object. If one wants to consider a object
that is compose of real physical matter, then one assumes that the matter obeys the energy conditions.

The energy conditions that we will take special attention to are the NEC and SEC. Regarding the former, a
proof given in [17] showed that an ultracompact horizonless object, that obeys the NEC, can never have a fully
unstable LR. Likewise, following [18], a BH can not have fully unstable LRs if its matter obeys the NEC. Here,
we shall arrive to the same result using a different approach than the one used in [17,18]. Regarding the latter,
we shall show a similar conclusion as the one stated previously but related with TCOs. In particular, we shall
present a proof that the existence of a region with fully unstable TCOs implies the violation of the SEC. We
will also look into the more simple case of a Ricci-flat object, where we will show that such object can never
have neither fully unstable nor stable LRs, and, consequently, can never have neither fully stable or unstable
TCOs close to the LRs. However, fully stable TCOs can still exist in regions far away from the LRs, such as,
e.g., in the asymptotically flat region.

All previous statement can be demonstrated by relating the sum of the squared of the epicyclic frequencies
and the Ricci tensor.

Following a similar work developed in [24], where the authors constructed a relation between the epicyclic
frequencies and the Ricci tensor, for a generic static, axisymmetric and asymptotically flat spacetime, we need
to find a linear combination of the Ricci tensor components such that we can write it in terms of the epicyclic
frequencies. From the connection with the Newtonian limit [27, 28], we expect that Rtt must be connected to
the epicyclic frequencies, since, in this limit [24, 27, 28], (νr−1)2 + (νθ−1)2 = 2Ω± + Rtt, where Rtt = 4πGρ – cf.
Eq. (1). Furthermore, since the epicyclic frequencies do not depend on the derivatives of grr and gθθ, the linear
combination must account that fact.

The linear combination of Ricci tensor components that satisfy the requirements presented above must be
of the form of Rtt + 2fRtϕ + f2Rϕϕ, where f is either the inverse impact parameter of null particles, σ±, or the
angular velocity of timelike particles, Ω±. This way, the correct terms to write the epicyclic frequencies appear,
and all the terms with derivatives of grr and gθθ disappear.

Let us focus in the particular case of TCOs. In this case, f = Ω±, and we start by expanding the linear
combination,

Rtt + 2Ω±Rtϕ + Ω2
±Rϕϕ =

(
∂µΓµtt + 2Ω±∂µΓµtϕ + Ω2

±Γµϕϕ
)

+

Γµµν
(
Γνtt + 2Ω±Γνtϕ + Ω2

±Γνϕϕ
)
−(

ΓµνtΓ
ν
µt + 2Ω±ΓµνtΓ

ν
µϕ + Ω2

±ΓµνϕΓνµϕ
)
, (33)

where Γαµν = 1
2g
αρ (∂µgρν + ∂νgµρ − ∂ρgµν) are the Christoffel symbols. Since we are computing this quantities

in a circular orbit at the equatorial plane, we can use the relations discussed in previous sections. This way, the
first term (first line) in Eq. (33) reduces to,

∂µΓµtt + 2Ω±∂µΓµtϕ + Ω2
±Γµϕϕ = (νr−1)2 + (νθ−1)2 − 1

grr

Cβ±
B

. (34)

Likewise, the second term (second line) vanishes, whereas the third and final term (third line) reduces to,

ΓµνtΓ
ν
µt + 2Ω±ΓµνtΓ

ν
µϕ + Ω2

±ΓµνϕΓνµϕ = − 1

2grr

Cβ±
B

. (35)

Therefore, we can write the sum of the squared epicyclic frequencies through the linear combination of Ricci
tensor components in the following way,

(νr−1)2 + (νθ−1)2 = Rtt + 2Ω±Rtϕ + Ω2
±Rϕϕ +

1

2grr

Cβ±
B

. (36)

We have successfully generalised the result presented in [24] for the more general case of a stationary spacetime.
In the limit of static spacetimes our result converges to the one obtained in [24].

The same procedure can be done for the case of LRs. In this case, f = σ± and, after expanding and
simplifying the linear combination, one can obtain a similar expression as seen in Eq. (36),

(νr0)2 + (νθ0 )2 = Rtt + 2σ±Rtϕ + σ2
±Rϕϕ . (37)

Thus, for null particles, the sum of the squared epicyclic frequencies can be entirely written in terms of the Ricci
tensor components and the inverse impact parameter. Note that the same result can be obtained by simply
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using some results from the previous section, in particular, β± = 0, σ± = Ω±, νr−1 = νr0 and νθ−1 = νθ0 , and
using them in Eq. (36).

We can now investigate what happen to Eqs. (36) and (37) when we impose some conditions to the Ricci
tensor.

4.1 Ricci-flat object

For a Ricci-flat object, all components of the Ricci tensor vanish, Rµν = 0. For such objects, the sum of the
squared epicyclic frequencies of null and timelike particles simplifies to,

LR: (νr0)2 + (νθ0 )2 = 0 , (38)

TCOs: (νr−1)2 + (νθ−1)2 =
1

2grr

Cβ±
B

. (39)

From the first equation, one can conclude that a LR can never be neither fully stable, (νr0)2 > 0 ∧ (νθ0 )2 > 0,
or unstable, (νr0)2 < 0 ∧ (νθ0 )2 < 0, since its sum must vanish. This implies that the LR must have opposite
radial and vertical stabilities. This is consistent with what is already known for Ricci-flat solutions that are
stationary, axisymmetric, asymptotically flat and in 1+3 dimensions, such as the Kerr solution [29–31]. Both
the prograde and retrograde LRs present in the Kerr spacetime are always radially unstable and vertically
stable.

For the case of TCOs, one can prove that the right-hand side of Eq. (39) is always positive. The proof rely
on the fact that each individual quantity is positive. The grr component of the metric and the B function are
always positive when we are outside of a possible horizon – cf. Sec. 2. The function C is always positive on
the regions where TCOs are allowed, otherwise the angular velocity of the timelike particle is complex, and we
no longer have TCOs – see [20] for a more detailed analysis. The β± function is also always positive on the
regions where TCOs are allowed, as we discussed in the previous section. Therefore, we have proved that the
right-hand size of Eq. (39) is always positive on the regions where we can find TCOs.

A direct consequence of this proof is that TCOs around a Ricci-flat solution can never be fully unstable.
However, their stability can be any of the three remaining possibilities combinations. For the well-known case
of Kerr BHs, it is known that sufficiently far away from the BH, TCOs are fully stable, whereas, if we approach
the BH, we start to find radially unstable but vertically stable TCOs [29–31]. Thus, our result is consistent
with the well-known results from the Kerr case.

4.2 NEC and SEC obeying object

If an object possesses matter such that its energy-momentum tensor (and, by Einstein’s equations, the Ricci
tensor) is non-vanishing, a way to inform ourselves about its exotic properties is by evaluating possible violation
of the energy conditions. One of them is the SEC. In short, this condition is defined as Rµνt

µtν ≥ 0, for any
timelike vector field, tµ, and encapsulated the condition that matter must gravitate towards matter. To study
this energy condition, let us consider a timelike vector tangent to a TCO,

tµ = a (ηµ1 + Ω±η
µ
2 ) , (40)

where a = a(rcir, π/2) > 0 is a constant. By computing the SEC, we arrive to,

Rµνt
µtν ≥ 0 ⇔ a2

(
Rtt + 2Ω±Rtϕ + Ω2

±Rϕϕ
)
≥ 0 . (41)

Therefore, we can written the sum of the squared epicyclic frequencies of a TCO as,

(νr−1)2 + (νθ−1)2 =
1

a2
Rµνt

µtν +
1

2grr

Cβ±
B

. (42)

Thus, for a object whose matter obeys the SEC, the first term of the right-hand size of Eq. (42) is always
positive. Furthermore, using the same argument used in the previous subsection where we prove that the right-
hand size of Eq. (39) is always positive, we can conclude that the sum of the squared epicyclic frequencies
of TCOs around an object obeying the SEC is always positive. This implies that no fully unstable TCOs
exist on the spacetime generated by such object. Or, in different words, if a generic stationary, axisymmetric,
asymptotically flat spacetime has a region with fully unstable TCOs, then we can guarantee that the SEC is
violated.

A second energy condition that we can also study is the NEC. This condition is defined as Tµνk
µkν ≥ 0,

for any null vector field kµ, and it is intertwined with the SEC, in the sense that one can imply the other.
In particular, if the SEC is obeyed then the NEC is also obeyed, or, if the NEC is violated, the SEC is also
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violated. We will now show that the interlacement between both energy conditions is consistent with all results
discussed so far.

Let us consider the following null vector field,

kµ = b (ηµ1 + σ±η
µ
2 ) , (43)

where b = b(rcir, π/2) > 0. With this null vector, the NEC can be written as2,

Tµνk
µkν ≥ 0 ⇔ b2(Rtt + 2σ±Rtϕ + σ2

±Rϕϕ) ≥ 0 . (44)

Therefore, the sum of the squared epicyclic frequencies of the LRs take a very simple form,

(νr0)2 + (νθ0 )2 =
1

b2
Tµνk

µkν . (45)

From this result we can conclude that fully unstable LRs never exist for objects whose matter obeys the NEC.
Or, in different words, if a generic stationary, axisymmetric, asymptotically flat spacetime has fully unstable
LRs, then we can guarantee that the NEC is violated. This is precisely the same result that was first obtained
in [17] for an ultracompact horizonless object and [18] for a BH.

Finally, let us comment on the interlacement of the energy conditions and all results discussed so far. Consider
now that we have a hypothetical spacetime such that it possesses a fully unstable LR, hence it violated the
NEC. From the result obtained in the previous section, we know that in the immediately vicinity of the LR we
have a region which harbours fully unstable TCOs – cf. Fig. 2. Thus, by Eq. (42) and the following argument,
the SEC is also violated. This is consistent with the implication tree of the NEC and SEC. Namely, that the
violation of the NEC also implies the violation of the SEC.

5 Conclusions and final remarks

In this work, we have analysed the radial and vertical epicyclic frequencies of null and timelike particles following
circular orbits in a spacetime generated by a generic stationary, axisymmetric, asymptotically flat ultracompact
object with a Z2 symmetry. We have shown that the epicyclic frequencies of LRs coincide with the epicyclic
frequencies of TCOs when the latter approach the former. This implies, by continuity, that the full stability of
a LR determines the full stability of TCOs in the immediately vicinity of the LR. The results present in the
first part of this paper generalise the ones obtain in [20], where the authors only analysed the radial stability
of the LRs and TCOs. Together with the results of [20], we determined the 4 possible structures that one can
found for a generic spacetime with a LR – cf. Figs. 2 – 5.

The results of the first part of this paper can be summarised as follows: the radial stability of a LR
determines the localisation and radial stability of TCOs in its vicinity, whereas, the vertical stability of a LR
only determines the vertical stability of TCOs in its vicinity.

In the second part of this work, we established relations between the sum of the squared epicyclic frequencies
with linear combinations of the Ricci tensor components, that generalise the results obtained in [24]. Such
relations opened the possibility of introduce some energy conditions regarding the matter that the generic
ultracompact object may be compose of. In particular, we showed that if the object obeys the SEC, which
implies that the NEC is also obeyed, LRs and TCOs can never be fully unstable. Reciprocally, if a generic
ultracompact object possesses fully unstable LRs, it violated the NEC, and consequently the SEC. This is
consistent with the works presented in [17, 18]. Furthermore, if the same object only possesses a region with
fully unstable TCOs, then the object only violates the SEC.

We also study the more simpler case of a Ricci-flat ultracompact object. In this case, we showed that the
LRs can never be neither fully stable or fully unstable, since the sum of the squared epicyclic frequencies of
each LR always vanishes – cf. Eq. (38). Regarding the TCOs, the sum of its epicyclic frequencies is always
positive, hence, a Ricci-flat object never has regions of fully unstable TCOs.

As future work, it would be interesting to generalise further the results presented here to more generic
ultracompact objects that do not have a Z2 symmetry. For such objects, circular orbits will not always be
found at the equatorial plane, but will be found at an angular coordinate θcir that will be a function of the
radial coordinate, θcir = f(rcir). Due to the missing Z2 symmetry, the relation between the full stability of a LR
and the full stability of TCOs in its vicinity will, most likely, be more convoluted and less obvious. Nevertheless,
one could obtain all the possible structures of TCOs around LRs and also study which are connected to violations
of the energy conditions.

2We are assuming that, within a given theory of gravity, we can defined a effective energy-momentum tensor such that we can
use the Einstein’s equations, Rµν − 1

2
gµνR = T eff

µν .
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