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Dr. Moliner 50, 46100 Burjassot (València), Spain
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We present a systematic study of the dynamics and gravitational-wave emission of head-on collisions
of spinning vector boson stars, known as Proca stars. To this aim we build a catalog of about 800
numerical-relativity simulations of such systems. We find that the wavelike nature of bosonic stars has a
large impact on the gravitational-wave emission. In particular, we show that the initial relative phase
Δϵ ¼ ϵ1 − ϵ2 of the two complex fields forming the stars (or, equivalently, the relative phase at merger)
strongly impacts both the emitted gravitational-wave energy and the corresponding mode structure. This
leads to a nonmonotonic dependence of the emission on the frequency of the secondary star ω2, for fixed
frequency ω1 of the primary. This phenomenology, which has not been found for the case of black-hole
mergers, reflects the distinct ability of the Proca field to interact with itself in both constructive and
destructive manners. We postulate this may serve as a smoking gun to shed light on the possible existence
of these objects.
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I. INTRODUCTION

Gravitational waves (GWs) provide information about
the strong-field regime of gravity and can potentially reveal
the true nature and structure of astrophysical compact
objects. Their analysis could help unveil the classical
and quantum essence of black holes, as well as the interior
of neutron stars through the dense-matter equation of state,
a long-term open issue. Moreover, theoretical proposals for
dark or “exotic” compact objects (ECOs) [1] could be
probed through the study of their GW signals as long as
those could be distinguished from the signals produced by
black holes and neutron stars. Such investigations require a
deep understanding of the emitted GWs and, in particular,
rely on theoretical waveform templates against which
observational data can be compared. As an example, the
detection of GWs from compact binary coalescences—the
sources so far observed by Advanced LIGO and Advanced
Virgo [2–8]—and the source parameter inference thereof,
rely on the matched filtering of the data to waveform
templates (or approximants). This makes the production of
waveform catalogs of physically motivated exotic compact
objects an endeavor both well timed and worth pushing.

Among all proposed exotic objects that can reach a
compactness comparable to that of black holes, bosonic
stars stand out as one of the simplest and best-motivated
models [9,10]. Bosonic stars with masses in the astro-
physical black-hole range, from stellar-origin to super-
massive objects, are made of ultralight fundamental
bosonic fields that could account for (part of) dark
matter. Triggered by this central open issue in theoretical
physics—the nature of dark matter—the study of bosonic
stars has earned quite some attention in recent years.
From a particle physics perspective, ultralight bosonic
particles can emerge in the string axiverse [11,12] or in
simple extensions of the Standard Model of particles [13].
Bosonic stars are asymptotically flat (although nona-
symptotically flat generalizations exist), stationary and
solitonic, i.e., horizonless and everywhere regular equi-
librium spacetime geometries, describing self-gravitating
lumps of bosonic particles. In their simplest guise, they
emerge by minimally coupling the complex, massive
Klein-Gordon equation—for scalar boson stars—or the
complex Proca equations—for vector boson stars, also
known as Proca stars (PSs) [14]—to Einstein’s gravity.
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Bosonic stars can be either static, in which case the
simplest solutions are spherically symmetric (but see also
Refs. [15,16]), or spinning [17] (thus stationary but non-
static), in which case they have a nonspherical morphology
which depends on the scalar or vector model. In all cases,
the bosonic field oscillates periodically at a well-defined
frequency ω, which determines the mass, angular momen-
tum (in spinning solutions) and compactness of the star.
The dynamical robustness of bosonic stars has been

established for some models in well-identified regions of
the parameter space (see Ref. [18] for a review) making
them viable dark-matter candidates. The case of nonspin-
ning spherically symmetric bosonic stars is firmly estab-
lished. The fundamental solutions (those with the minimum
number of nodes of the bosonic field across the star) are
perturbatively stable in a range of frequencies between the
Newtonian limit (where they become noncompact) and the
maximal-mass solution. Additionally, they exhibit a non-
fine-tuned dynamical formation mechanism known as
gravitational cooling [19,20]. On the contrary, the case
of spinning bosonic stars has shown to be more subtle [21].
In particular, while the fundamental PS solutions have been
found to be stable in the simplest model where the Proca
field has only a mass term (no self-interactions), scalar
boson stars are prone to nonaxisymmetric perturbations
that can trigger the development of instabilities akin to the
bar-mode instability found in neutron stars [22], in the
corresponding model without self-interactions [23].
The above findings support using the fundamental

solutions of the simplest Proca model as a robust starting
point to test the true nature of dark compact objects. In
particular, this model appears as the most suitable choice to
conduct dynamical studies aimed at gauging, through GW
information, the potential astrophysical significance, if any,
of an appealing ECO model. First, and promising, steps
have recently been taken. Pursuing this route [24] found
that waveforms from numerical-relativity simulations of
head-on collisions of PSs can fit the signal GW190521 as
good as those from quasicircular binary-black-hole (BBH)
mergers, even being slightly preferred from a Bayesian-
statistics viewpoint. Moreover, the development of a larger
numerical catalog of PS mergers together with new data-
analysis techniques [25] has led to a more systematic study
of several LIGO-Virgo-KAGRA (LVK) high-mass events
in O3 under the PS collision scenario [24] and to conduct
the first population studies of these objects [26].
The present paper complements those recent works.

Here, we report on our catalog of nearly 800 numerical-
relativity simulations of head-on collisions of PSs used to
obtain the results presented in [24–26]. Furthermore, we
discuss additional numerical simulations we carried out to
explore the impact of the wavelike nature of PSs in their
GW emission. We find that the emission at merger
dramatically depends on the relative phase of the complex
field of each star. This has a major impact in both the net

energy emission through GWs and the corresponding mode
structure. Since this relative phase is an intrinsic parameter
of PSs, absent in BBH mergers, the potential measurement
of the GWmodulation discussed in this work could serve as
a smoking gun for the existence of PSs.
The remaining of this paper is organized as follows.

Section II briefly describes the formalism needed to
perform numerical simulations of PS mergers. The pro-
cedure we follow to obtain initial data for the simulations is
outlined in Sec. III as well as the specific numerical setups
employed. We report and analyze our results in Sec. IV.
Finally, our conclusions are presented in Sec. V along with
some remarks on possible pathways for future research.
Henceforth, units with G ¼ c ¼ 1 are used.

II. FORMALISM

We investigate the dynamics of a complex Proca field by
solving numerically the Einstein-(complex, massive) Proca
system, described by the action S ¼

R
d4x

ffiffiffiffiffiffi−gp
L, where

the Lagrangian density depends on the Proca potential A
and field strength F ¼ dA. It reads

L ¼ R
16π

−
1

4
F αβF̄ αβ −

1

2
μ2AαĀα: ð1Þ

Above, the bar denotes complex conjugation, R is the Ricci
scalar, and μ is the Proca-field mass. The stress-energy
tensor of the Proca field is given by

Tαβ ¼ −F μðαF̄ βÞ
μ −

1

4
gαβF μνF̄ μν

þ μ2
"
AðαĀβÞ −

1

2
gαβAμĀμ

#
; ð2Þ

where gαβ is the spacetime metric, with g ¼ det gαβ, and the
parenthesis denotes index symmetrization. Using the stan-
dard 3þ 1 split (see e.g. Ref. [27] for details) the Proca
field is split into the following 3þ 1 quantities:

Aμ ¼ Xμ þ nμXϕ; ð3Þ

X i ¼ γμiAμ; ð4Þ

Xϕ ¼ −nμAμ; ð5Þ

where nμ is the timelike unit vector, γμν ¼ δμν þ nμnν is the
operator projecting spacetime quantities onto the spatial
hypersurfaces, X i is the vector potential, and Xϕ is the
scalar potential. The fully nonlinear Einstein-Proca system
can be written as [27]

∂tγij ¼ −2αKij þ Lβγij; ð6Þ

∂tX i ¼ −αðEi þDiXϕÞ − XϕDiαþ LβX i; ð7Þ
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∂tEi ¼ αðKEi þDiZ þ μ2X i þ ϵijkDjBkÞ
− ϵijkBjDkαþ LβEi; ð8Þ

∂tKij ¼ −DiDjαþ αðRij − 2KikKk
j þ KKijÞ

þ 2α

$
EiEj −

1

2
γijEkEk þ BiBj

−
1

2
γijBkBk − μ2X iX j

%
þ LβKij; ð9Þ

∂tXϕ ¼ −X iDiαþ αðKXϕ −DiX i − ZÞ þ LβXϕ; ð10Þ

∂tZ ¼ αðDiEi þ μ2Xϕ − κZÞ þ LβZ; ð11Þ

where α is the lapse function, β is the shift vector, γij is the
spatial metric, Kij is the extrinsic curvature (with K ¼ Ki

i),
Di is the covariant 3-derivative, Lβ is the Lie derivative
(along the shift-vector direction), and κ is a damping
parameter that helps stabilize the numerical evolution.
Moreover, the three-dimensional “electric” Ei and “mag-
netic” Bi fields are also introduced in the previous
equations in analogy with Maxwell’s theory:

Ei ¼ γμiF μνnν; Bi ¼ γμi ⋆F μνnν ¼ ϵijkDiXk; ð12Þ

with Eμnμ ¼ Bμnμ ¼ 0 and ϵijk the three-dimensional
Levi-Civita tensor. The system of equations is closed by
two constraint equations, namely, the Hamiltonian con-
straint and the momentum constraint, which are given,
respectively, by

H ¼ R − KijKij þ K2 − 2ðEiEi þ BiBi

þ μ2ðX2
ϕ þ X iX iÞÞ ¼ 0; ð13Þ

Mi ¼ DjKij −DiK − 2ðϵijkEjBk þ μ2XϕX iÞ ¼ 0: ð14Þ

III. INITIAL DATA AND NUMERICS

A. The stationary PS solutions

Following the conventions in [14], we consider an
axially symmetric and stationary line element

ds2 ¼ −e2F0dt2 þ e2F1ðdr2 þ r2dθ2Þ

þ e2F2r2sin2θ
$
dφ −

W
r
dt
%

2

; ð15Þ

where F0, F1, F2, andW are functions of ðr; θÞ. Here, r, θ,
φ can be taken as spherical coordinates (in fact spheroidal),
with the usual range, while t is the time coordinate. The
spinning PS solutions of the Einstein-Proca system have
been discussed in [14] with these conventions and e.g. in
[28] for a slightly different version of (15) withW=r → W.

The ansatz for the Proca field is

A ¼
$
H1

r
drþH2dθ þ iH3 sin θdφþ iVdt

%
eiðm̄φ−ωtþϵÞ;

ð16Þ

with m̄ ∈ Zþ and ϵ is the initial phase of the star. The
domain of existence and the compactness of the solutions
of the Einstein-Proca equations describing the fundamental
spinning PSs are shown in Fig. 1. These solutions have
m̄ ¼ 1 and are nodeless (i.e., A0 has no nodes). The
frequency range of the solutions of interest varies between
ω=μ ¼ 1 (Newtonian limit) and ω=μ ∼ 0.562 (maximal-
mass solution). As the latter is approached, the PS solutions
become ultracompact; i.e., they develop a light ring pair
[29] for ω=μ ≲ 0.711. This creates a spacetime instability
[30] which motivates us to avoid this region of the
parameter space. The compactness is defined as

FIG. 1. Top: sequence of equilibrium configurations of node-
less fundamental spinning m̄ ¼ 1 PSs. The PSs develop a pair of
light rings for ω=μ≲ 0.711 and an ergoregion for ω=μ≲ 0.602.
The maximal mass is attained at ω=μ ≃ 0.562. Bottom: compact-
ness of the Proca stars as a function of the oscillation frequency
ω=μ in the range considered in this study.
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compactness ¼ 2M99

R99

; ð17Þ

where R99 is the perimetral radius that contains 99% of the
star’s mass,M99. Bosonic stars do not have a surface with a
discontinuity of the energy density occurs, i.e., a surface
outside which the energy density is zero (in contrast with a
fluid star). We remark that for all PS solutions reported in
the literature so far, the line element (15) possesses a
reflection symmetry, with respect to the θ ¼ π=2 plane.
The translation between the functions above, F0, F1, F2,

W, V, H1, H2, and H3, and the initial value for the metric
and the 3þ 1 Proca field variables is given as follows:

α ¼ eF0 ; βφ ¼ W
r
; ð18Þ

γrr ¼ e2F1 ; γθθ ¼ e2F1r2; γϕϕ¼ e2F2r2 sin2 θ; ð19Þ

Xϕ ¼ −nμAμ; ð20Þ

X i ¼ γμiAμ; ð21Þ

Ei ¼ −i
γij

α
ðDjðαXϕÞ þ ∂tX jÞ: ð22Þ

B. Binary head-on data

As initial data for the head-on simulations we consider
a superposition of two PSs with both stars described
by the same Proca field following [24,31–36] (see also
Refs. [37,38]):

(i) AðxiÞ ¼ Að1Þðxi − x0Þ þAð2Þðxi þ x0Þ,
(ii) γijðxiÞ ¼ γð1Þij ðxi − x0Þ þ γð2Þij ðxi þ x0Þ − γflatij ðxiÞ,
(iii) αðxiÞ ¼ αð1Þðxi − x0Þ þ αð2Þðxi þ x0Þ − 1,

where superscripts (1) and (2) label the stars and %x0
indicates their initial positions. The stars are initially
separated by a coordinate distance Dμ ¼ Δxμ ¼ 40
(x0μ ¼ %20). We note that the solutions are not boosted
and that these initial data introduce (small) constraint
violations [31]. Figure 2 shows the dependence of the
L2-norm of the Hamiltonian and momentum constraints,
Eqs. (13) and (14), with D, at the initial time. The values
of the L2-norm are Oð10−4Þ or better. The error decreases
with separation, reaching a fairly constant value for
Dμ ≳ 20 (particularly visible for the momentum con-
straint); see Ref. [39].
Each star is defined by its oscillation frequency, ω1=μ

and ω2=μ. For the initial catalog used in [26], comprising
∼800 initial models, we fix the phase difference Δϵ
between the stars to zero. Here, we also explore the impact
of varying this relative phase on the gravitational-wave
emission. Equal-mass cases correspond to ω1 ¼ ω2 ¼ ω.
Correspondingly, ω1 ≠ ω2 for unequal-mass binaries.
Moreover, since we assume there is a single Proca field

describing both stars, these also share a common value for
the boson mass μ.

C. Parameter space

Our main catalog of 759 simulations is depicted in a
compact way in Fig. 3. Each axis in this plot labels
the frequencies of the two stars, ω1=μ and ω2=μ. For the

FIG. 2. Hamiltonian and momentum constraint violations of the
initial data as a function of the distance Dμ for the equal-mass
model with ω=μ ¼ 0.8000. The vertical black dashed line
corresponds to our choice of the initial separation Dμ ¼ 40
for our set of simulations, in the roughly constant region of the
L2-norm.

FIG. 3. Main dataset of PS binaries discussed in this work,
labeled by the value of the frequencies ω1=μ and ω2=μ of each
star. In all cases, the stars are released from rest at a distance of
Dμ ¼ 40 and have the same initial phase.
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equal-mass models, placed in the diagonal, we run
simulations using a uniform grid in frequencies in
the range ω1=μ ¼ ω2=μ ¼ ω=μ ∈ ½0.8000; 0.9300' with
Δω ¼ 0.0025. For the unequal-mass cases, we fix the
oscillation frequency of the primary star, ω1=μ, and then
vary the frequency of the secondary star, ω2=μ. Both
frequencies range from 0.8000 to 0.9300 with a resolution
of Δω1=μ ¼ 0.01 for ω1=μ and of Δω2=μ ¼ 0.0025 for
ω2=μ. As mentioned before, in all of these cases the two
stars have null relative phase Δϵ ¼ 0 at the start of the
simulation.
As we show below, the initial set of simulations

revealed unexpected nontrivial interactions between the
stars described by the same Proca field due to their
wavelike nature. As a result, we also build an additional
set of models to study the impact of the relative phases of
the star both in the dynamics and on the GWemission. The
effect of this parameter is studied in two (implicit and
explicit) ways. First, for some selected cases we vary the
initial star separation at which the simulation is started
keeping Δϵ ¼ 0 which for the cases with ω1 ≠ ω2 trans-
lates into a varying relative phase at merger. This,
however, also causes a variation in the velocity of the
two stars at merger whose effect mixes with that of the
varying phase. Therefore, in order to explicitly isolate
the impact of the relative phase change, for a few selected
cases of Fig. 3 we explicitly vary Δϵ in a uniform grid
Δϵ ∈ ½0; 2π' with step δΔϵ ¼ π=6.

D. Numerics

To carry out the numerical evolutions we use the
publicly available EINSTEIN TOOLKIT [40,41], which uses
the CACTUS framework and mesh refinement. The method
of lines is employed to integrate the time-dependent
differential equations. In particular, we use a fourth-order
Runge-Kutta scheme for this task. The left-hand side of
the Einstein equations is solved using the MACLACHLAN

code [42,43], which is based on the 3þ 1 Baumgarte-
Shapiro-Shibata-Nakamura formulation. On the other
hand, the Proca evolution equations, Eqs. (6)–(11), are
solved using the code described and available in [44–46].
We extended the code to take into account a complex field
[21,33]. Technical details, assessment of the code, and
convergence tests can be found in [21,33,44]. We use a
fixed numerical grid with seven refinement levels,
with the following structure: fð320;48;48;24;24;6;2Þ=
μ;ð4;2;1;0.5;0.25;0.125;0.0625Þ=μg, where the first set
of numbers indicates the spatial domain of each level and
the second set indicates the resolution. The simulations
are performed using equatorial-plane symmetry.
To extract gravitational radiation we employ the

Newman-Penrose (NP) formalism [47] as described in
[44]. We compute the NP scalar Ψ4 expanded into spin-
weighted spherical harmonics of spin weight s ¼ −2.

IV. RESULTS

We have performed 759 simulations of head-on colli-
sions of spinning PSs starting at rest at fixed initial distance
Dμ ¼ 40. We explore both equal-mass and unequal-mass
cases to produce a first systematic study of the GW signals
emitted in collisions of these objects. Stationary funda-
mental bosonic stars are described by the oscillation
frequency ω=μ of the field, which determines the dimen-
sionless mass Mμ and angular momentum of the star Jμ2,
besides its compactness. Further specifying the boson
particle mass μ determines the corresponding physical
quantities M and J (see below). Thus, μ can be set as a
fundamental scale of the system and all quantities can be
simply rescaled. Alternatively, we can trivially rescale the
simulations to any fixed total mass, which in turn deter-
mines the mass of the boson. We also remark that, in
contrast with black holes, the angular momentum of PSs is
quantized by the relation J ¼ m̄Q, where Q is the Noether
charge of the star, which counts the number of bosonic
particles. This means that an infinitesimal loss (gain) in
angular momentum must be accompanied by a correspond-
ing loss (gain) of particles.
We restrict to the case of mergers of dynamically

stable m̄ ¼ 1 spinning PSs. For our range of frequencies
the PS models have masses and angular momentum
that vary from ðω=μ;Mμ; Jμ2Þ ¼ ð0.9300; 0.622; 0.637Þ
to (0.8000,0.946,1.008). All of these mergers lead to a
postmerger remnant that is compact enough to collapse into
a Kerr black hole. Therefore, our waveform catalog is well
suited for the analysis of LVK GW events under the PS
merger scenario.

A. Single star

The dynamical robustness and formation of spinning PSs
were addressed in [21,22]. Here we illustrate the stability
properties of these objects. We consider the case of a single
isolated spinning PS. We fix the oscillation frequency to
ω=μ ¼ 0.90, the mass to Mμ ¼ 0.726 and the angular
momentum Jμ2 ¼ 0.750. We evolve the star up to a time
tμ ¼ 8000. The top panel of Fig. 4 shows the evolution of
the amplitude of the real part of Xϕ at the end of the
simulation together with the analytical value. The numeri-
cal result is in excellent agreement with the analytical
estimate. In the middle panel we show, for three different
resolutions, namely, a fixed grid with four refinement levels
and dx ¼ f0.8; 0.4; 0.2g=μ in their finest level, the time
evolution of the Proca energy and angular momentum
given by the Komar integrals:

M ¼ −
Z

Σ
drdθdφð2Tt

t − Tα
αÞα

ffiffiffi
γ

p
; ð23Þ

J ¼
Z

Σ
drdθdφTt

φα
ffiffiffi
γ

p
: ð24Þ
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In addition, we show in the bottom panel the minimum
value of the lapse function α. At the highest resolution, the
deviations of the final mass, angular momentum, and lapse

function with respect to the initial values are less than 0.4%
at tμ ¼ 8000. The resolution is comparable to the merger
case, for which we added more refinement levels at the
center of the grid to take into account black-hole formation.
The initial deviations come from interpolation errors from
the initial data computed in a compactified grid to the
Cartesian grid used for the numerical simulations. The
convergence order of our code under grid resolution is
found to be around 2.5.

B. Head-on mergers of Proca stars

We now move to study head-on collisions of PSs and the
corresponding GW emission. Figures 5 and 6 show the
energy density of the Proca field at the equatorial plane
(z ¼ 0) for two families of collisions respectively charac-
terized by primary-star frequencies, namely, ω1=μ ¼
0.8300 and ω1=μ ¼ 0.9100, and four illustrative secon-
dary-star frequencies ω2=μ. These figures exemplify the
dynamics of all PS binaries in our dataset. In particular, we
note that the collisions are not strictly head on since the
objects do not follow a straight line. Instead, the trajectories
of both stars are curved due to the frame-dragging induced
by the stars spins. All mergers lead to the formation of a
Kerr black hole with a faint Proca field remnant around the

FIG. 4. Top: evolution of the amplitude of the real part ofXϕ. The
solid red line corresponds to the analytical value cosωt with ω ¼
0.90 and theblue circles to thenumerical solution.Middle: evolution
of the total Proca energy and angular momentum for themodel with
ω=μ ¼ 0.90 for three different resolutions. Bottom: the same as the
middle but for the minimum value of the lapse function α.

FIG. 5. Equatorial (xy) plane snapshots of the energy density in
log scale during the evolution of the collisions of spinning PSs for
different models with fixed ω1=μ ¼ 0.8300 and varying the
frequency ω2=μ of the secondary star. Time runs from top to
bottom and is given in code units with G ¼ c ¼ μ ¼ 1.

NICOLAS SANCHIS-GUAL et al. PHYS. REV. D 106, 124011 (2022)

124011-6



horizon, therefore storing a small fraction of the initial
Proca mass and angular momentum [35,48]. The final
black holes do not always form promptly as for some values

of the PS parameters the collisions exhibit the formation of
a transient hypermassive PS.
The collisions produce a burst of GWs, similar to the

signals from head-on collisions of black holes [24,49]. We
note that the gravitational waveform sourced by head-on
collisions is fundamentally different from that produced in
orbital binary mergers. First, it is obviously much shorter as
there is no inspiral phase preceding the merger. Second, the
radiated energy is significantly lower (only around a 0.2%
of the initial energy of the system, when in orbital mergers
it reaches a few percent) due to the slow velocities of the
two objects at merger, caused by the fact that we release
the stars from rest at very short distances. Third, while the
GWemission from orbital mergers is vastly dominated by
the quadrupole l ¼ 2, m ¼ %2 modes, that from head-on
mergers exhibits an ðl; mÞ ¼ ð2; 0Þ mode, equally domi-
nating [24,31,33]. Figure 7 shows the dominant l ¼ m ¼
2 mode of the Newman-Penrose scalar Ψ4 in the equal-
mass case, for six different PS models. The frequency of
the GWs increases with increasing ω=μ, i.e., with
decreasing mass and compactness of the PSs. The
morphology of the waveforms changes as well: the less
compact the stars, the longer the precollapse signal before
black-hole formation, which corresponds to the peak
emission and it is followed by the ringdown phase. For
high ω=μ collisions, the transient hypermassive PS that
results from the merger has a total mass that is closer (as
ω=μ grows) to the maximum mass that defines the linear
stability limit of such objects, therefore surviving for a
longer time as it emits GWs before collapsing to a
black hole.

FIG. 6. The same as Fig. 5 but for PS models with ω1=μ ¼
0.9100 and different values of ω2=μ.

FIG. 7. l ¼ m ¼ 2mode of the rΨlm
4 for six equal-mass PS collisions of increasing frequency. For an animation of the full set of GW

signals from equal-mass collisions see Ref. [50].
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Figure 8 shows the l ¼ m ¼ 2 and l ¼ m ¼ 3modes of
Ψ4 for one equal-mass and five unequal-mass PS binary
mergers, with fixed ω1=μ ¼ 0.8300 and varying ω2=μ. The
waveforms look similar to those for the equal-mass cases in
terms of shape, duration, and frequency. However, they also
exhibit important differences. First, while in equal-mass
collisions odd-m modes (e.g. the l ¼ m ¼ 3 mode) are
almost completely suppressed (modulo numerical noise)
due to the symmetries of the problem compared to the
dominant l ¼ m ¼ 2 (see top middle panel of Fig. 8), these
are triggered for unequal-mass systems and can have a
significant contribution (see also Ref. [35]). In addition, and
most importantly, the morphology of the l ¼ m ¼ 2 mode
manifests a clear nonmonotonic dependence on the fre-
quency of the secondary star ω2=μ for fixed ω1=μ. In
particular, the waveform amplitude varies periodically as
we increaseω2=μ from 0.8000 to 0.9300. For example, for a
value ofω1=μ ¼ 0.8300, we find that the amplitudemaxima
correspond to ω2=μ equal to 0.8000, 0.8300, 0.8600,
0.8900, and 0.9225, while the minima are found when
ω2=μ is equal to 0.8150, 0.8450, 0.8750, and 0.9100. This
effect is not present in mergers of other types of compact
objects as binary black holes or binary neutron stars.
The nontrivial dependence of the gravitational radiation

with ω2=μ for fixed ω1=μ becomes more evident when
studying the total emitted energy from the GW luminosity,
given by

LGW ¼ dE
dt

¼ lim
r→∞

r2

16π

X∞

l¼2

Xl

m¼−l

&&&&
Z

t

−∞
dt0Ψlm

4

&&&&
2

: ð25Þ

Figure 9 shows the total GWenergy as a function of ω=μ or
ω2=μ for the equal-mass (top left panel) and three illus-
trative unequal-mass cases, corresponding to fixed values
of ω1=μ ¼ f0.8300; 0.8950; 0.9100g (top right, bottom
left, and bottom right panels of Fig. 9, respectively). In
the equal-mass case the emitted energy decreases for
decreasing ω=μ reaching a minimum at ω=μ ∼ 0.8625
and increasing onward. While naively one would expect
that the emitted energy would primarily depend on the total
mass and compactness of the stars, the described trend
depends in a nontrivial way on the dynamics of the binary
system, the trajectories followed by the stars due to frame
dragging, and the masses and angular momentum of
the PSs.
On the other hand, the unequal-mass cases yield inter-

esting results already hinted above. We find that the GW
energy displays a distinctive oscillatory pattern as a
function of ω2=μ for fixed ω1=μ. As Fig. 9 shows, the
energy maxima are located at intervals of Δωmax=μ ¼
ðω1 − ω2Þ=μ ∼ k0.03 and the minima are located at inter-
vals of Δωmin=μ ∼ ð2kþ 1Þ0.015 with k ∈ Z. The value of
these two intervals between maxima or minima, Δωmin=μ
and Δωmax=μ, are completely independent of ω1=μ. This
result can be explained by the wavelike nature of PSs and
their fundamental oscillation frequency, which leads to an
interference between the different frequencies in the
unequal-mass case. The interference behavior was already
found in equal-mass head-on collisions of scalar boson
stars with a nonzero initial phase difference [31,32,51,52],
but its impact on the GW emission was not systematically
explored.

FIG. 8. l ¼ m ¼ 2 (blue lines) and l ¼ m ¼ 3 (red lines) modes of rΨlm
4 for six unequal-mass PS collisions with fixed

ω1=μ ¼ 0.8300. For animations of the full set of GW signals from unequal-mass collisions see Ref. [50].
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C. The role of the relative phase at merger

To explain the GW emission pattern, we assume that at
the time of the collision we have a linear superposition of
both stars (same Proca field) oscillating at different
frequencies. Then, removing the m̄φ dependence which
will not affect the interference and the initial phase ϵ, it can
be shown that

ReðAÞ ∼ cosðω1tÞ þ cosðω2tÞ

¼ 2 cos
$
ðω1 þ ω2Þ

2
t
%
cos

$
ðω1 − ω2Þ

2
t
%
;

ImðAÞ ∼ sinðω1tÞ þ sinðω2tÞ

¼ 2 sin
$
ðω1 þ ω2Þ

2
t
%
cos

$
ðω1 − ω2Þ

2
t
%
: ð26Þ

Therefore, the complex amplitude of the Proca field will be
given by

jAj2 ¼ ReðAÞ2 þ ImðAÞ2 ∼ 4cos2
$
ðω1 − ω2Þ

2
t
%

¼ 2½1þ cosððω1 − ω2ÞtÞ': ð27Þ

Since the initial separation between the stars is the same
for all cases, Dμ ¼ 40, the time of the collision is also
approximately the same, tcolμ ∼ 210. This is precisely the
time at which the maximum (constructive interference) for
the envelope in Eqs. (26) and (27) is reached:

1þ cosððω1 − ω2ÞtcolÞmax ¼ 2

⇒ ðω1 − ω2Þmaxtcol ¼ 2kπ; ð28Þ

ifΔωmax=μ ¼ ðω1 − ω2Þ=μ ∼ k0.03. On the other hand, the
minimum (destructive interference) for the same time tcol is
found for

1þ cosððω1 − ω2ÞtcolÞmin ¼ 0

⇒ ðω1 − ω2Þmintcol ¼ ð2kþ 1Þπ; ð29Þ

FIG. 9. Total GW energy as a function of ω=μ in the equal-mass case (top left) and three unequal-mass cases: ω1=μ ¼ 0.8300 (top
right), ω1=μ ¼ 0.895 (bottom left) and ω1=μ ¼ 0.91 (bottom right).
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which gives Δωmin=μ ¼ ðω1 − ω2Þ=μ ∼ ð2kþ 1Þ0.015.
This simple linear analysis explains the periodicity between
maxima and minima observed in Fig. 9, which therefore
depends on the initial distance between the stars. This
analysis, however, must be regarded as an approximation
since the emission also depends on other factors such as the
dynamics of the collision, the radius of the stars and the
time of merger, which could give rise to some additional
features in the GW energy, as hinted by the bottom right
panel of Fig. 9. Thus, we anticipate that an increase in Dμ
will increase tcol and will decrease both Δωmax and Δωmin.
Accordingly, if the whole merger takes more time to reach
the collapse, the factor Δω=μ will be low enough so that its
period will be longer than the life of the transient hyper-
massive PS. Depending on the amplitude of the envelope,
the GW emission could be critically affected.
Gravitational radiation greatly depends on the distribu-

tion and amplitude of the energy density. The square of the
amplitude of the Proca field is proportional to the energy
density [see Eq. (2)] and can be related to the amplitude of
the GW emission. To illustrate this, Fig. 10 shows the total
energy emitted for the models with fixed ω1=μ ¼ 0.8700
computed from the simulations together with the estimated
value of the Proca field amplitude from Eq. (27) and a
variation of Eq. (27) as a function of ω2=μ at tcol ¼ 210.
Removing the drift of the energy due to dynamics and
variations in the total mass, we find an excellent overall
agreement, in particular in the location of the maxima and
minima. We note that we do not find null GW emission
whenΔω=μ ¼ ð2kþ 1Þ0.015, probably because there is no
perfect cancellation of the Proca field during the whole
merger process. We stress that, while this linear argument is

a remarkably good approximation, it is not really valid to
explain a complete destructive interference of the stars.

D. The role of the initial relative distance

We now explore the impact of (implicitly) varying the
relative phase atmerger by changing the time of the collision
tcolμ. To this end, we place the stars at two additional initial
separations, namely, Dμ ¼ 30 and 45. We repeat the
simulations with these setups for the cases of binaries with
fixed primary frequency ω1=μ ¼ 0.8000 and secondary
frequency in the interval ω2=μ ∈ ½0.8000; 0.9300' with
variations in steps Δω2=μ ¼ 0.0025. Our results are shown
in Fig. 11. The top left panel corresponds to the energy
radiated in GWs. This exhibits the same global decreasing
trend and periodic oscillations with local maxima and
minima as a function of ω2=μ for all values of the initial
separation distances. However, Δωmax=μ and Δωmin=μ are
found to depend onDμ (and tcolμ). The new collision times
are tDμ¼30

col μ ∼ 135 and tDμ¼45
col μ ∼ 250, and from the analysis

of the top left panel of Fig. 11we obtainΔωDμ¼30
max =μ ∼ 0.046

and ΔωDμ¼45
max =μ ∼ 0.025. These values are exactly what we

expect from Eqs. (27)–(29) for such collision times.
In addition, the top right panel of Fig. 11 shows the GW

energy emitted by an unequal-mass binary with ω1=μ ¼
0.8000 and ω2=μ ¼ 0.8450 as a function of the initial
separation. The GWenergy does not depend monotonically
with the distance but instead it displays an oscillatory
pattern. Moreover, the bottom panels show the l ¼ m ¼ 2
gravitational waveforms for two unequal-mass cases and
three initial separations. These two plots illustrate that the
initial distance is an important parameter of the system as it
can change the morphology and energy of the emitted GWs
for the same binary stars.

E. The role of the initial phases

The fact that the initial separation plays an important role
in the dynamics and interactions of the two PSs raises the
question of whether the initial phase of the stars may also
cause a similar effect. Note that we keep the same phase for
both stars (zero initial phase difference), as we have
focused in the simplest possible scenario. Recall that,
while the energy density of PSs is axisymmetric, their real
and imaginary parts are not. Therefore, different phases
lead to different orientations of the real and imaginary parts
at the time of the collision, which in turn yields different
results that could potentially reveal the inner complex
structure of these stars (for instance, the dipolar distribution
of the real and imaginary parts of the Proca field for a
m ¼ 1 spinning star). To test this idea, we perform several
simulations of a binary with ω1=μ ¼ 0.8000 and ω2=μ ¼
0.8450 varying the initial phase ϵ in Eq. (16).
To check that the key parameter at play is the relative

phase of the stars and not their global ones, we first vary the
phase of both stars, keeping always the phase difference

FIG. 10. Total GW energy for PS head-on collisions with fixed
ω1=μ ¼ 0.8700 and varying ω2=μ. The magenta lines correspond
to the behavior of the estimated square of the Proca field
amplitude computed from Eq. (27) (dashed line) and from the
formula 0.0047 cosðð0.87 − ω2ÞtcolÞ þ 0.001 (solid line) as a
function of ω2=μ at tcol ¼ 210. We fit the analytic expressions
to the peak of the model with ω1=μ ¼ ω2=μ ¼ 0.8700.

NICOLAS SANCHIS-GUAL et al. PHYS. REV. D 106, 124011 (2022)

124011-10



equal to zero Δϵ ¼ 0 with ϵ1 ¼ ϵ2. Figure 12 shows the
time evolution of the energy density (leftmost column) and
the real part of the scalar potentialXϕ for different values of
the phase ϵ ¼ f0; π=4; π=2g (remaining columns). The first
column shows that, even when the orientation of the
components of the Proca field (in this case the scalar
potential) is different, there is no change at the level of the
energy density. No differences are found in the dynamics of
the binary, the final object, or the gravitational waveform.
These are all completely independent of the initial phase.
Therefore, the inner structure and dipolar distribution
(m̄ ¼ 1) of the real and imaginary parts of the star do
not play a role in the collisions. We note that the real part of
the scalar potential shows a m̄ ¼ 5 distribution after the
collapse and black-hole formation (as discussed in [48]; see
also Ref. [35]) that could trigger the development of the
superradiant instability depending on the final spin of the
black hole. However, this would happen within a timescale
beyond current computational capabilities.

Next, we study the effect of varying the initial separation
in the equal-mass case. The top panel of Fig. 13 shows the
total GW energy emitted for an equal-mass PS head-on
collision, as a function of the stars’ frequency and for four
initial distances, Dμ ¼ f30; 35; 40; 45g. Correspondingly,
the bottom panel of Fig. 13 exhibits the GW energy as a
function of distance for an equal-mass binary with
ω=μ ¼ 0.8000. In both cases we observe the same trend
discussed in the top left panel of Fig. 9, together with the
corresponding oscillatory pattern for fixed ω=μ. We note
that, unlike the unequal-mass case, the top panel of Fig. 13
lacks the maxima and minima arising from the constructive
and destructive interferences, as in the equal-mass case we
always have ω1 ¼ ω2.
Finally, we explore how the relative phase Δϵ ¼ jϵ1 −

ϵ2j impacts the GW energy. Again, even if we change the
initial phase, the initial energy density of the stars is
independent of the phase. However, the relative phase will
change the interference pattern and the dynamics of the

FIG. 11. Top left: total GW energy for PS head-on collisions with fixed ω1=μ ¼ 0.8000 and varying ω2=μ for three different initial
distances Dμ ¼ ½30; 40; 45'. Top right: total GW energy for the unequal-mass case with ω1=μ ¼ 0.8000 and ω2=μ ¼ 0.8450 as a
function of the distance Dμ. Bottom left: l ¼ m ¼ 2 waveforms for ω1=μ ¼ 0.8950. Bottom right: l ¼ m ¼ 2 waveforms for
ω1=μ ¼ 0.9100.

IMPACT OF THE WAVELIKE NATURE OF PROCA STARS ON … PHYS. REV. D 106, 124011 (2022)

124011-11



Proca field at the time of the collision. From the amplitude
of the Proca field

jAj2 ¼ ReðAÞ2 þ ImðAÞ2 ∼ 4cos2
$
ðω1 − ω2Þ

2
tþ Δϵ

%

¼ 2½1þ cosððω1 − ω2Þtþ ΔϵÞ'; ð30Þ

we see that varying Δϵ produces a similar effect to
changing the initial distance separation (and tcol). The stars
merge with a different internal configuration producing a
different GW emission. This is indeed what we get as
shown in Fig. 14, where we plot the GW energy for one
equal-mass case (ω=μ ¼ 0.8000) and one unequal-mass
case (ω1=μ ¼ 0.8000, ω2=μ ¼ 0.8450) together with the
analytical fit from Eq. (30) taking into account that there is
no perfect destructive interference that would lead to zero
emission. Compared to the Δϵ ¼ 0 situation, now the most
luminous collision emits about 25% more energy in the
form of GWs in the equal-mass case and about 35%more in
the unequal-mass case.

The relative phase Δϵ also alters the mode-emission
structure of the source and the frequency content of the
modes (or, equivalently, theirmorphology). In particular, the
left panel of Fig. 15 shows the frequency content, by means
of the amplitude of the Fourier transform, of the quadrupole
l ¼ m ¼ 2 mode of an unequal-mass PS merger as a
function of Δϵ. It can be noted how variations of this
parameter have an influence not only on the amplitude of the
mode, therefore impacting the observability of the source,
but also greatly modify its frequency content. This suggests
that this effect (or rather the parameterΔϵ) could actually be
measurable in a Bayesian parameter inference framework.
The effect of Δϵ in equal-mass mergers is particularly

useful to understand the potential impact of this parameter
in GW data analysis as a possible smoking gun to
distinguish PS mergers from vanilla black-hole mergers
(equal masses and aligned—or zero—spins). In this sit-
uation, for the case of black-hole mergers, odd-m emission
modes are exactly suppressed due the symmetry of the
source. The same is true, as expected, for the case of PSs
when we set Δϵ ¼ 0. The right panel of Fig. 15, however,

FIG. 12. Equatorial (xy) plane snapshots of the energy density
(left column) and the real part of the scalar potential Xϕ

(remaining columns) taken during the time evolution of the
collisions of spinning PSs with ω1=μ ¼ 0.8000 and
ω2=μ ¼ 0.8450, changing the initial phase of the stars. Time
runs from top to bottom and is given in code units
with G ¼ c ¼ μ ¼ 1.

FIG. 13. Top: GW energy as a function of frequency for equal-
mass head-on collisions for four different initial distances
Dμ ¼ ½30; 35; 40; 45'. Bottom: GW energy as a function of the
initial distance Dμ for the equal-mass case with ω=μ ¼ 0.8000.
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shows that the introduction of Δϵ ≠ 0 activates the l ¼
m ¼ 3mode during merger and ringdown. This reflects the
fact that the phase difference between the stars breaks the
symmetry of the source. While at the moment we cannot
perform simulations for the case of quasicircular PS
mergers (for lack of constraint-satisfying initial data) we
anticipate that this effect would lead to an inconsistency
between the binary parameters inferred from the inspiral
stage and the corresponding ringdown emission modes of
the final black hole if the source were assumed at face value
to be a black-hole merger. Moreover, such a signature shall
represent a smoking gun of the non-black-hole nature of the
merging objects. We leave the quantitative exploration of
this possibility for future work.

V. CONCLUSIONS

Black holes and neutron stars are widely considered the
most plausible compact objects populating the Universe.
Theoretical proposals for other types of compact objects,
dubbed dark or “exotic” compact objects, however, have
also been proposed (see e.g. Ref. [1] and references
therein). The brand new field of gravitational-wave
astronomy offers, potentially, the intriguing opportunity
to probe those theoretical proposals. In particular the study
and characterization of the GWs from collisions of ECOs—
the building of waveform template banks—seems a key
requisite toward that goal, as those datasets could allow for
direct comparisons with the signals produced in mergers of
black holes and neutron stars. The expectation is that the
distinct nature of the different families of compact objects is
somewhat encoded in the GW signals each member of the
class emits, hence offering a way to single them out. In
order to identify the specific and subtle signatures of each
type of object in their GWemission, it is crucial to produce
accurate signal models that can be compared to the data

FIG. 14. Top: GW energy for head-on collisions with fixed
ω=μ ¼ 0.8000 and nonzero phase difference Δϵ between the
stars. The magenta line depicts the behavior of the square of the
Proca field amplitude with Δϵ as computed from Eq. (30).
Bottom: the same as the top but for the unequal-mass case with
ω1=μ ¼ 0.8000 and ω2=μ ¼ 0.8450.

FIG. 15. Left: absolute value of the Fourier transform of the quadrupole mode of Ψ4 for an unequal-mass PS head-on collision as a
function of the relative phase Δϵ of the two stars. A clear dependence of both the mode amplitude and frequency content on Δϵ is
observed. Right: absolute value of the l ¼ m ¼ 3mode ofΨ4 for an equal-mass collision as a function ofΔϵ. WhenΔϵ ¼ 0 this mode is
completely suppressed (as in the black-hole merger case for equal masses and aligned spins) while variations of this parameter trigger
this mode during merger and ringdown.
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collected by detectors and that can also reveal new specific
phenomenology. Presently, numerical relativity offers the
most accurate way to do so, particularly in the highly
nonlinear, strong-gravity situations produced when two
compact objects merge.
In this paper we have presented a catalog of nearly 800

simulations of head-on mergers of PSs. We recently used
this dataset to search for signatures of these objects in
existing LIGO-Virgo data [24,26]. Here, we have per-
formed a systematic study of the properties and gravita-
tional-wave emission of these physical systems. Our study
has revealed that the relative phase of the two PSs, an
intrinsic parameter of bosonic stars that is absent for the
case of black-hole mergers, has a strong impact in the GW
emission. This parameter, which reflects the wavelike
nature of the PSs by controlling the way the Proca field
interacts with itself, impacts not only the amplitude of the
emission modes (and therefore the total emitted energy) but
also the frequency content of the signal and its mode
structure. Interestingly, these findings suggest that such an
intrinsic parameter of PS binaries could be measurable. As
a particular illustration, we have shown here that the
asymmetry induced by phase differences in an equal-mass
PS head-on collision can trigger odd-parity (odd-m) modes
during the merger-ringdown stage which are completely
suppressed for the case of equal-mass (and equal-spin)
binary-black-hole mergers. We argue that this may evi-
dence the non-black-hole nature of the merging objects.
The LVK event GW190521 has represented the first

example of a GW signal that can be explained both in the
classic framework of binary-black-hole mergers and in the
less-common framework of PS mergers [24]. However, to
conclusively probe the existence of the latter class of ECOs
will require either the accumulation of small evidences in
favor of this scenario through the systematic comparison of
signals to waveform catalogs and/or the observation of a
signal with distinct signatures that cannot be reproduced by
black-hole mergers by current or future LIGO-Virgo-
KAGRA detectors or by third-generation detectors, such
as the Einstein Telescope [53]. On the one hand, the GW
catalog we have discussed in this paper represents the first
step toward such systematic comparisons. On the other
hand, our results suggest that the wavelike nature of PSs,
via the impact of the relative phase parameter Δϵ on the
GWemission, might serve as a distinct smoking gun for the
existence of these objects.
In this work we have focused on the particular case of

head-on collisions due its technical and computational
simplicity. In the future we plan to extend the catalog to
eccentric and orbital quasicircular mergers of bosonic stars.
This will help us to firmly establish if the GW interference

patterns found are specific to or can be amplified by the
geometry of the collisions considered in this paper and,
thus, gauge the potential imprint they may actually have in
the GW emission.
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APPENDIX: CODE ASSESSMENT

We briefly comment here on the convergence
analysis we carried out to assess the quality of our
simulations. In Fig. 16 we plot the gravitational
wave from equal-mass (ω1=μ ¼ ω2=μ ¼ 0.8000) and
unequal-mass (ω1=μ ¼ 0.8000 and ω2=μ ¼ 0.8450) colli-
sions using four different resolutions with (dx ¼
f0.046875; 0.0625; 0.09375; 0.125g=μ) in the finest level.
We obtain fourth-order convergence. The initial transient is
due to spurious radiation in the initial data, which is not
constraint satisfying, and, therefore, does not converge with
resolution.
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