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Derrick-type virial identities, obtained via dilatation (scaling) arguments, have a variety of applications
in field theories. We deconstruct such virial identities in relativistic gravity showing how they can be recast
as self-evident integrals of appropriate combinations of the equations of motion. In spherical symmetry, the
appropriate combination and gauge choice guarantee the geometric part can be integrated out to yield a
master form of the virial identity as a nontrivial energy-momentum balance condition, valid for both
asymptotically flat black holes and self-gravitating solitons, for any matter model. Specifying the matter
model we recover previous results obtained via the scaling procedure. We then discuss the more general
case of stationary, axisymmetric, asymptotically flat black hole or solitonic solutions in general relativity,
for which a master form for their virial identity is proposed, in a specific gauge but regardless of the matter
content. In the flat spacetime limit, the master virial identity for both the spherical and axial cases reduces to
a balance condition for the principal pressures, discussed by Deser.
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I. INTRODUCTION

A far reaching question in any field theory is the possible
existence of particlelike solutions, or solitons. Generic
arguments addressing this question are therefore desirable.
One such insightful argument was put forward by Deser
[1]. For a Minkowski spacetime classical field theory, with
Cartesian spatial stress-energy tensor Tij, i, j ¼ 1, 2, 3, any
localized, finite energy, everywhere regular solution obeys1

Z

R3
Ti
id

3x ¼ 0: ð1Þ

This simple relation means that the sum of the principal
pressures integrated over the whole space vanishes. Thus, if
a soliton exists, the corresponding field(s) must be under
compression in some regions and under tension in other
regions [3]. In other words, Eq. (1) is a pressure balance
condition.
An apparently different generic argument establishing a

condition for solitons in (scalar) field theories was provided
by Derrick [4]. By assuming the existence of a hypothetical
solitonic solution and spatially scaling it, an integral
condition for the field’s spatial gradients and potential
energy is obtained. As it turns out, this scaling (or virial [5])

identity precisely coincides with (1), as we shall illus-
trate below.
The connection between Deser’s and Derrick’s argu-

ments is not accidental. Considering static configurations in
a classical field theory with a conserved energy-momentum
tensor (∂iTi

j ¼ 0) one can define a dilatation or scaling
current, ji ¼ xjTi

j [6], which is locally conserved
(∂iji ¼ 0) if and only if the energy-momentum tensor is
traceless (Ti

i ¼ 0). For a generic classical field theory with
Ti

i ≠ 0, on the other hand, it is still true that the integral
over a spacelike surface

R
∂ijid3x vanishes for localized,

static, finite energy, regular configurations, even though the
integrand does not, implying (1); cf. Sec. III. C below.
Thus, one may view (1) as a global conservation law under
dilatations, providing a connection with Deser’s argument.
Introducing gravity opens up new possibilities for

solitons. Certain field theory models minimally coupled
to Einstein’s gravity allow for self-gravitating solitons.
Moreover, relativistic gravity allows other localized con-
figurations, namely black holes (BHs). It is thus natural to
ask whether (1) can be generalized to general relativity
(GR). That is, do self-gravitating solitons, or BHs, in any
field theory minimally coupled to Einstein’s gravity obey a
curved spacetime generalization of (1), i.e., an energy-
momentum balance condition? If so, moreover, is it related
to Derrick-type virial identities in relativistic gravity?1See also the pioneering work of Von Laue [2].
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In this work we shall propose a positive answer to both
of these questions, at least in some circumstances, in
particular, when appropriate gauge choices are made. We
will generalize (1) to GR models accommodating BHs or
self-gravitating solitons. Concretely, we show that any
static, spherical BH or soliton, under appropriate regularity
conditions on the horizon/origin and asymptotically,
describable in the metric gauge

ds2 ¼ −NðrÞσ2ðrÞdt2 þ dr2

NðrÞ
þ r2ðdθ2 þ sin2θdφ2Þ;

NðrÞ≡ 1 −
2mðrÞ

r
; ð2Þ

obeys, for any matter model, the identity

Z
∞

rH
r2σ

!"
1 −

rH
r

#$
2ðTt

t − Tμ
μÞ

þ
"
1

N
− 1

#
ðTr

r − Tt
tÞ
%
−
2rH
r

Tr
r

&
dr ¼ 0; ð3Þ

where rH is the event horizon radial coordinate (rH ¼ 0 for
solitons). We emphasize that the identity (3) shall be
derived without specifying any matter model. Then,
considering specific matter models, we show it coincides
with the virial identity derived by Derrick’s scaling argu-
ment. This holds for all examples we have considered
in [5]. Thus, we propose that (3) is both the Derrick-type
virial identity of the model (under the appropriate boun-
dary conditions) and the generalization of the Deser
identity (1), to which (3) reduces in the flat spacetime
limit (rH ¼ 0, N ¼ σ ¼ 1), in the spherically symmetric
guise of the former.
We will also discuss the generalization of this analysis

for a generic class of stationary, axially symmetric self-
gravitating solitons and BHs in GR minimally coupled to
matter models. Concretely, we show that asymptotically
flat equilibrium solutions (solitons or BHs under appro-
priate regularity conditions), described by a stationary,
axisymmetric and circular line element [cf. (36) below]
obey, for any matter model, an identity which coincides
with the one obtained by using Derrick’s scaling argument
for the specific models we have studied and reduces to
Deser’s identity (1) in the flat spacetime limit. In this case,
however, we could not express the identity—given by
Eq. (55) below—solely as an energy-momentum balance
condition. Rather, it is expressed as a self-evident identity,
an integral over an appropriate combination of the Einstein
equations.
Let us remark that there has been a number of previous

works on virial identities in GR, notably [7–10] (see also
[11]), within the perspective of generalizing to the relativ-
istic context the usual virial theorem of classical mechanics;
see [12] for an overview. Our work focuses on the curved

spacetime generalization Derrick-type (scaling) virial iden-
tities, and their relations to generalizations of (1), bringing,
in this way, a different perspective on this type of GR virial
identities.
This paper is organized as follows. In Sec. II we start by

reviewing the analysis in [5] on obtaining generic virial
identity from Derrick-type scaling arguments in spherical
symmetry, using the effective action (EA) perspective
followed in [5]. This leads to a generic form of the virial
identity; cf. Eq. (10), valid for any matter model. A concrete
illustration (electrovacuum) is given. Then, we derive the
Deser-type energy-momentum balance identity (3) and
propose that, for any matter model it coincides with the
scaling virial identity. In Sec. III we shall consider a similar
analysis beyond spherical symmetry, first using the EA
framework, deriving a generic form for the scaling virial
identity. Applying this to a specific example (flat spacetime
Q-balls) illustrates its equivalence to (1). Then, we consider
gravitating configurations in a particular metric form and
derive the scaling virial identity for an illustrative case (BHs
with synchronized scalar hair [13,14]). We are then able to
show that the full scaling identity is a linear combination of
the Einstein equations. This is then proposed as the master
form for the virial identity within this gauge. We close in
Sec. IV with a discussion of our results.
Throughout this paper we use units with G ¼ 1 ¼ c.

II. SPHERICAL SYMMETRY

Focusing on GR minimally coupled to matter we shall
consider the following action:

S ¼ 1

16π

Z

M
d4x

ffiffiffiffiffiffi−gp
Rþ Smatter½g;ψ &; ð4Þ

which is the sum of an Einstein-Hilbert (EH) term and a
matter contribution (with ψ collectively denoting matter
fields), whereM is the spacetime manifold. The action (4)
should be augmented to include the Gibbons-Hawking-
York (GHY) boundary term [15–17]. The latter, however,
does not contribute to the field equations, obtained from
varying (4), which include the Einstein equations

Eν
μ ≡Gν

μ − 8πTν
μ ¼ 0; ð5Þ

where the Einstein tensor isGν
μ ≡ Rν

μ − 1
2Rδ

ν
μ, together with

the matter field equations.

A. The generic virial identity from the Derrick-type
scaling argument

In a previous paper [5], we presented an introduction to
virial identities in field theory. Such identities serve a
variety of purposes, including establishing no-go theorems
for both solitonic and BH solutions, as well as serving as
guides to finding new solutions of the equations of motion
and checking the accuracy of numerical solutions.
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The discussion in [5] found itself a natural arena in the
context of effective actions. As a brief summary of the
results therein consider a one-dimensional (1D) EA,
obtained after plugging an ansatz with spherical symmetry
in (4), of the form

Seff ½qjðrÞ; q0jðrÞ; r& ¼
Z

∞

ri
L̂ðqj; q0j; rÞdr; ð6Þ

where qj are a set of N parametrizing functions of some
configuration, j ¼ 1…N , i.e., the radial metric functions
and the ones in the matter ansatz. They depend on a single
“radial” coordinate r and ri is some appropriately chosen
constant.2 We use the notation q0j ≡ dqj=dr, and the
effective Lagrangian L̂ contains a total derivative term

L̂ðqi; q0i; rÞ ¼ Lðqi; q0i; rÞ þ
d
dr

fðqi; q0i; rÞ; ð7Þ

with f being some function that depends on the same
variables as the nontotal derivative piece of the effective
Lagrangian L. Then, a scaling transformation

r → r̃ ¼ ri þ λðr − riÞ ð8Þ

induces a variation of any fiducial configuration qjðrÞ, as
qjðrÞ → qλjðrÞ ¼ qjðr̃Þ. The EA of the scaled configura-
tion qλjðrÞ becomes a function of λ, denoted as Seff

λ , and the
true profile obeys the stationarity condition

∂Seff
λ

∂λ

((((
λ¼1

¼ 0; ð9Þ

which yields the virial identity

Z
∞

ri

$X

j

∂L
∂q0j

q0j − L −
∂L
∂r

ðr − riÞ
%
dr

¼
$
∂f
∂r

ðr − riÞ −
X

i

∂f
∂q0i

q0i

%þ∞

ri

: ð10Þ

For spherically symmetric configurations, Eq. (10) can
be readily applied to field theory models yielding their
virial identity. In the case of GR, the fact that the EH action
contains second derivatives of the metric implies that the
total derivative term in (7), defined by f, is nonzero. Then,
in general, one must consider the GHY term as part of the
gravitational action, to obtain the correct virial identity. As
shown in [5], however, for specific gauge choices and under
appropriate boundary conditions, the GHY term does not
contribute. This is precisely the case for the gauge choice
(2) and the boundary conditions we shall be interested in.

1. Example: Electrovacuum

As a concrete example, that we shall recover in the next
subsection, consider the matter Lagrangian in (4) to be that
of Maxwell’s theory:

Smatter½g; A& ¼ −
1

16π

Z
d4x

ffiffiffiffiffiffi−gp
FμνFμν; ð11Þ

where F ¼ dA is the Maxwell field strength 2-form. Under
spherical symmetry we take the ansatz (2) and

A ¼ VðrÞdt: ð12Þ

If this describes an asymptotically flat BH spacetime then
there is a radial coordinate r ¼ rH > 0, such that at the
horizon (r ¼ rH),

NðrHÞ ¼ 0 and σðrHÞ ≠ 0; ð13Þ

and asymptotically (r → ∞),

mðrÞ ≃M þO
"
1

r

#
; σðrÞ ≃ 1þO

"
1

r2

#
: ð14Þ

Following [5] one can obtain the effective Lagrangian,
apply (10) (considering the contribution of the GHY
boundary term) which yields the virial identity:

Z
∞

rH

rðV 0Þ2

σ
ð2rH − rÞdr ¼ 0; ð15Þ

where V 0 ≡ dV=dr and we have already used the boundary
conditions to eliminate a boundary term. One can check
that for the Reissner-Nordström solution the integrand in
(15) is nonzero but the integral vanishes, obeying the
identity. Thus, one can face (15) as the virial identify for (4)
with (11), under the boundary conditions (13)–(14).

B. The generic virial identity as a Deser-type
energy-momentum balance

We shall now propose that identities such as (15) are
actually nontrivial rearrangements of trivial local iden-
tities. In the process we obtain a generalization of Deser’s
identity (1).
Our starting point is the (nontrivial) observation that a

certain combination of the Einstein tensor components Gν
μ,

for the metric gauge (2), yields a total derivative:

r2σ
!"

1−
rH
r

#$
2ðGt

t−G
μ
μÞþ

"
1

N
−1

#
ðGr

r−Gt
tÞ
%
−
2rH
r

Gr
r

&

¼ d
dr

½4ðr−rHÞðσm0−Nrσ0Þ&: ð16Þ
2In the examples considered in [5], ri ¼ 0 for solitons and

ri ¼ rH for BHs, where rH is the event horizon radial coordinate.
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Here rH could be any constant. But we choose this constant
to be the horizon radius, at which the boundary conditions
(13)–(14) are obeyed. Then, it holds that the radial integral
of this total derivative from the horizon to infinity vanishes:

Z
∞

rH

d
dr

½4ðr − rHÞðσm0 − Nrσ0Þ&

¼ ½4ðr − rHÞðσm0 − Nrσ0Þ&j∞rH ¼ð13Þ–ð14Þ
0: ð17Þ

The vanishing of the integral of this total derivative still
holds for regular self-gravitating solitons, for which rH¼0.
This preliminary observation leads us to consider the

following (trivial) local identity:

"
1 −

rH
r

#$
2ðEt

t − Eμ
μÞ þ

"
1

N
− 1

#
ðEr

r − Et
tÞ
%

−
2rH
r

Er
r ¼ 0: ð18Þ

This is merely a combination of some of Einstein’s
equations (5). Integrating this identity over a spacelike
slice (t ¼ constant), covering the exterior BH region,
splitting the Einstein equations into the Einstein tensor
and the energy-momentum tensor, we obtain another
identity:

Z
∞

rH
r2σ

!"
1 −

rH
r

#$
2ðGt

t −Gμ
μÞ þ

"
1

N
− 1

#
ðGr

r − Gt
tÞ
%
−
2rH
r

Gr
r

&
dr

¼ 8π
Z

∞

rH
r2σ

!"
1 −

rH
r

#$
2ðTt

t − Tμ
μÞ þ

"
1

N
− 1

#
ðTr

r − Tt
tÞ
%
−
2rH
r

Tr
r

&
dr: ð19Þ

In this identity, the integrand on either side is not neces-
sarily zero. Then, making use of (16)–(17) in (19), the left-
hand side of (19) vanishes and we are left with the identity
(3), that involves solely the energy-momentum tensor (and
metric elements).
The nontrivial identity (3) must be obeyed by any matter

model of the theory (4), described by the geometric form (2)
and boundary conditions (13)–(14). For the particular case
of the matter model (11), with the ansatz (12), one can easily
see the nontrivial components of the energy-momentum
tensor are

Tt
t ¼ Tr

r ¼ −Tθ
θ ¼ −Tφ

φ ∝ −
V 02

2σ2
: ð20Þ

It follows that (3) becomes precisely the virial identity (15).
As another example, if instead of the Maxwell matter

model one considers a real scalar field Φ theory under a
potential UðΦÞ, with action

Smatter ¼ −
1

4π

Z
d4x

ffiffiffiffiffiffi−gp ½∂μΦ∂μΦþ UðΦÞ&; ð21Þ

then the nontrivial components of the energy-momentum
tensor are

Tt
t¼Tθ

θ¼Tφ
φ¼−

1

8π
ðNðΦ0Þ2þUÞ; Tr

r¼
1

8π
ðNðΦ0Þ2−UÞ;

ð22Þ

and (3) becomes

Z
∞

rH
r2σ

!
ðΦ0Þ2

$
1−

2rH
r

"
1−

m
r

#%
þU

$
3−

2rH
r

%&
dr¼0:

ð23Þ

This is the virial identity first obtained via a scaling
argument in [18,19] (see also [20]) to establish a no-scalar
hair theorem for BHs in gravity minimally coupled to the
matter model (21). As we can see, it coincides with (3).
In general, we have checked that (3) coincides with the
virial identity derived in Sec. 6.2 in [5] for several BH
models.
If instead of a BH we consider self-gravitating spherical

solitons, then the identity (3) simplifies to

Z
∞

0
r2σ

$
2ðTt

t − Tμ
μÞ þ

"
1

N
− 1

#
ðTr

r − Tt
tÞ
%
dr ¼ 0; ð24Þ

where we are now requiring the soliton to be regular at the
origin so that rðσm0 − Nrσ0Þ vanishes at r ¼ 0, besides
asymptotically flat, which yields the same conditions as
before, Eq. (14). We have checked that (24) coincides with
the virial identity derived in Sec. 6.1 in [5] for several
solitonic models, including spherical bosonic (both for
scalar and vector/Proca) stars as well as Dirac stars, by
using Derrick’s scaling procedure.
Finally, observe that for flat spacetime (rH ¼ 0,

N ¼ σ ¼ 1), (24) reduces to

Z
∞

0
r2ðTt

t − Tμ
μÞdr ¼ 0; ð25Þ
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which coincides with (1) in spherical coordinates.
Consequently, (3) and (24) are curved spacetime general-
izations of Deser’s identity.
The examples given in this section substantiate the

following proposal: the virial identity obtained from
Derrick’s scaling argument for any BH or horizonless
configuration in a spherically symmetric model written in
the coordinates (2) and with appropriate boundary con-
ditions (regularity at the origin or horizon and asymptoti-
cally flat) is of the form (3) [simplified to (24) for solitons].
This is therefore a master form for the virial identity, where
it becomes clear that it is an energy-momentum balance
condition, generalizing Deser’s identity (1).
A natural question is then whether this lesson—that virial

identities obtained from Derrick’s scaling procedure are
equivalent to the generalized Deser’s identity (3)—can be
generalized beyond spherical symmetry. In the next section
we will consider the case of stationary and axisymmetric
configurations to tackle this question.

III. BEYOND SPHERICAL SYMMETRY

A. The generic virial identity from the Derrick-type
scaling argument

Beyond spherical symmetry, for instance in axial sym-
metry, one encounters higher dimensional EA. Thus, for
generality, consider now an n-dimensional EA

Seff ½qjðr; θαÞ; q0jðr; θαÞ; ∂αqjðr; θαÞ; r; θα&

¼
Z

…
Z Yn−1

α¼1

dθα

Z
∞

ri
L̂ðqj; q0j; ∂αqj; r; θαÞdr; ð26Þ

where qj (j ¼ 1…N ) are a set of N functions, and fθαg
are a set of n − 1 variables on which the EA depends and
the derivatives are denoted q0jðr; θαÞ≡ ∂rqjðr; θαÞ and
∂αqjðr; θαÞ≡ ∂θαqjðr; θαÞ. The effective Lagrangian is
allowed to include a total radial derivative

L̂ðqj; q0j; ∂αqj; r; θαÞ ¼ Lðqj; q0j; ∂αqj; r; θαÞ

þ d
dr

fðqj; q0j; ∂αqj; r; θαÞ: ð27Þ

For obtaining a virial identity we have now more freedom
in the variables we may scale. Here, we shall focus on the
simplest case in which a single scaling in a single coordinate
(the “radial” coordinate) is performed. Consequently, the
methodology closely mimics that of the spherical case. In
this spirit, we consider the scaling transformation (8) which
varies a fiducial configuration qjðr; θαÞ into qλjðr; θαÞ ¼
qjðri þ λðr − riÞ; θαÞ. Following the discussion of Sec. II
in [5], we find, from the stationarity condition (9), a virial
identity

Z
…

Z Yn−1

α¼1

dθα

!Z
∞

ri

$
∂L
∂r

ðr − riÞ −
X

i

∂L
∂q0i

q0i þ L
%
dr

−
$
∂f
∂r

ðr − riÞ −
X

i

∂f
∂q0i

q0i

%þ∞

ri

&
¼ 0: ð28Þ

This is no more no less than the integral in the θα
coordinates of the virial identity for 1D EAs (10). For
the specific case of stationary and axially symmetric space-
times, n ¼ 2 and the (only) θ integral in (28) is, for the
standard polar coordinate, between 0 and π.3

1. Example: Flat spacetime Q-balls and Derrick
equals to Deser

As a simple application of (28) let us discuss a field
theory in flat spacetime. As such, consider the four-
dimensional Minkowski spacetime in standard spherical
coordinates, for which the line element reads

ds2 ¼ −dt2 þ dr2 þ r2ðdθ2 þ sin2θdφ2Þ: ð29Þ

Consider a complex-scalar field model with a (yet
unspecified) potential, described by the action

SΦ'
matter ¼

1

4π

Z
d4x

ffiffiffiffiffiffi−gp
$
−
1

2
gμνð∂μΦ∂νΦ'

þ ∂μΦ'∂νΦÞ −UðjΦjÞ
%
: ð30Þ

Here ' denotes complex conjugation. Such a model allows
spinning solitons known as spinningQ-balls [21,22], if one
considers the scalar ansatz

Φðt; r; θ;φÞ≡ ϕðr; θÞe−iωtþimφ; ð31Þ

whereϕ is the (θ-dependent) scalar field amplitude,ω ∈ Rþ

is the frequency defining the harmonic time dependence,
and m ∈ Z is the azimuthal harmonic index.
Defining the EA as SΦ'

matter ¼ −2π
R
dtSeff ,4 we obtain an

EA of the type (26) with ri ¼ 0, n ¼ 2, f ¼ 0 and the
effective Lagrangian

Lðϕ;ϕ0; ϕ̂; r; θÞ ¼ r2 sin θ
$
−ω2ϕ2 þ ϕ2

;r þ
ϕ2
;θ

r2

þ m2ϕ2

r2sin2θ
þUðjϕjÞ

%
: ð32Þ

Then, applying (28) we obtain the virial identity

3In this case, for ease of notation, we make θ1 → θ.
4The factor of 2π is arbitrary and chosen for convenience.
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Z
π

0
dθ

Z
þ∞

0
dr r2 sin θ

$
−3ω2ϕ2 þ ϕ2

;r þ
ϕ2
;θ

r2

þ m2ϕ2

r2sin2θ
þ 3UðjϕjÞ

%
¼ 0: ð33Þ

It can be easily checked that for spherical solutions, since
ϕ;θ ¼ 0 and m ¼ 0, then (33) reduces to the virial identity
for Q-balls obtained in [5].
The identity (33) shows that even in axisymmetry, the ω2

term is the only negative term for non-negative potentials. If
the potential is just a mass term, UðjϕjÞ ¼ μ2ϕ2, the bound
state condition ω2 < μ2 implies that the integrand is
everywhere positive, ruling out nontrivial solutions, just
like in the static case. Thus, the existence of spinning
Q-balls for non-negative potentials also requires self-
interactions such that UðjϕjÞ − ω2ϕ2 becomes negative
in some spacetime regions; rotation per se cannot support
such solitons without self-interactions.
Again, the virial identity (33) obtained from the scaling

argument has another guise; it is actually equivalent to
Deser’s identity (1) in axial symmetry. Indeed, the energy-
momentum tensor obtained from the action (30) is

Tμν ¼
1

8π
f∂μΦ∂νΦ' þ ∂νΦ∂μΦ'

− gμν½∂αΦ∂αΦ' þUðjΦjÞ&g: ð34Þ

Then, a simple computation with the ansatz (31) shows that
the virial identity (33) is equivalent to

Z
drdθr2 sin θðTr

r þ Tθ
θ þ Tφ

φÞ ¼ 0; ð35Þ

i.e., Deser’s identity (1) in axial symmetry, as advertised.

B. The virial identity from the Derrick-type scaling
argument in a specific gauge

The generic discussion in Sec. III A did not have to
specify the metric gauge. To make further progress and
discuss GR in axial symmetry, we shall consider generic
equilibrium solitons and BHs that can be described by the
stationary and axially symmetric ansatz:

ds2 ¼ −e2F0ðr;θÞNðrÞdt2 þ e2F1ðr;θÞ
$
dr2

NðrÞ
þ r2dθ2

%

þ e2F2ðr;θÞr2sin2θ½dφ −Wðr; θÞdt&2;

NðrÞ≡ 1 −
rH
r
: ð36Þ

Ansatz (36) introduces four parametrizing functions
Fiðr; θÞ andWðr; θÞ and it has proven useful for computing
numerical solutions. Moreover, well-known analytic sol-
utions, such as the Kerr metric, can also be put in this form,
as we shall recall below. Additionally, in this specific case

the GHY and total derivative terms cancel out so they end
up not contributing, as detailed in Sec. III D. As such the
boundary term will not be considered in the following
discussion that will establish the master form of the virial
identity.
Derrick’s argument follows through the scaling of the

radial component

r → rλ ¼ rH þ λðr − rHÞ; ð37Þ

and the metric/matter functions as

Wλðr;θÞ→Wðrλ;θÞ; Fiλðr;θÞ→Fiðrλ;θÞ;
NλðrÞ→NðrλÞ; ψλðr;θÞ→ψðrλ;θÞ: ð38Þ

To perform the scaling computation under ansatz (36),
identify two total derivatives (one in r and one in a θ
Einstein-Hilbert term), writing it as

ffiffiffiffiffiffi−gp
R ¼ LðgÞ þ

∂Tr

∂r
þ ∂Tθ

∂θ
; ð39Þ

where we have defined

Tr ¼ −2eF0þF2r2N sin θðF0;r þ F1;r þ F2;rÞ;
Tθ ¼ −2eF0þF2 sin θðF0;θ þ F1;θ þ F2;θÞ: ð40Þ

Under appropriate boundary conditions these two terms do
not contribute to the equations of motion. Furthermore, we
have introduced the gravity effective Lagrangian,

LðgÞ ≡ LF
ðgÞ þ LW

ðgÞ; ð41Þ

which is conveniently written as the sum of two terms by
separating a term containing the derivatives of Fi and
another with the derivatives of W

LF
ðgÞ ¼2eF0þF2 sinθ

!
N½rðF1;r−F2;rÞ

þr2ðF1;rF2;rþF1;rF0;rþF0;rF2;rÞ&þ
rH
2
ðF1;r−F0;rÞ

×F1;θF2;θþF1;θF0;θþF0;θF2;θþcotθðF1;θ−F2;θÞ
&
;

ð42Þ

LW
ðgÞ ¼

1

2
e−F0þ3F2r2sin3θ

"
r2W2

;r þ
1

N
W2

;θ

#
: ð43Þ

Apart from the metric form (36), one needs to specify the
action and an ansatz for the matter fields ψ . This ansatz is
not necessarily axially symmetric, i.e., the matter fields may
possess an explicit dependence on φ and t. We impose,
however, that the energy-momentum tensor and the
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effective Lagrangian for the matter field(s) LðψÞ depend on
ðr; θÞ, only.
Then the (essential) equations of the model can be

obtained from a 2D effective action

Seff ¼ SeffðgÞ þ SeffðψÞ; ð44Þ

where

SeffðgÞ ¼
1

16π

Z
d3xðLF

ðgÞ þ LW
ðgÞÞ; ð45Þ

and in order to simplify some relations we introduce the
compact notation
Z

d3x¼
Z

∞

rH
dr

Z
π

0
dθ

Z
2π

0
dφ¼ 2π

Z
∞

rH
dr

Z
π

0
dθ: ð46Þ

The Einstein equations for the functions fFi;Wg can be
obtained from the effective action (44) (but not the
supplementary set of two constraint equations). Then the
standard Derrick procedure (37)–(38) leads to the following
virial identity:

VðgÞ ¼ 16πVðmatterÞ: ð47Þ

Here, VðmatterÞ is the model-dependent matter part; on the
other hand, the geometric contribution, VðgÞ, is universal,
and reads

VðgÞ ≡ VF
ðgÞ þ 3VW

ðgÞ; ð48Þ

where

VF
ðgÞ ¼

Z
d3x eF0þF22 sin θ½NrfF1;r − F2;r

þ NrðF1;rF2;r þ F1;rF0;r þ F0;rF2;rÞg
þ F1;θF2;θ þ F1;θF0;θ þ F0;θF2;θ

þ cot θðF1;θ − F2;θÞ&; ð49Þ

VW
ðgÞ ¼

1

2

Z
d3xe−F0þ3F2r2sin3θ

$"
N −

rH
3r

#
r2W2

;r þW2
;θ

%
:

ð50Þ

Thus, the general virial identity obtained from Derrick’s
scaling argument, for any stationary, axisymmetric geom-
etry written in the form (36) is (47).

1. Example: Kerr black holes with (or without) scalar hair

As a specific example consider first the vacuum case.
Then, all GR vacuum BH solutions (regular on and outside
an event horizon) belong to the Kerr family [23]. The virial
identity (47) simplifies to

VðgÞ ¼ 0: ð51Þ

One can then show, using the explicit form of the Kerr
metric for the ansatz (36) given in [14], that the integral (51)
vanishes, even though the integrands in both VF

ðgÞ and VW
ðgÞ

are nonvanishing.
As a nonvacuum case where the Kerr BH can be

embedded in a larger family of regular (on and outside
an event horizon) BH solutions, we consider Kerr BHs with
synchronized scalar hair [13,14]. The matter model consists
of a complex scalar field, with a canonical kinetic term,
minimally coupled to Einstein’s gravity, described by the
action (30). The specific choice of the scalar field potential
UðjΦjÞ is of no importance for our discussion. This model
allows for hairy BHs bifurcating from the Kerr solution,
under the scalar field ansatz (31). Then, one finds the
following expression for the scalar field’s contribution to
the virial identity (47):

VðmatterÞ ≡ VðscalarÞ

¼
Z

d3x eF0þF2 sin θ
$
r2N2ϕ2

;r þ ϕ2
;θ

þ e2ðF1−F2Þm
2ϕ2

sin2θ
þ 3e2F1r2

!"
1 −

2rH
3r

#
Uðϕ2Þ

− e−2F0ðw −mWÞ2ϕ2

&%
: ð52Þ

In the flat spacetime limit, the virial identity (47) reduces
to solely the matter part

VðscalarÞjF0¼F1¼F2¼W¼rH¼0 ¼ 0: ð53Þ

It is easy to check that this identity is exactly that obtained
for spinning Q-balls (33).

C. A master virial identity in the chosen gauge

The virial identity (47) with (48) and (52) is long and its
form is not particularly enlightening. Moreover, our treat-
ment of the axially symmetric case has departed from the
simple conclusion in the spherical case where we have
noticed that the virial identity was an energy-momentum
balance condition. Still, is there some underlying principle
connecting the two cases, which could therefore be thought
of as generic?
In fact, we have unveiled a common structure. Let us

build it from the example of the previous subsection. We
have observed that one can express the matter part of the
virial identity discussed in the previous subsection, i.e.,
(52), as
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VðscalarÞ ¼
Z

d3x
ffiffiffiffiffiffi−gp

!"
1−

3rH
2r

#
Tt
φW

−
$"

1−
rH
2r

#
Tr
rþNðTθ

θ þTφ
φÞþ

rH
2r

Tt
t

%&
: ð54Þ

This integral depending (linearly) on components of the
energy-momentum tensor and on other metric elements is
very similar, in spirit, to the left-hand side of the gener-
alized Deser identity (3). In the case at hand, however, and
unlike the spherically symmetric case, there is also a
contribution from the geometric part to the complete virial
identity. Remarkably, we could check that a similar form
to (54) holds (up to a constant factor) for the gravitational
part (48), simply replacing in (54) the energy-momentum
tensor components Tν

μ by the corresponding Einstein tensor
components Gν

μ. As such, the virial relation (47) for the
scalar field matter model (30) reduces to the integral of a
suitable combination of Einstein equations (subject to a set
of boundary conditions), Er

r, Eθ
θ, E

φ
φ, and Et

φ:

Z
d3x

ffiffiffiffiffiffi−gp
!"

1 −
3rH
2r

#
Et
φW

−
$"

1 −
rH
2r

#
Er
r þ NðEθ

θ þ Eφ
φÞ þ

rH
2r

Et
t

%&
¼ 0: ð55Þ

Let us emphasize that it is a trivial fact that (55) is an
identity. In fact the integrand is zero, not only the integral
(although both the Einstein and energy-momentum tensors
are nonzero). But it is a rather nontrivial fact that it is the
identity that is obtained by Derrick’s scaling argument
applied to the specific model we have used to derive it.
We can now discuss the common structure for the virial

identities in the spherical and axial cases. The virial identity
obtained from the scaling argument can be recast as a
(trivial) identity which is a combination of the correspond-
ing Einstein equations, c.f. (19) and (55). In the spherical
case, however, the geometric part could be cast as a total
derivative such that, under appropriate boundary conditions,
it vanishes, leaving a nontrivial identity in terms of the
energy-momentum tensor (3). In the axially symmetric case,
and in the chosen gauge, this last step could not be done.
Furthermore, let us also emphasize that we have only

demonstrated that (55) is the scaling virial identity for a
specific model, with the matter action (30). For a general
matter model (55) remains obviously as an identity. We are
conjecturing that (55) remains as the generic scaling virial
relation for any asymptotically flat BH solution in GR that
can be written in the form (36) and with appropriate
boundary conditions, regardless of the matter content.
It is worth discussing the specific case of solitons.

The model (4) with the matter part given by (30) has
self-gravitating soliton solutions known as boson stars.
Restricting to an axially symmetric geometry, these
solutions, both static and spinning, can be studied

with the metric parametrization (36) and rH ¼ 0, e.g.,
[14,24,25].
In this solitonic case, rH ¼ 0 and the virial identity

obtained from the scaling argument (47) or, alternatively,
(55), simplifies to

Z
d3x

ffiffiffiffiffiffi−gp fEt
φW þ Et

t − Eμ
μg ¼ 0: ð56Þ

Again, we conjecture that this generic identity is the scaling
virial relation for any asymptotically flat solitonic solution
in GR, regardless of the matter content, which can bewritten
in the form (36) with rH ¼ 0. Apart from boson stars [26],
we have verified this conjecture for Proca stars [27] and
Dirac stars [28]; some details are given in Appendix (see
also [25,29,30]). However, we expect it to hold for any other
solitonic solutions arising in specific matter models.
The master identity (56) yields in the flat spacetime limit,

i.e., with Fi ¼ W ¼ 0 ¼ rH in (36),
Z

d3x
ffiffiffiffiffiffi−gp ðTt

t − Tμ
μÞ ¼ 0: ð57Þ

In Cartesian coordinates this is relation (1). Thus, again, we
see the Deser identity to be a special case of the master
virial identity (55).
For completeness, let us summarize Deser’s argument,

which uses a different route from scaling arguments.
Working in Cartesian coordinates xi (i ¼ 1, 2, 3), one
assumes the existence of a stationary soliton in some field
theory model. Then, the following (trivial) identity5

∂

∂xi
ðxjTi

jÞ ¼ Ti
i þ xj

∂Ti
j

∂xi
; ð58Þ

together with its volume integral is considered. The left-
hand side of such integral, which integrates the divergence
of the dilatations current, vanishes from regularity and
finite energy requirements. The second term on the right-
hand side of (58) vanishes from energy-momentum con-
servation (plus staticity) and thus we are left with Deser’s
identity (1). It also follows that the total mass energy of a
soliton in 3þ 1 dimensions is determined by the trace of
the energy-momentum tensor.

D. The boundary term contribution

In the discussion above concerning axially symmetric
solutions we have neglected the GHY boundary term. This
is justified for the reason we shall now detail.
For spacetimes of the form (36), the spacetime boundary

is taken at some constant r, with r → ∞ at the end of the
computation. The induced boundary metric reads

5Observe that Deser’s argument cannot be extended to a curved
spacetime background.
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dσ2 ¼ γijdxidxj

¼ e2F1r2dθ2 þ e2F2r2sin2θðdφ −WdtÞ2 − e2F0Ndt2;

N ¼ 1 −
rH
r
; ð59Þ

with
ffiffiffiffiffiffi−γp ¼ eF0þF1þF2

ffiffiffiffi
N

p
r2 sin θ. It follows that the

normal vector and the extrinsic curvature trace are

n ¼ e−F1

ffiffiffiffi
N

p
∂r;

K ¼ e−F1

r
ffiffiffiffi
N

p
"
1

2
rN0 þ 2N þ NrðF0;r þ F1;r þ F2;rÞ

#
: ð60Þ

In the asymptotically flat case, the obvious reference
spacetime is Minkowski’s. That is, working in spherical
coordinates, one takes the boundary to be a sphere at radius
r0, with

dσ2ðrefÞ ¼ −dt2 þ r20dΩ2
2: ð61Þ

The choice of r0 is arbitrary. We take r0 ¼ reF1 and thus

K0 ¼
2

r
e−F1 : ð62Þ

It follows that

ðK − K0Þ
ffiffiffiffiffiffi−γp ¼ eF0þF2 sin θ

$
2rN þ 1

2
r2N0 − 2r

ffiffiffiffi
N

p

þ Nr2ðF0;r þ F1;r þ F2;rÞ
%
: ð63Þ

Following our earlier work [5], this boundary term
should be included in the bulk action, and may provide
a nonzero contribution to the Derrick-type virial identity.
However, this is not the case for the employed metric
ansatz, once we observe that the gravity action also
contains a boundary term, c.f. (39). As such, the effective
gravity Lagrangian will contain a total derivative term
df=dr, with

f ¼ Tr þ 2ðK − K0Þ
ffiffiffiffiffiffi−γp

; ð64Þ

where Tr is given by (40). A direct computation obtains

f ¼ eF0þF2 sin θ½4rðN −
ffiffiffiffi
N

p
Þ þ r2N0&: ð65Þ

Recalling the general expression of the virial identity (10)
(with ri ¼ rH for the case here) a simple computation
shows that the right-hand side term [i.e., the f contribution
in (10)] vanishes, both at the horizon and at infinity.

IV. CONCLUSIONS AND DISCUSSIONS

In this work we have deconstructed virial identities
obtained by scaling arguments in GR. Specifically, we
have shown that when working in specific metric gauges,
the virial identities obtained from Derrick-type scaling
arguments can be recast as self-evident identities, since
they are (nontrivial) combinations of the equations of
motion. This has allowed us to obtain some master form
identities—Eqs. (3) and (55)—that we propose are generic,
corresponding to the scaling virial identities for any matter
model describing BHs or solitons with the appropriate
boundary conditions in those metric gauges.
In some cases, as in the case of spherical symmetry in the

specific metric gauge (2), the geometric part of the identity
can be integrated out, resulting in a nontrivial energy-
momentum balance condition (3), that can be thought of as a
curved spacetime generalization of Deser’s pressure balance
condition for flat spacetime solitons (1). This particular
result seems to be associated with the special property of the
metric form (2), for which the EH action is invariant (up to a
boundary term) under the scaling transformation [5].
In the more generic case of axial symmetry, within the

chosen metric gauge in this work [c.f. Eq. (36)], it still holds
that the virial scaling identity can be recast as a nontrivial
combination of the Einstein equations [c.f. Eq. (55)], but it
is not true that the geometric part can be integrated out to
yield a nontrivial energy-momentum balance condition. It
will be interesting to understand whether a metric gauge
exists (in axial symmetry) where it is possible to integrate
out the geometric part. This stands out as an interesting
direction for future research.
Finally, it is worth emphasizing that this work unveils the

true role of scaling virial identities in GR. Being (integrated)
combinations of the equations of motion, they are, of
course, not independent from the latter. Their usefulness
in providing insight on the existence (or nonexistence) of
solutions is not challenged by this observation. The combi-
nations of the equations of motion provided by the identity
may collect useful arrangements of the unknowns to extract
conclusions, as exemplified by Q-balls virial identity (33)
and by the no-scalar hair virial identity (23). Moreover, they
may also provide a useful test for the accuracy of numerical
solutions.
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APPENDIX: THE MATTER CONTRIBUTION TO
THE VIRIAL IDENTITY FOR SPINNING PROCA

AND DIRAC STARS

The axially symmetric, spinning Proca and Dirac stars can
be studiedbyusing the samemetric ansatz (36) (with rH ¼ 0).
The Proca stars are solutions of a model with a complex

field vector (or equivalently, two real Proca fields with the
same mass). As such, the model is described by the potential
1-form A, and field strength F ¼ dA, with the action

Smatter ¼ −
Z

d4x
ffiffiffiffiffiffi−gp

"
1

4
F αβF̄ αβ þ 1

2
μ2AαĀα

#
; ðA1Þ

where the overbar denotes the complex conjugate and μ > 0
is the field’s mass
The vector field ansatz is given in terms of four real

functions ðHa;VÞ, all of which depend on r; θ [24,27],

A¼eiðmφ−wtÞ
"
iVdtþH1

r
drþH2dθþ iH3 sinθdφ

#
ðA2Þ

[note also the existence of a complex phase, which is
similar to that of the scalar field ansatz (31)].
Then a straightforward but cumbersome computation

leads to the following expression for the Proca field’s
contribution to the virial identity (47):

VðmatterÞ ≡ VðProcaÞ ¼ −
1

2

Z
d3x sin θe−F0þF2

!
ðH2

1 þH2
2Þðω −mWÞ2 þ r2V2

;r þ V2
;θ þ sin2θW2ðr2H2

3;r þH2
3;θÞ

þ 2W½r2 sin θH3;rV;r þ ðsin θH3Þ;θV;θ& þ cos θH3W2ðcos θH3 þ 2 sin θH3;θÞ
þ 2ðω −mWÞ½WðrH1 sin θH3;r þH2ðsin θH3Þ;θÞ þ rH1V;r þH2V;θ&

þ e2F0−2F2

$
H2

3;r þ
1

r2sin2θ
ðm2H2

1 þ ð−mH2 þ ðsin θH3Þ;θÞ2 − 2mr sin θH1H3;rÞ
%

þ e2F0−2F1

"
H2;r −

H1;θ

r

#
2

þ e2F1−2F2

sin2θ
ðωH3 sin θ þmVÞ2

− μ2½e2F0ðH2
1 þH2

2Þ þ e2ðF0þF1−F2ÞH2
3 − 3e2F1r2ðV þ sin θH3WÞ2&

&
: ðA3Þ

One can now check that

VðProcaÞ ¼
Z

d3x
ffiffiffiffiffiffi−gp fTt

φW þ Tt
t − Tμ

μg: ðA4Þ

Since the geometric part is the same as in the scalar case,
descissed in the main text, this therefore leads to the virial
identity (56), as advertised in the main text.
Another example of spinning particlelike solutions6 is

provided by the Dirac stars [25]. The matter action in this
case is

Smatter ¼ −i
Z

d4x
ffiffiffiffiffiffi−gp

$
1

2
ðf=̂D Ψ̄gΨ − Ψ̄ =̂DΨÞ þ μΨ̄Ψ

%
;

ðA5Þ

where μ > 0 is the field’s mass, Ψ is a Dirac 4-spinor, with
four complex components, and Ψ̄ denotes the Dirac
conjugate. Also, =̂D≡ γμD̂μ, where γμ are the curved
spacetime gamma matrices, D̂μ ¼ ∂μ − Γμ is the spinor
covariant derivative, and Γμ are the spinor connection
matrices [31].
The Dirac field ansatz contains four real functions,

Ψ ¼ eiðmφ−wtÞ

0

BBB@

ψ1ðr; θÞ
ψ2ðr; θÞ

−iψ'
1ðr; θÞ

−iψ'
2ðr; θÞ

1

CCCA with

ψ1ðr; θÞ ¼ Pðr; θÞ þ iQðr; θÞ;
ψ2ðr; θÞ ¼ Xðr; θÞ þ iYðr; θÞ; ðA6Þ

while the parametermwhich enters the complex phase is an
half integer, m ¼ (1=2;(3=2;….

6Interestingly, the scalar, Proca, and Dirac spinning stars are
rather insensitive to the fundamental fermionic or bosonic nature
of the corresponding field, displaying various similar features
[25]. However, since a single fermion possesses an intrinsic
angular momentum, no static limit exists in the Dirac case.
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Then the standard Derrick scaling (37) (with rH ¼ 0) leads to the following expression for the Dirac field’s contribution
to the virial identity (47):

VðmatterÞ ≡ VðDiracÞ ¼ 4

Z
d3x r sin θeF0þF1þF2

!
rðQP;r − PQ;r þ XY;r − YX;rÞ

þ YP;θ − PY;θ þQX;θ − XQ;θ −
3

2
e−F0þF1rðω −mWÞðP2 þQ2 þ X2 þ Y2Þ

−
3

4
e−F0þF2r sin θ

$
rðPX þQYÞW;r þ

1

2
ðX2 þ Y2 − P2 −Q2ÞW;θ

%

þ eF1þF2

$
2m
sin θ

ðQX − PYÞ − 3eF2μrðPQþ XYÞ
%&

: ðA7Þ

Again, one can now check that

VðDiracÞ ¼
Z

d3x
ffiffiffiffiffiffi−gp fTt

φW þ Tt
t − Tμ

μg; ðA8Þ

thus, again leading to the virial identity (56).
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