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Esta tese foi realizada com o apoio financeiro da Fundação para a Ciência e
Tecnologia (FCT), através do Fundo Social Europeu e do Programa Opera-
cional Regional do Centro, sob a bolsa de doutoramento com a referência
SFRH/BD/139847/2018
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Resumo O sistema Bio-Radar permite medir sinais vitais com precisão, nomeada-
mente o sinal respiratório e card́ıaco, utilizando ondas electromagnéticas
para esse fim. Desta forma, é posśıvel monitorizar sujeitos de forma remota
e confortável durante longos peŕıodos de tempo. Este sistema é baseado
no efeito de micro-Doppler, que relaciona a variação de fase do sinal re-
cebido com a alteração da distância entre as antenas do radar e a caixa
torácica do sujeito, que ocorre durante a função cardiopulmonar. Con-
siderando a variedade de aplicações onde este sistema pode ser utilizado,
é necessário avaliar o seu desempenho quando aplicado em contextos reais
e assim demonstrar as vantagens que os sistemas bio-radar podem trazer
à população geral. Neste trabalho, foi desenvolvido um protótipo do bio-
radar com o objectivo de verificar a viabilidade de integrar estes sistemas em
aplicações espećıficas, utilizando soluções robustas e discretas que garan-
tam igualmente o seu bom desempenho, indo simultaneamente de encontro
às necessidades do mercado. Considerando estas duas perspectivas em que
o sistema pode ser melhorado, foram desenvolvidas soluções de diferentes
ńıveis. Do ponto de vista de hardware, foram desenvolvidas antenas têxteis
para serem integradas no estofo de um banco automóvel, alcançando uma
solução discreta e fácil de incluir num processo de industrialização. Con-
textos reais de aplicação implicam peŕıodos de monitorização longos, onde
podem ocorrer movimentos corporais involuntários que produzem sinais de
elevada amplitude que se sobrepõem aos sinais vitais. Ambientes de mon-
itorização não controlados podem produzir reflexões parasitas variantes no
tempo que têm impacto directo no sinal. Adicionalmente, a estrutura f́ısica
do sujeito e a sua postura durante o peŕıodo de monitorização podem ter
impactos diferentes na qualidade dos sinais. Desta forma, foram desen-
volvidos algoritmos de processamento de sinal robustos a sinais de baixa
qualidade e a cenários não estáticos. Por outro lado, o potencial do bio-
radar pode também ser maximizado se os sinais adquiridos forem pertinente-
mente utilizados de forma a ajudar a identificar o estado psicofisiológico do
sujeito, permitindo mais tarde agir em conformidade. O movimento corporal
aleatório que foi até agora visto como uma fonte de rúıdo, pode no entando
também fornecer informação útil sobre o estado do sujeito. Neste sentido,
o sinais vitais e outros movimento corporais adquiridos foram utilizados em
algoritmos de aprendizagem automática com o objectivo de identificar as
emoções do sujeito e assim verificar que sinais vitais adquiridos remotamente
podem também conter informação útil.





Keywords Vital Signs, Continuous Wave (CW) Radar, Micro-Doppler Effect, Textile
Antennas, Random Body Motion (RBM), Emotion recognition

Abstract The Bio-Radar system is capable to measure vital signs accurately, namely
the respiratory and cardiac signal, using electromagnetic waves. In this way,
it is possible to monitor subjects remotely and comfortably for long periods
of time. This system is based on the micro-Doppler effect, which relates
the received signal phase variation with the distance change between the
subject chest-wall and the radar antennas, which occurs due to the car-
diopulmonary function. Considering the variety of applications where this
system can be used, it is required to evaluate its performance when applied
to real context scenarios and thus demonstrate the advantages that bio-
radar systems can bring to the general population. In this work, a bio-radar
prototype was developed in order to verify the viability to be integrated in
specific applications, using robust and low profile solutions that equally guar-
antee the general system performance while addressing the market needs.
Considering these two perspectives to be improved, different level solutions
were developed. On the hardware side, textile antennas were developed to
be embedded in a car seat upholstery, thus reaching a low profile solution
and easy to include in the industrialization process. Real context scenarios
imply long-term monitoring periods, where involuntary body motion can
occur producing high amplitude signals that overshadow the vital signs.
Non-controlled monitoring environments might also produce time varying
parasitic reflections that have a direct impact in the signal. Additionally,
the subject’s physical stature and posture during the monitoring period can
have a different impact in the signals quality. Therefore, signal processing
algorithms were developed to be robust to low quality signals and non-static
scenarios. On the other hand, the bio-radar potential can also be maximized
if the acquired signals are used pertinently to help identify the subject’s psy-
chophysiological state enabling one to act accordingly. The random body
motion until now has been seen as a noisy source, however it can also pro-
vide useful information regarding subject’s state. In this sense, the acquired
vital signs as well as other body motions were used in machine learning
algorithms with the goal to identify the subject’s emotions and thus verify
if the remotely acquired vital signs can also provide useful information.
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Chapter 1

Introduction

In this chapter, the background and motivation supporting this PhD work are presented.
The objectives of the work are defined, considering the raised questions and the identified
gaps. Then, the contributions provided to the scientific community are outlined. Finally, the
structure of this document is presented.

1.1 Background and motivation

The ability to assess vital signs remotely is a topic that is being highly discussed in the
research community. Multiple solutions have been presented, where the most appealing ones
use radar systems, allowing wireless vital signs monitoring that can be performed from afar.
Radar systems can capture vital signs, such as the respiratory and cardiac signals, through
the measurement of the chest wall displacement. Generally based in the micro-Doppler effect,
electromagnetic waves are transmitted towards the subject’s chest wall, and the reflected
echo is received by the radar front-end. The received signal is a phase modulated version
of the transmitted one, caused by the chest wall motion according to the cardiopulmonary
function [1]. Figure 1.1 presents a simplified scheme that depicts this working principle, while
using a Continuous-Wave (CW) radar for instance [1], [2].

Figure 1.1: Example of a radar operation principle to capture vital signs [1], [2].

These radar-based systems, will be from now on referred as Bio-Radar systems. They
present multiple applications, not only in the medical field, where the direct interaction with
the subject is avoided, but either in other situations of our daily life. Continuous monitoring
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can improve the sensing of differences in the vital signs patterns and thus help identify sudden
events, such as the drowsiness of a vehicle driver or the apnea of an infant during sleep time
[1]. With this technology it is also possible to monitor bedridden patients in critical state or
with highly infectious diseases (such as the COVID-19), and possibly help in cardiopulmonary
disease diagnosis. Applications in psychology are also feasible, for example the measurement
of stress response [3], or even the follow-up of patients with psychological disorders, such as
autism, through emotion recognition [4], [5]. In such applications, it is essential to minimize
the subject awareness of the measurement to enable authentic reactions [5].

The concept of non-contact extraction of human physiological parameters using radar had
been demonstrated by pioneers in the 1970s [6]–[8], where the respiration was measured along
with the heartbeat during apnea interspersed periods. Thenceforth, several solutions have
been presented using different Radio-Frequency (RF) front-ends, either using combined RF
components [9], [10] or using more compact solutions such as the Software-Defined Radio
(SDR) [11]. Later on, the technology advancement allowed an accessible implementation of
bio-radar systems. Off-the-shelf radars are already available in the market and ready to use,
with recommended features dedicated to vital signs monitoring, such as the mmWave radar
sensors from Texas Instruments [12], the SensorLogic radars [13] or the NOVELIC radars [14].

From the research perspective, literature has been presenting several solutions oriented
towards the improvement of specific modules contained in the system. Therefore, the systems’
implementation challenges can be divided in distinctive areas, mainly grouped in hardware
and software approaches. On the hardware side, the antenna selection plays an important role,
since it is in the front line to determine the physical dimensions and appearance of the overall
system, while assuring the received signal quality at a superior level [15]–[17]. Other aspects
regarding the overall hardware definition are related with the carrier frequency [18], [19] and
the radar operation mode [20]. In turn, the software side solutions are mostly developed
to enhance the overall system efficiency and to solve issues that cannot be addressed using
hardware solely. Among them, it can be highlighted the phase demodulation to extract vital
signs [21], [22], the parasitic reflections compensation [23], [24] or the cardiac signal extraction
[25], [26].

Nowadays, the research in this area is increasingly focused on the system’s improvement,
aiming to reach solutions that guarantee low power, small dimensions, better accuracy, long
range detection and a more robust operation. The flexibility to adapt this system to any
environment is even more appealing, due to the wide range of bio-radar applications. Thus,
considering real context scenarios, there are challenges arising from the monitoring environ-
ment of the target application, which are also inherent to the biosignals nature and that need
to be overcome. The challenges common among all applications are the following:

• Long-term monitoring periods:

– The subject body motion can interfere in the vital signal extraction, since it
produces high amplitude signals that can overshadow the vital ones [27], [28];

– The subject body motion can result in a misalignment between the antenna
beam and the chest wall area, leading to signals attenuation [29], [30];

• Multipath environment:

– Parasitic reflections add Complex DC (CDC) offsets to baseband signals,
hampering the extraction of vital signs information [23], [24], [31];
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– Non-static monitoring environments might produce different parasitic reflec-
tions, changing the CDC offset values accordingly over time [25];

• Appropriate antennas design and location are required, aiming to concurrently
guarantee the system low profile and the effectiveness of capturing vital signs of all
population, regardless of their body structures;

• Vital signs extraction and inter-individual variability:

– Cardiac signals are perceived by radar through the measurement of the heart me-
chanical motion over the chest wall surface. These motions are tenuous and
lack in resolution turning difficult the cardiac signal extraction [32], [33].

– Respiratory and cardiac signals might be extracted with different accuracies
over the population under test, depending on the individual differences and
body statures [34]–[36];

– Vital signs might contain patterns, which could be used for health condition or
psychological state assessment [4], [37].

Aiming to address the aforementioned challenges, the selection of the most suitable radar
front-end is a topic that does not follow an agreement between the different literature authors.
For instance, the multipath effect could be minimized by using front-ends different from the
CW, such as Frequency Modulated Continuous-Wave (FMCW) radars or Ultra Wideband
(UWB) radars, but with the cost to add more complexity to the hardware implementation,
since these approaches require wideband operation [20]. On the other hand, higher carrier
frequencies could also be used to ease the detection of the cardiopulmonary motions which
are imperceptible. For instance, millimeter-wave frequencies have smaller wavelengths, which
allow the detection of micro-signals as the cardiac one. However, this option decreases the
detection range [38], [39] and leads to an extreme sensitivity to high amplitude motions from
other body parts.

In fact, the Random Body Motion (RBM) is difficult to avoid in long-term applications,
as in overnight monitoring, where it is natural for the subject to roll over in bed, or in
vehicular applications where the RBM is necessarily present due to the driving action. The
elimination of the interference caused by the RBM is a current challenge in this research
field. Many solutions to mitigate the effect of RBM have been proposed, either based in
hardware solutions through the usage of external modules [28], [40], [41] or beamforming
techniques and/or multi-antenna systems [29], [30], [42], either based in software through the
implementation of signal processing techniques to attenuate the disruption [27], [43], [44].
However, some forms of body motion can also contribute as an informative element, not only
to improve the extraction algorithms, but also to interact in pattern recognition for biometric
identification, diseases diagnostic or the evaluation of the subject’s psychological state. The
RBM can be seen as additional information, since it is an inherent event relatively to what
we do in our routine and how we feel in that exact moment.

In sum, bio-radar systems can in fact be seen as an advantageous solution to monitor
vital signs remotely. But, in practical terms and considering the challenges identified above,
what are the constraints of its operation in a real-context scenario? Is it possible to integrate
the bio-radar system in a specific application addressing the market needs and concurrently
assuring the system’s performance? Which information is contained in the radar signals and
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how can one maximize the system potential with it? Can the RBM be used as important
information, rather than being fully eliminated?

1.2 Objectives

Considering the raised questions, this PhD work aims to study the bio-radar performance
in real applications and further develop valid solutions to address some of the aforementioned
challenges. In this framework, two specific case studies are going to be considered. The
first case study is focused on integrating the bio-radar system in a specific application.
For this purpose, vehicular applications were the selected target, therefore it is intended to
fully integrate the bio-radar in a car seat, following the automotive market requirements. In
this sense, a low profile solution need to be designed in order to accommodate the bio-radar
system as a car feature and thus streamline the manufacturing process. The system should
not be visible and the subject should not feel it, in order to guarantee a comfortable usage.
Concurrently, the system should provide accurate results and be suitable for the maximum
number of subjects possible, considering different body structures. All these goals could
be accomplished by exploring alternative materials for the antenna manufacturing, such as
textiles and thus integrate part of the system (i.e. the antennas) directly in the upholstery.
Such solution is effective if an appropriate antenna design is selected and if signal processing
algorithms are developed considering extreme cases of low Signal-to-Noise Ratio (SNR).

The second case study is focused on the proper extraction of the vital signs information
(both respiratory and cardiac signals), regardless of the monitoring conditions, the acquisition
duration and the population under test. Furthermore, these signals are also going to be further
exploited to perform pattern identification and verify if it is possible to assess the psychological
state of a subject. For this purpose, different machine learning algorithms are going to be
applied and their performance compared, using the vital signs acquired simultaneously by the
bio-radar and by a certified measuring equipment.

In sum, the final goal is to identify potentials and limitations related with the bio-radar
integration in specific applications, and develop solutions to address the following aspects:

• Robust operation in non-controlled environments;

• Low profile appearance for a full integration of the system in a specific application;

• Effectiveness in long-term monitoring periods by extracting useful information from
weak signals;

• Develop vital signs extraction algorithms robust to any body structure;

• Make use of the extracted vital signs for psychological state assessment.

4



1.3 Contributions

This PhD document is based on a series of scientific communications and publications in
important journals of this field. Among all, it can be highlighted the following contributions:

Patents

1. R. Silva, M. Midão, D. Esteves, A. Leite, P. Peixoto, C. Gouveia, P. Pinho, J. Vieira,
D. Pires, T. Silveira, C. Loss, and R. Salvado, “Vehicle seat cover with a monitoring
system,” International Patent Pending WO/2022/070 137, PCT/IB2021/059 011, Apr.,
2022.

Journal Papers

1. C. Gouveia, D. Albuquerque, F. Barros, S. C. Soares, P. Pinho, J. Vieira “Performance
Comparison of Emotion Recognition using Bio-Radar and Contact-Based Methods”,
IEEE Transactions on Affective Computing, submitted for publication in July 2022.

2. C. Gouveia, C. Loss, P. Pinho, J. Vieira, D. Albuquerque, “Low Profile Textile An-
tenna for Bio-Radar Integration into a Car Seat Upholstery”, IEEE Antennas and
Propagation Magazine, submitted for publication in July 2022.

3. C. Gouveia, D. Albuquerque, P. Pinho, and J. Vieira, “Bio-Radar Cardiac Signal
Model used for HRV Assessment and Evaluation Using Adaptive Filtering,” IEEE
Transactions on Instrumentation and Measurement, vol. 71, pp. 1-10, July 2022

4. C. Gouveia, D. Albuquerque, P. Pinho, and J. Vieira, “Evaluation of Heartbeat Signal
Extraction Methods using a 5.8 GHz Doppler Radar System in a Real Application
Scenario,” IEEE Sensors Journal, vol. 22, no. 8, pp. 7979–7989, 2022

5. C. Gouveia, D. Albuquerque, J. Vieira, and P. Pinho, “Dynamic Digital Signal Pro-
cessing Algorithm for Vital Signs Extraction in Continuous-Wave Radars”, Remote
Sensing, vol. 13, no. 20, pp. 4079, 2021

6. C. Loss, C. Gouveia, R. Salvado, P. Pinho and J. Vieira, “Textile Antenna for Bio-
Radar Embedded in a Car Seat”, Materials, vol. 14, no. 1, p. 213, 2021

7. C. Gouveia, A. Tomé, F. Barros, S. C. Soares, J. Vieira, P. Pinho, “Study on the Usage
Feasibility of Continuous-Wave Radar for Emotion Recognition”, Biomedical Signal
Processing and Control, vol. 58, January 2020, p. 101835.

8. C. Gouveia, C. Loss, P. Pinho and J. Vieira, “Different Antenna Designs for Non-
Contact Vital Signs Measurement: A Review”, Electronics, vol. 8, no. 11, p. 1249,
2019

9. C. Gouveia, J. Vieira, and P. Pinho, “A Review on Methods for Random Motion
Detection and Compensation in Bio-Radar Systems”, Sensors, vol. 19, no. 3, p. 604,
2019
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International Conferences

1. R. Duarte, C. Gouveia, P. Pinho and D. Albuquerque, “Limits of WPT through the
human body using Radio Frequency”, IEEE 16th European Conference on Antennas
and Propagation (EuCAP), pp. 1-5, 2022

2. C. Gouveia, C. Loss, Z. Raida, J. Lacik, P. Pinho and J. Vieira, “Textile Antenna
Array for Bio-Radar Applications”, 23rd International Microwave and Radar Conference
(MIKON), Warsaw, Poland, p. 315-319, 2020

3. C. Gouveia, P. Pinho, and J. Vieira, “Motion Detection Method for Clutter Rejection
in the Bio-Radar Signal Processing”, 20th International Conference on Radar Science
and Technology, Barcelona, Spain, pp. 518-526, 2018

Other achievements

1. C. Gouveia, D. Albuquerque, P. Pinho and J. Vieira, “Potentials and Limitations
of Customized Bio-Radar Applications”, Research ANACOM-URSI Portugal Award,
November, 2021

2. C. Gouveia, C. Loss, Z. Raida, J. Lacik, P. Pinho and J. Vieira, “Textile Antenna Array
for Bio-Radar Applications”, EuMA first prize at MIKON Conference 2020, related with
the Young Scientist Contest, October, 2020

3. C. Gouveia, J. Vieira, P. Pinho, “Motion Detection Method for Clutter Rejection
in the Bio-Radar Signal Processing”, Best Paper Award by the Program Committee as
per the Conference Awards Scheme, in ICRST 2018: International Conference on Radar
Science and Technology, August 2018.

1.4 Document organization

This thesis is focused on the bio-radar integration in specific applications, in order to iden-
tify eventual potentials and limitations, and propose solutions accordingly. For this purpose,
two case studies are going to be explored. In order to address them evenly, a multidisciplinary
work was developed and it was organized in seven chapters, as depicted in Figure 1.2. The
state of the art supporting this work is presented in the beginning of each chapter in order to
follow the reader through the matter opportunely.

The chapters content is the following:

• Chapter 1 - Introduction - presents the background and motivation that led to the
development of this PhD work. The main objectives of the work are presented, as well as
the contributions that it was possible to provide to the research community considering
the obtained results.

• Chapter 2 - Methodology Selection - presents the trade-offs considered in the
overall system components selection. In this chapter, it is also described the final proto-
type that was further used in the case studies and its hardware characterization. Some
aspects about the procedure conducted for the datasets acquisition are also provided.
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Figure 1.2: Thesis structure schematics.

• Chapter 3 - Vital Signs Extraction Algorithms - presents the signal processing
algorithms applied to the acquired signals in general. These algorithms are mainly
focused on removing the parasitic components received together with the useful signal
and then extract the respiratory signal accordingly. Two main versions are presented:
the first is a simplified version, where one assumes a static monitoring environment; the
second version was developed aiming to solve issues inherent to real applications, namely
the non-controlled/non-static environments and the subject’s physical variability. The
algorithms herein described are the basis for both case studies, so they will be used by
the following chapters.

• Chapter 4 - System Full Integration in a Specific Application - is fully dedicated
to the first case study and presents the considerations that should be kept in mind
while integrating the bio-radar system in a customized application. In this sense, the
prototype of a car seat upholstery is developed, containing two textile antennas therein
integrated, that will be used further as the transmitting and receiving antennas. The
potentials and limitations of this integration are discussed and the results of the final
prototype validation are also presented.

• Chapter 5 - Cardiac Signal Extraction - is dedicated to the second case study
and presents the algorithms developed to extract the cardiac signal exclusively. The
bio-radar received signal contains both respiratory and cardiac components, being the
latter challenging to extract due to the amplitude difference and spectral proximity.
Additionally, the ability to retrieve specific cardiac signal parameters, such as the Heart
Rate Variability (HRV) is inspected.

• Chapter 6 - Emotion recognition - demonstrates the potential of using bio-radar
signals to identify events, more specifically by verifying if it is possible to assess the sub-
ject’s psychological state. For this purpose, the algorithms developed in Chapter 3 and

7



Chapter 5 are herein applied, pertinent features are extracted from the respiratory and
cardiac signals and machine learning algorithms are implemented to recognize subjects’
emotions. This is the final step of the second case study.

• Chapter 7 - Conclusion - the conclusion presented in this chapter brings forward
an overall reflection regarding the bio-radar suitability to be integrated in customized
applications and to be used in real context scenarios. Some suggestions of future work
are also provided.
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Chapter 2

Methodology Selection

This chapter is focused on the description of the methodology considered in this PhD. The
radar system architecture is defined after evaluating the trade-offs of all options, specially
regarding the radar front-end and the antenna design. A system characterization is also
performed and some other aspects are provided regarding the procedure conducted to acquire
vital signs and create datasets.

Some of the developments of this chapter resulted in the following contributions:

• C. Gouveia, C. Loss, P. Pinho and J. Vieira, “Different Antenna Designs for Non-
Contact Vital Signs Measurement: A Review”, Electronics, vol. 8, no. 11, p. 1249,
2019

• C. Gouveia, J. Vieira, and P. Pinho, “A Review on Methods for Random Motion De-
tection and Compensation in Bio-Radar Systems”, Sensors, vol. 19, no. 3, p. 604,
2019

• R. Duarte, C. Gouveia, P. Pinho and D. Albuquerque, “Limits of WPT Through the
Human Body using Radio Frequency”, IEEE 16th European Conference on Antennas
and Propagation (EuCAP), pp. 1-5, 2022

2.1 Introduction

Bio-radar systems have been highly discussed in the research community, due to its in-
credible utility but challenging accomplishment. The successful integration and operation of
the bio-radar in real applications imply dealing with issues inherent to subject stability and
physiology, while assuring the system optimal performance. In this sense, two specific case
studies are explored, in order to identify, study and overcome these impairments and thus
improve the overall system considering real applications.

In order to step forward on the system optimization taking the market needs into con-
sideration, beyond the system accuracy improvement, its portability and low profile are also
important aspects that should be properly studied. Having this in mind, a primary version of
a portable bio-radar prototype was developed in [2] and this prototype was further improved
in this PhD. Figure 1.1 depicts the block diagram of its implementation and Figure 2.1 shows
its composition. The first version of the prototype used an SDR as the selected RF front-end,
namely the USRP B210 board from Ettus ResearchTM [45], two 4 × 4 antenna arrays [46]
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used for transmission and reception and the LabVIEW software for signal processing. The
system used the CW operation mode with a single carrier of 5.8 GHz and it could operate in
real time, enabling the respiratory signal display during its acquisition time. A validation was
performed, where the respiratory signal was acquired using simultaneously the bio-radar pro-
totype and a certified measuring equipment, namely the BIOPAC MP100. The signals were
compared afterwards and both acquisitions revealed approximated waveforms and breathing
rates [2], [47].

(a) (b)

Figure 2.1: First version of the portable bio-radar prototype developed in [2]: (a) prototype
setup, (b) acquisition scenario.

The further developments conducted throughout this PhD used the system proposed in
[2] as a starting point, beginning with a performance evaluation considering the specific case
studies and improving it accordingly. One of the first steps was to verify the suitability of
the selected front-end components.

All the system elements are somehow interconnected with each other, therefore the fi-
nal system architecture must be defined with care. For instance, the selection of the radar
operation mode have influence in the antenna design and in the algorithms implemented for
biosignals extraction. The micro-Doppler radar is the basis of different radar operation modes,
namely the CW radar, the FMCW radar and the UWB radar, as depicted in Figure 2.2.

The CW radar transmits and receives an RF signal continuously towards the target.
Usually, the transmitted signal is defined as a single-tone. The system is composed by a
signal generator, which uses a local oscillator to generate a signal with a specific carrier
frequency for transmission and also to down-convert the received signal to baseband. The
target’s motion induce a frequency shift on the received signal due to the micro-Doppler effect.
This Doppler frequency shift fd(t), can be represented by equation (2.1) [48]:

fd(t) =
2fc
c
v(t) =

2v(t)

λ
(2.1)

where fc is the carrier frequency, c is the speed of light, λ is the wavelength of the transmitted
signal and v(t) is the motion velocity. In turn, if the target is moving approximately with
a periodic motion and with no net velocity, the Doppler shift can be represented by a time-
varying phase modulation [48]. In the bio-radar context, the target at hand is the subject’s
chest wall, hence the phase modulation corresponds to the chest displacement caused by the
cardiopulmonary function.
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Figure 2.2: Micro-Doppler radar applied to vital-signs acquisition using different operation
modes.

The FMCW radars allow the computation of the target’s velocity and the distance
between the target and the radar, once it has more range resolution that does not exist
for a single frequency waveform [48]. In this operation mode, frequency modulation can
be performed for instance with a linear chirp, by increasing and decreasing the frequency
linearly over time. The linear chirp signal previously transmitted is received after being
reflected by obstacles. The received signal is a delayed version of the transmitted one, being
the delay equal to T = 2R/c seconds, where R is the radar range (distance to the target).
The modulated signal bandwidth determines the accuracy of the range measurement, and
the modulation rate determines the maximum detectable range without ambiguity. The mix
between the transmitted and the received signals results in a frequency difference fr, that
changes according to the target motion and from where the vital signs are extracted.

Finally, the UWB radar is a special application of the pulsed radar since very short du-
ration pulses are generated, leading to wide bandwidth signals. The Federal Communications
Commission has established that a signal can be categorized as UWB if it has a bandwidth
equal to or higher than 500 MHz [49]. UWB radars transmit short pulses and the target re-
flects a portion of them. The total range ∆R of this radar is given by the equation (2.2) [50]:

∆R =
τc

2
(2.2)

where τ is the bandwidth of the radar pulse in time domain. With this type of radar, it is
also possible to compute the distance to target dT , by applying equation (2.3):

dT =
∆t× c

2
(2.3)

where ∆t is the delay between the transmitted and the received signal. The selection of
the appropriate operation mode is not consensual along the literature [51], so there is a vast
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number of publications using CW radars [27], [33], [42], [52], using FMCW radars [53]–[56]
and using UWB [57]–[60].

On the other hand, the antenna design plays also a crucial role in the performance of the
bio-radar, since it is a key element to maintain the SNR at a superior level. Several types
of antennas have been used in literature, covering a wide range of frequencies, polarization
modes, and Half-Power Beamwidth (HPBW), according to the application at hand. However,
most of the papers related to the bio-radar system, do not have the antenna information clearly
detailed [15]. The majority of the papers do not mention the design of the antennas and its
importance in the global behavior of the system, being rather focused on specific challenges
that had to be overcome, such as new algorithms to extract the vital signs.

Generally, designing an antenna is a challenging task, since it is based on a group of
trade-off decisions. Different antenna parameters should be achieved having in mind specific
restrictions and requirements regarding the application at hand. Although the same case is
applied for bio-radar applications, there are common characteristics that must be assured, to
minimize the influence of parasitic reflections and maximize the SNR. In [15], a preliminary
survey on the best antenna characteristics for bio-radar applications was presented. This
study encompassed different antenna types, such as microstrip, slot, dipole, helical and array
antennas. The authors concluded that regardless on the antenna type, frequency or design,
it is crucial to guarantee high gain and directivity.

Within the framework of this PhD, a detailed review was performed aiming to define
guidelines that might be followed commonly in every bio-radar implementation, irrespective of
the application [61]. The comprehensive research conducted in [61] revealed that the antennas
state of the art can be divided according to two main goals that should be addressed: signal
quality improvement and system manufacturing streamline. Table 2.1 shows the most relevant
references discussed in [61].

Goal Reference

Directivity and gain [16], [18], [62]–[64]

Antennas for beam-steering [30], [42], [65]

Frequency diversity [18], [19], [66]–[71]

Circularly polarized antennas [17], [63], [66], [72]–[75]

Textile antennas for vital signs monitoring [76]–[87]

Techniques to reduce

the antenna size:

Using a single

antenna for TX/RX
[72], [73], [88]–[90]

Using dual

antennas for TX/RX
[64], [91]–[94]

TX - Transmission, RX - Reception

Table 2.1: Summary of the bio-radar antennas state of the art [61].

Additionally, since the system herein developed uses electromagnetic waves to capture vital
signs, there is a body exposure to electromagnetic fields within a proximal range. Therefore,
the subjects safety must be accounted during the system configuration in terms of radiated
power. Depending on the operation frequency and exposure time, the electromagnetic ex-
posure can cause tissue heating, derived from the electromagnetic waves penetration in the
body and causing the molecules vibration [95]. According to [95], the worrisome frequency
range can be sub-divided in four ranges:
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• 100 kHz – 20 MHz → significant absorption occurs in the neck and legs;

• 20 MHz – 300 MHz → high absorption in the whole body;

• 300 MHz – 10 GHz → non-uniform local absorption;

• Above 10 GHz → energy absorption occurs at the body surface.

Basic restrictions were suggested by responsible entities, such as the International Com-
mittee for Non-Ionizing Radiation Protocol (ICNIRP), which released in 1998 a set of exposure
guidelines [95]. The limit values are expressed in terms of Specific Absorption Rate (SAR)
measurement, which relates the absorbed power on biological tissues per unit of mass. Ta-
ble 2.2 sums up the restrictions suggested by ICNIRP [95], divided by body regions and target
population.

Target Population Whole body Head and Trunk Limbs

Occupational 0.4 10 20

General public 0.08 2 4

Table 2.2: Basic localized SAR restrictions for frequencies within the range 10 MHz - 10 GHz
[95] [W/kg] .

The occupational exposure is referred to the maintenance personnel of base stations for
instance, which work nearby the center of the microwave beam where the power densities
are extremely high. In these cases, workers are equipped with protective equipment, such as
glasses, gloves and garments. Under these situations, higher SAR values are allowed, when
compared to the ones permitted for the general population, which were set taking into account
the different population age and health conditions. For general population, considering the
head and trunk areas, the limit is 2 W/kg for any 10 g of tissue, the whole-body exposure
limit is 0.08 W/kg and for the limbs is 4 W/kg. Measures are presented for a portion of tissue
of 10 g, because it represents the amount of continuous tissue with approximate homogeneous
electrical properties [95].

ICNIRP assumes that it is possible to have some difficulties in direct SAR measurements,
since the human body does not have the same structure and there are some areas where this
average mass cannot be applied, like the wrists [95]. Therefore it is difficult to relate the
amount of power that leads to these SAR values. In [96] a study was conducted to verify
if it is possible to perform wireless power transfer to inside the human body to efficiently
feed implantable medical devices, while simultaneously respecting the SAR limits suggested
by ICNIRP [95]. SAR simulations were performed in CST Microwave Studio 2017 to verify
the amount of power that leads to the recommended limits. In order to be able to further
reproduce those measurements in practice, the limbs were the inspected body part and a
simplified skin-to-skin biological model was build containing the following layers: skin - fat -
muscle - bone - muscle - fat - skin. Simulations were conducted at 970 MHz with the antenna
located in contact with the skin and one could conclude that the recommended SAR limits
are achieved with an input power equal to ≈ 140 mW which is equivalent to ≈ 21.5 dBm [96].

Considering all the bio-radar system components and the possible variations aforemen-
tioned, an appropriate selection must be conducted considering the main goal of this PhD.
Therefore, the trade-offs related with hardware components, namely the radar operation mode
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and the antenna design are evaluated the next sections. Thereafter, a hardware characteriza-
tion was also performed with the goal to properly configure the front-end and further adapt
Digital Signal Processing (DSP) algorithms if necessary, turning them robust to hardware im-
pairments. Moreover, since the targets of interest are subjects, appropriate protocols should
be defined and followed to assure the privacy, appropriate ethical conduct and safety.

2.2 Radar operation mode selection

In the literature, there is no agreement on which is the best radar operation mode for
vital signs acquisition, since all possibilities present advantages and disadvantages. In [20] a
survey is presented regarding these different radar systems and the trade-offs are discussed.
For example, in [20] it is stated that the radar resolution of CW radars is only restricted to
noise, while detection resolution in FMCW and UWB radars depends on the used frequency
bandwidth, which can be an advantage to CW radars. Furthermore, in [97] it is mentioned
that the estimation of vital signs using phase measurements can provide high precision results
and this is possible with CW and FMCW.

On the other hand, the gathered references in [20] showed that the maximum detectable
range for CW radars is limited to a few meters, and UWB radars stands out in being the
one that achieves the maximum range. Both UWB and FMCW radars are able to measure
the target distance, through the received pulse delay and receive frequency tone, respectively.
Since they transmit instantaneous bandwidth, they are able to have range isolation between
the target and the clutter [97]. This feature enable FMCW and UWB radars to identify the
target in noisy environments, which is not possible for CW radars. The poor isolation of the
desired target reflections in CW radars can hamper the ability to detect small motions (as
the cardiac signal) in noisy scenarios.

Regarding the hardware complexity, authors in [20] state that UWB radars are simple to
implement since they do not require frequency conversions leading to lower power consump-
tion, as it is required in CW and FMCW radars. Besides, CW radars are subjected to CDC
offsets and In-phase and Quadrature (IQ) imbalance, which can complicate the final archi-
tectures [97]. Nonetheless, there are digitally-based techniques to compensate CDC offsets
and IQ imbalance, as we will see further. On the other hand, CW radars can be less complex
to implement considering the bandwidth perspective. Narrow bandwidth operation eases the
hardware components design (such as the antennas) and assures a coherent operation in terms
of performance. The same is difficult to guarantee when large bandwidths are required, since
the behaviour of the components can vary with frequency. In [98], a comparison is made
between CW radar and pulsed-radar. The authors highlighted the simplicity of CW radar
implementation, since it requires a single oscillator for both transmission and reception and
the narrow bandwidth avoid interferences, as well as ease the other hardware components
requirements.

Safety and regulatory issues were also reviewed in [20], where the authors have concluded
that UWB and FMCW performances can be compromised due to the emission masks com-
pliance according to regulatory entities. This is not a problem for CW radars, since they use
narrower bandwidth generally within the Industrial, Scientific and Medical (ISM) band.

All in all, the transceiver operation mode can also depend on the target application for the
bio-radar. For example, applications that aim to distinguish between different individuals,
i.e., where there are multiple subjects to monitor, should use FMCW technology, since the
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usage of chirps can help to indicate the subject location. The same can be performed with a
simpler CW radar, with a different hardware implementation based in beamforming [30], [42].
Furthermore, rescue applications imply that electromagnetic waves cross obstacles. UWB as
well as FMCW front-ends are more indicated for through-wall detection [99]. Finally, if the
goal is to monitor bedridden patients in controlled environments, CW is enough and the
hardware and signal processing are less complex.

Having in mind the advantages and disadvantages of the aforementioned radar systems,
this PhD is focused mostly in the CW radar for the following reasons:

• Simple hardware and easy to find in the market. There are opensource toolkits available
with good technical support, such as the SDR which confer more flexibility to the system
[45];

• Easy antenna design due to the narrowband requirement;

• High resolution results due to phase demodulation;

• The target applications under study do not require the chirp usage with wide bandwidth;

• Operation within the ISM band;

• It is possible to detect the target within the range without ambiguity.

Nonetheless, since CW radars do not transmit instantaneous bandwidth, it is highly sus-
ceptible to parasitic reflections. Therefore, solutions were explored in this work to overcome
this issue, and they are discussed further in Chapter 3.

2.2.1 Signal model for a CW bio-radar

After defining the appropriate radar operation mode according to this PhD objectives,
a mathematical model of the involved RF signals should be defined to anticipate how and
where the scenario impairments might have impact.

The bio-radar signal model (supported by Figure 1.1) starts with a baseband signal gen-
erated digitally. The signal is a complex sinusoid1 with angular frequency ω0, and it is
represented by equation (2.4):

s(n) = ejω0n. (2.4)

Signal s(n) is then modulated with using an IQ modulation, with a carrier frequency ωc,
leading to the signal (2.5), which is transmitted towards to the target.

x(t) = cos[(ω0 + ωc)t]. (2.5)

A copy of the x(t) signal is reflected by all targets located in the scenario, being either the
subject under monitoring or other objects located nearby. For instance, the signal x1(t)
depicted in Figure 1.1 is a transmitted signal copy arriving at an object located behind the
subject. Hence, the received signal described by equation (2.6), encompasses not only the time
variant signal r0(t) correspondent to the chest wall reflection, but also a parasitic component

1In this case a sinusoid is used to avoid the local oscillator leakage and the circuitry clutter present on the
receiver side [2] (where ω0 can be further seen as an intermediate frequency).
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r1(t) which represents the sum of the total sources of clutter (more specifically, parasitic
reflections occurring in static targets).

r(t) = r0(t) + r1(t)

= A0 cos[(ω0 + ωc)t+ ϕ(t)] +A1 cos[(ω0 + ωc)t+ θ1],
(2.6)

where A0 and A1 are the amplitudes of the received components from the subject and clutter,
respectively, ϕ(t) is the phase change function containing the respiratory information and θ1

is the phase change due to clutter. This phase change term can be expressed as θ1 = 4πd1/λ,
considering that the clutter source is located at a distance d1 from the radar and λ is the
wavelength. After its reception, signal r(t) is IQ demodulated resulting in (2.7), and it is
sampled at the same sampling rate fs used in the transmission channel.

g(n) = g0(n) + g1 = A0e
jϕ(n) +A1e

jθ1 (2.7)

The phase change function ϕ(n), results from the chest wall motion, which changes the
wave traveled distance and hence modulates the reflected signal. Thus, the phase change
function can be described by (2.8):

ϕ(n) = θ0 +
4πvs(n)

λ
, (2.8)

where θ0 is the phase corresponding to the distance traveled by the wave, expressed as
θ0 = (4πdo/λ) + φ, considering the nominal distance between the radar and the target
do, and the phase shift at the target’s surface φ. The respiratory component is described
by 4πvs(n)/λ. In [100], [101], simulations showed that the respiratory signal should not be
modeled as a simple sinusoid function, so its model should be defined as a half-cycle sinusoid
raised to the pth power, as in (2.9)

vs(n) = ar(1− sinp(πfRn)), (2.9)

where ar is the amplitude of the chest movement and fR is the breathing rate.

Figure 2.3a depicts the signal g0(n) in the complex plane, where the phase variation
induced by ϕ(n) generates an arc. The variables of the baseband signal g(n) (equation (2.7))
have a different impact on the arc format and position in the complex plane. In an ideal
scenario (without the clutter component g1(n)), the arc fits to a perfect circle centered on the
origin. The length of the arc is proportional to the amplitude of the respiratory signal ar,
depending on the wavelength of the carrier. Higher carriers lead to higher sensitivity to detect
weak motions due to the decreased wavelength, which means that regarding the same motion
amplitude ar, shorter wavelengths create wider arcs rather than longer wavelengths. The
radius of the arc is the received signal amplitude A0. The arc position in the circle varies with
the distance between the radar and the target, defined as d0. In [2] a mathematical simulation
of the signal g(n) parameters was performed, in order to understand the aforementioned
effects.

In real-world scenarios there are some effects that change the obtained arc and could
influence in the accuracy of the signals rate extraction. For instance, the clutter component
g1(n) is perceived as a CDC offset addition to the IQ components, leading to a deviation of
the arc center from the complex origin, as depicted in Figure 2.3b.
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(a) (b)

Figure 2.3: Resulting baseband signal in the complex plane using a CW bio-radar [102]: (a)
for an ideal scenario, (b) for a scenario with parasitic reflections.

Furthermore, there are hardware impairments which can contribute to increase the CDC
offsets value, namely the weak isolation between the transmission and reception chains. Be-
sides, hardware imperfections can also cause an IQ imbalance effect, which occurs when both
real and imaginary parts do not have the same amplitude and the phase relationship is not
exactly 90◦ [103]. Hence, the formed arc fits an ellipse instead of a circle.

All these issues hamper the proper phase demodulation and hence compromises the effec-
tiveness in the signals extraction. Therefore, DSP algorithms must be developed to compen-
sate these effects.

2.3 Antenna design

Considering the antenna state of the art summed up in Table 2.1 and the state of the art
review presented in [61], the important key features that should be taken into account on the
antenna design for bio-radars can be divided in two perspectives: signal quality improvement
and system manufacturing streamline. The schematics depicted in Figure 2.4 and Figure 2.5
present an overview of the guideline features that should be considered on each perspective
and all the trade-offs are discussed in the following sub-sections.

2.3.1 Key features for antenna design considering the signal quality im-
provement

The signal quality is directly related with the antenna performance, which can be evaluated
through the parameters presented Figure 2.4 [61]. For this case, the most important features
are directivity, polarization and isolation. The appropriate directivity would require narrow
HPBW and high gain antennas [104]. In [16], the importance of directivity was demonstrated
by comparing the performance of different antennas with narrow and wide beams, respectively.
Authors concluded that highly directive antennas could provide more accurate results in the
signal rate estimation, more self-isolation between the transmitting and receiving antennas
(if located at least a wavelength apart) and an increased Signal-to-Interference plus Noise
Ratio (SINR). In [18], the authors have studied the relation between the carrier frequency and
the antennas beamwidth, and their impact in the vital signs spectral magnitudes. The authors
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Figure 2.4: Antenna parameters to improve the acquired signal quality, where TX and RX
correspond to the transmitting and receiving antennas respectively (adapted from [61]).

simulated a received baseband signal, considering that the amplitude of the chest wall motion
related with respiration was equal to 1.2 mm and the amplitude of the heartbeat perceived at
the chest wall surface was 0.15 mm. After analyzing the spectrum of the simulated signals,
the authors concluded that the cardiac signal magnitude is higher if narrow beamwidths are
used. Furthermore, the relation between the cardiac and the respiratory signal magnitudes
varies with the frequency if a large beamwidth is used [18]. This evaluation was performed
within the frequency range of 0 - 25 GHz. On the other hand, the relation between both
signals keeps a stable behavior over frequency if narrow beamwidths are being used.

Helical antennas were proposed in [16], [62], [63] as an antenna type to provide directivity,
with ≈40◦−50◦ of HPBW and high gain (≈9−10 dBi). However, helical antennas are bulky,
therefore patch antenna arrays can be a more low-profile option. Nonetheless, even patch
antenna arrays require larger dimensions to confer directive beams. Thus, a trade-off must
be defined between the antennas dimension and how narrow the beams should be. Antennas
with larger sizes have a larger near-field region [104], where the electromagnetic propagation
cannot be modeled linearly. In these cases, there is a wide range where the antenna behavior
cannot be foreseen. In parallel, the main lobe beamwidth should not be too narrow, since it
hampers the alignment with the subject’s chest wall. These also difficult the generalization
of the system operation to be suitable for different subjects. If too narrow beams are used,
prior calibrations would be required for different subjects, according to their body structures
and heights, as one will see further in Chapter 4.

Hereinafter, the gain range for bio-radar applications was proposed in [64], where the
authors state that a gain under 5 dBi is not enough, and the typical gain value for antennas
applied in non-contact vital signs acquisition is around 9 dBi.

Concerning now with antenna isolation, the mutual coupling effect occurs when one an-
tenna receives part of the energy radiated from a second antenna located nearby. This can
happen due to three reasons: the radiation pattern of each antenna is not narrow enough,
the separation between both antennas is not enough, and the main lobe orientation of both
antennas might be deviated [104]. Mutual coupling can alter the radiation pattern of each
radiating element, by for instance shifting the maximum and nulls location or filling the nulls
when it was not supposed to [104]. In order to avoid this issue, transmitting and receiving
antennas should be separated at least half-wavelength, but the distance between antennas
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should be enough to guarantee the monostatic 2 radar function.
The usage of circular polarization can be an alternate solution for this issue. According to

[72], if antennas with linear polarization are used, the reflected signal during propagation can
rotate θ degrees in total, hence the signal at the receiver input has its power decreased by a
factor of cos θ, and the radar sensitivity is largely reduced. Thus, antennas with circular polar-
ization are generally a good alternative, since they are not affected by polarization mismatch.
Furthermore, if the system uses transmitting and receiving antennas with different rotation
directions (for instance with Left-Handed Circularly Polarized (LHCP) for transmission and
Right-Handed Circularly Polarized (RHCP) for reception), there is no power reduction due to
the signal rotation when reflecting at the target’s surface, and there is no mutual interference
because at the front-end side antennas have crossed polarization [66]. Thus, a system using
antennas with circular polarization has low mutual coupling [72], [73].

Additionally, in [74] the authors have pointed out other emerging problems due to the
usage of antennas with linear polarization. There is fading Radar Cross Section (RCS) due to
the scattering reflection on the target. The human body is composed of different materials,
shapes, sizes, and thicknesses. Hence, different surfaces cause electric vector rotation, which
lead to a misalignment with the receiver antenna [74]. Moreover, the target at hand is mov-
ing and consequently, a time-varying RCS arises [105]. Antennas with circular polarization
stabilize the RCS over time and keep the alignment between scatter signals and the receiver
[74]. In this sense, it is possible to conclude that circular polarization is the best strategy, as
proven in [17], [63], [66], [72], [73], [75], where several experiments were conducted to compare
the system performance using antennas with circular polarization and linear polarization.

2.3.2 Key features for antenna design considering the system manufactur-
ing streamline

The characteristics presented in Figure 2.5, are more focused in the physical features of
the antenna and its robustness during operation.

Figure 2.5: Antenna parameters to consider for manufacturing purposes, where TX and RX
correspond to the transmitting and receiving antennas respectively (adapted from [61]).

Starting with the carrier frequency, there are some studies that aim to determine the
optimal frequency band for bio-radar applications which is a non-consensual topic. In [18], a
mathematical model and its simulation are presented to seek for the best operating frequency

2Monostatic radars have the transmitter and receiver in the same location [48]
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that allows both respiratory and cardiac signals detection. Authors have concluded that the
signal strength increases when using frequencies above 5 GHz, and it stabilizes until the lower
region of the K-band (18 GHz - 27 GHz). Above 20 GHz, the signal strength decreases
slightly. Authors in [18], state as well that nonlinear phase modulation causes harmonic
intermodulation, which is more evident for frequencies above 27 GHz than for frequencies
around 5 GHz. In addition, a system evaluation was made in [19], with the goal to compare
the performance of a system operating at 2.4 GHz (from [90]), with a 10 GHz system (from
[70]). For this purpose, the vital signs of a subject were acquired at different distances,
starting with 0.3 m until 2.9 m away from the radar, using both systems. The authors have
concluded that, despite the advantages of using higher frequencies related with the sensitivity,
the system had not shown significant improvement when compared to the 2.4 GHz bio-radar
system.

All in all, higher frequencies might detect easily imperceptible motions, as the cardiac
signal, however they suffer from high attenuation and they are also more sensitive to higher
amplitude motions, as the RBM, which influence could be harder to compensate. On the
other hand, sub-GHz antennas allow the electromagnetic waves penetration in the human
body, which enables an alternative way to measure vital signs, as it was performed in [59],
[71], [106]. Besides, low-profile systems can be accomplished by hiding the radar inside spe-
cific objects. Low frequency carriers allow this integration, also due to the electromagnetic
waves penetration in dielectric materials. Finally, higher frequencies allow on-chip integra-
tion, reducing considerably the system size [66]–[68]. However, the antenna design for high
frequencies is more challenging and it results in a much more complex process when compared
with the antenna design for lower frequencies.

The bandwidth is an important feature for FMCW and UWB radars, but it is challenging
to guarantee the desired antenna performance for a wideband frequency range. The band-
width is not critical in the framework of this PhD, since CW radar is going to be used.
Even though, it is preferable to reserve significant bandwidth (around 100 MHz considering
a central frequency of 5.8 GHz), to provide a safe margin for construction errors.

The system size is also a concern, to enable its portability and to facilitate its usage
and integration in specific applications. Using a single antenna for both transmission and
reception operations could be an immediate solution, as proposed by [72], [73], [88]–[90].
However, proper isolation must be assured, using circulators for instance. Besides, using two
antennas enables an increased detection range, as proved in [91], where a test was conducted
to compare the system performance using a single antenna and two separate antennas for
transmission and reception. The results obtained in [91] showed that a single antenna has
good accuracy in vital signs’ detection, considering a short-range distance. However, two
separated antennas could cover a wider range with the same level of signal quality [91].

Opting by two separate antennas, the usage of different material technology and the de-
velopment of integrated chips are possible solutions to decrease the system’s size, as proposed
in [64], [92]–[94].

2.4 Final prototype definition and characterization

Considering the trade-offs presented in Section 2.2 and in Section 2.3 and the objectives
defined for this PhD, one continued to use the radar setup firstly proposed in [2], which is
composed by a CW radar operating at 5.8 GHz. The advantages of using CW radars in
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the scope of this work were already mentioned in the end of Section 2.2. In regard to the
carrier frequency, 5.8 GHz represents a good trade-off between sensitivity, detectable range,
and simplicity for the antenna design. Besides, this frequency is covered by the RF front-end
board [45] and it enables to hide the antennas in specific objects, which reveled being useful
during the first case study dedicated to the system integration in a car seat upholstery.

The RF front-end consisted on the USRP B210 board from Ettus ResearchTM [45]. SDRs
are a hardware approach suitable for system integration studies, since they are compact and
allow the digital configuration of their input and output (receiver and transmitter), regarding
the required carrier frequency and sampling rate of the target application [11]. Furthermore,
the USRP B210 board is based on homodyne receivers, which are capable to use the same
source in both transmitter and receiver, guaranteeing the range correlation and avoiding issues
as the phase noise [107].

Considering the setup base defined in [2], different prototype variations were developed
throughout the different stages of this PhD. These variations were mostly related with the
antennas design, as shown in Figure 2.6.

Figure 2.6: Antenna final design selection throughout the different work stages of the PhD.

At the beginning of the PhD, some preliminary studies mostly performed for proof-of-
concept purposes (on each case study), used the prototype described in [2], where the trans-
mitting and receiving antennas were 4 × 4 antenna arrays [46]. Then, the prototype was
improved aiming to resolve existent issues, such as antenna mismatch [2] and the increased
size of the antenna array. In this sense, 2×2 antenna arrays with crossed circular polarization
were developed, since they respect a good trade-off between the antenna size and directivity.
This antenna design and the corresponding measured parameters are presented in the next
subsection. These antennas were used in the final prototype (in both case studies) for the
DSP algorithms development. The 2× 2 antenna arrays were further used in the second case
study, more specifically to capture signals for the cardiac signal extraction and for the final
stage of the emotion recognition.

Since the first case study was dedicated to explore the ability to fully integrate the bio-
radar system in the car seat upholstery, textile single patch antennas were developed to
confer a low profile to the system. The textile antenna design selection and development are
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presented and discussed later in Chapter 4.
Finally, the signals received by the first version of the prototype [2] were acquired with the

LabVIEW software and the prototype improved versions used the GNU Radio software for
the same purpose. In all cases, signals were acquired using a sampling frequency of 100 kHz.
Then, DSP algorithms were developed to process and extract vital signs, and they were all
applied offline using MATLAB. The DSP algorithms are explained in detail in Chapter 3.

2.4.1 Final antenna design

Aiming to respect the trade-offs presented in Section 2.3, 2 × 2 antenna arrays were
designed to be further used in the final prototype. These antennas have circular polarization
with crossed orientations, so a LHCP antenna was developed to be used as the transmitting
one and a RHCP antenna was developed to be used for the reception. The circular polarization
was achieved with a squared patch design with truncated corners. LHCP and RHCP antenna
arrays were simulated and optimized in CST Microwave Studio 2017, and the final designs
are shown in Figure 2.7.

(a) (b)

Figure 2.7: Antenna arrays design: (a) LHCP antenna used for transmission, (b) RHCP
antenna used for reception.

Starting with the LHCP antenna case, the array design started with the optimization of a
single element by varying L and e parameters, with a view to achieve the antenna matching
at 5.8 GHz and simultaneously an axial ratio below 3 dB at the same frequency [108]. The
feeding network was developed afterwards, considering the input impedance of the single
element, the manufacturing constraints due to the lines width and the number of quarter-
wavelength transformers used. This latter aspect should be the minimum as possible, since
the quarter-wavelength transformers are highly restrictive in bandwidth [104]. Thus, Lx1,
Lx2, Ly1 and La are quarter-wavelength transformers, Lb is a 100 Ω line and Lc is a 50 Ω
line, used for the feeding point. At the end, the full array was optimized, where the patch
centers were 3λ/4 apart from each other. This distance was the result of a balanced trade-off
between optimal antenna parameters, such as gain, HPBW and Side-Lobe Level (SLL), and
the overall antenna dimensions. The SubMiniature version A (SMA) connector model was
also included in the final stage of the full array simulation. The RHCP antenna used the
same feeding network strategy, so only few adjustments were required.

Table 2.3 shows the antennas dimensions, where l and w are the length and width of
the feeding network lines, respectively. Both LHCP and RHCP arrays have a final size of
70× 70 mm.
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Antenna L e
Lx1 Lx2 Ly1 La Lb Lc

l w l w l w l w l w l w

LHCP 13.76 2.5 4.74 0.26 4.57 0.26 21.6 1.19 8.10 2.13 13.61 0.57 3 2.10

RHCP 13.76 2.5 4.74 0.26 4.57 0.26 21.6 1.10 7.90 2.18 14.01 0.57 3 2.10

Table 2.3: LHCP and RHCP elements dimensions [mm].

Both antennas were manufactured using ROGERS RO4725JXR substrate, with height
equal to h = 0.78 mm, εr = 2.55 and tan δ = 0.0026 @ 10 GHz (see the final antennas
in Figure 2.8). Then, the antenna parameters were measured. The S11 parameter of both
antennas is shown in Figure 2.9. The LHCP antenna presented a measured S11 of -16.1 dB at
5.8 GHz, while the measured one for the RHCP was equal to -13.8 dB. The radiation pattern
was also measured and the result is shown in Figure 2.10.

Figure 2.8: Final RHCP and LHCP antenna arrays to use for transmission and reception
respectively.

(a) (b)

Figure 2.9: Simulated and measured S11 for antenna arrays: (a) LHCP antenna, (b) RHCP
antenna.

Both antennas present a measured radiation pattern similar to the simulated one. The
simulated HPBW of the LHCP antenna was equal to 41.4◦, while the measured one was
equal to 42◦. The LHCP antenna presented also a measured SLL equal to -19.6 dB while the
simulated was equal to -19.8 dB. Similarly, the RHCP antenna presented a measured HPBW
equal to 41◦ and the simulated was equal to 40.8◦. In regard to the SLL, the simulated one
was equal to -19.4 dB and the measured was -17.1 dB. The simulated gain for both antennas
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(a) (b)

Figure 2.10: Simulated and measured normalized radiation pattern for antenna arrays: (a)
LHCP antenna, (b) RHCP antenna.

(a) (b)

Figure 2.11: Simulated and measured axial ratio for antenna arrays: (a) LHCP antenna, (b)
RHCP antenna.

was equal to 12.2 dBi, and the measured ones were equal to 11.9 dBi and 11.7 dBi for the
LHCP and RHCP, respectively.

Finally, the axial ratio of both antennas was measured and the result is shown in Fig-
ure 2.11. The measured axial ratio at 5.8 GHz was equal to 5.9 dB for the LHCP antenna
and 5.6 dB for the RHCP one, while the simulated values were equal to 0.09 dB and 0.35
dB, respectively. Overall, the slight deviations observed in the results might be related with
eventual deviations due to the manufacturing process, specially due to the Lx1−Lx2 quarter-
wavelength transform, since they required a thin line with 0.26 mm width. The impact was
more evident in the axial ratio results, being both above 3 dB, leading one to conclude that
both antennas present an elliptical polarization, rather than circular [108]. According to the
conclusions reached in [17], [63], [66], [72]–[75] regarding the bio-radar performance with lin-
early polarized antennas, one can assume that the obtained elliptical polarization is sufficient
for our case.

2.4.2 RF front-end power characterization

The received signal SNR is directly related with the transmitted and received power. But
once again, a balanced trade-off must be defined in order to simultaneously guarantee the
signals quality, while the subject under monitoring safety is not jeopardized. Thus, hardware
characterization tests were performed to select the adequate transmitted and receiver gains
for the USRP B210.
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Figure 2.12 shows the setup block diagram for these tests.

Figure 2.12: Block diagram of the setup used to characterize the transmitted and received
power considering the USRP B210 gain variation.

Starting with the transmission chain characterization, the power at the antennas input
was measured for different transmitting gains. For this purpose, a sinusoidal signal with
frequency equal to 10 kHz was generated and transmitted at 5.8 GHz using the GNU Radio
Companion software. The transmitter output was connected to the Rohde & Schwarz FSH13
spectrum analyzer, using a SMA to SMA coaxial cable from Crystek Corporation with 2.54
mm of thickness, stretched to prevent additional bending attenuation. Since this is the cable
used in the final setup and one intend to measure the power on the transmitting antenna
input, the cable attenuation was not compensated and the stretched position is considered
for being the more optimistic one. Table 2.4 and Figure 2.13 show the results of the input
power measured in the spectrum analyzer.

One can see that for a transmission gain equal to 90 dB, the USRP achieves its maximum
transmitting power, being ≈ 10 dBm [45]. The 2 dBm was the selected power (provided by a
transmission gain equal to 80 dB), not only to avoid hardware impairments that might occur
while operating within the USRP limits, but also to ensure the subjects’ safety.

Considering the experiment conducted in [96] as a reference, 2 dBm is far below the
power value necessary to reach SAR limits. Furthermore, the amount of power that arrives
the subject’s body is below 2 dBm considering the antenna efficiency, propagation loss and
the distance to the target. Finally, 2 dBm is even below other radiated power sources that we
use in order daily lives, such as our cellular phones, Bluetooth transmitters or Wi-Fi routers,
which generally use transmitted power between 10 dBm and 30 dBm, settled by to the Federal
Communications Commission [109].

In turn, the received signal is severely attenuated not only due to the two-way path

TX gain [dB] Transmitted Power [dBm]

50 -28.2

60 -18.2

70 -8.2

80 2.0

90 10.1

100 10.1

Table 2.4: Measured transmitted power
for different transmission gains.

Figure 2.13: Graph of the transmitted power
variation with different transmission gains
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RX gain [dB] PGNU [dBm]

0 -18.5

5 -17.8

10 -13

15 -7.9

20 -2.9

25 2.1

30 7.5

35 12

40 16.8

45 21.8

50 26.7

Table 2.5: Measured received
power for different reception
gains.

Figure 2.14: Graph of the received power vari-
ation with different reception gains

propagation loss, but also due to some signal absorption occurring in the subject’s body [95].
Thus, the receiver gain should be adjusted to concurrently aid the signal quality and avoid
the device receiver saturation. For this reason, the receiver chain was also characterized.

The power at the USRP input was firstly measured and a lookup table was then created
with the receiver gains and the corresponding power measurements. Here, the coaxial cable
used was the same that had been utilized for the transmission chain characterization. Then
a signal was generated using the Signal Generator SMR40 from Rhode&Schwarz, with a
carrier frequency equal to 5.8 GHz and with an output power of -26.4 dBm. The USRP input
power (PUinput in Figure 2.12) was confirmed with the Spectrum Analyzer, being -30 dBm
(accounting with the cable attenuation). Table 2.5 and Figure 2.14 were afterwards created by
computing the received signal power (through equation (2.10)) in the GNU Radio Companion
(PGNU in Figure 2.12) for different reception gains.

PGNU [dBm] = 10 log10

( 1
N

∑N
n=1 |x(n)|2

1× 10−3

)
(2.10)

where, x(n) is the baseband complex signal and N denotes the signal length. During the
experiment it was observed a signal saturation for the 50 dB gain value. Therefore, a reception
gain equal to 20 dB was the selected to configure the USRP reception gain.

2.4.3 IQ imbalance measurement

As one will see further in Chapter 3, in the work presented in [2] which served as basis to
this PhD work, a DSP algorithm is proposed to extract vital signs. Beside the CDC offsets
compensation, the developed algorithm takes also into consideration a hardware impairment,
namely the IQ imbalance. The IQ imbalance behavior is divided in phase imbalance that
occurs when signal in-phase and quadrature components are not exactly 90◦ out of phase, and
in gain imbalance which occurs when these signals do not have the same amplitude [103]. This
issue has impact in the phase demodulation by creating an undesired linear transformation
on the IQ signals, affecting the orthonormal properties important in quadrature systems.
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Thus, the baseband signal include both phase ψE and amplitude AE error terms, where
ψE is the angular difference between the phases of the IQ signals minus 90◦, and AE is the
ratio between the amplitudes from IQ signals. Under these circumstances, the baseband signal
(2.7) should be defined as (2.11):

gI(n) = Ar cos
(
θ0 +

4πvs(n)

λ

)
gQ(n) = ArAE sin

(
θ0 +

4πvs(n)

λ
+ ψE

) (2.11)

Consequently, the extracted phase will have a phase error, that can be expressed as the
equation (2.12):

ϕE(n) = arctan
(AE sin(ζ(n) + ψE)

cos(ζ(n))

)
(2.12)

where ζ(n) = θ0 + 4πvs(n)
λ for a simpler notation [98].

In [2], the ψE and AE parameters were measured being ψE = 18◦ and AE = 1.0788,
and they were then compensated using the the Gram-Schmidt orthonormalization method,
expressed as equation (2.13) [103]:[

gI,O(n)
gQ,O(n)

]
=

[
1 0

− tan(ψE) 1
AE cos(ψE)

] [
gI(n)
gQ(n)

]
(2.13)

However, the procedure used in [2] to measure them is not highly robust. More specifically,
a signal was transmitted towards a metallic target and ψE and AE were computed over the
received reflection, namely using the in-phase and quadrature components superimposed in
time-domain. In this case, the signal is most likely affected by a two-path way attenuation
and contains CDC offsets traces.

In this sense, an extended IQ imbalance characterization was performed to fully validate
if they can be indeed neglected throughout this PhD work. The considered setup consisted
in connecting directly the transmission port to the reception one, using a 10 dB attenuator
for precaution, and a sinusoidal signal with frequency equal to 10 kHz was transmitted. The
original received signal in the complex plane is shown in Figure 2.15. Once again, the super-
imposed in-phase and quadrature components were analyzed in time-domain (Figure 2.15b).

Throughout the signal, the ψE and AE were computed between in-phase and quadrature
consecutive peaks. For the amplitude error, values did not vary much more than the same
order of magnitude, so it was considered the averaged value being AE = 1.0042. As for
the phase error, different values were observed throughout the signal, being 4.4554◦, 0.8911◦,
−2.6733◦ and −6.2376◦. Although all error values were below the ones measured in [2], they
might encompass additional measurement errors. Figure 2.16 show the resultant signals if
these phase errors would be compensated using the Gram-Schmidt orthonormalization method
[103].

From the obtained results, one can conclude that the IQ imbalance in this front-end can
be neglected, otherwise its compensation might even increase the phase error due to eventual
inaccuracies on its measurement, as it can be observed in Figure 2.16d.

2.5 Datasets description

Throughout the PhD, several datasets were collected using different volunteers, not only
to validate the setup performance during the different work stages, but also to develop robust
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(a) (b)

Figure 2.15: Received signal for IQ imbalance characterization: (a) in the complex plane, (b)
superimposed in-phase and quadrature components in time-domain.

(a) (b)

(c) (d)

Figure 2.16: Signal after the IQ imbalance compensation using the Gram-Schmidt orthonor-
malization method, considering AE = 1.0042 and : (a) ψE = 4.4554◦, (b) ψE = 0.8911◦, (c)
ψE = −2.6733◦, (d) ψE = −6.2376◦.
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algorithms embracing the different case studies. For this purpose, approval of all ethical,
experimental procedures and conducted protocols was granted by the Ethics and Deontology
Committee of University of Aveiro, Portugal, under the Application No. 29-CED/2021,
and all the conducted procedures were performed in line with the Declaration of Helsinki.
Additionally, an informed consent was obtained from all the subjects before initializing the
experiments.

The datasets can be divided in two groups, where each group belongs to a specific case
study. The reasons why these protocols were used will be opportunely exposed during the
different chapters. The protocols followed for each case study were the following:

• Datasets group from case study 1 - Car Seat Protocol - The subject was comfortably
seated in a car seat and was asked to breathe normally during the full test. The
subject’s arms were placed on a table located in front of the car seat to simulate the
driver’s posture. In this case, the antennas were located in the car seat upholstery.
Signals have a general duration of 1 minute maximum;

• Datasets group from case study 2 - Emotional Protocol - The subject was seated
and the vital signs were measured while he/she was watching a set of videos. The
experiment was conducted in three different days, spaced by at least two days. Each
session was composed by a baseline lasting 5 minutes and an emotion inducing period
lasting between 25-30 minutes, using different thematic videos. The thematic videos
were used to induce emotions. More specifically, happiness was induced via comedy
videos, whereas fear was induced using scary videos and documentaries were used on
the baseline and also to induce the neutral condition. The antennas were located in
front of the subject at a distance of half a meter.

2.6 Final considerations

In this chapter, considerations regarding the bio-radar setup used during this PhD are
presented. First of all, the prototype used in [2] served as a working basis and all system
elements were re-evaluated to verify the suitability considering the PhD objectives, namely
the radar operation mode, carrier frequency, the RF front-end and the antenna design.

In this sense, the final prototype consists on a CW radar operating at 5.8 GHz. The pro-
totype uses an SDR as RF front-end, namely the USRP B210 board from Ettus ResearchTM,
with two coaxial cables from Crystek Corporation with 2.54 mm of thickness. Different an-
tennas were used throughout the different work stages. More specifically, 2×2 antenna arrays
were developed and they were used to capture vital signs to further develop DSP algorithms.
These antennas were also used on the second case study. On the other hand, in the first
case study it was necessary to develop a low profile solution. Therefore, textile antennas with
different designs were studied, being the single patch antenna the selected option, as one will
see further in Chapter 4.

The setup was characterized in terms of power and hardware impairments, in order to
correctly configure the front-end and develop appropriate algorithms. Finally, the protocols
followed during the datasets acquisition were briefly described.
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Chapter 3

Vital Signs Extraction Algorithms

This chapter is focused on the development of algorithms to remove the influence of para-
sitic reflections in the received signals and extract the vital signs through phase demodulation.
Furthermore, the accuracy to estimate the respiratory frequency was evaluated and validated,
by comparing with a certified measuring equipment.

The developments of this chapter resulted in the following publications:

• C. Gouveia, P. Pinho, and J. Vieira, “Motion Detection Method for Clutter Rejection
in the Bio-Radar Signal Processing”, 20th International Conference on Radar Science
and Technology, Barcelona, Spain, pp. 518-526, 2018

• C. Gouveia, D. Albuquerque, J. Vieira, and P. Pinho, “Dynamic Digital Signal Process-
ing Algorithm for Vital Signs Extraction in Continuous-Wave Radars”, Remote Sensing,
vol. 13, no. 20, pp. 4079, 2021

3.1 Introduction

The advantages of using CW radar front-ends were highlighted in Chapter 2. In sum, CW
radars require a reduced bandwidth, are simple and enable the vital signs estimation through
phase measurements, which provides high precision results [97]. However, the selection of this
front-end comes with inherent challenges that should be overcomed, in order to extract the
vital signs accurately.

As presented in Chapter 2, RF front-ends with quadrature receivers process the baseband
signals as complex signals. Considering an ideal monitoring scenario without any parasitic
reflections, vital signs are perceived as an arc in the complex plane, as previously depicted
in Figure 2.3a. Since CW radars are not able to measure the distance between the subject
and the radar [20], the reflection from the chest cannot be isolated. Therefore, the received
signal is a vector addition, corresponding to the desired signal and other parasitic reflections
that occur in stationary objects located within the monitoring scenario and even other body
parts, as depicted in Figure 2.3b.

Parasitic reflections can be referred as CDC offsets due to two main reasons: they increase
the spectral component magnitude of 0 Hz and they cause a misalignment of the phase
signal (the arc) in relation to the complex plane origin, as depicted in Figure 2.3b, where A1

corresponds to the parasitic component amplitude.
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One can anticipate the influence of the CDC offsets in the extracted signal, if they are
not compensated, through a mathematical simulation. The baseband signal represented by
equation (2.7) was simulated in MATLAB with the following parameters:

• Carrier frequency - fc = 5.8 GHz;

• Sampling frequency - fs = 1000 Hz;

• Amplitude of the signal g0(n) - A0 = 0.003;

• Initial phase shift - φ = π/12 rad;

• Breathing frequency - fR = 0.3 Hz;

• Distance to a static object - d1 = 1.2 m;

• Amplitude of the clutter signal g1(n) - A1 = 0.5.

The assigned values to A0 and A1, were selected considering the worse case scenario where
the parasitic reflections come from metallic objects and hence producing a reflection with high
amplitude. Figure 3.1 shows the arc obtained considering that the main target is located at
two different distances: d0 = 0.79 m and d0 = 0.775 m. For each simulation the extracted
signal was obtained through the arctangent computation [21]. Figure 3.1 demonstrates that
if the arc center is shifted, depending on its position in relation to the origin, the arc can be
wrongly projected in the axis, resulting in a signal distortion and/or an amplitude decrease.

Thus, the CDC offsets must be removed to guarantee a proper phase demodulation for
vital signs extraction. Several solutions have been reported in literature being performed
through either software or hardware approaches. On the hardware side, antennas with high
directivity can be advantageous, since they enable a focused steering on the desired area,
enhancing the SNR and reducing the parasitic reflections acquisition [16], [75], [92], [110].
Nonetheless, increase directivity implies implementation drawbacks and also might not be
sufficient, as previously discussed in Section 2.3.

Thus, the CDC offsets compensation performed through signal processing could be more
suitable due to its flexibility. The most direct solution would be the usage of a high-pass filter
[107], [111]. Although it would be a straightforward approach, filtering reduces the amplitude
of the vital signs [107], or could even cause distortion. Moreover, filters remove the CDC in-
formation related to the target’s position, which is necessary for the phase demodulation [23].
Some authors suggested a prior calibration, by measuring the CDC offsets of the environment
without the target present in the room [21]. This solution is not practical, since it requires
a calibration every time the system is used, and is not effective if the monitoring scenario
changes. Besides, other body parts can also be seen as static targets, and hence produce
more parasitic reflections. Due to this fact, Park et al. [23] proposed a solution based on the
arc center estimation and subsequent subtraction from the original signal. As result, the arc
position is reestablished around the complex origin and the arctangent method [21] can be
applied to recover the vital signs waveform. Currently, the arc center estimation approach is
widely used in literature [23], [25], [101], [112], [113], where circle or ellipse fitting methods
are the most common.

Despite the proved effectiveness of the Park et al. [23] method, it has a strong dependence
with the arc shape. This means that the estimation of the arc center can be compromised
when signals have a low amplitude [113], [114].
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(a) (b)

(c) (d)

Figure 3.1: Simulation of the impact that CDC offsets can have in the extracted time domain
signal for different d0: (a) Polar diagram for d0 = 0.79 m, (b) Extracted time domain signal
for d0 = 0.79 m, (c) Polar diagram for d0 = 0.775 m, (d) Extracted time domain signal for
d0 = 0.775 m.

In fact, low amplitude signals could be recurring in real application scenarios, due to
several reasons, namely:

1. Multipath signal degradation;

2. When the vital signs acquisition is performed in an alternate position like the chest wall
sideways (as it will be presented further in Chapter 4);

3. When the subject’s physical characteristics lead to a lower chest wall displacement.

The latter example, is supported by a study presented in [36], where the authors present
a correlation between the anatomical differences relative to gender and the induced chest
wall displacement. The authors in [36] have concluded that the men’s lungs are bigger in
absolute volume, which produces wider volume variations. Men’s rib cage have a higher
antero-posterior diameter and a larger cross-sectional area and volume. On the other hand,
women have a smaller rib cage comparing with men, and hence a lower cross-sectional area.
This could mean that men might produce high amplitude signals and women lower amplitude
ones (hence leading to shorter arc lengths).

Figure 3.2 shows two examples of the possible signal arcs, acquired in a real context. More
specifically, Figure 3.2a presents a well defined arc, corresponding to a received signal with
high amplitude A0 and Figure 3.2c presents a case where A0 is severely decreased, as well
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as its arc length ar. This consists on a weak signal case, since it has either low amplitude
and the overall signal consists on several arcs dispersed rather than being concentrated in a
defined area. In order to demonstrate the impact of the signal quality in the circle fitting
performance, Figure 3.2 shows also the CDC offsets estimation using circle fitting (with the
Kasa method [115]) and subtraction results. In Figure 3.2a, the center estimation can be
easily inferred and it can be seen as a pair of IQ coordinates (V Iiq, V Qiq). On the other
hand, in Figure 3.2c due to its lack of resolution, circle fitting algorithms consider that the
overall samples cluster fit a circle, where its center is in between the radar samples, neglecting
the supposed arc shape. Hence, the desired fitting is compromised and the center estimation
is misleading. The case depicted in Figure 3.2c presents the result of a circle fitting with
radius r close to 0, which in practice force the arc to oscillate in the complex origin after the
CDC offsets removal (Figure 3.2d), leading later to incorrect arctangent results. Thus, for
the CDC offsets removal, the radar samples fitting must be performed correctly, by leaving a
standard space between the arc and its estimated center, i.e. the arc radius r must be r >> 0.

(a) (b)

(c) (d)

Figure 3.2: Example of how A0 and ar influence the fitting methods accuracy to estimate
the arcs center (adapted from [102]): (a) Circle fitting result for high values of A0 and ar,
(b) Arc disposition after removing the CDC offsets for high values of A0 and ar, (c) Circle
fitting result for low values of A0 and ar, (d) Arc disposition after removing the CDC offsets
for low values of A0 and ar.
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In cases similar or worse to the one presented in Figure 3.2c, the formed arcs are not
sufficient to estimate the corresponding fitting circle. Exploratory techniques can be imple-
mented to search for more information in order to enhance the CDC offsets estimation. For
instance, in [113], [114] the authors presented approaches where multiarcs are induced to
gather more CDC information. In [113] the target’s distance in relation to the radar was
changed purposely, before starting the vital signs acquisition and in [114] the local oscillators
were tunned with different angles during the down conversion of the received signal. However,
the solutions presented in [113], [114] were developed assuming that the scenario is fully static
or that the signal characteristics, as its amplitude, do not change over time.

In fact, in real case scenarios, more specifically in long term monitoring applications, slight
motions from the subject could occur often, once it is highly difficult to remain totally still
during longer acquisition periods. Even if these motions are not significant in the recovered
signal, they can still uncover new objects located in the monitoring scenario, producing differ-
ent CDC offset values. This situation can be worse when the monitoring scenario is not fully
static. For instance, if other subjects move around in the same room, the parasitic reflections
behavior changes accordingly, as figuratively depicted in Figure 3.3.

(a) (b)

Figure 3.3: Illustration of the effect of a non-static scenario in the complex plane [102]:
(a) Reflections schematic on the monitoring environment, (b) Equivalent projection of the
received signal on the complex plane.

In order to address this issue, in [25] a dynamic CDC offset cancellation was implemented
with the goal to account such environment changes. Nonetheless, the authors only presented
signals from short acquisitions, with 5-minutes duration maximum. Moreover, the authors
do not provide information regarding the algorithm effectiveness with low amplitude signals.

In this chapter, DSP algorithms for vital signs extraction are described. During the
workflow followed in this PhD, two versions of the algorithms were used. The first version,
from now on referred as Simplified DSP, is presented in Section 3.2 and it was assumed
that the parasitic reflections are static, hence leading to the same CDC offsets over time. The
algorithm is an adaption of the one developed in [2]. It is based in the Park et al. [23] solution,
which uses the circle fitting approach to determine the CDC offsets values and subsequently
subtract them from the full signal. Later, a solution for the Park et al. [23] arc length
dependency was developed and it is explained in sub-section 3.2.1. The algorithm is based
on the same principle of [113], [114], but instead of impose a slightly change on the target’s
distance to generate consecutive arcs or re-tuning the radar multiple times, the developed
solution takes advantage of the body motion that might occur in long-term signals.
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Later, the second version of the DSP algorithm was developed, from now on referred
as Dynamic DSP and it is described in Section 3.3. This algorithm is robust in non-static
monitoring scenarios and is suitable for any SNR. At the end, the accuracy of this latter
algorithm was evaluated and validated by estimating the respiratory frequency of a group of
20 subjects and comparing it with the one obtained by a certified measuring equipment.

3.2 Simplified DSP algorithm

The workflow of the first version of the DSP algorithm is presented in Figure 3.4.

Figure 3.4: Block diagram of the Simplified DSP algorithm.

The algorithm works as the following: usually RF signals are acquired by quadrature
receivers in CW radars, with a high sampling rate due to front-end restrictions [45]. In this
case, the front-end output consists of a complex baseband signal g(n), which was acquired
with a sampling rate equal to 100 kHz. This signal is downsampled, since vital signs are low
frequency signals, so the decimated signal d(n) presents a sampling rate equal to 100 Hz,
embracing both respiratory and cardiac signal characteristics. Afterwards, the CDC offsets
are estimated using the Kasa method [115], considering the full signal. The CDC offsets
(V Iiq, V Qiq) are then subtracted from the complex signal d(n) leading to signal b(n).

After the CDC removal, the arcs can be located in any position in the complex plane. In
order to prevent the oscillation around the π value, which generate the wraps occurrence, the
full signal is rotated accordingly to oscillate around the 0◦ value, resulting in signal bR(n).
This is performed by applying the following equation:

bR(n) = b(n)× e−jθR , (3.1a)

θR = arg
(∑

b(n)
)

(3.1b)

where θR is the necessary angle to rotate the full signal b(n).

One should note the advantages of this rotation step. Aside from avoiding wraps occur-
rence, the specific rotation for the 0◦ angle allows an automatic implementation and can ease
the vital signs rate computation through spectral analysis. Since y(n) is a phase signal, the
location of the arc in other quadrants would increase the magnitude of the spectral compo-
nent at 0 Hz, which might overlap with the spectral peak correspondent to the respiratory
component.

Depending on the signal quality, the CDC offsets estimation might be misleading. An
example of this situation is shown in Figure 3.2d, in which the arc ends up located in the origin
after the CDC offsets subtraction. In order to guarantee the proper signal recovery, an offset
can be added to the real component of the br(n) signal (as depicted in Figure 3.5), resulting in
bo(n) signal. At this stage, the value of such offset was selected by visual inspection, knowing
that high values can affect the signal amplitude. Finally, the vital signs can be recovered after
computing the arctangent [21] and resulting in the y(n) signal.
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Figure 3.5: Offset addition to the real component of br(n) signal in case it is located in the
complex origin.

Figure 3.6: Evolution of all versions of the Simplified DSP algorithm.

This algorithm is the result of a series of work iterations and Figure 3.6 shows the sum
of all algorithm versions. The differences among the versions are mainly related with the
implementation of the CDC offsets estimation. The first developed algorithm (Version S1 )
was presented in [2]. The conducted approach applies the Gram-Schmidt orthonormalization
method [103] to correct the IQ imbalance prior to estimate the CDC offsets values, which is
performed afterwards through circle fitting. Later, it was observed that the impact of the IQ
imbalance was not significant on the extracted signal, therefore in Version S2 the Gram-
Schmidt step was skipped and an ellipse fitting was applied to estimate the CDC offsets.
Finally, an extended imbalance characterization was performed and it was already described
in Chapter 2 (sub-section 2.4.3). It was concluded that the existent IQ is not substantial, so
it can be indeed neglected, leading to the current version - the Version S3.

3.2.1 Exploitation of body motion for CDC offsets removal

As demonstrated previously in Figure 3.2c, arcs from real acquisitions do not always have
a perfect shape due to low amplitude signals and this hampers the effectiveness of the CDC
coordinates estimation and subsequent removal.

During long term monitoring periods, it is impossible to avoid the subjects’ RBM. These
motions are detected by the radar, together with the respiratory signal and they stand out
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once their amplitude is higher than the amplitude from vital signals. Instead of arcs, the
RBM produces full circles in the complex plane, if the target is moving towards or backwards
the radar. Assuming that the CDC offsets are the same over time, in a signal containing this
type of RBM it is easier to estimate their values (V Idc, V Qdc).

Thus, herein one aim to demonstrate that the body motion that naturally occur in long
term acquisitions can be used as additional information to estimate the CDC offsets. This new
method is from now on referred as the Full Ellipse Method with Detectable Motion (FEMDM)
[116] and for comparison purposes, the single arc fitting method is going to be referred as
the Arc Method (ARCM). In this PhD work stage the Version S2 of the Simplified DSP
algorithm was the current version being used1, where the estimation of the CDC offsets was
performed using an ellipse fitting algorithm [117].

Figure 3.7 depicts the block diagram of one possible DSP algorithm which could benefit
from the motion samples to improve the CDC removal effectiveness. The CDC offsets could be

Figure 3.7: Example of a motion based algorithm for proper CDC offsets estimation and
removal (adapted from [116]).

estimated and compensated over time and at an appropriate rate. After the signal reception
and downsampling, a raw estimation of the CDC offsets value could be performed as a pre-
liminary estimation, through ARCM over the first received samples of signal d(n). In parallel
a motion detector is applied and everytime a random motion is detected, the breathing rate
measurement is suspended, the motion samples are stored and the ellipse fitting is applied
over them. Then, the CDC offsets are updated and the remain steps towards the vital signs
extraction could be the same as the ones used in the Simplified DSP algorithm (Figure 3.4).

FEMDM validation

In order to evaluate if FEMDM could be applied, an experiment was carried out. The
conducted experiment used the Chest Wall Simulator (CWS) (Figure 3.8a) to simulate the
chest wall motion due to respiration [2]. The CWS consists on a metal plate assembled in
a mechanical platform that is pushed and pulled horizontally with a motion rate equal to
0.4 Hz. Tests were conducted using the CWS rather than a subject, aiming to guarantee the
same acquisition conditions, since the CWS motion keeps the same amplitude and frequency
over time.

1Version S3 of the Simplified DSP algorithm was not yet developed at this time.
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(a) (b)

Figure 3.8: Schematics of the conducted experiment for FEMDM validation [116] (a) Chest
wall simulator, (b) Chest wall simulator displacement.

The practical procedure is depicted in Figure 3.8b. It started with the CWS signal acqui-
sition during 15 seconds and at a distance of half a meter, and then its position was changed
several times by 5 cm. For a preliminary inspection, the arctangent of the raw signals was
computed and the extracted phase signal is shown in Figure 3.9.

Figure 3.9: Extracted CWS motion from the arctangent (adapted from [116]).

The obtained signal present two interleaved behaviors: sinusoidal signals marked with the
letters A - G, which are the result of the breathing motion emulated by the CWS and high
frequency signals with higher amplitude marked with M1 - M6, corresponding to the motion
caused while the CWS is displaced to a new position (for instance moving backward, from d0

to d1).
Furthermore, the influence of the CDC offsets in the extracted signals can be observed.

The signal can be affected differently, depending on the arc position in the complex plane.
For example, in slots B and C a second peak is present with smaller amplitude, in slots E
and F the sinusoidal waveform is inverted and all slots A to G have different amplitudes,
where slot D is the one with the lowest amplitude.

The signal was divided in segments, where A - G are respiratory segments and M1 - M6
are the motion segments. The CDC offsets were estimated for each segment using the ARCM
and the FEMDM, respectively and the absolute value of the coordinates (V Idc, V Qdc) was
computed. The results are presented in Table 3.1. In particular, the Ciq point corresponds to
the CDC offsets estimation and it is represented by the complex number Ciq = V Idc+jV Qdc,
and the |Ciq| is the absolute value of the Ciq point.
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ARCM FEMDM

Ciq |Ciq | Ciq |Ciq |

A −2.3− j6.4 6.9 M1 0.0− j6.3 6.3

B 2.0− j9.3 9.5 M2 −0.3− j6.2 6.2

C 5.7− j28.4 28.9 M3 −0.4− j6.4 6.4

D 4.1− j3.9 5.7 M4 −0.3− j6.6 6.6

E 1.6− j3.3 3.7 M5 0.2− j6.5 6.5

F 0.8− j2.7 2.8 M6 −0.2− j6.1 6.1

G 0.1− j9.0i 9.0

All the results are multiplied by (×10−3)

Table 3.1: CDC offsets estimation using ARCM applied to single arcs and FEMDM applied
to motion segments [116].

Concerning these results, some conclusions can be made. First, from the result of |Ciq| of
FEMDM, it is possible to observe that the CDC component did not change significantly during
the change of the CWS position, at least in the considered monitoring scenario. This means
that the CDC offsets update can be done sporadically. Moreover, the results correspondent
to ARCM vary among segments and the ones obtained from the FEMDM are more stable
around the same value, which proves that the full ellipse could be used to estimate the CDC
offsets, as it gives more accurate results.

The optimal performance of FEMDM in comparison with ARCM can be observed in Fig-
ure 3.10 and Figure 3.11. Figure 3.10a-3.10c represent the ARCM implementation using slot
A, slot C and slot E respectively. It can be noticed that each arc has a different format, which
leads to different CDC offsets estimations. In contrast, Figure 3.10d shows the exploitation
of motion to do the ellipse fitting. For all M1 -M6 slots, the center remains approximately
the same.

Figure 3.11 shows the vectorial diagram of the complex signal, with and without CDC
offsets, using FEMDM and ARCM for comparison purposes. More specifically, Figure 3.11a
shows the complex signal with CDC offsets, where Ciq is the CDC component with coordinates
(V Idc, V Qdc). Vector r1(t) represents the distance between the origin and Ciq, and the vector
r0(t) represents the distance between Ciq and the arcs. After CDC offsets removal, the |r0(t)|
value should prevail approximately the same for all arcs.

Figures 3.11b and 3.11c show the complex signal after the ARCM and FEMDM application
and it can be seen that both methods were able to recenter the arcs back to the origin. In
the case of FEMDM, the arcs are uniformly distributed around the origin, keeping the same
|r0(t)| value for all slots as expected. On the other hand, the ARCM presents different |r0(t)|
values for the different slots, which proves that this method cannot guarantee the accuracy of
the CDC removal. Hence, the extracted signal can be affected as shown in Figure 3.12. More
specifically, Figure 3.12a shows the arctangent result after using ARCM and the amplitudes
of slots B, C and G are smaller since their correspondent arcs are too far away from the
origin as shown in Figure 3.11c. On the other hand, all the slots from Figure 3.12b have
approximately the same amplitude.
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(a) (b)

(c) (d)

Figure 3.10: Ellipse fitting using ARCM and FEMDM (adapted from [116]): (a) ARCM for
slot A (b) ARCM for slot C, (c) ARCM for slot E, (d) FEMDM for all slots M1-M6

(a) (b) (c)

Figure 3.11: Performance evaluation of FEMDM regarding the vectorial diagram [116]: (a)
Original signal with CDC component (b) Signal after CDC removal using FEMDM, (c) Signal
after CDC removal using ARCM.
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(a) (b)

Figure 3.12: Final angle computation for both methods [116]: (a) ARCM, (b) FEMDM.

3.3 Dynamic DSP algorithm

The algorithm proposed in Section 3.2, can be used if one assume that the monitoring
scenario is static, leading to an exclusive pair of CDC offsets coordinates. Nonetheless, Fig-
ure 3.2d demonstrated a case where that algorithm fails, leading the arc to be located in
the complex origin. Aiming to prevent failure in the CDC offsets compensation, a solution
was proposed in sub-section 3.2.1, where the RBM was used as information to improve the
accuracy of CDC offsets estimation, which can be updated every time a new RBM is detected.
However, the occurrence of body motion is unpredictable, it might generate different signal
patterns (rather than full circles) and signal fading might occur meanwhile.

In this sense, a new solution was developed and it contains two specific features:

1. The CDC offsets are estimated using a novel arc fitting algorithm, which forces the
search to be outside the radar samples, turning the algorithm effective to low amplitude
signals;

2. The novel arc fitting method is implemented dynamically through a windowing ap-
proach, in order to track and account the CDC changes over time.

3.3.1 Novel arc fitting algorithm

The CDC offsets removal is usually performed in the literature using fitting algorithms that
aim to search for a circle that fits the radar complex samples, finding its radius and center
coordinates, which are used afterwards to remove the CDC offsets. Least Squares Fitting
(LSF) is a common example of this approach [118]. In cases where the data is well distributed,
the literature suggests that the Gauss-Newton method with Levenberg-Marquardt correction
(LM) is a LSF robust solver, which is quite stable, reliable and fast converging [101], [118]. It
uses a cost function and identifies the possible solutions by finding the parameters that lead
to the cost function minimization [101]. In [25], the authors apply also a circle fitting method
based on a cost function minimization, to compensate the CDC offsets. For their case, the
center coordinates are identified when the radius variance is minimized.

Nonetheless, both LM and the method presented in [25] require an optimization stage,
which consumes an unpredictable processing time to achieve the desired solutions. Addition-
ally, algorithms based in LSF are sensitive to outliers [119], hence might not be effective in
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cases where the data is noisy or lacks in resolution, which is a common case in the bio-radar
context, as demonstrated previously in Figure 3.2c.

Other impairment of the circle fitting methods relies on the dependence of the circle radius
as an optimization parameter (as in the [25] case). Badly formed arcs with low lengths and
wide thickness can drive the algorithm to provide center solutions within the radar signal
samples, as demonstrated in Figure 3.2c. The algorithm is forced to search for a circle that
fits all points, assigning the radius that enables this fitting. In these situations, the cost
function minimum zone is located within the radar data points, which corresponds to the
center of such circle.

In order to better understand this effect, Figure 3.13 presents an example of a weak signal
arc in the complex plane, acquired in a real context scenario. A cost function based in circle

(a) (b)

Figure 3.13: Color map of the cost function result using the signal mean value as optimization
starting point [102]: (a) Representation of the optimized solution, (b) Zoomed visualization
of the optimized solution.

fitting was defined to be further optimized, aiming to find the arc center. The cost function
considered for this example is given by equation (3.2):

Sj =
N∑
n=1

(|Cj − d(n)| − r)2 , (3.2)

where Cj is the center of the arc, d(n) is the radar signal, N is the length of signal d(n) and
r is the radius of the arc, given by equation (3.3):

r = med(|Cj − d(n)|). (3.3)

where med(.) denotes the median value.
Figure 3.13 presents also the color map of the cost function Sj solutions for each Cj

value. An optimization was then performed to find the proper arc center. For this purpose,
it was used a multidimensional unconstrained nonlinear minimization, namely the Nelder-
Mead method [120], with 100 iterations and a termination tolerance equal to 1 × 10−4. As
starting point it was considered the radar signal mean value, which was already located in a
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cost function minimum zone. As shown Figure 3.13b, the optimized solution was found near
the data samples (marked as a red dot). Therefore, a second optimization stage was carried
out by increasing the number of iterations to 10000 and decreasing the termination tolerance
to 1 × 10−16. Even if the number of iterations is increased or the boundary conditions are
wider, the optimized solution remains the approximately the same (marked as a green dot in
Figure 3.13b).

As it can be observed in Figure 3.13, the cost function minimum zone extends forward
the arc. Thus, by taking as prior knowledge that the radar samples are disposed according
to an arc rather than a circle (which is the case for low carrier radars), it is possible to set
the searching zone already outside the signal samples. In this sense, the novel arc fitting
method, from now on referred as Optimized Cost Method (OC), aims to determine the most
appropriate arc center using a cost function minimization, but the searching area is limited
to the arc sideways zones, avoiding the center solutions within the radar samples. For this
purpose, a set of Ck points circularly distributed around the arc were defined as possible arc
center points, as depicted in Figure 3.14a.

(a) (b)

Figure 3.14: Illustration of the novel arc fitting method [102]: (a) definition of the possible
Ck solutions, (b) cost function result with the selected C solution.

Those Ck points form a fictitious circle with radius Rp, selected to push the estimation
away from the radar samples. The radius Rp is expressed by equation (3.4):

Rp = AW ×med(|d(n)−O|), (3.4)

where AW is an arbitrary scale factor, d(n) are the radar samples and O is the center of such
fictitious circle, given by equation (3.5):

O = med(Re(d(n))) + jmed(Im(d(n))), (3.5)

The scaling factor AW dictates how much large should be the searching area, considering
the arc length. In order to guarantee that the selected center C is not within the arc samples,
the scaling factor should be AW > 1. In the context of this work, the AW = 3.5 value was
selected empirically.

The arc center solution C is obtained through the cost function (3.2) minimization, calcu-
lated with each Ck (note that Cj = Ck). The median operation was used in equations (3.3),
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(3.4) and (3.5) as it is a robust estimator in the presence of outliers [119].
After obtaining the Cj points and evaluating the Sj function for each, the final C solution

is the Cj that allows Sj to be minimum. Therefore, C can be written as (3.6):

C = argmin
Cj

Sj . (3.6)

Since the searching area is already forced to be outside the radar samples, the solution is
direct and do not require any optimization stage. This procedure is depicted Figure 3.14b,
where the most suitable arc center is marked with a red cross.

Limitations of the OC

One should note that the OC presents three limitations [102]. First of all, the Sj minimum
zones can occur in both arc sides, i.e. inside and outside its concavity, as it can be observed
in Figure 3.14b with the location of the dark blue zones. In the next sub-section, the dynamic
implementation of this algorithm is explained, so it is able to accommodate CDC changes over
time. For such implementation it is required to perform the CDC estimation in overlapped
windows (wi), in order to provide a progressive and coherent CDC estimation over time.
When signals are considerably weak, successive windows might present center solutions (Ci)
in opposite sides of the arc, as depicted in Figure 3.15, adding an undesired variability degree
to the overall center estimation.

(a) (b)

Figure 3.15: Center estimations in opposite arc sides in consecutive windows, using as an
example [102]: (a) the window no 74, (b) the window no 75.

In order to avoid this issue, the distance between the current window center Cj and the
last acceptable window center Ca, was included as a new cost in the cost function. Therefore,
equation (3.2) should be re-written as equation (3.7):

Sj =
N∑
n=1

(|Cj − d(n)| − r)2 + α|Cj − Ca|2, (3.7)

where α represents a weight and Ca is the last acceptable center estimation. For this case, one
defined acceptable center Ca as a solution located far from the radar samples. Thus, the value
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Ca is updated if such condition is verified, otherwise the previous value is preserved. This new
term reduce estimate transitions in successive windows, by giving to α a fair value, having
in mind that lower α values allow more transitions and higher α values prevents transitions,
even the ones that are indeed necessary when the arc orientation changes. In this work, the
α term was set to 1.

The second limitation is regarding the vital signs amplitude, after performing the arc-
tangent method. The searching area is set outside the radar sample points, by giving a
considerable value to the AW scale factor. This value must be selected having in mind that
it should always provide estimations outside the radar data samples. However, a special care
should be accounted, since larger AW values push the arc away from the complex plane origin,
reducing the angle variation range. Therefore, higher amplitude vital signs are obtained if
the arc is located close to the origin, but its amplitude can slightly decreased if they are too
distant. This also means that the final signal amplitude might not be the original one. The
amplitude variation over the original signal can indicate changes in the subject psychophysi-
ological state. Therefore, one should use the same AW for all signal windows, in order to try
to preserve eventual signal amplitude variations as the maximum possible.

Finally, as mentioned previously, in order to implement this algorithm, the radar samples
must be disposed according to an arc, which is only valid when low frequency carriers are
being used. Note that higher carriers induce full circles instead of arcs, and in these cases the
traditional circle fitting algorithms are indeed more appropriated.

3.3.2 Dynamic arc position adjustment

The CDC offsets can be estimated and removed over time, by performing the arc fitting
with a windowing approach, enabling an implementation for both offline signal processing
(which is the case of this work) or in a real-time application (with the proper adjustments to
maximize the algorithms performance).

The implementation of the Dynamic DSP algorithm is similar to the Simplified DSP
algorithm presented in Section 3.2 and uses the same block diagram as the one presented in
Figure 3.4. The main differences are the following:

• The CDC offsets estimation is performed with the OC rather than using the Kasa
method;

• The CDC offsets estimation is performed dynamically over time through a windowing
approach;

• The arc rotation is also performed dynamically using the windowing approach.

The implementation of the dynamic CDC offsets estimation and rotation are depicted in
Figure 3.16. Starting with the CDC offsets estimation (Figure 3.16a), the d(n) signal is divided
in windows with 1000 samples length and with 50% overlap while moving forward. This
window length was selected considering the used sampling frequency (equal to 100 Hz after
downsampling) and the possible respiratory rates across the population. Healthy subjects
generally breathe at a rate around 0.2 Hz (12 breaths/min) [121], but it is also possible
to reach lower values such as 0.1 Hz (6 breaths/min) [122]. Under these circumstances, 10
seconds are required to obtain a full arc, leading to a minimum of 1000 samples and thus
guaranteeing always that a complete arc is obtained. The same approach was used in [25].
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(a)

(b)

Figure 3.16: DSP dynamical implementation (adapted from [102]): (a) Dynamic CDC re-
moval, (b) Dynamic arc rotation.

The arc fitting method is applied to each window wi and the center Ci coordinates corre-
spondent to the window i are stored the vector C. Note that C is a complex number, therefore
the real and imaginary parts are stored separately. A smooth filter was applied to the each
vector in order to prevent outliers. The selected smooth filter was a 1st order Savitzky-Golay
filter with a frame length equal to 31, resulting in the smoothed vector SC. Then, the vectors
are interpolated in order to assign a CDC offset coordinates for each signal sample, resulting
in LC(n). For this purpose, it was used the shape-preserving piecewise cubic interpolation,
since it provides a smooth result and it has a good approximation behavior on the vector
extremes [123]. Finally, the interpolated vector is subtracted from the decimated signal d(n),
resulting in signal b(n).

After removing the CDC component, the arc position in relation to the complex plane is
adjusted to avoid wraps. The CDC change over time affects also the arc orientation in rela-
tion to the origin. Therefore, this rotation step must be also implemented dynamically over
time, by dividing the signal in windows again. This procedure is depicted in Figure 3.16b.
The goal is to rotate all window arcs until they oscillate around the 0◦ angle. This is per-
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formed by computing for each window, the necessary angle required to rotate the arc. This
is accomplished using equation (3.8) (adapted from equation (3.1b)):

θi = arg
(∑

wi(n)
)
. (3.8)

where θi is the necessary angle to rotate the arc wi(n) from window i. Similarly to the CDC
offsets window estimations, an angle vector θ is created with all θi values. The θ vector is
unwrapped and interpolated using the same type of interpolation used for the CDC offsets.
Then, the full signal is evenly rotated by applying equation (3.9), resulting in signal br(n):

br(n) = b(n)× e−jθL(n), (3.9)

where b(n) is the full signal without CDC offsets and θL(n) is the angle vector, unwrapped
and interpolated.

The implementation of equation (3.7) in the arc fitting stage decreases the number of CDC
offset estimation transitions in successive windows, but do not solve them all. When there
are transitions in successive windows, that signal portion is affected after the CDC offsets
removal due to the effect of the smooth filter. More specifically, the mean of consecutive Ci
is considered, leaning towards zero and pushing that arc portion to the origin. In these cases,
it is necessary to add again the small offset, resulting in signal bo(n). In the Simplified DSP
algorithm, the offset value was selected by visual inspection of the signal, but this time it was
computed automatically, as depicted in Figure 3.17. When the final arc is centered in the

Figure 3.17: Automatic offset addition to the real component of br(n) signal.

origin there are samples with a negative values on the real component. Therefore, the signal
with offset can be obtained by applying equation (3.10):

bo(n) = br(n) + min(Re(br(n))). (3.10)

where min(Re(br(n))) denotes the minimal value of the real component of br(n) signal.

3.3.3 Algorithm testing using a real application scenario

After developing the Dynamic DSP algorithm, its limitations were verified and its perfor-
mance was tested considering real application scenarios. For this purpose, the vital signs of
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three different subjects were acquired during 25 minutes approximately, following the Emo-
tional Protocol to gather individual variability, leading to more robust results. Each subject
represents a different test case with specific acquisition conditions, embracing both problems
herein mentioned: the CDC offsets changing over time and the lack of arc resolution which
hampers the arc center estimation. Vital signs were acquired in two scenarios and using sub-
jects with different gender, in order to provide unequal chest wall displacement amplitudes
according to [36]. The considered test cases are described in Table 3.2, and the corresponding
baseband signals can be observed in Figure 3.18.

Case No - M/F Monitoring Scenario Chest wall amplitude Height [m] CWP [cm] BMI [kg/m2]

Case 1 - M Static High 1.75 90 22.20

Case 2 - M Non-static High 1.76 96.5 27.44

Case 3 - F Non-static Low 1.56 82 25.07

M - Male, F - Female, CWP - chest wall perimeter, BMI - Body mass index

Table 3.2: Description of the test cases considered for the Dynamic DSP algorithm evaluation
[102].

(a) (b) (c)

Figure 3.18: Real/Imaginary plots of the considered test cases baseband signals [102]: (a)
Case 1, (b) Case 2, (c) Case 3.

The signal of Case 1 shown in Figure 3.18a, represents a reference case study, with a high
amplitude displacement and acquired in a static environment. In Figure 3.18a it can be seen
that the arc center rarely moved. Nonetheless, a slight displacement might be justified with
eventual motions that the subject did, since it is difficult to remain completely still for such
period of time. In Case 2 (Figure 3.18b), the CDC offsets variation challenge is introduced. In
this case, it is possible to observe that the arcs are changing their position over time. Finally,
the last test case in Figure 3.18c represents the worst case scenario, where beside the CDC
variation, the signal presents a lower amplitude derived from a lower chest wall motion.

The scenario schematics used on these experiments is depicted in Figure 3.19. In order
to induce the non-static scenario for Cases 2 and 3, the vital signs were acquired in a room
with other moving subjects inside. The static scenario (Case 1) used the same layout as the
one shown in Figure 3.19, but without the additional moving subjects.

For all cases, the algorithm presented in Figure 3.16 was equally applied, using a window
length of 1000 samples and a sampling rate of 100 Hz. More than 420 windows were analyzed
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Figure 3.19: Schematics of the monitoring scenario [102].

per test case. The results presented in this stage are mainly focused on the arc fitting
performance, which was performed using either the OC and other state of the art circle
fitting algorithms, namely the LM algorithm [118], [124], the Kasa (KA) algorithm [115],
[124] and the Taubin (TAU) algorithm [124], [125]. The LM algorithm required an initial
guess for the arc center coordinates Ci to start the optimization, so for a fair comparison it
was used the estimation provided by OC, as starting point.

The fitting results encompassed the location of Ci in relation to radar samples. For
instance, it is considered a failure case when the Ci estimation is within the arc data samples,
as previously presented in Figure 3.2c. In order to identify a failure case, the distance between
Ci and all signal samples was computed for all windows, as showed in Figure 3.20a.

(a) (b)

Figure 3.20: Identification of a failure case using a windowed signal [102]: (a) Illustration of
the distances computation and dmin identification, (b) Color map of the defined thresholds -
red zone is defined when dmin ≤ ∆t1, yellow zone is defined when ∆t1 < dmin ≤ ∆t2 and the
green zone is defined when dmin > ∆t2.

Then, the minimum distances dmin of all windows were analyzed and two thresholds were
defined: ∆t1 = 4× 10−4 and ∆t2 = 8× 10−4, as depicted in Figure 3.20b. When dmin ≤ ∆t1,
it means that Ci is located in the red zone, within the arc data samples and this is a clear
failure case. On the other hand, if ∆t1 < dmin ≤ ∆t2, it means that Ci is out of the arc
samples but yet too close, being in the yellow zone. The cases above ∆t2 threshold are in the
green zone and they can be considered admissible, since it already allows the correct angle
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estimation and further arc rotation.

When the fitting is applied dynamically, the CDC offsets estimate cannot vary largely to
guarantee a successful interpolation and smooth CDC removal in the overall signal. Therefore,
it is also crucial that the selected fitting algorithm provides stable estimates among the
different signal windows.

In sum, the considered metrics to evaluate the arc fitting performance are [102]:

• The behavior of estimations over time, obtained through the first difference of consec-
utive Ci estimations: ∆C = Ci − Ci−1;

• The standard deviation of consecutive Ci estimations (σ(∆C)), where ∆C is computed
in the complex form;

• The percentage of failure cases (dmin ≤ ∆t1) for each case study;

• The percentage of cases that can be critical to the algorithms performance (∆t1 <
dmin ≤ ∆t2) for each case study;

• The average run time (RT ) that each algorithm takes to provide a windowed estimation.

Although the OC does not require an optimization stage, the number of points used in
the fictitious circle (from now on referred as NPTS) have impact on the computational time.
For starters, the fictitious circle have a total of 200 Ck points, which respects a balanced
trade-off between resolution and time consumption. Results are also presented with a lower
number of points, in order to verify the impact in computational time and in the algorithm
performance.

Additionally, and since the algorithm herein presented applies a smooth filter on the vector
containing the CDC estimations (before interpolating it), the smoothed vector version is the
one used for the CDC offsets removal rather than the original estimation provided directly
by the OC algorithm. As mentioned previously, this means that the method can actually fail
and the arc can reach the complex origin, which is the undesired. Therefore, the performance
evaluation includes also the number of failure cases after removing the CDC offsets using
the OC method. For this purpose, the b(n) signal was again divided in windows and the
same metrics are used, where dmin is now related to the minimal distance between the arc
samples and the complex origin, σ(∆C) is referred to the estimation variation after applying
the smooth filter and the run time is now regarding to the CDC estimation and removal using
the OC method. This evaluation was only performed for 200 Ck points, which represents the
most optimistic case.

At the end, the final aspect of each case study signal after the DSP algorithm implemen-
tation is also shown.

3.3.4 Results discussion

In general, different estimations of the Ci coordinates were obtained by the different
algorithms. The Case 1 was the one that provided more similar results and the Case 3
represented a limit case, where all algorithms presented the worse performance.

Since the Case 2 includes a wide variation of the CDC offsets over time, but yet with a
high chest wall motion amplitude, it was possible to observe the most common estimation
behaviors for all the tested algorithms. Figure 3.21 shows some examples of the estimation
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results along the signal, disposed by crescent order of window number. The first aspect that
should be noticed is the arc position over the complex plane and its orientation. If signals
were obtained in static conditions and with the subject stable, the arc would barely move
and would kept the same orientation over time. In this case, the contrary was observed as
expected. This arc position variation, along the windows, indicates the urge to perform both
arc fitting and arc rotation dynamically.

(a) (b) (c)

(d) (e) (f)

Figure 3.21: Circle fitting result over time for Case 2 [102]: (a) Window 2, (b) Window 4, (c)
Window 35, (d) Window 318, (e) Window 327, (f) Window 413.

Secondly, Figure 3.21 also shows how some algorithms provided discrepant estimates for Ci
coordinates. For instance, in Figure 3.21a, 3.21b and 3.21d, the LM and TAU algorithms pro-
vided estimations out of the arc range, which were seen as outliers. This fact also contributed
to a variability increase on the provided solutions over time. Moreover, in Figure 3.21a,
3.21d and 3.21f the KA algorithm failed, since its estimation lied within the arc samples. On
the other hand, Figure 3.21c and 3.21e, presented some cases where all algorithms provided
approximate estimations, without any failure. It is also important to notice that the OC
algorithm presented a stable estimation for all the aforementioned examples, without any
failure case.

Figure 3.22 shows the behavior of consecutive estimations ∆C over time, for each test
case. Considering that a perfect case would be the one that presents more values near 0,
which means that the consecutive estimations are the same, Case 1 presented the lowest
variation among all test cases as expected. Even though, while KA and OC presented a
stable estimation over time, LM and TAU algorithms provided few outlier estimations. Case 2
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(a) (b) (c)

Figure 3.22: Histogram of the behavior of consecutive estimations ∆C over time [102]: (a)
Case 1, (b) Case 2, (c) Case 3.

and Case 3 presented an increased variability, justified with the observed CDC change over
time. In these cases, the estimations must track the CDC change, which justifies the overall
variability. Once again KA and OC were the more stable algorithms, when comparing with
LM and TAU, which behavior got worse, showing a higher number of outliers greater than
0.05 and less than -0.05, respectively.

The overall fitting algorithms performance results are presented in Table 3.3, 3.4, 3.5, for
each test case respectively. These tables contain the results relative to the estimations of the
CDC offsets for all methods.

Method NPTS RT (ms) σ(∆C) dmin ≤ ∆t1 (%) ∆t1 < dmin ≤ ∆t2 (%)

KA - 0.052 0.001 4.2 1.9

LM - 4.8 0.077 0 0.2

TAU - 0.18 0.047 0.7 0.47

OC
200 4.4 0.001 0 0

20 0.64 0.001 0 0

OC (no CDC) 200 1900 0.00007 0 0

NPTS - number of points used in the fictitious circle (OC method)

σ(∆C) - standard deviation of consecutive C estimations, RT - Average run time

dmin ≤ ∆t1 - number of failure cases, ∆t1 < dmin ≤ ∆t2 - number of critical cases

Table 3.3: Arc fitting results for Case 1 [102].

For Case 1, all algorithms present a low percentage of failure cases as expected. Even
though, the KA method presents the worst performance, with 4.2% of failure cases. On the
other hand, the LM and TAU methods presented a higher estimation variation, with the
highest value of σ(∆C). The OC algorithm is the one with the best performance, not only
because do not present any failure or any case within the critical limit, but also because
provided more stable results among all the signal windows. Regarding the run time, the
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Method NPTS RT (ms) σ(∆C) dmin ≤ ∆t1 (%) ∆t1 < dmin ≤ ∆t2 (%)

KA - 0.057 0.004 4.7 3.12

LM - 4.9 4.1× 104 0 0.41

TAU - 0.18 0.075 0.2 0.83

OC
200 4.4 0.007 0 0

20 0.63 0.007 0 0.2

OC (no CDC) 200 2150 0.0003 0 0

NPTS - number of points used in the fictitious circle (OC method)

σ(∆C) - standard deviation of consecutive C estimations, RT - Average run time

dmin ≤ ∆t1 - number of failure cases, ∆t1 < dmin ≤ ∆t2 - number of critical cases

Table 3.4: Arc Fitting results for Case 2 [102].

Method NPTS RT (ms) σ(∆C) dmin ≤ ∆t1 (%) ∆t1 < dmin ≤ ∆t2 (%)

KA - 0.050 0.001 64.6 9.3

LM - 5.2 2.3× 103 16.5 4.7

TAU - 0.18 0.055 26.1 5.4

OC
200 4.5 0.003 0 0.2

20 0.63 0.003 0 0.2

OC (no CDC) 200 2170 0.0002 5.76 6.17

NPTS - number of points used in the fictitious circle (OC method)

σ(∆C) - standard deviation of consecutive C estimations, RT - Average run time

dmin ≤ ∆t1 - number of failure cases, ∆t1 < dmin ≤ ∆t2 - number of critical cases

Table 3.5: Arc Fitting results for Case 3 [102].

KA and TAU are quicker, and this can be justified by the fact that they do not require any
optimization stage (as the LM case), neither use a high number of points to search the solution
(as the OC method), using in contrast algebraic computations for that purpose [115], [125].
Nonetheless, if a lower number of fictitious circle points NPTS is used in the OC method, the
run time decreases considerably, and the algorithm performance is barely affected, as it can
be seen by the estimation variation σ(∆C) and the same number of failure cases obtained.

On the Case 2, it is possible to infer that the overall CDC offsets varied, since all σ(∆C)
values increased. One should note the sudden increase of σ(∆C) for the LM method. This
happened due to some outliers provided by the method, causing this high variation. The
number of failure and critical cases barely changed for all methods, which might be related
with the arc length of this signal. Once again the OC method stands out with the best
performance, however the number of critical cases increased slightly, if few circle points NPTS

are considered.

Finally, the Case 3 served as a limit test. In general, a higher percentage of failure cases
was observed for all methods due to the severe decrease on the arc length, excepting the OC
method. The OC method kept a high performance, since we are imposing to search outside
the data points. Thus, the KA presented the worst performance with 64.6% of failure cases
and 9.3% of critical cases. The remain algorithms, presented failure percentages above 16%.
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The OC algorithm presented the same performance observed for the Case 2, with 0 failure
cases and only 0.2% of critical cases, regardless the number of circle points used.

The OC results presented in Tables 3.3, 3.4 and 3.5, showed that the number of circle
points do not have a significant impact in the algorithm performance, since σ(∆C) parameter
barely moved. Figure 3.23 shows the OC algorithm performance if points are even lower, by
evaluating the run time and the σ(∆C), respectively. The run time decreases if the number of

(a) (b)

Figure 3.23: OC algorithm performance for few Ck points [102]: (a) Run time, (b) Estimation
variability σ(∆C).

points are reduced, achieving a minimum value of 0.28 ms for a total of 5 Ck points. However,
this value is still above the TAU and KA algorithms and it comes with a cost of increasing
estimation variability. Therefore, the selection of 20 Ck points, seems to respect a balanced
trade-off between estimation stabilization over time and a decreased run time as possible.

Considering now the performance of the overall CDC offset removal using the OC method,
only the Case 3 presented arcs near the origin, with 5.76% of failed cases and 6.17% of critical
cases. Cases 1 and 2 remained with a high rate of success, presenting no failed cases after
the CDC removal. On the other hand, the smooth filter application decreases highly the
estimation variability, as it can be seen on the σ(∆C) parameter for all cases. Finally, the
implementation of the full algorithm herein proposed takes approximately 2 seconds (for 25
minute signals), regardless on the case study.

After removing the CDC offsets with the OC method and adjusting the arc position
dynamically, all case studies should present equally the optimal conditions to perform the
arctangent demodulation, as it can be seen in Figure 3.24. This figure shows the aspect of
signal bo(n) of the block diagram presented in Figure 3.4, after applying the Dynamic DSP
algorithm.

3.3.5 Impact of the body motion in the algorithm performance

As mentioned previously the OC method is more suitable for the acquired signals perceived
as arcs in the complex plane. However, real case scenarios might contain signal portions with
wide arcs or even full circles, if the subject under monitoring moves the body during the
monitoring period. In order to verify the performance of the algorithm herein proposed under
conditions of RBM, an additional test case was considered. The vital signs of a subject were
acquired during 6 minutes, while he/she was performing specific motions in three moments:
raising the arm and touch the head, raising the arm and touch the chest and move forward and
backward in relation to the radar. Figure 3.25 shows the resulting signal in both time domain
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(a) (b) (c)

Figure 3.24: Real/Imaginary plots of the considered test case signals after implementing the
Dynamic DSP algorithm [102]: (a) Case 1, (b) Case 2, (c) Case 3.

and the equivalent projection in the complex plane, before and after the implementation of
the proposed algorithm.

By comparing Figures 3.25b and 3.25c it is possible to verify that the algorithm is robust
to sudden and sporadic motions, even if they present full circles in the complex plane. The
algorithm was able to remove the CDC offsets successfully, regardless the presence of high
amplitude motion and this fact can be justified by three algorithm features. Firstly, the usage
of overlapped windows enables one to address the motions smoothly by separating the motion
in different windows. Secondly, the additional cost applied in the OC method (referred in
equation (3.7)) used to prevent estimation transitions, was also useful when motions occur,
because the estimated CDC offsets stay in the same zone. Finally, the smooth filter usage
over the windows estimations before the interpolation, helped also the attenuation of eventual
outlier estimations.

Figure 3.26 shows the corresponding arc shapes when the motions occurred and how all the
tested algorithms behave under these circumstances. The first aspect that can be highlighted
is the fact that not all types of motion generate full circles in the complex plane. For instance,
raising the arm in front of the radar (see Figure 3.26a) generated a cluster of dispersed samples
around what was supposed to be the arc. In this case, the OC method searches for a solution
out of those samples, which is often close to the one obtained in the previous window. On the
other hand, moving towards and backwards the radar (see Figure 3.26b) generates complete
circles, since the motion amplitude is equivalent to more than one wavelength, and the OC
method kept the same behavior.

The algorithm effectiveness was once again compared with state of the art algorithms.
The LM was the most stable in both motion cases and the KA failed in the arm motion
due to the wide cluster shape. As expected, both KA and LM algorithms seemed to provide
accurate estimations of the exact values of CDC offsets, when applied to full circles. Thus,
the potential of the algorithm herein proposed might be enhanced if combined with the usage
of traditional circle fitting methods, when this type of motion is detected.
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(a)

(b) (c)

Figure 3.25: Case 4 containing vital signs with body motion [102]: (a) Time domain signal
with CDC offsets, (b) Real/Imaginary plots with CDC offsets, (c) Real/Imaginary plots after
applying the Dynamic DSP algorithm.

(a)

(b)

Figure 3.26: Circle fitting result over time for Case 4 [102]: (a) Windows 18 to 22 containing
the motion of an arm raising up to the head, (b) Windows 53 to 57 containing the motion of
the body moving forward and backward with respect to the radar.
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3.4 Respiratory signal accuracy with improved Dynamic DSP
algorithm

The Dynamic DSP algorithm presented in Section 3.3 was developed and evaluated in
a primary stage using signals of three subjects. The dataset was further increased and the
algorithm was again tested in 20 new subjects, being 10 males and 10 females with different
physical characteristics and within the age range of 20-30 years old. Their physical statures are
described in Table 3.6. The vital signs were again acquired following the Emotional Protocol.

Subject ID Gender Height [m] CWP [cm] Subject ID Gender Height [m] CWP [cm]

ID01 F 1.62 80 ID11 M 1.88 94

ID02 M 1.78 114 ID12 M 1.86 84

ID03 F 1.73 109 ID13 F 1.64 80

ID04 M 1.88 87 ID14 F 1.75 80.5

ID05 F 1.61 73 ID15 F 1.71 80

ID06 F 1.68 77 ID16 M 1.74 81

ID07 M 1.75 87 ID17 M 1.62 91

ID08 M 1.81 98.5 ID18 M 1.77 94

ID09 F 1.54 71 ID19 M 1.78 108

ID10 F 1.61 72 ID20 F 1.57 73

F - Female, M - Male, CWP - chest wall perimeter

Table 3.6: Description of the physical stature of the 20-subject dataset.

The dataset has a total duration of 1626 minutes (≈ 27 hours, 1 hour and 30 minutes per
subject). The respiratory signal was acquired concurrently using the bio-radar prototype and
the certified measuring equipment to serve as reference, namely the BIOPAC MP160 Data
Acquisition System with Acknowledgment 5 Software (from BIOPAC Systems, Inc.). The
BIOPAC (BPC) system is connected to an acquisition board, which have several modules
for different types of signal acquisition, such as the Electrocardiogram (ECG), breathing or
blood pressure. In this case, the respiratory signal was measured with the module RSP100C,
which uses a transducer chest band placed around the chest cavity of the subject at test. This
transducer measures the respiratory effort by analysing the instantaneous thoracic perimeter.

In order to synchronize both signals, the subjects were asked to perform a breathing
pattern composed by three deep breaths, an apnea period around 10 seconds and a slow exhale
as depicted in Figure 3.27. The final algorithm validation was performed by estimating the
respiratory rate of all 20 subjects and by determining the error in Breaths per minute (BRPM)
in relation to the result obtained with the BPC.

As mentioned in Section 3.3, the Dynamic DSP algorithm presents some limitations and
one of them stand out negatively during this testing stage. The arc center estimations can
occur in opposite sides of the arc as depicted in Figure 3.15 and hence successive windows
might present opposite solutions, adding an undesired variability degree to the overall center
estimation over time. In order to attenuate the general variability of the center estimations,
a Savitzky-Golay filter was applied to the coordinates vectors before interpolation. However,
in situations as Figure 3.15, the Savitzky-Golay filter provides intermediate values between
consecutive windows and this affects the final aspect of the signal because the arc is pushed
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Figure 3.27: Breathing pattern and trigger definition for BRD and BPC signals synchroniza-
tion.

to the complex origin. An additional cost was added to the cost function (see equation (3.7)),
but this demonstrated not to be enough.

In order to solve this problem and others that arose subsequently, different versions of the
Dynamic DSP algorithm were developed and they are summarized in Figure 3.28. In sum,

Figure 3.28: Evolution of all versions of the Dynamic DSP algorithm.

Version D1 consists on the algorithm presented in Section 3.3, which uses the Savitzky-Golay
filter to smooth the center estimations vector and uses the cubic interpolation to assign a CDC
coordinates pair to each signal sample. In Version D2 , this filter was replaced by a median
filter and the interpolation uses the nearest value instead of being a cubic interpolation. This
update revealed being more effective since it was possible to remove the CDC offsets without
altering the original signal. On the other hand, it led to two additional problems. The
median filter kept the estimations located on the opposite side of the arc concavity, leading
to phase inversions in the time-domain signal. Furthermore, the nearest value interpolation
introduces discontinuity to the signal. The discontinuity problem was solved by correcting the
phase everytime a gap occurred leading to Version D2.1 . Nonetheless, the phase inversion
problem was more challenging to solve automatically, therefore a dedicated study was carried
out.

3.4.1 Phase inversion impact

In order to understand if the phase inversions have impact in the signal rate accuracy,
the signals of the 20-subjects dataset were processed using the different variants of Version
D2 of the Dynamic DSP algorithm, and the respiratory rate was computed for the different
situations:
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• Case i) is the Version D2.1 test, where the phase inversions were corrected manually;

• Case ii) is the Version D2.2 test, where the phase inversions were not corrected at all;

• Case iii) is the Improved Version D2.2 test, where the phase inversions were not
corrected and signals were pre-processed to improve the rate results.

For this purpose, Bio-Radar (BRD) and BPC signals were divided in one-minute segments
and the respiratory rate was computed using the Zero-Crossing (ZC) method depicted in
Figure 3.29. Firstly the zero-crossing intervals were identified (marked with a green cross)
and the maximum of each interval was determined, corresponding to a peak (red dots).
The time between peaks, also known by Interbeat Interval (IBI), was computed for each
one-minute segment and a time threshold was applied afterwards to remove outliers. The
threshold was computed using half of the mean IBI over the full segment. The number of
BRPM was determined by the inverse of the median of the IBI. The same method is used
later in Chapter 5 for the heart rate computation.

Figure 3.29: Representation of the ZC method for the signal rate estimation.

For each version test, the Mean Absolute Error (MAE) and the Root-Mean-Squared Error
(RMSE) were computed and the results are presented in Table 3.7. One can verify that the
results for Case i) and Case ii) are not substantially different, therefore it can be concluded
that the phase inversions can be neglected.

Thereafter, an additional step was implemented to reduce the error in the respiratory rate
accuracy, consisting on the Case iii). Before applying the ZC method, both BRD and BPC
signals were filtered to remove noise, using a 200-order low pass Finite Impulse Response (FIR)
filter with cut frequency equal to 0.5 Hz. This filter order was selected because it provides a
20 dB attenuation for frequencies above 1 Hz, turning signals more smooth. The mean value
of the filtered signals was removed using a moving mean approach with a window length
equal to 1000 samples. This window length was selected assuming that the signal mean does
not change highly in a 10 seconds period. Finally, signals were normalized according to their
maximum amplitude and the ZC was applied. In general, the MAE and RMSE decreased
slightly in the Case iii) as it can be observed in Table 3.7. The average MAE of all subjects
was equal to 0.33 BRPM and since both BRD and BPC signals were processed through the
same approach, it is possible to conclude that the BRD signals have an accuracy identical to
the BPC.

Since the Dynamic DSP algorithm is somehow complex, the respiratory rate was computed
using the Simplified DSP algorithm for comparison purposes. The error results are shown
in the last two columns of Table 3.7. In general, the respiratory rate errors increase if BRD
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Subject ID

Dynamic DSP
Simplified DSP

Case i) Case ii) Case iii)

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

ID01* 0.21 0.28 0.20 0.27 0.17 0.25 0.13 0.19

ID02 0.22 0.36 0.22 0.36 0.17 0.31 0.64 1.35

ID03* 0.47 1.29 0.51 1.33 0.42 0.99 1.42 3.59

ID04* 0.91 2.84 0.92 2.89 0.84 2.63 0.90 2.14

ID05* 0.41 0.69 0.50 0.95 0.40 0.63 0.71 1.32

ID06* 0.18 0.27 0.18 0.26 0.14 0.20 0.15 0.20

ID07 0.21 0.38 0.21 0.38 0.20 0.37 0.25 0.44

ID08* 0.81 1.55 0.82 1.53 1.09 2.13 1.03 2.05

ID09* 0.28 0.58 0.28 0.55 0.31 0.63 0.76 1.64

ID10 0.29 0.43 0.29 0.45 0.35 0.97 0.74 2.05

ID11* 0.45 1.68 0.40 1.10 0.25 0.34 0.28 0.43

ID12 0.29 0.61 0.29 0.61 0.22 0.33 0.26 0.38

ID13 0.33 0.89 0.33 0.89 0.32 0.51 0.45 1.16

ID14 0.18 0.22 0.18 0.22 0.14 0.17 0.22 0.41

ID15* 0.15 0.29 0.16 0.23 0.16 0.30 0.22 0.32

ID16* 0.39 0.83 0.42 1.17 0.29 0.81 0.55 1.84

ID17 0.47 0.82 0.47 0.82 0.42 0.67 0.66 1.50

ID18* 0.55 1.28 0.48 1.07 0.26 0.48 0.66 1.70

ID19* 0.17 0.22 0.18 0.23 0.16 0.20 0.48 0.99

ID20* 0.18 0.28 0.21 0.31 0.24 0.51 0.38 1.02

Average 0.36 0.79 0.36 0.76 0.33 0.67 0.55 1.24

IDXX* - signals with phase inversions, Case i) test of Version D2.1 ,

Case ii) test of Version D2.2 , Case iii) - test of Version D2.2 with improved results

Table 3.7: Error of the respiratory rate in BRPM.

signals are processed with the Simplified DSP algorithm, but different results were presented
among subjects. For instance, ID01, ID04 or ID06 kept the same error values, indicating that
for these specific subjects both algorithms could be used. Nonetheless, the same is not applied
for subjects ID03, ID05 or ID16, since the errors increased, specially the RMSE. The RMSE
increase indicates the presence of outliers, i.e. signal segments with an increased discrepancy
in relation to the BPC. The reason why the signals of some subjects can be equally processed
with both algorithms but others do not, might be related with the individual variability, which
is related not only with the cardiopulmonary function [34], but also with the RBM occurring
during the experiment. The RBM is unpredictable, so in general the usage of the Dynamic
DSP algorithm is indeed more indicated, at least in longer monitoring periods.
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3.5 Final considerations

In this chapter, different DSP algorithms were proposed to remove the CDC offsets caused
by parasitic reflections and to recover the vital signs from a baseband bio-radar signal.
Throughout the different stages of this PhD work, different versions were used and they
can be mainly divided in two main algorithms: the Simplified DSP algorithm and Dynamic
DSP algorithm. Respectively, the final versions are the Version S3 for the Simplified DSP
algorithm and the Version D2.2 for the Dynamic DSP algorithm. Both simplified and
dynamic versions are based in fitting algorithms applied to the arc perceived in the com-
plex plane, in order to estimate its center coordinates and remove them accordingly. After
removing the CDC offsets, the arc position in relation to the complex plane is adjusted to
be oscillating around the 0◦ phase value and the arctangent is computed to extract the vital
signals.

It was concluded that the effectiveness of the CDC offsets removal is directly related
with the offset values estimation. Low amplitude signals do not contain enough information
to perform this task successfully. One possible solution for this problem was developed,
and it consisted of taking advantage of the forward and backward RBM, since it provokes
complete circles rather than arcs in the complex plane. The solution was indeed effective,
however it is restricted to one type of body motion, that might not occur often in real context
scenarios. Besides, the CDC offset values might change over time due to non-static monitoring
conditions, either due to the environment itself or related to the subjects instability.

In this sense, the Dynamic DSP algorithm was developed as an improved version of the
Simplified DSP one. This algorithm is robust enough to encompass the CDC offsets change
over time and to the lack of arc resolution due to low amplitude chest wall motion. For this
purpose, an arc fitting algorithm was developed and applied dynamically through a windowing
approach. This method is based on a cost function minimization that only depends on the
arc center estimation regardless on its radius. In contrast, circle fitting algorithms based on
LSF optimization, such as the LM or KA methods, are is highly sensitive to outliers leading
to center estimations within the signal samples. The developed arc fitting method is forced
to start searching for a suitable solution outside the data points and it demonstrated to be
robust in signals with low resolution.

For comparison and validation purposes, different fitting algorithms including the pro-
posed one, were tested using three monitoring scenarios. The CDC component from a total
of 1400 windows was analyzed using all fitting methods, and the proposed method did not
presented any failure case among all windows and presented only 0.2% of cases in a critical
situation. These results could be achieved using a lower number of searching points, which
enables the run time reduction. Additionally, it provides stable estimations over the full sig-
nal, as demonstrated by the standard deviation of the estimated CDC offsets. The remain
methods presented higher variability and a higher number of failure cases.

The CDC offsets estimation is performed dynamically over time through windowing, as
well as the arc rotation to force the arcs to oscillate around the 0◦. This arc rotation presented
several advantages, since thus it is possible to avoid the wraps occurrence. Although, the
Dynamic DSP algorithm was implemented and tested using offline signals, its flow allows a
real time implementation, taking a run time of 2 seconds to process full 25-minute signals.

The effectiveness of the Dynamic DSP algorithm in conditions of body motion was also
tested, and it was successful in case of sudden and sporadic motions. However, a more detailed
study is required to understand the algorithm limits in terms of body motion duration and
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body motion types.
Furthermore, the Dynamic DSP algorithm presents other limitations. The CDC offsets

estimation might occur in opposite sides of the arc concavity. If this effect is smoothed,
intermediate values are provided for consecutive windows, which forces the final arc to oscillate
over the complex origin during that instances, causing a disruption of the final signal. An
alternate version was developed to improve this aspect, which in practice neglects the window
transitions leading to phase inversions in the time domain signal. After inspection, it was
concluded that such phase inversions do not affect the signal rate computation.

Due to these issues and also due to the increased complexity of the Dynamic DSP al-
gorithm in comparison to the Simpified DSP version, a final validation was carried out by
comparing the respiratory signal error if signals are extracted with both algorithms. The
results demonstrated that the Dynamic DSP algorithm outperforms the Simplified DSP ver-
sion, since the RMSE increases from 0.67 BRPM to 1.24 BRPM if the simplified version is
used.
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Chapter 4

System Full Integration in a Car
Seat Upholstery

The work presented in this chapter was developed in collaboration with the FibEnTech
Research Unit from Universidade da Beira Interior. This work stage was dedicated to evaluate
which were the constraints of integrating the bio-radar system in a customized application,
addressing the market needs. In this context a car seat upholstery prototype was developed,
integrating textile antennas to further monitor the respiratory signal of the driver.

Part of the work herein presented was performed within the scope of the project TexBoost -
less Commodities, more Specialities1, more specifically the PPS4: Development of iETextiles,
smart solutions for sensing and monitoring in vehicular mobility. The goal of this project was
to develop a smart seat cover, containing a sensor network to monitor the driver comfort.
All sensors were integrated in the upholstery textile, including the bio-radar antennas, a
temperature sensor, a humidity sensor and a pressure sensor.

The developments of this chapter resulted in the following contributions:

• C. Gouveia, C. Loss, Z. Raida, J. Lacik, P. Pinho and J. Vieira, “Textile Antenna
Array for Bio-Radar Applications”, 23rd International Microwave and Radar Conference
(MIKON), Warsaw, Poland, p. 315-319, 2020

• C. Loss, C. Gouveia, R. Salvado, P. Pinho and J. Vieira, “Textile Antenna for Bio-Radar
Embedded in a Car Seat”, Materials, vol. 14, no. 1, p. 213, 2021

• C. Gouveia, C. Loss, P. Pinho, J. Vieira, D. Albuquerque, “Low Profile Textile Antenna
for Bio-Radar Integration into a Car Seat Upholstery”,IEEE Antennas and Propagation
Magazine, submitted for publication in July 2022.

• R. Silva, M. Midão, D. Esteves, A. Leite, P. Peixoto, C. Gouveia, P. Pinho, J. Vieira,
D. Pires, T. Silveira, C. Loss, and R. Salvado, “Vehicle seat cover with a monitoring
system,” International Patent Pending WO/2022/070 137, PCT/IB2021/059 011, Apr.,
2022.

1This work was funded by European Regional Development Fund (FEDER), through the Competitiveness
and Internationalization Operational Program (COMPETE 2020) of the PT2020 framework [Project TexBoost
with Nr. 024523 (POCI-01-0247-FEDER-024523)], in paternship with Instituto de Telecomunicações, Univer-
sidade da Beira Interior, CeNTI - Centro de Nanotecnologia e Materiais Técnicos, Funcionais e Inteligentes
and Borgstena Textile Portugal, Unipessoal Lda.
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4.1 Introduction

One possible solution to fully integrate the bio-radar setup in customized objects, is the
antenna design and the manufacture process using non-conventional substrates. Antennas
are the system element which stipulates the line-of-sight between the radar and the target.
Therefore, their full integration in the application-objects is a possible solution to enable the
system camouflage. Textiles might be used for this purpose, however the bio-radar perfor-
mance cannot be compromised and the quality of the signals should be kept accordingly.

Textile materials are thin, lightweight, low profile, and easy to adapt to any surface [76].
Planar antennas (as for the microstrip antenna case) are suitable for textile implementation,
which can be accomplished by assembling textile layers, using conductive materials for the
radiating element and the ground plane, interleaved with a dielectric material for the substrate
[79], [126]. The performance of these antennas depends on the material selection. There is
a vast diversity of materials that can be used as a substrate (woven, non-woven, knits, etc.),
depending on the desired application. Also, there is a large range of commercially available
electro-textiles, incorporating fibres, filaments, or coatings of metals, with high conductivity,
enabling the development of antennas with acceptable performance [79], [126].

Nonetheless, textile antennas must be developed with care. Textile materials are porous,
and their electromagnetic properties depend on the density of the fibres, air volume and the
size of the pores [127]. Moreover, they are also flexible and compressible, which might cause
changes in thickness and density during the manufacturing process. Thus, these impairments
should be taken into account in the antenna design [128]. For instance, it might be required to
adjust the relative permittivity value (εr), through the Microstrip Resonator Patch Method
proposed by [77]. This method consists on designing a patch antenna using an estimated εr,
manufacture it and measure its S11. The real εr value is determined through the eventual shift
observed in the measured S11 [77]. As for the substrate thickness, it is typically measured using
compressional tests [129]. Considering that some manufacturing techniques apply compression
over the antenna [78], or the antenna integration in the final application might be conducted
within a tight area, the substrate height used in simulations should not be the measured
one with the fabric at rest, but rather the average value measured under the compressional
process [130]. The manufacturing process is an important aspect as well. Beyond the different
techniques proposed in literature, it can be highlighted the laminating process [78], [79],
screen-printing [80], [81] and embroidered [82], [83]. The laminating technique is the most
common technique to manufacture textile antennas and it consists on assembling the antenna
components with thermal adhesive sheet through ironing.

Literature had already presented radar solutions using textile antennas. For example, in
[84] a radar system is fully integrated in a rescue worker garment, to perform a through-wall
target detection. For this purpose, a four-element antenna array was developed to scan the
surroundings, and the echo signals are received using an active wearable antenna. In [85]
a textile waveguide antenna is developed to perform beamforming from 7◦ to 20◦. In the
biomedical context, on-body solutions were proposed in [86], [87] to measure vital signs. In
[86] it is demonstrated the ability to detect the respiratory signal using multi-material fiber
antennas. The respiratory signal was extracted through the detection of the antenna physical
deformation due to the chest wall motion, and also through the change of the dielectric
properties from the lungs during inhale and exhale functions. Additionally, in [87] a textile
coupler is proposed for vital signs monitoring, through the evaluation of the S21 parameter
phase variation.
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Considering the vehicular case study, the bio-radar system can be used to monitor the
vital signs of the driver, reducing the probability of accidents due to sudden disease or to the
fatigue state. Solutions embracing the bio-radar application in vehicles have already been
proposed in literature [59], [106], [131]–[133]. For instance, in [131], [133] an UWB pulsed
radar was used to capture the vital signs of the car occupants, with the radar located in the
area of the rear-view mirror. In the same context, [132] used a CW radar operating at 24 GHz
to detect forgotten children on the rear bench of a vehicle. The developed sensor is mounted
in the ceiling, allowing the full coverage of the area occupied by the child. All [131]–[133]
works have used commercial radars, simply placed in the car.

Object-integrated solutions were presented in [59], [106], as a discrete alternative to cap-
ture the driver’s vital signs. In these studies, the cardiac and respiratory signals were acquired
from the back of the subject under test. The vital signs were captured through active near-
field coherent sensing, wherein a significant part of the RF energy couples into the human
body. In this case, the motion of the body organs alters their dielectric properties accordingly,
affecting the near-field coupling between the transmitting and receiving antennas. Nonethe-
less, some drawbacks of body coupling technique were identified in [59]. For instance, the
direct contact with the body can cause the antenna near-field to be loaded by the dielectric
behavior of the biological tissues, so it is necessary to keep a certain distance. Body coupling
methods also restrict the range of possible upholstery materials since leather induces high
attenuation to signals, according to [59]. Furthermore, the direct contact with the subject’s
body can affect the results since the body motion can cause friction over the antennas, leading
to their damage in a long term perspective. Thus, the exact location of the antennas should
be selected with care.

Aiming to develop of a fully operational prototype, concurrently discrete and comfortable
for the user, in this work, a trilaminate upholstery fabric was designed and manufactured,
integrating two textile antennas to be used for transmission and reception in a bio-radar
system. The upholstery is then applied to a car seat to monitor the respiratory signal of the
subject. An example of the proposed prototype is depicted in Figure 4.1.

Figure 4.1: Illustration of the proposed upholstery prototype.

In order to reach the solution depicted in Figure 4.1, first of all it was necessary to select the
appropriate location for the antennas in the car seat. Then, different prototype versions were
developed aiming to identify the most suitable antenna design for this application. Figure 4.2
summarize the different prototype versions developed for each work stage.

First of all, Version P1 used textile single patch antennas and their performance to
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Figure 4.2: Evolution of the different upholstery prototype versions developed for this case
study.

capture vital signs was compared with conventional-substrate ones. After validating the
textile antennas usage, the Version P2 was developed in order to identify which is the most
appropriate antenna directivity for this specific case study. Finally, Version P3 consisted
on the upholstery final prototype, developed with the antennas embedded. A final validation
was carried out by measuring the vital signs of different subjects with the final prototype and
compare them with a certified measuring equipment.

4.2 Selection of the antennas location in the car seat

Typically, bio-radar systems are operated in front of the subject, where the chest wall
displacement amplitude is maximum [39], [134]. This specific case study requires the bio-
radar operation in an alternate location, therefore a series of preliminary tests were conducted
aiming to select the most appropriate position.

For this purpose, conventional-substrate antennas were placed in different locations of the
car seat. The used antennas are shown in Figure 4.3 and they were previously developed
in [135]. They consist on LHCP microstrip patch antennas operating at 5.8 GHz. They

are a circular and a square patch and their substrate is the Rogers RO4360G2
TM

(Rogers
Corporation, USA), with εr = 2.55, tan δ = 0.0038 @ 10 GHz and 0.78 mm of height.
These antennas have circular polarization, which is an important feature for the bio-radar
applications, as previously highlighted in Section 2.3.

(a) (b)

Figure 4.3: LHCP antennas using conventional-substrate for 5.8 GHz from [135]: (a) circular
patch antenna and (b) squared patch antenna.

Figure 4.4 presents the tested locations, which are the following:
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• Test 1 - Exterior part of the side lumbar support (Figure 4.4a). The center between
the transmitting and receiving antennas was aligned with the chest wall of the subject;

• Test 2 - Interior part of the side lumbar support (Figure 4.4b). This test aimed to
verify the impact of the extracted signal if the antennas are closer to the human body;

• Test 3 - Exterior part of the back lumbar support (Figure 4.4c);

• Test 4 - Interior part of the seat pad. In this case the antennas were slightly tilted
towards the subject (Figure 4.4d).

(a) (b) (c) (d)

Figure 4.4: Tested positions for the antenna location selection: (a) Test 1 - side lumbar
support (exterior), (b) Test 2 - side lumbar support (interior), (c) Test 3 - back lumbar
support, (d) Test 4 - seat pad.

The respiratory signal of a subject was measured on each test, following the Car Seat
Protocol as represented in Figure 4.4a. Signals were acquired during 20 seconds and then
processed using the Simplified DSP algorithm (see Section 3.2). After extracting the respira-
tory signal, their mean value was removed and the signals were normalized according to their
maximum amplitude. The obtained time-domain signals are shown in Figure 4.5.

The signals in Figure 4.5 demonstrate that it is possible to measure the respiratory signal
from all the tested locations. As it was discussed in Chapter 3, it is difficult to drive conclu-
sions regarding the signal amplitude and SNR looking only to the time domain signals, since
the extraction algorithms and the arc position in the complex plane have a direct impact in
the signal amplitude. Therefore, more conclusions can be driven from the raw complex sig-
nals, presented in the polar diagram of Figure 4.6. First of all, the signal containing the lowest
CDC offsets and an arc with high amplitude was the signal from Test 4, which was somehow
expected since the antennas are in line-of-sight with the chest wall front. Test 1 and Test 2
presented slightly higher CDC offsets and the measured sideways chest wall displacement
produced arcs with a decreased amplitude when compared to the other tests. The increased
CDC offsets can be justified by the reduced radar cross-section area. Finally, Test 3 was the
one presenting the highest CDC offsets, which were probably due to the metallic structure of
the car seat.

Although Test 1 was the one presenting the lowest arc amplitude, the exterior part of
the side lumbar support was still the selected location for the following reasons: when located
in the exterior part of the car seat, a relative distance is kept between the antennas and
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(a) (b)

(c) (d)

Figure 4.5: Extracted respiratory signals for each position test: (a) Test 1, (b) Test 2, (c)
Test 3, (d) Test 4.

Figure 4.6: Polar diagram of the raw signals from all the conducted position tests.

the subject, assuring the extraction of vital signs based in the micro-Doppler effect and also
the far-field operation, if the final antennas are small enough. Furthermore, if the antennas
would be located in the interior part of the side lumbar support as in Test 2, the body friction
could generate additional noise and in long term the antennas could be more damaged. In
contrast with the Test 4, the selected location assures the comfort of the subject, since for
the Test 4 case the subject should keep the legs straddled, which could be uncomfortable for
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long periods of time. Finally, in the Test 3 the antennas were located behind the metallic
structure of the car seat, which could generate an unpredictable multipath environment that
could have a destructive behavior on the received signal. But since the goal is to integrate
them in the upholstery, over the car seat structure, another impairment arises because the
antennas would need to be too close the subject’s body as well.

4.3 Textile antenna validation for vital signs acquisition

4.3.1 Textile single patch antennas design

After selecting the appropriate location for the antennas in the car seat, the usage of textile
antennas in this case study was validated. For this purpose, a comparison was performed
between conventional-substrate antennas (namely the antennas presented in Figure 4.3 [135])
and textile-substrate antennas (prototype Version P1 ).

The textile antennas were manufactured using a Substrate Integrating the Ground Plane
(SIGP), based on the 3D weft-knitted spacer fabric. This textile integrates the dielectric
substrate and the conductive ground plane in a single sheet, as showed in Figure 4.7. The
relative permittivity of the SIGP were re-evaluated for 5.8 GHz using the Microstrip Resonator
Patch Method [77] and a more detailed information can be found in [136].

Figure 4.7: SIGP textile for the antenna substrate composed by a dielectric part in white,
which is a 3D weft knitted spacer fabric and the integrated conductive layer in gold color
[136], [137].

Its characteristics are the following: it has a substrate height equal to h = 1.957 mm, with
a relative permittivity εr = 1.3 and tan δ = 0.006 @ 2.25 GHz [127]. The integrated ground
plane presents a thickness equal to t = 0.043 mm and a conductivity equal to σ = 54 kS/m.
The patch was manufactured using a Pure Copper Polyester Taffeta Fabric (PCPTF) (Less
EMF Inc., USA), with a thickness equal to t = 0.08 mm and conductivity equal to σ =
62.5 kS/m.

For a fair comparison, the antennas design of Figure 4.3 [135] was replicated for the textile
antennas, which were subsequently simulated and optimized in the CST Microwave Studio
2017, namely using a circularly-shaped patch with slots (Figure 4.8a), and a square patch
with truncated corners, (Figure 4.8b), both with LHCP.

Figure 4.8 shows both circular and squared designs. These antennas were fed through a
feeding line, which is composed by a quarter wavelength transformer identified by line L and
a 50 Ω line identified by T. The final stage of the simulation was performed using a SMA
connector model designed in CST software. Both textile antennas were 70×70 mm and their
final dimensions are presented in Table 4.1.
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(a) (b)

Figure 4.8: Textile LHCP antennas using SIGP [136]: (a) circular patch antenna and (b)
squared patch antenna.

Circular Patch Antenna Squared Patch Antenna

R1 R2 S L T WL WT e W L T WL WT

11.60 9.35 4.10 14.00 8.85 3.00 8.30 5.50 20.40 14.50 8.50 3.65 8.30

Table 4.1: Final dimensions of both optimized textile antennas [mm] [136].

After their optimization in the simulation environment, both textile antennas were man-
ufactured using the laminating technique [78] in the FibEnTech Research Unit from Uni-
versidade da Beira Interior. Thermal adhesive sheet was used to assemble all the antenna
components, using an industrial ironing press under 10 bar at 200◦C, and during 6 seconds
without steam [128]. All parts of the antenna were cut by a laser cutting machine to ensure
geometrical accuracy [128]. To feed the antennas, a SMA connector was used.

4.3.2 Textile single patch antennas performance evaluation

After manufacturing both antennas their performance was evaluated. Starting with the
S11 parameters, they were measured using a Vector Analyzer Network, namely the Keysight
PNA-X N5242A and they are shown in Figure 4.9 and Figure 4.10, for the circle and square
patch respectively. It is possible to observe that the measured results are slightly shifted in
frequency, in relation to the simulated ones. Nonetheless, acceptable S11 values were obtained
for 5.8 GHz, namely -12.43 dB for the circle patch and -15.15 dB for the square patch. Beside
the S11, the radiation pattern was also measured and it is presented in Figure 4.11.

It is possible to observe that once again the achieved results are in agreement with the
simulated ones. Circular patch presented a measured HPBW equal to 81◦ while the simulated
was equal to 79.9◦. The measured HPBW for the squared patch was equal to 69◦, while the
simulated was equal to 68.7◦. The gain was also measured and both antennas presented
results similar to the simulated ones. The simulated gain corresponding to the circular patch
antenna was equal to 6.6 dBi, while the measured one was equal to 6.2 dBi. The squared
patch antenna presented a simulated gain equal to 7.2 dBi and the measured one was equal to
8.2 dBi. Finally, since these antennas have circular polarization the axial ratio was measured
and the results are shown in Figure 4.12. The minimum measured axial ratio of the circular
patch antenna was centered in 5.8 GHz as it was simulated, having a measured magnitude
equal to 4.12 dB, while the simulated was 0.44 dB. On the other hand, the same was not
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(a) (b)

Figure 4.9: Circular patch textile antenna [136]: (a) manufactured antenna and (b) S11

results.

(a) (b)

Figure 4.10: Squared patch textile antenna [136]: (a) manufactured antenna and (b) S11

results.

(a) (b)

Figure 4.11: Simulated and measured normalized radiation pattern [136]: (a) circular patch
antenna and (b) squared patch antenna.

observed for the squared patch case. The measured axial ratio minimum was centered at 5.9
GHz and the magnitude at 5.8 GHz was equal to 4.53 dB, while the simulated one was equal
to 0.93 dB. Thus, in practice the antennas present an elliptical polarization [108].

Overall the measured antenna parameters were close to the simulated ones. The eventual
deviations were mostly observed in the S11 parameter and in axial ratio, and they can be
due to several factors. Textile antennas are heterogeneous and highly porous, and according
to [128] the superficial roughness generates air gaps between the dielectric substrate and
the patch, leading to inaccuracies in the results. Furthermore, in [77] it is also pointed out
that errors can be introduced by the SMA connector soldering, as well as the the manual
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(a) (b)

Figure 4.12: Simulated and measured axial ratio [136]: (a) circular patch antenna and (b)
squared patch antenna.

procedure of the manufacture. Hence, more inaccuracies in the measured results are expected
when compared with the conventional-substrate antennas. As for the results obtained in
the axial ratio, they could be worsened by the design used to induce circular polarization,
since single-feed techniques were used and they have as drawback the narrowband axial ratio
performance [108].

4.3.3 Respiratory signal acquisition using textile antennas

Thereafter, the usage of textile antennas in the bio-radar framework was validated by
acquiring the respiratory signal of one subject following the Car Seat Protocol as depicted
in Figure 4.4a. The same measurement was performed using the textile and conventional
substrate antennas, where in both cases the antennas were placed in the exterior part of the
side lumbar support and approximately in the same location, as showed in Figure 4.13.

(a) (b)

Figure 4.13: Position of the transmitting and receiving antennas in the car seat, to acquire the
respiratory signals using [136]: (a) conventional-substrate antennas and (b) textile-substrate
antennas.
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Signals were once again processed with the Simplified DSP algorithm, and the obtained
breathing signal is shown in Figure 4.14. One can observe that textile antennas have the same
capability to detect the respiratory signal as the conventional-substrate antennas. Eventual
differences on both signals amplitudes were expected, once the respiratory signals were not
acquired at the same time. During the testing antennas switch, the same location was ap-
proximately kept but the exact illumination area was impossible to ensure.

Figure 4.14: Comparison of the respiratory signals acquired using conventional and textile
substrate antennas [136].

The amplitude differences observed in Figure 4.14 raised other important aspect respect-
ing to the integration of the bio-radar in a specific application. It is necessary to have a
considerable level of flexibility to equally capture the subject’s vital signs regardless his/her
physiognomy. More specifically, it is important to align the antennas beam with the subject’s
chest wall, however in a real context it is not feasible to calibrate the antennas position every
time the subject changes. In this sense, this first test served also to determine which might
be the most appropriate location of the antennas in the side lumbar support, by identify-
ing where is the best detection point common to the majority of the population at hand.
Then, an additional validation step was performed by acquiring the respiratory signal of six
different subjects, with different physical statures, without adjusting the antennas position.
Table 4.2 describes the subjects physical characteristics, which beside the chest wall perime-
ter and height, it was also considered a Distance D corresponding to the distance between
the diaphragm and the midpoint between the transmitting and receiving antennas. The Dis-
tance D is an important parameter since it can vary largely regardless of the subject’s height.
Furthermore, this measure shows the expansion that the radar is evaluating, which can vary
between the belly or the chest wall motions. For people with larger chest cavities, the radar
could also measure the back motion, rather than the chest wall leading the signals with a
decreased amplitude.

The obtained respiratory signals of each subject can be observed in Figure 4.15. With
this experiment, it was possible to detect the respiratory signals of all subjects regardless of
their physical structure, which means that the signal can be acquired even if the detection
point is not optimal for all subjects. Considering the same signal duration (30 seconds), it
is possible to distinguish diverse characteristics among the detected signals. For instance,
different respiratory rates were obtained, where the subject 2 presented a lower respiratory
rate, and subject 4 presented a higher breathing rate. Other breathing patterns can also
be identified, for example, subject 5 had laughed after 15 seconds of the experiment, which
caused a sudden slope on the waveform. As the positioning of the antennas was not changed
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Subject No. Gender Chest wall perimeter [cm] Height [m] Distance D [cm]

1 Female 70 1.50 7
2 Male 94.1 1.69 16
3 Male 84.5 1.73 16.5
4 Female 74.5 1.65 11.5
5 Female 75.5 1.56 12
6 Male 82 1.60 13

Table 4.2: Physical description of the subjects under test to validate the best antennas location
in the side lumbar support [136].

Figure 4.15: Respiratory signals of six subjects captured without changing the textile antennas
position (adapted from [136]).

between subjects, signals showed different peak-to-peak amplitudes, different mean values,
and different SNR levels as expected, when compared with the signal in Figure 4.14.

The ability to equally acquire the vital signs of different subjects is mainly related with the
antennas HPBW. In this case, single patches were used which presented a wider beamwidth.
On the other hand, and as seen in Chapter 2, directive antennas might provide a better SNR,
at least during a traditional bio-radar operation (when the antennas are located in front of
the subject). Considering now this specific application, in the next Section it is verified if the
usage of directive antennas can be equally advantageous.

4.4 Selection of the antenna directivity for customized bio-
radar applications

4.4.1 Textile antenna arrays design

Higher directivity can be obtained with a patch antenna array. A directive beam allows
the energy to be focused on the subject’s chest wall, decreasing the reception of parasitic
reflections that occur within the monitoring environment. Nonetheless, narrow beams imply
antennas with larger dimensions, which can be an impairment for the bio-radar integration
in a specific application. For instance, the side lumbar support have a restricted area where
the antennas can be located, in order to guarantee the proper alignment with the majority of
the population. Thus, 2 × 2 textile antenna arrays was the selected design, since it respects
a balanced trade-off between directivity and antennas dimensions.

Two textile antenna arrays were designed, manufactured and tested (prototype Version
P2 ). The developed antennas are circularly polarized, where one is LHCP and the other is

76



RHCP, respecting the conclusions reached in Chapter 2. The SIGP textile material used in
the previous section for the development of single patches presented a slightly higher height.
In this sense, a new textile was also tested in this stage. The array was simulated on CST
Microwave Studio software using as dielectric substrate the PDE Black (Borgstena Textile
Portugal, Portugal), which is a 100% polyester warp knitting, with h =0.98 mm, εr = 1.385
and tanδ = 0.0068 @ 5.8 GHz. For the conductive parts, the PCPTF was also used.

Figure 4.16 shows the arrays designs. To reach the depicted solution the same approach
presented in Section 2.4 was conducted. A single element was firstly optimized using the
truncated square design. The feeding network was developed afterwards, considering the input
impedance of the single element. In both antenna cases, it was equal to 100 Ω, therefore the
feeding lines of the patches could be simple 100 Ω lines (identified as L1 and L2 in Figure 4.16).
The upper part of the array was connected with the lower part by a quarter wavelength
transformer, identified as L3 line, and a 100 Ω line (L4 ). Finally, to introduce the SMA
connector, a 50 Ω line identified as L5, was introduced in the middle of L4 line. The feeding
network was designed considering that the lines should be as narrow as possible to avoid
parasitic effects, but they should also be wide enough to enable a successful manufacturing.
At the end, the full array was optimized, where the patch centers were 3λ/4 apart from
each other. This distance was the result of a balanced trade-off between optimal antenna
parameters, such as gain, HPBW and SLL, and the overall antenna dimensions. The SMA
connector model was also included in the final stage of the full array simulation.

Figure 4.16 shows the final designs of the LHCP and RHCP antennas and Table 4.3
shows their dimensions, where l and w are the length and width of the feeding network lines,
respectively.

(a) (b)

Figure 4.16: Textile array antenna design [138]: (a) LHCP antenna, (b) RHCP antenna.

Antenna L e
L1 L2 L3 L4 L5

l w l w l w l w l w

LHCP 20.5 5.2 11.5 1.15 37.643 1.15 14.2 2.05 9.243 1.15 4 3.9

RHCP 20.5 5.2 11.5 1.15 37.643 1.15 13.5 1.96 10.643 1.15 4 3.9

Table 4.3: LHCP and RHCP textile antenna arrays dimensions [mm] [138].

After the antenna array optimization, the antennas were manufactured using the laminat-
ing technique previously described and they can be seen in Figure 4.17.
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Figure 4.17: Manufactured LHCP and RHCP textile antenna arrays [138].

4.4.2 Textile antenna arrays performance evaluation

Several antennas parameters were measured in order to evaluate their performance in com-
parison with the simulated ones. The S11 presented in Figure 4.18 shows that the resonance
frequency is centered on 5.8 GHz for both antennas, with an acceptable magnitude. The S11

is bellow -10 dB as desired, more specifically equal to -11.41 dB for the LHCP antenna and
equal to -15.81 dB for the RHCP antenna.

(a) (b)

Figure 4.18: Simulated and measured S11 parameters for the textile antenna arrays [138]: (a)
LHCP antenna, (b) RHCP antenna.

Figure 4.19 shows the measured normalized radiation pattern. Both LHCP and RHCP
antennas presented similar patterns in comparison to the simulated ones. Furthermore, the
HPBW and the SLL parameters were computed from the practical measures, to support the
accordance between the obtained results and simulations. Starting with the LHCP antenna,
the simulated HPBW was equal to 33.5◦, while the measured one was equal to 34◦. The
simulated SLL was -15.2 dB, and the measured was -14.24 dB. For the RHCP antenna, the
simulated HPBW was equal to 32.5◦ and the measured one was equal to 35◦. The simulated
and measured SLL were -13.6 dB and -14.40 dB, respectively.

On the other hand, this time both antenna gains were considerably below the expected.
The simulated gain of both antennas was equal to 10.4 dBi, but the measured for the LHCP
antenna was equal to 4.7 dBi and for the RHCP antenna was equal to 7.9 dBi. The axial
ratio of the antennas was also measured and the results are presented in Figure 4.20. Both
antennas presented axial ratios centered at 5.8 GHz. The measured magnitude for the LHCP
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(a) (b)

Figure 4.19: Simulated and measured normalized radiation pattern for the textile antenna
arrays [138]: (a) LHCP antenna, (b) RHCP antenna.

(a) (b)

Figure 4.20: Simulated and measured axial ratio for the textile antenna arrays [138]: (a)
LHCP antenna, (b) RHCP antenna.

Figure 4.21: S21 parameter between LHCP and RHCP textile antennas arrays [138].

antenna was equal to 3.3 dB, while the simulated was 0.3 dB. As for the RHCP antenna, the
measured magnitude was equal to 5.6 dB and the simulated was 0.14 dB.

Finally, since both transmitting and receiving antennas are located side by side and rela-
tively close together to guarantee a monostatic radar operation, the cross-talk was evaluated
by analyzing the S21 parameter, which is shown in Figure 4.21. This parameter was measured
with both antennas located in the monitoring position (see Figure 4.22). By analyzing the
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S21 parameter graph it is possible to conclude that transmitting and receiving antennas are
not affected with cross-talk, being the S21 equal to -54.14 dB at 5.8 GHz.

Similarly to what was observed in the single patch antennas manufactured with the SIGP
textile, the axial ratio was the parameter that deviate the most from the simulated one.
Besides the axial ratio narrowband issue pointed out previously [108], these antenna arrays
were more complex to fabricate since some of the feed network lines were too thin. Eventual
differences in the line width or their bent disposition could have influence on the axial ratio
result. Furthermore, the antennas gain was also severely affected and this could be related
not only with the manufacturing process, but also with the textile roughness, which is more
evident than the one present in the SIGP textile.

4.4.3 Respiratory signal acquisition using textile antenna arrays

The developed antenna arrays were then used to acquire the respiratory signals of four
different subjects in the same conditions as the ones from the SIGP single patch antennas:
first of all an optimal detection point was identified commonly for all subjects and the vital
signs were acquired while each subject was seated (see Figure 4.22). The description of the
physical characteristics of the subjects considered for this test are presented in Table 4.4.

Signals were processed in MATLAB with the Simplified DSP algorithm. Figure 4.23 shows
the obtained signals during 20 seconds, where the antennas position was not changed between
subjects. Once again, it was possible to acquire vital signs of different subjects and notice
different rates considering the same time period. Nonetheless, in contrast with the single
patch antennas, the identification of the optimal detection point was harder to find due to
the increased antenna size and directivity. In this sense, antennas with high directivity are
not advantageous for this specific context, since the vital signs acquisition performed sideways
is restricted to a very limited detectable area.

Subject No. Gender chest wall perimeter [cm] Height [m] Distance D [cm]

1 Female 74.5 1.65 11.5
2 Female 70 1.50 7
3 Male 82 1.60 13
4 Female 75.5 1.56 12

Table 4.4: Physical description of the subjects considered to test the textile antenna arrays.

4.5 Development of a car seat upholstery with embedded bio-
radar antennas

From the preliminary results obtained in Section 4.3 and in Section 4.4, one had concluded
that single patch antennas are the most appropriate option for this case study, rather than
antenna arrays. Larger beamwidths enable an easier identification of the optimal detection
point common to the majority of population. Two different textiles were used, being one
the SIGP and the substrate PDE Black, respectively. The performance of the antennas
manufactured with both textiles was similar, but the PDE Black ones stand out with worse
results in the antenna gain.

Considering the conclusions driven in the latter sections, a fully operational upholstery
prototype is now proposed (prototype Version P3), which is concurrently discrete and com-
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Figure 4.22: Position of the LHCP and RHCP antenna arrays in the car seat to acquire
respiratory signals.

Figure 4.23: Respiratory signals of four subjects without changing the textile antenna arrays
position.

fortable for the user. For this purpose, a trilaminate upholstery fabric was designed and
manufactured integrating the transmitting and receiving textile antennas. Smaller single
patch antennas were designed using a 3D spacer knit textile. The manufacturing process of
the proposed prototype was optimized and a discrete feeding solution was explored to avoid
the usage of bulky connectors, namely the usage of a coaxial cable welded directly to the
antenna.

At the end, the performance of the prototype was evaluated in two stages:

1. Two versions of the same prototype were characterized through practical measurements,
aiming to compare the performance of the feeding technique, where Prototype 1 used
antennas fed with a conventional SMA connector and Prototype 2 used the coaxial cable
welded directly to the antennas;

2. The respiratory signal of six different subjects was measured simultaneously with the
bio-radar and a certified measuring equipment, while they were seating in a car seat
containing the final prototype (Prototype 2).
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4.5.1 Upholstery trilaminate composition and antenna design

Aiming the use of the bio-radar for vehicular applications, the textile patch antennas
were fully integrated into the trilaminate upholstery material that composes the car seat
cover. Synthetic textile materials were used, due to the low interaction with environmental
humidity [139].

Figure 4.24a depicts a conventional laminated car seat upholstery material, which is com-
posed by three different materials: top-layer (exterior fabric), foam layer, and scrim back-layer
(lining). In the proposed prototype, the developed antennas were integrated between the foam
and scrim back layers, as demonstrated in Figure 4.24b. Additionally, for a practical and re-
alistic implementation, a textile microwave absorbing material was added behind the ground
plane of the antenna, to insulate the signals coming exclusively from the monitored subject’s
body. The preliminary tests conducted to validate the effectiveness of this procedure are
reported further in Section 4.5.3.

(a) (b)

Figure 4.24: Laminated layers that composes the upholstery material: (a) Conventional lam-
inated material design, (b) New developed laminated material.

The materials used to built proposed upholstery solution (Figure 4.24b), are the following:

1. Top-layer: 100% polyester weft-knit, named Dots Scout Tabora (Borgstena Textile
Portugal), with 0.92 mm of thickness, εr = 1.10 and tan δ = 0.005 @ 5.8 GHz;

2. Foam layer: 100% polyurethane foam, SF455mx (Borgstena Textile Portugal), with
3.91mm of thickness, εr = 1.35, and tan δ = 0.010 @ 5.8 GHz;

3. Absorbing layer: 100% carbon fibers non-woven material, named Laminated Mi-
crowave Absorbing Sheet (Less EMF, USA), with 0.445 mm of thickness and conduc-
tivity equals to 740 S/m;

4. Antenna’s dielectric substrate: 3D spacer knit (LMA, Portugal) with 2.65 mm of
thickness, εr = 1.15 and tan δ = 0.007 @ 5.8 GHz;

5. Antennas conductive parts: Pure Copper Taffeta Fabric (Less EMF, USA) with
0.08 mm of thickness and conductivity equals to 62600 S/m [79];

6. Scrim back-layer: 100% polyester circular knit, P22905B (Borgstena Textile Portu-
gal), with 0.09 mm of thickness, εr = 1.08, and tan δ = 0.015 @ 5.8 GHz.
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In regard to the antenna design, a squared patch with a rectangular slot at the bottom was
the selected approach aiming to reduce the overall antenna size. Antennas were fed directly
in the patch rather than using microstrip lines. Similarly to what has been performed so far,
the transmitting and receiving antennas had crossed circular polarization, where the RHCP is
induced by feeding on the right side (in relation to the slot) and LHCP is induced by feeding
on the left side.

The antenna design process was divided into three stages, as illustrated in Figure 4.25:

• Stage 1: A single patch was tuned using only the 3D spacer fabric as dielectric substrate
and the PCPTF for the conductive parts. In this stage, the RHCP and LHCP antennas
were optimized separately;

• Stage 2: The remaining upholstery layers were added afterwards. The absorptive layer
was simulated as a lossy metal and it affected the antenna resonance slightly. Hence
both RHCP and LHCP antennas were re-optimized accordingly;

• Stage 3: Both RHCP and LHCP antennas were gathered to share the same substrate,
as shown in Figure 4.25b and 4.25c. Each antenna had its exclusive ground plane,
and at this stage, a model of an SMA connector was included to robustly simulate the
antenna feeding.

(a) (b) (c)

Figure 4.25: Final textile antenna model considered in the simulations: (a) Stage 1, (b) Stage
2 and 3: Front side, (c) Stage 2 and 3: Back side.

The final dimensions of the optimized prototype are presented in Figure 4.26 and in Ta-
ble 4.5. The distance P is equivalent to 3λ/4, and it was selected having in mind a balance
between the antennas’ mutual coupling and the space that they would occupy in the car seat
side lumbar support. Following the same conclusion regarding directive antennas, the trans-
mitting and receiving antennas should be as close as possible to guarantee the illumination
of the best sideways chest wall detection point.

After the optimizing the Stage 3 antennas, the prototypes were manufacture using the
laminating technique. All laminating steps were made using a industrial ironing press, under
5 bar, at 110◦C. To ensure the geometric stability of the conductive parts, the patch and
the ground plane were cut by a laser cutting machine. Two equal prototypes were man-
ufactured to further evaluate the effect of the feeding type on the antenna’s performance.
The Prototype 1 was fed using a conventional SMA connector and the Prototype 2 was fed
using a coaxial cable welded directly to the patch antenna. The manufacturing process of
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(a) Front (b) Back

Figure 4.26: Layout of the simulated prototype containing the final textile antennas.

Patch dimensions
w sW sL A B

19.58 4.59 4.41 2.72 4.80

Prototype dimensions
cW cL P gW

117.48 78.32 39.97 39.16

Table 4.5: Dimensions of the prototype containing the final textile antennas (in [mm]).

Prototype 2 was thorough, with a view to guarantee the mechanical robustness of the feeding
point and simultaneously provide a low profile appearance to the prototype. The coaxial
cables were prepared, stripping their layers and then the following steps were implemented
(see Figure 4.27):

1. The ground planes were laminated to the substrate;

2. The metallic shield of the cables was welded to the ground planes;

3. The cables’ dielectric insulators were cut, adjusting their height to the substrate’s face.
Subsequently, the patches were laminated to the substrate;

4. The center conductors of the coaxial cable were cut and welded on the patch;

5. The absorbing material and the foam layer were laminated to the ground plane;

6. To accommodate the coaxial cables, a small cut on the foam was performed, and the
cables were folded;

7. The other textile layers were laminated to the antenna, according to the scheme pre-
sented in Figure 4.24.

The manufactured prototypes are shown in Figure 4.28.

4.5.2 Upholstery embedded antennas performance evaluation

The antenna parameters of the two prototypes were measured. The S11 and S21 param-
eters were firstly measured to verify the resonant frequency tuning and the mutual coupling
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Figure 4.27: Illustration of the steps conducted for the Prototype 2 manufacture.

(a) (b)

(c) (d)

Figure 4.28: Manufactured prototypes containing the final textile antennas: (a) Prototype 1
front view, (b) Prototype 1 back view, (c) Prototype 2 front view, (b) Prototype 2 back view.

between the RHCP and LHCP antennas. For the Prototype 2, the VNA was calibrated using
a coaxial cable exactly equal to the one welded to the antenna.

The results for S11 and S21 are shown in Figure 4.29. Starting with the S11 parameters,
the Prototype 1 presented -12.17 dB for the RHCP antenna and -13.93 dB for the LHCP
antenna at 5.8 GHz. The S11 values obtained for the Prototype 2 were -20.56 dB for the
RHCP antenna and -14.05 dB for the LHCP antenna. The differences observed between both
prototypes might be due to a slight deformation in the feeding point zone in Prototype 2
caused by the pressure of the coaxial cable in that zone. In this specific case, the patch
deformation provided a contributing effect in the S11 magnitude. The results presented in
Figure 4.29b show that neither prototypes have mutual coupling. While the simulated S21
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(a) (b)

Figure 4.29: Simulated and measured S-parameters for Prototype 1 and Prototype 2: (a) S11

parameter, (b) S21 parameter.

(a) (b)

(c) (d)

Figure 4.30: Simulated and measured normalized radiation pattern for Phi = 0◦: (a) Proto-
type 1 RHCP, (b) Prototype 1 LHCP, (c) Prototype 2 RHCP, (d) Prototype 2 LHCP

was equal to -30.9 dB, the Prototype 1 and Prototype 2 presented a S21 equal to -32.9 dB
and -28.9 dB measured at 5.8 GHz, respectively.

Figure 4.30 shows the measured normalized radiation pattern in comparison with the
simulated one. Both prototypes were measured and it is possible to observe that neither
feeding approaches have a notorious impact in the radiation pattern. All measures are close
to the simulated one, where the Prototype 1 antennas are the most identical to each other.
On the other hand, more differences can be perceived in the Prototype 2, but they are not
predominant. The simulated gain was equal to 8 dBi for both LHCP and RHCP antennas.
The measured gain for the Prototype 1 was equal to 7.16 dBi and 7.50 dBi for the LHCP
and RHCP antennas, respectively. In regard to Prototype 2, the measured gain was equal to
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(a) (b)

(c) (d)

Figure 4.31: Simulated and measured axial ratio: (a) Prototype 1 LHCP, (b) Prototype 1
RHCP, (c) Prototype 2 LHCP, (d) Prototype 2 RHCP.

4.36 dBi and 5.99 dBi for the LHCP and RHCP antennas, respectively.

Finally, Figure 4.31 presents the axial ratio results for all the antennas. In this case,
Prototype 1 and Prototype 2 presented different behaviors. First of all, the Prototype 2 was
the one presenting the lowest axial ratio values, being 3.15 dB and 1.60 dB for the LHCP and
RHCP antennas, respectively. The RHCP antenna presented its minimum axial ratio value
centered in 5.8 GHz, while in the LHCP antenna the frequency presenting the minimum
value is shifted to approximately 5.85 GHz. Once again, these differences might be related
with the cable position and the pressure made in the feeding point. On the other hand, the
Prototype 1 antennas presented more similar results between each other. The LHCP and
RHCP antennas presented an axial ratio equal to 3.70 dB and 3.62 dB respectively, and both
antennas presented its minimum axial ratio value at 5.7 GHz.

The antenna parameters shown in Figure 4.29-4.31 demonstrated that the differences ob-
served in both prototypes are not significant. The only effect that the cable feeding approach
has in the antennas performance is the gain decrease, which is still lying within acceptable
values. Therefore, the coaxial cable directly welded to the antenna (Prototype 2) can be used
as a low profile feeding method.

4.5.3 Insulation tests

In Section 4.2 the side lumbar support was the selected location for the textile antennas.
The antennas can be either located on the right side of the car seat, nearby the side passenger,
or on the left side near the door. This latter location has the disadvantage of being near an
airbag. Hence in case of an accident, the airbag impact could damage the system. Therefore,
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to preserve the bio-radar functioning in case of a car accident, the right side was the selected
one. However, an issue arises from the selected location. Since antennas also have back
side lobes, any motion from the side passenger is also received along with the vital signs
acquired by the frontal lobe. This can cause additional noise to the received signal and might
compromise the results. Therefore, proper insulation should be performed, to extract signs
with superior quality.

To evaluate this issue, a series of practical experiments were conducted in a laboratory
environment to verify the effectiveness of the signals insulation. The respiratory signal of one
subject (Subject 1) was acquired while seating in the car seat to simulate the driver position.
Meanwhile, another subject (Subject 2) located next to Subject 1, simulating the passenger,
moves randomly and on purpose. The experiment setup is depicted in Figure 4.32.

Figure 4.32: Setup used to test the effectiveness of the antenna insulation.

These insulation tests were conducted in two stages:

1. The same test was performed with and without a microwave absorbing material between
the antennas’ ground plane and Subject 2 (side passenger), which moved in a specific
moment for both cases;

2. The effectiveness of the final prototype was tested after being manufactured. The
stage 1. was repeated, but this time with and without the Subject 2 moving.

The first stage of the insulation tests served as a proof of concept, so an open-cell polyurethane
foam (typically installed on the inner walls of the anechoic chambers) was used as microwave
absorbing material. On the other hand, the absorbing material used in the second stage is
already included in the prototype, as explained in Section 4.5.1.

In the first stage, each experiment lasted 35 seconds and Subject 2 has moved between
the 20th and the 30th second. The resultant signals are presented in Figure 4.33. The exact
moment containing the Subject’s 2 motion is highlighted in orange. Figure 4.33a, shows that
if the antenna is insulated using only its ground plane, the eventual motions performed by
the side passenger are perceived as noise in the extracted signal. On the other hand, as shown
in Figure 4.33b, if a microwave absorbing material is incorporated behind the ground plane,
the antenna insulation is reinforced and those movements are no longer detected.

The same conclusion was verified after conducting the second stage of the insulation
tests. In this case, the absorbing material was always attached between the ground plane
and the foam layer of the upholstery. The respiratory signals were acquired firstly without
any purpose movements from the Subject 2, and then with the movements. These tests were
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(a) (b)

Figure 4.33: Respiratory signal demonstrating the effectiveness of the absorbing material
between the antennas’ ground plane and the side passenger: (a) acquired with a simple
textile antenna, (b) acquired with a textile antenna and an absorbing material behind the
ground plane.

(a) (b)

(c) (d)

Figure 4.34: Respiratory signal using the developed upholstery prototype. Test 1: (a) Without
motion (b) With motion. Test 2: (c) Without motion (d) With motion.

performed twice to validate the results. The obtained results are presented in Figure 4.34,
where Figure 4.34a and Figure 4.34c are stand-alone respiratory signals without the Subject 2
motion, and Figure 4.34b and Figure 4.34d are respiratory signals acquired under a motion
condition. The motion occurred between the 30th and the 40th seconds (also highlighted in
orange). Since the prototype is fully covered with an absorbing material integrated as one
upholstery layer, it is expected to not detect the motion from Subject 2 and this was indeed
accomplished successfully.
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4.5.4 Respiratory signal acquisition using upholstery prototype

In order to fully validate the effectiveness of the final prototype (Version P3 - Proto-
type 2), the respiratory signals of six subjects were acquired. Table 4.6 presents the subjects’
physical dimensions and the setup used in the experiment is depicted in Figure 4.35. The
setup is composed by the radar front-end, a car seat prototype [140] and the BPC system
used for comparison purposes.

Subject ID Gender Height [m] Thoracic Perimeter [cm] Breathing Rate [BRPM] MAE [BRPM]

1 Male 1.75 87 16.95 0.14

2 Male 1.76 96.5 11.95 0.02

3 Female 1.56 75 14.91 0.02

4 Female 1.56 66 14.23 0.00

5 Male 1.75 90 11.81 0.00

6 Female 1.50 82 12.11 0.16

Table 4.6: Description of the physical stature of the subjects considered to test the final
upholstery prototype.

Figure 4.35: Setup used in the vital signs acquisition for the final upholstery prototype
validation.

The Prototype 2 containing the transmitting and receiving antennas was attached to the
car seat, namely in the side lumbar support, as shown in Figure 4.35. The vital signs were
acquired afterwards, following the Car Seat Protocol. The respiratory signal was acquired
simultaneously using the BRD and the BPC to verify the accuracy of the prototype.

BRD and BPC signals were processed using MATLAB. For the BRD case, the Dynamic
DSP algorithm was used to remove the CDC offsets and extract the respiratory signal. Then,
both BRD and BPC signals were denoised, their mean value was removed and they were
normalized according to their maximum amplitude, to better compare the waveforms. Fig-
ure 4.36 shows the final BRD and BPC signals for each subject.

For all subjects, it was possible to obtain identical waveforms. The eventual observed
differences might be related with the working principles of both systems. While the BPC
measures the full chest wall expansion, the BRD measures only the lateral chest wall motion,
perceived in a specific zone. Besides, the BPC system is not sensitive to other random body
motions, while the BRD can be highly affected.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.36: Comparison of the subjects’ vital signs using BRD and BPC: (a) ID1, (b) ID2,
(c) ID3, (d) ID4, (e) ID5, (f) ID6.

The breathing rates for each subject were computed through the ZC method described in
Chapter 3. For this purpose, signals were firstly filtered with a 200-order FIR low-pass filter,
with a cut-off frequency equal to 0.5 Hz, in order to remove noise and turn the respiratory
peaks more prominent. Table 4.6 also presents the average respiratory rate obtained by the
BRD signal and the MAE in relation with the BPC signal. The BRD signal keeps track of
the BPC one, presenting a low MAE varying between 0− 0.16 BRPM.

With these results and waveform similarities, one can assume that the BRD system
presents an equivalent capability to monitor the respiratory signal, when compared to certified
measuring equipment, even from sideways and using the developed prototype.
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4.6 Final considerations

The results presented in this chapter demonstrated that it is indeed possible to fully
integrate the bio-radar system in a customized application, without compromising its general
appearance and simultaneously guaranteeing the vital signs accuracy.

With the present case study, one could verify that the appropriate antenna design is di-
rectly related with the requirements of the target application. For example, herein the vital
signs were acquired from sideways, and the obtained results indicated that single patch anten-
nas are the most appropriate option for this situation. In contrast to the most common BRD
operation (in front the subject’s chest wall), directive antennas do not bring any advantage
to this specific case study, because they are larger and hence more difficult to place in such
limited area, as well as aligning to an optimal detection point.

Textiles were the selected materials, not only for providing a low profile appearance, but
also to streamline the manufacturing process of the target application. In this sense, the
viability to embed antennas directly in the car seat upholstery was inspected. The developed
antennas allowed the acquisition of vital signs captured on the chest wall side with a similar
performance as conventional substrate antennas and as a certified measuring equipment which
evaluates the overall chest wall displacement. However, it is important to highlight that the
antennas design and manufacturing process can be challenging. Textile materials are porous,
and their electromagnetic properties depend on the density of the fibres, air volume and the
size of the pores [127]. Due to the variability of textures and fibres composition, the same
textile batch can change its dielectric characteristics. Moreover, they are also flexible and
compressible, which might cause changes in thickness and can also lead to deformations during
the manufacturing process. These problems can have impact in the antennas parameters,
therefore one can expect slight differences between the simulated and the measured values.

Additionally, during the final prototype development the application appearance was took
into account by adapting the antennas feeding method. Conventional antennas are often fed
through SMA connectors, which are bulky. Thus, the proposed prototype was fed with a
coaxial cable directly welded to the patch antenna. The impact that this method has on the
antenna performance was evaluated, by measuring the antennas parameters and comparing
them with equal antennas fed through a conventional SMA connector. In general, all results
were close to the simulated ones for both prototypes (using SMA connector and with coaxial
cable, respectively). However, the coaxial cable fed prototype presented a lower measurement
reproducibility, which might be justified with the cable position and pressure in the patch
feeding zone, while the SMA prototype presented more similarities between transmitting and
receiving antennas, indicating the robustness of the manufacturing process. Even though, it
is worth mentioning that the antennas were manufactured manually, where it is not easy to
fully control the process. Thus, as future work, these results can be improved and stabilized
in reproducibility tests with a highly calibrated and industrialized manufacturing process.
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Chapter 5

Cardiac Signal Extraction

This chapter was mainly dedicated to the development of signal processing algorithms for
the cardiac signal extraction. Furthermore, the accuracy to estimate the cardiac frequency
was evaluated and improved. Additionally, the ability to assess to HRV parameters was
verified and methods were developed aiming to also take advantage of the information that
those parameters may provide.

The developments of this chapter resulted in the publication of the following journal
papers:

• C. Gouveia, D. Albuquerque, P. Pinho, and J. Vieira, “Evaluation of heartbeat sig-
nal extraction methods using a 5.8 GHz Doppler radar system in a real application
scenario,” IEEE Sensors Journal, vol. 22, no. 8, pp. 7979–7989, April 2022

• C. Gouveia, D. Albuquerque, P. Pinho, and J. Vieira, “Bio-Radar Cardiac Signal Model
used for HRV Assessment and Evaluation Using Adaptive Filtering,” IEEE Transactions
on Instrumentation and Measurement, vol. 71, pp. 1-10, July 2022

5.1 Introduction

The bio-radar signal contains both respiratory and cardiac signals, wherein the extraction
of the cardiac component is a demanding task. This fact is related not only with radar opera-
tion limitations, but also due to the own nature of the cardiopulmonary function captured by
the radar. Typically, the Respiratory Signal (RS) stands out as the dominating signal, with
an amplitude varying between 4 to 12 mm [141], while the maximum displacement due to
Cardiac Signal (CS) consists on 0.5 mm [142]. The authors in [142] used laser speckle interfer-
ometry to measure the corresponding chest wall motion to each ECG wave and they observed
that the highest motion is related with the QRS complex and it is focused in one specific
location, namely the apex of the heart. Hu et al. [25] also pointed out that the identification
of that area is increasingly hampered if the subject is not at rest or if the radar antenna is
not properly aligned with the maximal displacement zone. This latter fact can be worsened
if directional antennas are being used, since narrow beamwidths require a precise alignment,
and as discussed in Chapter 2, directive antennas are in fact the most recommended for the
majority of bio-radar applications.

In addition, the chest wall motion amplitude and the cardiac signals quality are also related
with the subjects’ physiognomy and gender [25], [32], [36], [143]. The radar follows the same
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operating principle as the mechanocardiography, which measures the heart mechanical motion
perceived at the chest surface [143]. According to [32], mechanocardiography signals tend to
have interpersonal variations carried by the differences on body mass index, age, sex, among
other health-related factors, resulting in different beat morphologies, hence implying in the
accuracy on determining the heart rate or other cardiac parameters.

Regarding the radar CS extraction, several methods have been proposed in the literature.
Band-pass or high-pass filtering could be used as straightforward and direct approach to
remove the respiratory component and isolate the CS [111], [144]. For instance, in [144] a filter
bank is used with different center frequencies with the goal to extract the CS directly from
the radar raw signal, and in [111] the CS is obtained by filtering the respiratory component,
through a high-pass filter with a cut-off frequency of 0.5 Hz. However, filtering is not the
most suitable technique, since the recovered CS might be distorted and loses resolution [145].
Furthermore, the filter performance is most likely compromised due to the RS nature. The
RS cannot be seen as a monotone sinusoid, being rather an harmonic signal, with frequency
components overlapping the CS. Hence, a standalone filter is not able to fully isolate the
CS [145]. In this sense, other methods might be more suitable and efficient, where it can be
highlighted the signal decomposition [44], [146], or the multi-resolution analysis using wavelets
[25], [26], [33], [56], [147], [148].

5.1.1 Wavelet transform

In [25], [26], [33], [56], [147]–[149], the wavelet transform was explored as an approach to
extract the CS, since it can provide a multi-resolution perspective. In other words, long-time
windows are applied to retrieve low frequency components and short-time windows are used
for high frequency components.

Wavelets are functions with specific mathematical requirements, that can decompose the
original signal into a set of signals [150]. For this purpose, a mother wavelet should be firstly
selected, scaled (by stretching or shrinking it) and then compared with the input signal while
shifting it over time. This procedure is depicted in Figure 5.1.

The signal decomposition using wavelets can be performed using different analysis [151],
such as the Continuous Wavelet Transform (CWT), the Discrete Wavelet Transform (DWT)
or the Wavelet Packet Decomposition (WPD). For instance, CWT is widely used in time-
frequency analysis and DWT is often used for denoise purposes [151]. The main difference
between both is the scaling stage, since CWT provides a finer decomposition and DWT
performs a dyadic scaling leading to a sparse decomposition.

Regarding DWT and WPD, both methods are similar to multi-rate filter banks (which
provide the dyadic scaling) and this decomposition process is depicted in Figure 5.2. In
DWT the original signal is decomposed in a certain number of scale levels [152]. On each
scale level, the signal is simultaneously low-pass and high-pass filtered, being hereinafter
downsampled by a factor of 2. The output of the high-pass chain consists on the detail
coefficients Dk(n), k = 1, 2, 3... and the low-pass chain provides the approximation coefficients
Ak(n), k = 1, 2, 3.... The decomposition through levels is then performed, using Ak(n) as the
new input signal [152]. WPD is an extension of the DWT [152], where the Dk(n) coefficients
are also decomposed. In this way, WPD provides a better resolution in terms of frequency,
as suggested by [152].

In the general literature, CWT is the most used method to recover the CS. More specif-
ically, in [147] authors studied which is the most appropriated scale factor to determine the
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(a)

(b)

Figure 5.1: Illustration of a wavelet transform: (a) Example of a Daubechies mother wavelet
with 4 vanishing moments with its scaled forms (shrank and stretched versions), (b) The
scaled mother wavelet is time shifted and compared with the original signal.

(a) (b)

Figure 5.2: Representation of a wavelet transform through dyadic scaling: (a) DWT, (b)
WPD.

IBI accurately. In [26], [56] the CWT was used to improve the accuracy on the heart rate
computation. More specifically, [26] was focused on short-time applications. The authors
compared the performance of their method with a conventional Fourier transform, achieving
an average error reduction from 26.7% to 3.5%. In [56] CWT was used to adapt the extraction
properties to be suitable for different subjects in different monitoring scenarios. The authors
obtained a RMSE varying between 0.1 and 4 Beats per minute (BPM) within the testing
scenarios.

On the other hand, DWT is mostly used to denoise the CS, and not necessarily as a
mean to isolate it from the RS. In [33] the authors studied which are the best DWT features
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to denoise the CS acquired by a 5.8 GHz radar. They analyzed the SNR of 115 potential
functions, containing 6 wavelet families and 10 decomposition levels. They concluded that
for the denoising purpose, Daubechies and Symlet wavelets with 9 vanishing moments are the
most appropriated selection, considering 7 decomposition levels.

Finally, [149] was the only work found using WPD to separate the CS from the radar
RS. The authors took advantage of the improved frequency resolution and perform a 6-level
decomposition. Respiratory and cardiac signals were recovered through the combination of
nodes containing the desired frequency band. CWT was used afterwards to obtain the heart
rate, achieving an average absolute error varying between 1.69 and 3.22 BPM.

5.1.2 Empirical mode decomposition

The Empirical Mode Decomposition (EMD) technique consists on separating the input
signal into a finite number of components [153], the so-called Intrinsic Mode Functions (IMF).
IMF are obtained through a sifting process, which consists in the following procedure [154]:
firstly the lower and upper signal envelopes are obtained through cubic spline interpolations on
local minima and maxima of the signal. Then, the mean value of both envelopes is subtracted
from the input signal, and the same process is repeated until the IMF conditions are verified
[153], [154], being:

1. The number of extrema must be equal to the number of zero-crossings, or must differ
at most by one;

2. The mean value between the envelop created by the local maxima and by the local
minima, must be zero.

The signal decomposition in IMF is performed iteratively, i.e. after finding the first IMF,
this component is subtracted from the original signal and the resulting one is submitted to
the sifting process all over again. At the end, the original signal can be obtained through the
sum of all IMF plus a residual function. Figure 5.3 shows the result of the decomposition
process of a radar RS into six IMF plus a residual signal.

EMD techniques are widely used in literature to extract the CS in the bio-radar context.
For instance, in [44] the author used EMD to extract the CS even in situations where the
subject is randomly moving other body parts. In this case, the respiratory component is
mitigated using a high-pass filter and the EMD was applied afterwards. The authors tested
the effectiveness of their method considering different amplitudes of body motion and obtained
an RMSE between 0.6 to 1 BPM. On the other hand, it was demonstrated in [146] that it is
possible to recover both biosignals (RS and CS) concurrently using EMD. Herein the authors
gave an implementation example, where the CS was obtained through the first IMF isolation
and the RS was reconstructed through the sum of the IMF with more energy in the desired
spectral band. The maximum error that the authors obtained in [146] was equal to 4.4 BPM.

More recently, the improved version of EMD, namely the Ensembled Empirical Mode
Decomposition (EEMD) was used in [148]. EEMD aims to solve inherent EMD issues, such
as the mode mixing [155], which makes the physical meaning of an individual IMF unclear.
For this purpose, the EEMD simulates successive observations of the same input signal, by
adding white noise to it. Thus, each observation corresponds to the same signal plus noise
with different characteristics. Adding noise will provide a relatively uniform reference scale
distribution, which improves the EMD performance [155].
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Figure 5.3: Result of the empirical mode decomposition of a radar RS.

Some authors also reported interesting results, combining signal decomposition meth-
ods with multi-resolution analysis. The method proposed in [148] combines the DWT
with EEMD. In this case, wavelets threshold were used to denoise IMF. Then, vital signs
were accurately extracted by selecting the most appropriate IMF. In this case, the authors
considered that the selected IMF for signal reconstruction should contain spectral components
within the vital signs bandwidth, being 0.2-0.6 Hz for the RS and 0.9-1.5 Hz for the CS. Then
the CS was recovered with an error equal to 0.014 BPM. The same method combination is
proposed in [25] to separate the biosignals. Herein the authors state that the combination
of both methods can provide results accurate enough to estimate the HRV. Since CS are
tenuous in comparison with RS, in [25] wavelets were used due to their optimal resolution in
time-domain for high-rate signals, and the EEMD was applied to help in signal reconstruction.
Herein, the RMSE varied between 2.53 and 4.83%.

Considering the advantages highlighted in [25], [148], the multi-resolution analysis and
the signal decomposition were selected to be explored in this work. The results reported in
literature are often related to short datasets that comprehend signals of no more than 10
subjects and with short duration (varying between 1 − 5 minutes) [25], [26], [33], [44], [56],
[146]–[149].

Therefore, in order to step forward in the bio-radar research and contribute for the state
of the art, it is required to evaluate these methods efficiency considering the application of
bio-radar in real scenarios, where it might imply the radar operation in non-controlled environ-
ments and during long periods of time. The system operation in real scenarios also implies its
suitability to a wide population, encompassing an inter-individual physical variability, which
have a direct impact in the signals quality, as seen in Chapter 3.

5.1.3 Heart rate variability

The bio-radar potential can be maximized if the acquired biosignals are used to infer cer-
tain subject conditions such as the emotional state, drowsiness or to help identifying possible
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cardiopulmonary diseases. This might be accomplished if the cardiac waveform is recovered
correctly and by therein compute parameters such as the heart rate and the HRV.

The nervous system is mainly divided in sympathetic and parasympathetic systems. The
sympathetic system is activated in stress situations and prepares the body to run or fight
reactions. It is generally noticed with the increase of the heart rate and arterial pressure.
On the other hand, the parasympathetic system enables body actions towards calm and rest,
by decreasing the heart rate and blood pressure accordingly [156]. The main nerve of the
parasympathetic system is the vagus nerve [156], therefore this nervous system activity is also
referred as the vagal tone [156]. In practice, the HRV provides an index of the vagal tone,
by representing the change in the time interval between successive cardiac peaks, or in other
words the IBI variability [156].

The HRV can be divided in time-domain and frequency-domain parameters. The time-
domain parameters quantify the amount of IBI variability and encompass for example the
Standard Deviation of Normal-to-Normal intervals (SDNN), the Square Root of the IBI vari-
ance (SDRR), the Root Mean Square of Successive Differences (RMSSD) and the Percentage
of successive Normal sinus IBI more than 50 ms (pNN50) [157]. The frequency-domain ones
estimate the distribution of the IBI power into four frequency bands [157]: the Ultra-Low
Frequency (ULF) (≤ 0.003 Hz), the Very-Low Frequency (VLF) (0.0033− 0.04 Hz), the Low
Frequency (LF) (0.04−0.15 Hz) and the High Frequency (HF) (0.15−0.4 Hz) [158]. Usually,
the ULF and VLF bands are indicators of different body parameters, such as the body tem-
perature, metabolism and long-term regulation mechanisms, hence they can only be assessed
through 24-hour recordings [156]. On the other hand, LF and HF bands can be assessed in
short-term monitoring periods, but no less than 5-minutes [158]. The LF band reflects the
contributions of both sympathetic nervous system and the vagal tone [156], and the HF re-
flects the vagal tone, however it is highly influenced by breathing. Likewise, the time-domain
parameters RMSSD and pNN50 are strong indicators of the vagal tone and they are free of
the respiratory influence [156].

In order to obtain such delicate parameters, a CS with high resolution is required to
correctly identify cardiac peaks location. However, the radar CS lacks in resolution for being
measured at the chest surface as the mechanocardiography [32]. Besides, the operating carrier
frequency can be an aggravating factor, since it has a direct impact in the system sensitivity.
In [18], the authors evaluated the relation between the cardiac SNR and the carrier frequency,
concluding that frequencies between 5 GHz and the lower region of K-band provide signals
with better SNR.

The works presented in literature so far have been showing interesting results regarding
the HRV assessment using radar systems operating with different carriers. Authors using
the 2.45 GHz ISM band revealed that HRV parameters cannot be inferred accurately due to
intrinsic characteristics of the radar sensor [111], [159]. In [160] this lack of signal resolution
is also reported for a radar operating with the same frequency, but an autocorrelation-based
algorithm is developed to rectify the missed peaks. On the other hand, accurate HRV results
were reported mostly using 24 GHz radars in [144], [161]–[163], and as far as one could know,
[25] is the only work reporting HRV results using a 5.8 GHz radar. Despite the outstanding
results presented for 24 GHz radars, in Chapter 2 it was established the importance of also
performing studies with lower carriers. In sum, the increased sensitivity turn signals prone to
be highly affected by RBM during the monitoring period. Furthermore, high carrier signals
also suffer from high attenuation, hence the possible range is restricted.

The study presented in this chapter is fully dedicated to the CS extraction and exploita-
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tion. It starts with the implementation and comparison of methods based in signal decompo-
sition and multi-resolution analysis to extract the CS. The methods performance is verified
using a dataset acquired within certain conditions to emulate a real application scenario,
which implies that:

• The monitoring environment cannot be controlled;

• The population under monitoring can encompass subjects with different body statures;

• The signal amplitude might change during long term acquisitions, because it is impos-
sible for the subject to remain completely still and keep the same body position.

The effects aforementioned have impact in the received signal quality and hence they might
compromise the effectiveness in the CS extraction.

This work started with a method performance comparison, using a dataset composed
by vital signs of four subjects with different physiognomies and with a six-hour duration.
Subsequently, the best extraction method was selected and tested in a bigger dataset (the 20-
subjects with a total duration of ≈ 30 hours). The individual variability is going to be verified
through the estimation of the heart rate and solutions were developed to decrease the rate
error. Finally, the ability to assess the HRV parameters was inspected. Since these parameters
contain useful information to assess the subject’s psychophysiological state, a solution was
developed to minimize the estimation error, enabling their usage later as features in machine
learning algorithms.

5.2 Methods comparison for the cardiac signal extraction

5.2.1 Data collection and signal processing

In order to emulate a real case scenario, the signals of four subjects were acquired inside
a conventional room (outside the laboratory environment). More specifically, the signals
acquired in Chapter 3 were used (see Table 3.2), but this time an additional female subject
was included to balance the dataset. Table 5.1 presents the updated physical characteristics
of all subjects.

Subject No. Gender Height [m] CWP [cm] BMI [kg/m2]

Subject 1 M 1.75 90 22.20

Subject 2 M 1.76 96.5 27.44

Subject 3 F 1.56 82 25.07

Subject 4 F 1.50 75 18.70

M - Male, F - Female, CWP - chest wall perimeter, BMI - Body mass index

Table 5.1: Description of the physical stature of the subjects considered for the method
comparison for the cardiac signal extraction.

The vital signs were acquired following the Emotional Protocol, which in this case was
used to take advantage of a wider variability in the heart rate caused by the emotions felt and
also to account with the individual differences. The collected dataset has a total duration
of 367 minutes (around 6 hours). Figure 5.4 shows an example of the number of BPM over
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time for Subject 1 and for Subject 2. It varied from 65 to 95 BPM along with the different
emotional conditions. Besides, each subject had a different reaction for each set of videos,
and these events allowed the attainment of unbiased and more robust results.

(a) (b)

Figure 5.4: BPM variation over time for different emotional conditions [164]: (a) Subject 1,
(b) Subject 2.

The vital signs were acquired simultaneously, using theBRD prototype and the BITalino
(r)evolution BT board [165], to use the ECG signal as a reference. In order to synchronize
both signals, the subjects were asked to perform the breathing pattern depicted in Figure 3.27,
where immediately before the next inhale, the subject pushed a trigger button to start the
ECG acquisition.

The subjects were seated in front of the antennas at a distance of half meter and they
were asked to remain still as much as possible during the experiment. Nonetheless, it was
expected for they to move according to their reaction to the videos or even to adjust their
position, seeking for a comfortable posture. All these conditions could generate a time varying
environment that eventually changes the complex CDC offsets accordingly. The body motion
could also cause a misalignment between the antenna beam and the chest wall location that
produces the maximum displacement, leading to low amplitude signals.

Furthermore, as previously discussed in Section 3.3 low amplitude signals can also be
related with the subjects’ body statures, where even the subject’s gender may have a role
[36]. The impact of the body stature was indeed perceived in the vital signs acquired in
the scope of this study, and it is shown in Figure 5.5. More specifically, Figure 5.5a shows
the received signal projection in the complex plan. On the left, it is possible to observe the
full raw signal obtained during the 30 minute acquisition, from Subject 2 in red and from
Subject 3 in black. Both subjects moved during the experiment which caused a change in the
CDC offsets. Two distinct groups of arcs can be perceived in Subject 2, marked as A1 and
A2. The CDC offsets change is even more pronounced in the Subject’s 3 case, respectively
marked as B1 and B2. The raw signals samples of Figure 5.5a, also show a difference on the
arcs length that might be related with the size of the reflecting areas of both subjects. For
a better visualization of the arc length effect, the right side of Figure 5.5a presents the arcs
corresponding to one-minute segments of all subjects. Subject 1 and Subject 2 produced an
arc larger than Subject 3 and Subject 4. Finally, the same effect is perceived in the extracted
respiratory waveform present in Figure 5.5b, after the DSP algorithm, i.e. without the CDC
offsets and after the phase demodulation. Herein different amplitude signals were obtained,
accordingly Dynamic DSP.

Bio-radar signals were acquired using the GNU Radio Companion software, with a sam-
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(a)

(b)

Figure 5.5: Received signal in a non-controlled environment [164]: (a) Full signal from subjects
2 and 3 (on the left), one-minute segments of each subject (on the right), (b) Extracted one-
minute respiratory signals.

pling frequency equal to 100 kHz. After receiving the signal, it was processed using MATLAB.
First of all, the signal was downsampled to a new sampling rate of 100 Hz and then the CDC
offsets were removed to further recover the vital signs correctly. Taking into account the ef-
fects observed in Figure 5.5, the Dynamic DSP algorithm presented in Section 3.3 was applied
for this purpose. At this stage, only the RS can be perceived, so the methods to recover the
CS are implemented over this signal. Concurrently, on the ECG side, a 15th order band-pass
FIR filter with pass-band equal to 6-20 Hz, was applied to highlight the R-peak detection and
remove noise [166], providing a better comparison tool.

5.2.2 Methods implementation

Considering the state of the art previously presented, a total of six methods (M1 to M6)
were tested, compared and discussed [164]:

• M1) Single Band-pass filter (BPF);

• M2) DWT followed by EEMD (DWT+EEMD);

• M3) Standalone DWT;

• M4) Standalone WPD;

• M5) WPD followed by EEMD (WPD+EEMD);

• M6) Standalone CWT.
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Despite the presented disadvantages of BPF [145], it is still widely used in literature. Therefore
it was included as a standalone method and its performance was evaluated as well. Addi-
tionally, in preliminary tests it was verified that applying a BPF prior to any other method,
attenuates the respiratory component and improves in general the algorithms performance.
For this reason, the remain methods (M2 to M6) are applied after a band-pass filtering stage.
Each method was implemented using the following specifications:

BPF: This method consists only on a 100th order band-pass FIR filter, with a pass band
between 0.7 and 2 Hz. This filter order was selected because it provides a 10 dB attenuation
over the respiratory frequency band.

DWT: In this work, DWT is implemented to directly retrieve the cardiac waveform, rather
than denoising it. The wavelet coefficients are obtained using the maximal overlap discrete
wavelet transform, implemented with modwt function from MATLAB, considering 7 decom-
position levels, as recommended by [33]. For this purpose, a Daubechies with 4 vanishing
moments was selected as mother wavelet by trial. Then, the resultant signal can be recovered
from the wavelet coefficients using the modwtmra function from MATLAB. The output of this
function consists on a set of signals with different frequency components. Since our signals
are analyzed with a sampling rate equal to 100 Hz, the cardiac component is mainly present
in the 5th and 6th decomposition levels. Therefore, only the signals of these two levels are
considered.

WPD: This method is similar to DWT. A decomposition tree can be obtained using the
wpdec function of MATLAB, with the same mother wavelet used in DWT. In order to avoid
redundancy and save computational resources, only the 8th decomposition level was selected
to inspect the nodes. This level was chosen by trial, since it was the one providing enough
frequency discretization on the cardiac band. The CS was reconstructed using the coefficients
of the nodes which had the desired frequency, and this was performed using the wprcoef
function.

EEMD: In order to implement the EEMD, the guidelines suggested in [155] were followed.
White noise was added to the input signal, with an amplitude equal to AW = 0.4× σ(x(n)),
where σ(x(n)) denotes the standard deviation of input signal x(n). The noisy signal was
decomposed in IMF afterwards and these steps were repeated a total of 100 times, using
different noisy samples. At the end, it was obtained the ensemble of means from all IMF.
Once again, their frequency content is evaluated to select the ones with the desired spectral
component and then sum them to reconstruct the CS.

CWT: The CWT was performed using the Morlet wavelet with cwt MATLAB function,
which is the option suggested by [147] and [26]. In this case, Daubechies was not used since
orthogonal wavelets are designed for dyadic scales (which are more spaced comparing with
the ones used in CWT, to reduce redundancy) [151]. The CS was recovered using the icwt
function, which once again selects the coefficients correspondent to the desired frequency
band.

All the decomposition methods reconstructed the CS by summing the sub-signals with a
spectral content between 0.8 and 2.5 Hz.
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5.2.3 Considered metrics for methods evaluation

During the data processing stage, one could observe that different body statures pro-
duced signals with different amplitudes. In particular, the male subjects produced signals
with higher amplitude and better SNR, comparing with the signals generated by the female
subjects. Hence, there was a necessity to divide the dataset in a Short-version (SH) and
Full-version (FL), in order to perform a more controlled analysis. Thus, the SH dataset had
217 minutes and included signals from Subject 1 and Subject 2. This dataset was analyzed
primarily to define which is the best method to extract the CS properly. Conversely, the FL
included signals of all subjects (367 minutes) and it was analyzed afterwards, to understand
the impact that lower amplitude signals have in the algorithms performance (produced by
the females considered in this study). Each dataset was divided in one-minute segments.

The methods performance was evaluated in two metric levels, respectively. The first metric
level was focused on the heart rate accuracy (in BPM). The heart rate was computed using
a ZC approach depicted in Figure 3.29. The first metric level encompassed [164]:

• The correlation coefficient between the radar CS and the ECG signal;

• The Bland&Altman (B&A) analysis [167];

• The coefficient of variation (CFV), which relates the variation between the radar and
ECG measures with their mean values [168];

• The absolute error between the number of BPM of the ECG and the number of BPM of
the radar signal (ε = |BPMECG − BPMR|), evaluated afterwards using the empirical
cumulative function distribution;

• The RMSE also in BPM;

• The computational speed to process all one-minute signals in seconds;

• The results coherency in consecutive runs.

The second metric level is related with the study of the peaks position in relation to the
ECG signal. HRV parameters could be successfully computed in radar signals, if the peaks
position and hence the IBI do not differ largely from the ECG. Thus, ECG and radar signals
were superimposed and the peaks position was compared, as depicted in Figure 5.6. Since the
radar and ECG signals were synchronized manually, a small delay between them is expected.
The most important aspect is to guarantee that this delay remains approximately constant
over the segment. Furthermore, one should note that the eventual delay between the radar
and ECG signals may not last more than some milliseconds, therefore the delay does not have
impact in the total number of BPM because the delay duration is much less than the mean
IBI. The second metric level comprised [164]:

• The average IBI of radar and ECG signals (IBI);

• The standard deviation of IBI for both radar and ECG (σIBI);

• The average value of the time difference between the radar and the closest ECG peak
(∆t);

• The standard deviation of such time difference (σ∆t
).
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Figure 5.6: ECG and radar signals superposition for peaks location evaluation, with the
illustration of two peaks difference ∆t [164].

The ECG results suggest a slight variability on the σIBI, due to the subject’s psychophys-
iological behavior. This is the variation that induce the HRV parameters. The radar signals
should vary in the same scale, to equally produce reliable results. Thus, the σIBI for radar
is the first indicator of the peaks location consistency. Then, the remain metrics may justify
such variation.

For the time difference ∆t, the algorithm seeks for the closest ECG peak in relation to
the radar peak under evaluation. The most important metric is the σ∆t

, which indicates
the variation level of the peaks position in relation to the corresponding ECG peaks, and it
should be the lowest as possible.

5.2.4 Results discussion

Starting with the SH dataset evaluation, Figure 5.7 depicts the Correlation and the B&A
graphs for all the six methods. Additionally, Figure 5.8 shows the error behavior. The results
of both figures are summarized in Table 5.2, which also contains other performance metrics,
such as the computational speed and the RMSE. This table presents the results for FL dataset
as well, but it will be analyzed afterwards.

Method

Bland & Altman ε (BPM) Rt (sec) RMSE

r2 Bias (BPM) LLoA (BPM) ULoA (BPM) CFV (%)
SH FL SH FL SH FL

SH FL SH FL SH FL SH FL SH FL

M1 0.56 0.30 -4.70 -6.10 -20.0 -26.0 10.0 14.0 10.0 14.0 16.80 28.10 0.68 1.04 8.90 11.80

M2 0.99 0.88 0.49 1.80 -2.0 -3.90 3.0 7.50 1.70 3.70 2.60 7.96 242.14 379.34 1.33 3.38

M3 0.99 0.92 0.19 0.80 -2.10 -3.90 2.50 5.50 1.50 3.20 2.46 5.54 10.80 22.78 1.20 2.55

M4 0.97 0.88 -0.47 -0.24 -4.20 -5.90 3.30 5.40 2.50 3.80 4.31 6.28 233.30 400.70 1.95 2.88

M5 0.98 0.89 0.20 1.10 -2.90 -4.40 3.30 6.60 2.0 3.60 3.10 7.58 458.20 758.08 1.57 4.52

M6 0.98 0.90 -0.21 -0.04 -3.10 -5.30 2.60 5.20 1.90 3.50 2.73 6.16 19.40 35.50 1.47 2.66

SH - short-version dataset, FL - full-version dataset, r2 - Correlation coefficient, Bias - mean difference between ECG and radar BPM,

LLoA - Lower limit of agreement, ULoA - Upper limit of agreement, CFV - Coefficient of variation,

ε - Error in BPM reached for 95% of the dataset, Rt - run time in seconds, RMSE - Root mean square error

Table 5.2: Heart rate accuracy evaluation metrics for all methods and for both SH and FL
datasets [164].
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(a) (b) (c) (d)

(e) (f)

Figure 5.7: Correlation and B&A graphs for tested methods using the SH dataset [164]: (a)
BPF (M1), (b) DWT+EEMD (M2), (c) DWT (M3), (d) WPD (M4), (e) WPD+EEMD (M5),
(f) CWT (M6).

Figure 5.8: Empirical cumulative distribution function of the BPM error for all methods using
SH dataset [164].

All methods present a similar BPM accuracy, excepting the M1 method. For instance, it
presented a correlation coefficient equal to r2 = 0.56, which clearly indicates a lack of relation
between ECG and radar measures. On the other hand, M2 and M3 were the ones standing
out with the best performance, having the highest correlation coefficient r2 = 0.99, the lowest
coefficients of variation (CFV = 1.7% and CFV = 1.5%) and the lowest B&A limits of
agreement. Between both, it should be highlighted the M3 performance in other metrics. For
instance, 95% of the dataset presented an error ε that did not exceed 2.46 BPM as shown
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in Figure 5.8, and the lowest RMSE being equal to 1.2 BPM. In [18] the authors obtained
a similar accuracy using the same carrier frequency and transmitted power. Aside from M1
and M3, M6 is the one that requires less computational resources. However, M6 presents a
performance slightly lower than M2 and M3.

Methods that combined wavelets with EEMD (M2 and M5) were specially time consuming,
since for each IMF it is required to perform a certain number of repeated observations.
Furthermore, EEMD methods presented slightly different results in consecutive runs, probably
due to the different characteristics of the noise added on each observation. This could induce
an additional error and compromise the results reliability.

The M4 method (using WPD) presented also less satisfactory results, either implemented
alone or combined with EEMD. Besides, this method presented a higher execution time,
which is related to the nodes decomposition.

Observing now the obtained results for FL dataset (see Table 5.2), the methods with the
best performance were M3 and M6, which were the fastest either (neglecting the M1 case).
In the FL case, it is possible to verify the results impact due to the smaller reflecting areas
and lower amplitude motions of Subject 3 and Subject 4. As expected, the absolute error
ε in BPM increased in general, namely between 6 and 8 BPM, excepting for the BPF case,
where an abrupt increase was verified. The correlation coefficient got also worst, as well as
the B&A parameters. Even though, the M3 method stands out for being the best method,
having the highest correlation coefficient r2 = 0.92, the lowest CFV , the lowest run time and
the lowest RMSE equal to 2.55 BPM.

Regarding the second metrics level, the radar peaks position was evaluated in relation to
ECG peaks, through the ∆t parameter. Starting with the SH dataset, Figure 5.9 shows an
histogram that indicates the peaks location distribution in relation to the ECG peak. For
instance, if the ∆t is equal to IBI/2, all bars would be around 0.5. On the other hand, if radar
peaks were exactly synchronized with ECG peaks, the histogram bars would only fall around
the 0.1 value, and this would be the most preferable situation. Assuming that a constant

Figure 5.9: Histogram with the distribution of ∆t over ECG IBI using SH dataset [164].

delay would be acceptable, the bars should lie around any other value, but exclusively that
one. In fact, the histogram from Figure 5.9 shows a wider distribution for every value, which
indicates a certain level of variability for all methods.

Table 5.3 shows the results of the IBI computation for the radar and the ∆t variation
among all methods. From Table 5.3 and similarly from Figure 5.9, it can be inferred that
all methods have a similar behavior and no one stands out in particular. For comparison
purposes, the IBI for ECG was equal to 785.72 ms and its σIBI was equal to 37.48 ms. In
contrast, the IBI of radar for each method presents a somewhat difference in relation to the
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Method
IBI (ms) σIBI (ms) ∆t (ms) σ∆t

(ms)

SH FL SH FL SH FL SH FL

M1 950.2 977.9 316.0 356.0 177.4 181.2 74.3 88.8

M2 783.9 780.6 94.4 118.5 173.7 179.3 69.4 85.2

M3 792.8 799.2 103.3 131.3 173.2 178.9 67.4 83.7

M4 801.6 809.9 126.8 152.7 174.3 180.0 73.1 87.8

M5 784.1 784.3 109.4 135.1 175.3 180.7 74.6 88.9

M6 800.3 813.1 116.5 147.6 173.8 179.6 70.4 85.9

SH - short-version dataset, FL - full-version dataset, IBI - average IBI,

σIBI - average standard deviation of IBI, ∆t - average time difference

between radar and the closest ECG peak, σ∆t
- standard deviation of ∆t

Table 5.3: Evaluation metrics for peak location consistency for all methods [164].

ECG IBI, which is more notorious for the M1 method. However, wider differences can be
noticed in all σIBI, which represents a IBI variability higher than expected for the radar side.

These results may be explained with the peak location variation, as suggested by ∆t

results. There is indeed a considerable delay on the radar peak position, and in fact, this
delay can be seen as worrisome considering its standard deviation, which varies between 67
and 75 ms. This variation might be translated in an additional error on the IBI determination.

For the FL dataset, the IBI ECG was equal to 789.4 ms and its σIBI was equal to 50.3 ms.
The radar IBI results did not altered much, but they became slightly worse for σIBI. Likewise,
the ∆t and its σ∆t

increased around 10 ms. Almost all results were affected after adding signals
from Subject 3 and Subject 4. In this sense, it is possible to conclude that low amplitude
motions hamper even more the methods sensitivity to precisely determine the radar peaks
location, which can also compromise the heart rate accuracy.

In sum, although DWT revealed being the best method for heart rate estimation, it might
not be suitable for HRV estimation and all methods presented similar results regarding the
peak position consistency. Therefore, the direct computation of HRV parameters might not
be possible as it is, and other approaches should be explored. This conclusion is in line with
Kim et al. in [111], where a different radar with a lower carrier frequency was used.

5.3 Heart rate computation

In the previous section, several methods for the CS extraction were implemented, combined
and compared, considering real application scenarios. One could conclude that the standalone
DWT is the best method to extract the CS, but these conclusions were derived using signals
of only four subjects.

The goal of the current section is to test the selected algorithm in a wider dataset and
evaluate the error on determining the heart rate. This time the 20-subject dataset was used
(see Table 3.6). The vital signs were acquired following the Emotional Protocol, concurrently
using the BRD prototype and the BPC to serve as reference.

After extracting the CS using wavelets, the heart rate of all subjects was estimated using
two conventional methods: 1) the ZC method from Figure 3.29 and 2) the Maximum of the
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Spectrum (MS) method. The MS was computed using the Welch method with the Hamming
window and 50% of overlap.

The MAE and RMSE were computed for each method considering the ECG signal rate as
reference. Both errors provide different contributions. For instance RMSE is more sensitive
to outliers, therefore if its value is closed to the MAE, it means that the subject presents
somehow a stable behaviour. On the other hand, if the the RMSE is higher than the MAE, it
means that there are outliers, that might be caused due other disruptive sources, such as the
RBM. Table 5.4 shows the error results for each subject considering all emotional conditions
gathered, the total average error and the average error per emotion. The number of minutes
per emotion was balanced for a fair analysis.

Subject ID
ZC MS

MAE [BPM] RMSE [BPM] MAE [BPM] RMSE [BPM]

ID01 4.01 4.64 0.94 1.67

ID02 1.24 1.66 2.29 3.87

ID03 2.04 2.94 3.19 5.96

ID04 14.33 18.06 4.57 8.69

ID05 8.66 10.34 16.73 21.92

ID06 0.85 1.18 0.89 1.21

ID07 1.81 2.83 1.10 1.58

ID08 2.05 2.66 5.37 8.69

ID09 6.78 8.54 7.00 9.78

ID10 6.44 8.41 3.78 6.12

ID11 14.37 15.37 5.90 9.87

ID12 1.11 1.59 2.60 4.43

ID13 5.80 7.76 13.80 19.32

ID14 6.89 8.70 3.71 7.31

ID15 4.73 7.18 7.91 15.56

ID16 0.59 0.98 0.67 0.92

ID17 3.58 4.61 4.62 7.10

ID18 1.93 2.52 2.05 4.04

ID19 2.13 2.82 3.89 7.75

ID20 2.95 3.66 2.88 5.55

Total average 4.61 5.82 4.69 7.57

Average Happiness 5.57 6.61 5.23 7.58

Average Fear 4.27 4.99 4.14 6.21

Average Neutral 4.00 4.70 4.71 6.93

Table 5.4: Comparison of the heart rate error in BPM for both ZC and MS methods using
the 20-subject dataset.

Two conclusions can be directly driven from the error results. Considering the MAE, more
than half of the subjects presented an error inferior to 4 BPM on both ZC and MS methods,
where at least two cases were below 1 BPM, and thus proving the effectiveness of the DWT
method used to extract the radar CS. Secondly, the individual variability reported in [32]
and previously discussed in Section 5.2, is indeed observed since the other half of subjects
presented an MAE superior than 4 BPM and even exceeding 10 BPM at least in two subjects.

The ZC and MS methods present similar results, but the ZC stands out with the lower
MAE and RMSE averages. Moreover, the ZC is also the most stable one, since the MAE and
RMSE are close most of the times. Even though, one can note that sometimes these methods
complement each other. For instance, subjects ID04, ID10, ID11 or ID14 present a high heart
rate error if computed using the ZC method, rather than using the MS one, but most of the
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times is the other way around.

Figure 5.10 shows the spectrum of some subjects, that may justify the lack of consistency
of the heart rate results among the different subjects and between methods. All spectrums are
relative to y(n) signal (see Figure 3.4), containing both respiratory and cardiac components.
It was selected the 10th minute of the neutral condition, hence assuming the same psychophys-
iological condition for everybody and assuring the subjects’ stability and rest, since it is a
moment exactly in the middle of the experiment. Signals were normalized according to their
maximum amplitude and their mean value was removed. Each figure shows also a vertical
red line with the ECG rate corresponding to that minute.

(a) ID1 (b) ID5 (c) ID8

(d) ID7 (e) ID17 (f) ID18

Figure 5.10: Spectrum of the 10th minute of the neutral condition.

The first aspect that one can observe, is that each subject has its exclusive spectral trace.
The spectrum can be influenced by the subject’s posture, the breathing periodicity or the
eventual occurrence of body motions. Periodicity variations might lead to the appearance of
harmonics that might superimpose with the cardiac component. An example of this effect
can be observed in the spectrum of subject ID07. As for subjects ID01 and ID18, the radar
cardiac peak seems to match exactly with the expected ECG frequency. Finally, subjects
ID08 and ID17, in that specific moment, seem not having any trace of cardiac component in
the spectrum.

Additionally to the individual variability observed even in a neutral scenario, where the
subject is mainly at rest, one can also conclude that the psychological condition of the subject
can also compromise the heart rate assessment. Considering only the ZC results, for being
in general better and more stable, a low error is obtained if the subject is in a neutral
condition. On the other hand, if the subject is somehow aroused, the body reaction lead
to certain reactions and a change of posture, which might influence the effectiveness of the
CS extraction algorithms. This was more clear in the happiness condition, where the error
increased in average more than 1 BPM in relation to the neutral condition.
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5.4 ANN models for the heart rate accuracy improvement

The heart rate is directly related with the vagal tone, which is mostly activated when
subjects are at rest leading to an average of 75 BPM [157]. If the rest condition alters, it will
be reflected in the heart rate accordingly. As it will be explained later, the vagal tone is a
clear indicator of the subjects’ physchophysiological condition. Therefore, in order to fully
exploit the bio-radar potential, the vagal tone assessment would be extremely beneficial. In
this sense and in order to avoid biased results, it is important to determine the heart rate
accurately.

The usage of machine learning algorithms dedicated to the CS extraction or its rate
estimation, have been reported in [169]–[172]. These works explored Neural Networks (NN) as
machine learning algorithms, using short signals with 300-seconds duration in maximum (≈ 5
minutes) directly in the NN input (instead of computing specific features over the signals).
The most used algorithms were the Artificial Neural Networks (ANN) and the Convolutional
Neural Networks (CNN). The ANN are nonlinear models following the same principle as
the human neural system. The ANN schematics is depicted in Figure 5.11. The algorithm
is composed by a input layers containing the features computed over the data, one or more
hidden layers and an output layer [173]. Each layer contains nodes weightily connected to the
ones of the adjacent layers. The nodes weights Wn are changing during the training phase,
providing more importance to the meaningful links. Each node is regulated through an active
function, which introduces non-linearity to the model [173]. The final goal of the model is to
fit the input data to the output.

Figure 5.11: Representative ANN schematic (adapted from [173]).

The CNN process data through a grid topology, therefore their are typically used for
image processing and recognition. In contrast to ANN, the CNN dismiss features selection
to provide on the input layer, since it extracts its own features from the input data through
convolutional operations [174]. Its architecture (see Figure 5.12) is similar to the ANN one,
since it is also composed by input layers, hidden layers and an output layer. The input data
is arranged in a matricial form and decomposed in shorter blocks through filtering (in the
convolution layer). Subsequently, such blocks are non-linearly combined aiming to learn and
extract pertinent features in the activation layer, creating a feature map. The pooling layer
reduces the network complexity by decreasing the size of the feature map and the resulting
consists on the input for the next layer. The procedure is conducted progressively over the
different layers.

CNN were used in [169]–[171], to reconstruct the corresponding ECG signal from a radar
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Figure 5.12: Representative CNN schematic (adapted from [174]).

one [169], for person identification [170] and for heart rate estimation [170], [171]. In [169]
a hold-out strategy was used to train the model, namely using 70% of the dataset relative
to six subjects for training and the remaining for validation and test. The authors were
able to reconstruct the ECG signal, even adding artificial noise to the input signal. In [170],
individual models were trained using vital signs with 5-minutes duration of each subject
individually. These individual models served not only as a biometric personal identifier, but
also to determine the heart rate through the IBI estimation, with a maximum error of 48.5
ms. In [171] the performance in the heart rate estimation using different NN is compared,
namely with the ANN, the CNN and the combination of CNN with recurrent neural networks.
The authors concluded that the latter option achieved the highest performance, presenting
99% of accuracy, but using a single subject exclusively.

On the other hand, ANN were used in [172] for a cardiac peak detection and further
instantaneous heart rate estimation. While [169]–[171] developed the models considering 10
subjects in maximum, [172] used an increased dataset of 21 subjects. To train the model, a
three-fold cross validation strategy was used. The group of 21 subjects was divided in three
groups of 7 subjects, where two groups were used to train the model and the remain one
to test. The training and testing process where repeated for different combinations of the
groups. At the end, the proposed algorithm was capable to determine the heart rate with an
average error of ≈ 3 BPM. Nonetheless, the authors in [172] highlighted that the eventual
occurrence of body motion might have impact in the results, and also the error could increase
if the population under test increases. CNN are efficient with increased datasets and do not
require prior knowledge about the data.

In the previous section, one verified that the accuracy in the heart rate computation can
be compromised due to a subject-related variability. Since interesting results for this same
purpose were reported in [169]–[172], where NN were implemented using the radar signal as
input, the same approach was followed aiming to reduce the heart rate error and standardize
the accuracy for all subjects, so this information could be further used to assess for instance
the subjects’ psychophysiological condition. It was observed that ZC and MS methods seem to
complement each other, therefore both methods might contribute with different information.
In this sense, instead of using the radar signal as the NN input, as it was done in [169]–[172],
pertinent features were computed over the radar signal, where the ZC and MS methods were
included for example. Once the dataset at hand is size reduced and the input is a set of
known features, ANN were selected to be implemented.

Two approaches were followed in parallel regarding the dataset handling. All the dataset
was included to develop a person-independent model, similarly to the work developed in
[172], and individual models were also developed to conduct a person-dependent analysis. At
the end, the error in heart rate was compared using the ZC, MS, Global Model (GM) and
Individual Model (IM) methods.
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5.4.1 Global model

For the GM implementation using ANN, an observation matrix was extracted using one-
minute signals. Considering the complementary information retrieved from the ZC and MS
methods, 12 features were selected manually and they are detailed in Table 5.5. More details

Feature No Description

F1 Heart rate using ZC

F2 Heart rate using MS

Signal F3 Respiratory rate

Harmonics F4 The energy ratio between respiratory and cardiac components

F5 Harmonic indicator for ZC

F6 Harmonics indicator for MS

F7 Number of peaks within the window

Windowed Spectral F8-F9 Magnitude and frequency of the peak located in the minimum frequency of such window

Content F10 Magnitude of the peak located in F2 frequency

F11-F12 Magnitude and frequency of the peak located in the maximum frequency of such window

Table 5.5: Features considered for the ANN implementation to improve heart rate results.

are now provided over these features computation:

• F1-F2 are the heart rate value provided in Hz;

• F3 is the respiratory rate computed using the ZC and it is also in Hz;

• F4 is obtained by dividing the signal energies before and after applying the BPF (applied
before the DWT);

• F5-F6 are obtained by evaluating the remainder after F1/F3 division and after F2/F3
division, respectively;

• F7-F12 are dedicated to the spectral content within a window 10 dB below the magni-
tude of the maximum peak (F2).

Since features have different natures and their range of values are different from each other,
a standardization is required. In this case, the z-score standardization was applied to all
features, as described by (5.1):

x̃i =
xi −mi

σi
(5.1)

where, x̃i is the standardized feature, xi is the feature to be standardized, mi is its mean
value and σi is its standard deviation.

After selecting the appropriate features and computing them over the data (and thus
creating an observation matrix), the ANN hyperparameters must be selected. Considering
Figure 5.11, the hyperparameters include the number of hidden layers, the number of nodes
inside each hidden layer, the activation function (to be used inside the nodes) and the regular-
ization parameter Λ. Regularization is a technique used to simplify the model and to prevent
it to overfit [173]. In [172], the authors selected a set of hyperparameters by testing manually
different combinations. Thereafter, the authors evaluated the performance of the model with
a three-fold Cross-Validation (CV). They divided the 21-subjects dataset in three groups of

112



7 subjects, and use two groups for training and one for testing and repeated the process three
times.

In our case, the hyperparameters optimization was performed during the training phase
in MATLAB. Therefore, the dataset division for training and testing was fixed to keep the
coherency and guarantee the results reproduction. The dataset division is represented in
Figure 5.13.

Figure 5.13: Dataset division for training and testing the GM used to improve heart rate
results.

For the training, 80% of the dataset was used (considering the total number of observa-
tions), whereas the remain 20% was used to test the model. The ANN output was the heart
rate result obtained by the ECG. The hyperparameters optimization was performed within a
200 iteration process using the Random Search and within the following ranges:

• Activation function - Rectified linear unit (ReLU) function, Hyperbolic tangent (tanh)
function or the Sigmoid function;

• Number of hidden layers - between 1 to 3;

• Number of nodes inside each hidden layer - between 6 and 30;

• Regularization parameter Λ - between 1× 10−5 and 10;

The final ANN used the following hyperparameters: two hidden layers with 22 nodes each,
the hyperbolic tangent as activation function and the regularization term Λ = 8.9371× 10−4.
After testing in the remain 20% of the data, an MAE of 4.01 BPM was obtained. Finally, the
developed model was applied to each subject individually to verify if the MAE had decreased.
The results are presented in Table 5.7 and they are going to be discussed after the Person-
dependent model description.

5.4.2 Individual model

For the IM implementation using ANN, the same features set used to generate the GM
was computed over one-minute signals and the results were standardized using the z-score
standardization accordingly. Similarly to the procedure conducted above, the network hy-
perparameters were optimized during the training process. The data division for training
and testing is schematized in Figure 5.14. Since this time an individual model is aimed to
be developed, the dataset at hand is severely decreased. Therefore, the dataset partition in
80:20 was performed per emotion rather than being over the subjects’ signals as a whole, in
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Figure 5.14: Dataset division for training and testing the IM used to improve heart rate
results.

order to account the individual variability over the felt emotions. In other words, 80% of each
emotion signals was used for training and the remaining to test and this is performed for each
subject separately.

The hyperparameters optimization was performed in two stages. First of all, a wider range
was considered and their were optimized for each subject separately. The considered ranges
for this case were the following:

• Activation function - Rectified linear unit (ReLU) function, Hyperbolic tangent (tanh)
function or the Sigmoid function;

• Number of hidden layers - between 1 to 2;

• Number of nodes inside each hidden layer - between 6 and 60;

• Regularization parameter Λ - between 1× 10−4 and 5;

Table 5.6 shows the set of hyperparameters suitable for each individual network and the
corresponding average MAE for each subject.

Thereafter, the hyperparameters presented in Table 5.6 were analyzed and combined in
order to verify if there is a specific set that is equally capable to reduce the heart rate error for
all subjects. Thus, an individual model was trained with the data of each subject, considering
the following common hyperparameters: two hidden layers with 26 and 22 nodes respectively,
the Relu activation function and a regularization term equal to 0.0029. The obtained MAE
results are presented in Table 5.7.

5.4.3 Final comparison and discussion

Table 5.7 sums up the heart rate MAE obtained for all the methods explored in this
section. Between the conventional methods ZC and MS and the implementation of ANN, the
first aspect that can be highlighted is that in fact and as expected the error had decreased.
Using a GM trained with the signals of all subjects had improved in general the heart rate
accuracy, which is specially noticeable in some subjects namely subject ID04, ID05, ID11 or
ID13 since they presented errors superior to 10 BPM and they decreased at least 4 BPM. In
average, while the ZC and MS errors were 4.61 and 4.69 BPM respectively, with the GM it
decreased to 3.39 BPM. On the other hand, if an IM is trained and applied to each subject
the results improve substantially, leading to an MAE of around 1 BPM. Although training an
individual model for each subject implies a certain degree of implementation complexity, the
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Subject ID Activation function No hidden layers No nodes Λ MAE [BPM]

ID01 tanh 1 [6] 8.4120× 10−4 0.62

ID02 ReLU 2 [25 24] 6.2000× 10−3 0.96

ID03 Sigmoid 2 [55 16] 1.1813× 10−4 1.03

ID04 tanh 2 [52 13] 6.2304× 10−4 1.07

ID05 Sigmoid 2 [29 10] 8.5716× 10−4 2.25

ID06 Sigmoid 1 [33] 1.2000× 10−3 0.61

ID07 ReLU 2 [29 9] 1.4000× 10−3 0.55

ID08 ReLU 2 [6 54] 5.6000× 10−3 1.24

ID09 ReLU 1 [7] 3.0000× 10−3 1.91

ID10 tanh 2 [8 15] 1.0700× 10−2 2.38

ID11 Sigmoid 1 [28] 5.2000× 10−3 1.51

ID12 ReLU 2 [13 32] 4.6000× 10−3 0.94

ID13 Sigmoid 1 [14] 1.7000× 10−3 2.14

ID14 ReLU 2 [16 16] 3.4000× 10−3 1.03

ID15 Sigmoid 2 [36 18] 1.2310× 10−4 1.22

ID16 tanh 2 [25 9] 4.4415× 10−4 0.47

ID17 ReLU 2 [6 54] 5.6000× 10−3 1.85

ID18 Sigmoid 1 [28] 5.2000× 10−3 1.03

ID19 Sigmoid 1 [7] 5.6379× 10−4 1.19

ID20 Sigmoid 2 [36 18] 1.2310× 10−4 0.97

Table 5.6: Optimized hyperparameters for each individual network.

Subject ID ZC MS GM IM Subject ID ZC MS GM IM

ID01 4.01 0.94 1.40 0.69 ID11 14.37 5.90 6.37 1.10

ID02 1.24 2.29 1.89 0.76 ID12 1.11 2.60 2.37 0.85

ID03 2.04 3.19 2.38 1.05 ID13 5.80 13.80 5.01 1.44

ID04 14.33 4.57 4.21 1.21 ID14 6.89 3.71 3.66 0.98

ID05 8.66 16.73 3.85 1.14 ID15 4.73 7.91 4.57 1.04

ID06 0.85 0.89 0.98 0.57 ID16 0.59 0.67 1.48 0.46

ID07 1.81 1.10 1.30 0.65 ID17 3.58 4.62 4.86 1.56

ID08 2.05 5.37 4.04 0.99 ID18 1.93 2.05 2.10 0.86

ID09 6.78 7.00 4.33 1.71 ID19 2.13 3.89 5.55 0.83

ID10 6.44 3.78 3.74 1.55 ID20 2.95 2.88 3.69 0.81

Table 5.7: MAE of heart rate in BPM for all tested methods.

accuracy provided might compensate, as demonstrated by Figure 5.15. This figure shows the
progression of the heart rate error over time and per emotion for all the applied methods. The
selected examples include two cases where the error rate is small in general, namely the ID06
and ID16 cases, where the latter only shows an increased error if the heart rate is estimated
through GM. On the remain examples, the ZC and MS methods lead to higher errors when
compared to the NN methods. Finally, between the NN methods, the IM follows generally
the ECG rate, while the GM still deviates considerably.

Thus, in Chapter 6 the heart rate computed with an IM will be used as a feature to assess
the psychophysiological state of the subject, since IM is the method that provides an inferior
error and hence ensuring unbiased results, despite its complex implementation.
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(a) ID4 (b) ID6

(c) ID8 (d) ID10

(e) ID11 (f) ID16

Figure 5.15: Variation of the heart rate in BPM over time and over the different emotions for
all methods: (a) ID4, (b) ID6, (c) ID8, (d) ID10, (e) ID11, (f) ID16.

5.5 Heart rate variability assessment evaluation

In Section 5.2, several methods to extract the CS were implemented, combined and com-
pared. Besides the suitable method selection, a preliminary study was carried out to inspect
if it would be possible to compute HRV parameters and it was concluded that there is a wide
variability regarding the radar peaks position, therefore the HRV assessment might not be
possible with the used radar setup. However, this conclusions were derived using a dataset
collected considering a real case scenario, where the monitoring environment might not be
fully static, the population under monitoring provided signals with different SNR and the
signals were acquired during long-term periods, so it was not possible to fully guarantee the
subjects stability. It also known that the radar signal quality can be compromised due to
different causes, such as:
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• The own system sensitivity (also related with the carrier used);

• The alignment between the subject’s chest wall and the maximum lobe of the antenna;

• The noise interference acquired within the same frequency band.

The work presented in this section aims to simulate the signals acquisition in an ideal
scenario, which are not influenced by those external disruptive sources, and verify if under
these ideal circumstances it is possible to compute the HRV parameters using a CW radar
operating at 5.8 GHz. For this purpose, an exclusive tool was used, which is fully dedicated
to the authentic and unbiased CS. This tool consists on a radar CS model, extracted directly
from an ECG signal, using an adaptive filter, namely the Wiener filter [175]. In this way the
radar signal model do not encompass any RBM or any other issues presented above and can
be further used to computed unbiased HRV parameters. In order to obtain the CS model, an
ECG signal was used as the Wiener filter input and a radar CS acquired at the exact same
time was used as its output. Since the signal estimation robustness must be guaranteed, a
study was performed regarding the correlation between the Estimated Radar Signal (ERS)
(CS model) and the corresponding Original Radar Signal (ORS). The correlation variability
over time was verified, for different heart rates from the same subject and in-between different
subjects and the HRV parameters were computed over the ERS and compared with the ORS
and the ECG.

5.5.1 Data collection and signal processing

This study was conducted using the vital signs collected in Section 5.2, namely the signs
of Subject 1 and Subject 2 (from the SH dataset). More specifically, it was used the signals
acquired from Fear and Neutral condition sessions. From each session both baseline and
emotional condition parts were considered, in order to gather time and rate variation for the
same subject. These emotions in turn induce different HRV parameters [156], which will be
determined later for both ERS, ORS and ECG, in order to evaluate if it is feasible to use this
radar setup for this purpose. Considering the emotions induction and the individual behavior
in different days, three different moments are going to be evaluated, being:

• BL1 - Baseline (neutral condition) acquired on the first day;

• F1 - fear condition induced on the first day;

• N2 - neutral condition induced on the second day.

One should remember that the vital signs were acquired simultaneously, using the BRD
prototype and the BITalino (r)evolution BT board, and the breathing pattern showed in
Figure 3.27 was used to synchronize both signals. In the exact context of this work, where
adaptive filtering is being used, it is imperative to assure the system causality. Therefore,
the radar signal was considered to start 100 ms before its trigger, to guarantee that in case
of synchronization doubt, it is delayed in relation to the ECG signal.

After their acquisition, both ECG and radar signals were processed before being used as
input and output, respectively, of the Wiener filter. Figure 5.16, shows the block diagram
of the implemented DSP algorithm. Both BRD and ECG signals (g(n) and gE(n)) were
processed using MATLAB and the first step was to downsample them to a new sampling rate
of 100 Hz, resulting in d(n) and dE(n) signals. In order to make the R-peak more prominent,
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Figure 5.16: Signal processing algorithm for the Wiener coefficients estimation [176].

a 15th order band-pass FIR filter (BPF-R) was applied to dE(n), between 6 and 20 Hz, as
recommended by [166]. In this stage, the resulting ECG signal is the one used as the Wiener
filter input xc(n). On the radar side, the CDC offsets were removed and the arc position
was adjusted using the Dynamic DSP algorithm presented in Section 3.3. Finally, the vital
signs information is extracted through a phase demodulation by applying the arctangent
demodulation [21]. Thus, the signal y(n) contains both respiratory and cardiac signals, which
are then separated in the Cardiac Extraction block, leading to the radar CS yc(n). Herein, it
is used the BPF combined with DWT, which was method selected in Section 5.2.

5.5.2 Wiener coefficients estimation using a short-time signal

The ECG signal can be seen as a sum of waves, correspondent to the different heartbeat
phases: the P-wave, QRS complex, T-wave and U-wave [177]. On the other hand, the cardiac
radar signal is obtained from the measurement of the mechanical motion of the heart, and
thus its rate can be comparable with the fundamental component of the ECG signal.

This fact can be verified in Figure 5.17, which shows an example of a radar and an ECG
signals spectrum, normalized according to their maximum magnitudes to ease the analysis.
These signals were acquired at the exact same time and for the same subject. The figure
presents the radar signal spectrum in two different stages of the algorithm previously pre-
sented in Figure 5.16. The dashed-black line shows the spectrum of the y(n) signal, after
phase demodulation and yet containing the respiratory component. The blue line shows the
spectrum of the cardiac radar signal yc(n).

Figure 5.17: Normalized ECG and radar signals spectrum for different stages of the radar
DSP [176].

Starting with the radar spectrum (y(n) signal), in Figure 5.17 it is possible to identify the
respiratory and cardiac spectral components. Both components are aligned in frequency with
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the ECG spectrum. For instance, the respiratory peaks stand in the 0.244 Hz (equivalent
to 14.6 breaths per minute) and the fundamental cardiac component stands in 1.123 Hz
(equivalent to 67.4 beats per minute) for both radar and ECG signals. The radar signal
presents a higher magnitude in the respiratory spectral component, since this signal have
an amplitude ten times higher than the cardiac one. More specifically, the radar cardiac
component is attenuated almost 20 dB in comparison with the respiratory one. Conversely,
the ECG spectrum consists on a set of well-defined harmonics, with high magnitude, inherent
to the aforementioned signal nature. The overall radar spectrum matches with the ECG one
in the fundamental component and in the first harmonic. The same behavior is observed for
the yc(n) radar signal, where the respiratory component is fully mitigated.

The first stage of this work is to find the filter coefficients w(n) that can relate an ECG
signal with the cardiac radar signal acquired at the exact same time. The Wiener filter was
selected for being a FIR filter and for presenting a stable behavior. Based on a least squared
error approach, the wiener coefficients are computed to minimize the average squared distance
between the filter output and input [175], and thus determine the impulse response h(n) that
relates both signals. In practice, the impulse response h(n) represents the channel model
between the ECG signal and the ORS. The implementation of the Wiener filter to determine
w(n) is depicted in Figure 5.18.

(a) (b)

Figure 5.18: Illustration of the procedure to obtain the ERS [176]: (a) Wiener filter imple-
mentation to determine w(n) coefficients, (b) Application of the band-pass filter to obtain
the ERS.

According to [175], the Wiener theory assumes that signals are stationary. Therefore,
w(n) are determined using short time signals, namely with one minute duration to always
guarantee a good approximation. The radar signal for a single subject can vary largely over
time, specially in a long-term acquisitions due to RBM that the subject might perform for
discomfort reasons. Therefore, the selection of such one-minute segment should provide an
ERS highly correlated with the ORS, as much as possible. Two different approaches for each
subject were conducted to select such one-minute signal:

• A1) A single one-minute segment was selected to compute the w(n) once, and the same
filter was applied over time. For this case, the BL1 was analyzed seeking for a moment
free of RBM;

• A2) All signals were divided into five-minute segments and the one-minute segment that
provided the best correlation for its five-minute slot was selected. In this way, w(n) are
updated every 5 minutes leading to a different filter for each instance. This periodicity
was selected since signals with a minimum duration of 5 minutes are required for the
HRV parameters computation [157].
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The selected number of coefficients was the result of a series of trials, that encompass
low and higher order approaches. Almost all trials presented similar correlation results as
demonstrated by Table 5.8. Thus, it was selected a total number of 1024 coefficients, for
being an exponent of power 2 and having in mind an optimal resolution in frequency, but yet
a reasonable order to further compensate the caused delay. Moreover, the same number of
points was used in the Welch method to obtain the signals spectrum.

Radar Signal

Subject 1 Subject 2

BL1 F1 N2 BL1 F1 N2

A1 A2 A1 A2 A1 A2 A1 A2 A1 A2 A1 A2

O = 512 0.85 0.87 0.72 0.74 0.79 0.81 0.74 0.74 0.70 0.71 0.59 0.70

O = 1024 0.84 0.86 0.71 0.73 0.77 0.80 0.72 0.74 0.68 0.71 0.59 0.71

O = 2048 0.83 0.85 0.70 0.72 0.58 0.79 0.69 0.72 0.66 0.72 0.58 0.71

O = 4096 0.80 0.82 0.67 0.74 0.61 0.77 0.68 0.72 0.59 0.71 0.54 0.78

BL1 - baseline day 1, F1 - fear day 1, N2 - Neutral condition day 2, O - filter order

A1 - fully static system, A2 - five-minutes updated static system

Table 5.8: Mean correlation results between ERS and ORS for different filter orders [176].

Figure 5.19: Wiener coefficients behavior in frequency domain along with the corresponding
ECG and ORS spectrum [176].

As an example, Figure 5.19 shows the frequency response of the resulting w(n) using
the A1 approach. In order to approximate the ECG signal to the radar one, w(n) presents
a magnitude equal to 30 dB around the fundamental cardiac component, since the ECG
fundamental is attenuated that same amount in relation to the radar. On the other hand, the
w(n) attenuates the first harmonic around 20 dB and the remain ECG spectral harmonics are
attenuated more than 30 dB. After determining w(n), the ERS can be obtained and compared
with the ORS, by applying a BPF on the ECG signal using w(n) (Figure 5.18b). Then, the
filter delay was compensated and for the subsequently comparison purposes, both ECG and
ORS were also compensated assuming the same delay.

Figure 5.20 shows the result, where Figure 5.20a shows the obtained normalized spectrum
of ERS, ORS and ECG, and Figure 5.20b presents the corresponding superimposed time
domain signals. It is possible to verify that the ERS is highly correlated with the ORS in that
signal portion. The correlation can be indeed verified, by computing the cross-correlation
between ORS and ERS, which is equal to 0.95 in this case.
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(a) (b)

Figure 5.20: Evaluation of the obtained estimated radar signal [176]: (a) Normalized spectrum
of ERS, ORS and ECG signals, (b) Time domain signals.

5.5.3 Estimated radar signal analysis

Before computing the HRV parameters associated to ERS, it is required to evaluate the
correlation between the ERS and ORS over time, for the different subjects in all moments.
High correlation demonstrate the similarity of both signals, allowing a reliable analysis.
Nonetheless, it is worth to highlight that the purpose of this study is to evaluate the ef-
fectiveness of obtaining HRV parameters considering a static system. For these reason, the
results of both approaches used for the w(n) extraction were analyzed simultaneously, where
A1 represents a full static system and A2 represents a system that it is only static during
5 minutes.

Figure 5.21 shows the cross-correlation between the ERS and the ORS and the correspond-
ing residual error on the w(n) estimation for different moments: Figure 5.21a corresponds to
BL1; Figure 5.21b corresponds to F1; and Figure 5.21c corresponds to N2. The residual error
was estimated through the ratio between the energy of the error (ORS–ERS) and the energy
of the ORS. Furthermore, Figure 5.22 shows the spectral coherence between ERS and ORS,
computed at the ORS fundamental frequency.

Starting with the time correlation for subject 1 for the A1 approach, on the BL1 case the
cross-correlation is kept above 0.8 most of the time, presenting a mean value of 0.84. Worst
correlation results were obtained for the F1 case, where the cardiac rate is changing probably
due to frights and the occurrence of more RBM is also expected. Even though, some of the
correlation results were above 0.8, presenting a mean value of 0.71. The neutral condition
on a different day (N2 case), presented also correlation close to 0.8, where the mean value
decreased slightly to 0.77. With this results, it is possible to state that ERS and ORS are
identical, excepting some differences inherent to heartbeat changes or sporadic involuntary
motions, that were not accounted by w(n). For the A2 approach the results were slightly
better, where a correlation of 0.86, 0.73, 0.80 was obtained for the BL1, F1 and N2 cases
respectively. One can also see that the residual error keeps the correlation pace, increasing
when lower correlations were observed and vice-versa.

More differences between A1 and A2 approaches were observed in the spectral coherence
analysis in Figure 5.22, where A1 stand out with the worst results, specially on the F1 case.
The A1 represents a fully static system, so the eventual physiological changes due to the fear
feeling might be hided. Thus, A1 might not represent fully the actual CS that subject 1
presented that day. On the other hand, A2 keeps track of the cardiac changes that occurred
during the experiment, leading to a better match with the ORS signal frequency.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.21: Cross-correlation between ERS and ORS over time and the corresponding resid-
ual error on the w(n) estimation [176]: (a) subject 1 BL1, (b) subject 1 F1, (c) subject 1 N2,
(d) subject 2 BL1,(e) subject 2 for F1, (f) subject 2 for N2.

Figure 5.21d, Figure 5.21e and Figure 5.21f show the time correlation results and the
corresponding residual errors for subject 2. In this case, the correlation results were worse for
both A1 and A2 approaches. Starting with the A1 approach, the BL1 case presented several
cases above 0.8, but a higher number of cases around 0.7, leading to a mean value of 0.72.
The cases related to the fear condition and the neutral condition on a different day, embraced
higher variations leading to a mean correlation of 0.68 and 0.59, respectively. On the other
hand, A2 stand out with a better correlation, presenting 0.74 for the BL1 and 0.71 for F1
and N2 cases.

The low correlation results of subject 2 for the A1 approach, suggest that a reliable
analysis requires the estimation of new w(n) coefficients over time, using in this way a block-
adaptive approach where Wiener theory can be equally applied, as indicated in [175]. This
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(a) (b)

(c) (d)

(e) (f)

Figure 5.22: Spectral coherence between ERS and ORS over time [176]: (a) subject 1 BL1,
(b) subject 1 F1, (c) subject 1 N2, (d) subject 2 BL1,(e) subject 2 for F1, (f) subject 2 for
N2..

was somehow accomplished with the A2 approach, by updating the w(n) on every 5 minutes.
Thus, despite the lower correlation obtained in some one-minute segments, one can assume
that the obtained correlation is in general enough to evaluate the heartbeat parameters of
the ERS, specially having in mind that the ERS does not contain subject motions and keeps
that same signal quality over time.

5.5.4 Feasibility of heart rate variability assessment

In order to validate the usage of radar systems for HRV computation, the number of BPM
was firstly computed over time, as well as its error in relation with ECG. All signals rate were
obtained through the ZC method, where the ECG peaks were identified using an amplitude
threshold.

Figure 5.23 shows the comparison of the BPM between ECG, ORS and ERS, in the
different moments for subject 1 and subject 2. The error behavior of both ORS and ERS
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(a) (b)

(c) (d)

(e) (f)

Figure 5.23: BPM between ERS, ORS and ECG over time [176]: (a) subject 1 BL1, (b)
subject 1 F1, (c) subject 1 N2, (d) subject 2 BL1,(e) subject 2 for F1, (f) subject 2 for N2..

was evaluated through its empirical cumulative distribution function, depicted in Figure 5.24.
Table 5.9 presents the error values in BPM taken by 95% of the dataset.

More similarity between the three signals can be observed for subject 1. On the other
hand, the ERS presented an increased error for subject 2 for the A1 approach. Overall, the
ORS presented an error varying between 1.63 and 2.3 BPM. For the subject 1 case, ERS-A1
presented a lower error varying between 0.87 and 2.0 BPM and the error varied between 0.89
and 2.9 for ERS-A2. A higher error was obtained for subject 2 using the A1 approach which
exceeded 3 BPM. This increased error might be related with the lack of correlation observed
previously.

The HRV evaluation was focused on the time-domain parameters, since they enable a vagal
tone assessment without being influenced by the respiratory cycles [156]. The considered time-
domain parameters were the SDNN and the RMSSD, which were computed using equations
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(a) (b)

(c) (d)

(e) (f)

Figure 5.24: Empirical cumulative distribution function of the error in BPM [176]: (a) sub-
ject 1 BL1, (b) subject 1 F1, (c) subject 1 N2, (d) subject 2 BL1,(e) subject 2 for F1, (f)
subject 2 for N2.

Radar Signal
Subject 1 Subject 2

BL1 F1 N2 BL1 F1 N2

ERS-A1 0.87 2.00 1.04 3.08 3.28 2.52

ERS-A2 0.89 2.92 1.07 1.68 1.56 1.24

ORS 1.63 2.19 1.97 2.32 2.30 1.32

BL1 - baseline day 1, F1 - fear day 1, N2 - Neutral condition day 2

Table 5.9: BPM error of ERS and ORS for each subject on the different conditions [176].

(5.2) and (5.3), respectively [156]:

SDNN =

√√√√ 1

NIBI − 1

NIBI∑
i=1

∣∣∣∆t[i]−∆t

∣∣∣2 (5.2)

125



RMSSD =

√√√√ 1

NIBI

NIBI∑
i=1

(
∆t[i]−∆t[i− 1]

)2
(5.3)

where NIBI is the total of IBIs on the signal segment, ∆t[i] corresponds to the IBI value on
the ith position, ∆t[i − 1] is the value on the previous position and ∆t is the mean value of
all IBIs on the signal segment.

(a) (b)

(c) (d)

Figure 5.25: SDNN [176]: (a) using a fear condition of subject 1, (b) Using a neutral condition
of subject 1, (c) using a fear condition of subject 2, (d) Using a neutral condition of subject 2.

The HRV parameters were computed in the full signals, that included baseline and emo-
tional condition, but divided in 5-minute segments according to the guidelines defined in
[156]. The obtained results are shown in Figure 5.25 and in Figure 5.26. Overall, the HRV
parameters computed for the ORS present results largely different from the ones provided
by the ECG signal, and the same effect is observed for the ERS signal for both A1 and A2
approaches.

The lack of correlation observed in subject 2 using the A1 approach might influence the
HRV results as well, since the error in BPM is often higher than the one obtained with the
ORS. Nonetheless, all results obtained for the A2 approach demonstrated generally a higher
correlation in both neutral and fear scenarios, and therefore the HRV results can be more
reliable.

Considering exclusively the results obtained for the A2 approach, the results of the same
day during the fear condition test for subject 1 (see Figure 5.25a and Figure 5.26a), start
with a high match with the ones provided by the ECG signal, but cannot keep that similarity
over time, reaching values close to ORS or even higher. Likewise, the results obtained for a
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(a) (b)

(c) (d)

Figure 5.26: RMSSD [176]: (a) using a fear condition of subject 1, (b) Using a neutral
condition of subject 1, (c) using a fear condition of subject 2, (d) Using a neutral condition
of subject 2.

neutral condition on a different day are equally higher than the ones obtained with the ECG,
specially on the RMSSD case.

In subject 2, although the A2 approach presented results closer to the ones obtained for
ECG, they were still largely different. These results indicate that the mechanical motion
caused by the heart bumping perceived on the chest, do not provide enough resolution to
obtain accurate results for the HRV parameters. This conclusion was raised with the fact
that the ERS is directly extracted from a ECG signal, which means that does not encompass
radar problems, such as the subject random motion or the temporary misalignment with
the front-end. In this way, it is assumed that the acquisition conditions are kept over time.
Furthermore, it was also observed that radar signal models derived using a Wiener filter
through the A2 approach presented a trustworthy behavior when signals are stable over time.
Dynamic signals alter the correlation with the original radar signals, which can directly affect
the cardiac parameters further computed, hence providing biased results.

One should note that these conclusions are valid for the radar setup herein used and for
the algorithms described in Chapter 3 and in Section 5.2. Additionally, the cardiac models
developed in this work mitigated external disruptive sources that might occurred in these
specific scenarios. Therefore, if the surrounding conditions change or if the subjects present
a more unstable behavior, a new model must be determined to conduct a similar analysis.
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5.6 Windowed-based heart rate variability parameters

Despite not being possible to estimate the HRV parameters accurately as shown in the
previous section, if the error of the radar HRV parameters is decreased, they still might have
useful information that can be later leveraged by the machine learning to identify pertinent
patterns and thus assess the subject’s psychophysiological condition. This time, the usage of
the IM-ANN approach might not be suitable, since there are a wide range of HRV parameters
implying an extensive number of models and hence increasing the complexity of the process.
Therefore, a different solution was developed to decrease the error.

(a) (b)

Figure 5.27: Illustration of the IBI computation: (a) Through conventional method, (b)
Through sliding window.

Similarly to the previous section, only the time-domain HRV parameters are going to be
considered henceforth. As mentioned previously, they are obtained through the analysis of
the IBIs, which are computed through the difference between consecutive peaks, as depicted
in Figure 5.27a. Due to the high variability on the radar cardiac peaks location, using all
the IBI values generate a high error in the HRV parameters computation. This effect was
already observed in the results presented in Figure 5.25 and Figure 5.26, more specifically for
the ORS case.

The sliding window approach depicted in Figure 5.27b can reduce this error substantially.
This approach consists on computing the IBIs inside a window of 5 seconds and compute its
median value. The 5-seconds window duration was selected to guarantee at least 5 peaks
and hence 4 IBIs, considering as reference the 60 BPM of as a healthy heart rate [157]. The
median was used to neglect outliers [119]. The window moves forward only the enough to
overlap the previous one 75% and a new median value is computed. In the end, the IBI vector
is the result of these median values, rather than the difference of all consecutive peaks.

Using the 20-subjects dataset from Table 3.6, the time-domain HRV parameters were
computed at every 5 minutes using the conventional and windowed methods, and the results
for some subjects are shown in Figure 5.28.

First of all, and similarly to what was observed in Figure 5.25 and Figure 5.26, it is clear
the discrepancy between the ECG and the conventional method applied to the radar. In
average, the SDNN can vary between 105 − 145 ms2, the RMSSD 155 − 227 ms2 and the
pNN50 40% − 75%. By applying the sliding window, this error decreases to the ranges of
30 − 72 ms2, 22 − 77 ms2 and 6% − 40% for the SDNN, RMSSD and pNN50 respectively.
More specifically, for subject ID01 the mean value of the sliding window method approximates
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(a) SDNN for ID01 (b) RMSSD for ID01 (c) pNN50 for ID01

(d) SDNN for ID06 (e) RMSSD for ID06 (f) pNN50 for ID06

(g) SDNN for ID10 (h) RMSSD for ID10 (i) pNN50 for ID10

Figure 5.28: Comparison of the time-domain HRV parameters computed using the conven-
tional method on radar signal, the sliding window method and the original ECG result.

highly of the mean value obtained for the ECG and for subject ID06 the sliding window results
keeps track on the tendency of the ECG. On the other hand, subject ID10 still presented a
considerable error in relation with the ECG, but it decreased considerably in relation to the
conventional method. In sum, the median values of small size windows may remove outliers
and still preserve useful information regarding the vagal tone of the subject.

5.7 Final considerations

This chapter was fully dedicated to the ability to recover the CS. First of all a comparative
study for CS extraction was performed, considering real application scenarios. Six different
methods were selected from literature, implemented and compared, considering two main
issues: the inter-individual stature variability and non-controlled monitoring environments.
The impact of the inter-individual variability in the signals amplitude was observed, but
more research is required to understand if the lower amplitude is necessarily related with the
subjects’ gender or exclusively related with the body stature.

Regarding the performance of the cardiac extraction methods, standalone wavelet-based
methods showed to be the more indicated for heart rate estimation, since it presented the
smallest error and the fastest computational effort, regardless of the subject’s body stature.
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This was observed for both CWT and DWT, where DWT stand out as being the method
with the best performance. However, a results degradation was verified in general, when
subjects with lower amplitude motions were included in the dataset. The CS rate could be
indeed improved by using machine learning algorithms, since they are able to learn individual
patterns and generate individual models. At the end it was possible to estimate the signal
rate of all subjects with an error inferior to 2 BPM.

Additional information can be extracted from the CS, such as the HRV. But the effective-
ness of this procedure is directly related with the signal resolution. Radar biosignals contain
the chest wall displacement due to the cardiopulmonary function, and the CS is specifically
obtained by the tenuous mechanical motion that can be perceived on the chest surface. This
cardiac micro motion lacks of resolution by itself, but it might be enough for radars operating
with higher carriers. Additionally, long term monitoring periods encompass other damaging
effects, such as the RBM or the misalignment with the antennas beams, which decreases the
signal quality. Under these conditions, it is difficult to verify if lower carriers can provide
accurate HRV parameters.

Taking into consideration the prototype limitations in terms of sensitivity due to the used
carrier frequency, it was verified if the HRV assessment is possible in two stages. In the first
stage, the radar peaks position consistency was evaluated. Although the DWT presented the
best accuracy results for the cardiac rate computation, there is no guarantee that this method,
or any other tested, can provide the peak location with enough precision for HRV parameters
estimation, at least using the proposed system setup. The radar σIBI varied largely from the
one observed for ECG, as well as σ∆t

. This fact can contribute to an additional error in HRV
parameters estimation. Therefore, other approaches should be explored to estimate HRV,
since the DWT might not be used solely.

In a second stage, a radar cardiac model derived from ECG was developed to further
verify if is it possible to compute HRV parameters using to proposed front-end. This model
does not encompass the aforementioned external issues, hence it can be useful to fully validate
the hypothesis. This signal model was obtained using a Wiener filter, which generate band
pass coefficients to approximate the ECG signal to a given real radar signal, acquired at the
exact same time. In order to simultaneously guarantee the system stability and the track of
the subject behavior, the Wiener filter coefficients were either extracted considering a fully
static system and also updated on every 5 minutes, respecting the signal duration required
to compute HRV parameters. The results of both approaches were compared, showing that
reliable results are only obtained if the ERS is similar to ORS, and this was not verified for
the fully static system model.

Thus, the updated approach provided high correlation results and it showed that the
computed HRV is deviated from the ECG results even in ideal circumstances. In sum, the
proposed radar prototype is not indicated to be used in the HRV assessment, since the mechan-
ical heart displacement do not provide enough resolution to accurately identify the cardiac
peaks and their exact time location. Even though, an alternate solution was developed to
take advantage of the existent HRV information to be later used in the subject’s psycholog-
ical assessment. The error of time-domain HRV parameters decreased if they are computed
through the median of a moving window.
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Chapter 6

Emotion Recognition

The content of this chapter was the result of a collaboration with the Department of
Education and Psychology, of University of Aveiro, namely with the research team of the
EmoSenses Lab. The developments report is divided in two work stages. The first stage
was dedicated to evaluate the ability to use the bio-radar for emotion recognition, exclusively
using the respiratory signal. The second stage aimed to verify if the results could improve if
the cardiac signal is also included. It resulted in the following contributions:

• C. Gouveia, D. Albuquerque, F. Barros, S. C. Soares, P. Pinho, J. Vieira ”Performance
comparison of Emotion Recognition using Bio-Radar and Contact-Based Methods”,
IEEE Transactions on Affective Computing, submitted in July of 2022.

• C. Gouveia, A. Tomé, F. Barros, S. C. Soares, J. Vieira, P. Pinho, ”Study on the
usage feasibility of continuous-wave radar for emotion recognition”, Biomedical Signal
Processing and Control, 58, January 2020, p. 101835.

6.1 Introduction

The bio-radar potential can be fully exploited by for instance, take advantage of informa-
tion contained in the vital signs and identify patterns to assess the psychophysiological state of
the subject. In order to verify this possibility, a specific case study was considered in the PhD
work. Psychology and psychiatry are promising areas of application, considering both clinical
and research settings, since a more objective assessment and monitoring of the psychophys-
iological response is not always available or possible to implement. The psychophysiological
response may give critical objective information about the emotional response, and there are
many scenarios where a non-invasive, effortless, and safe device would be especially critical
for this assessment, such as with children [178], or people with sensory hypersensitivity, be-
havioral problems, and/or difficulties expressing emotions and feelings, (e.g. as observed in
people with autism [179]).

Emotions are adaptive and multidimensional responses triggered by meaningful events
and/or stimuli, that affect the way we think, feel, behave and interact with others in our
daily life [180], [181]. These responses encompass changes in different systems including
cognition, physiology, motivation, motor expression and subjective sensations, hence allowing
for effective self-regulation processes and providing crucial resources to a successful adaptation
to the environment [182], [183]. The biological system changes can then be expressed by
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different means, such as via verbal communication, facial expressions and body motion [184],
as well as by more subtle cues, including biological signs (increased heart rate and respiration)
[5].

Although automatic emotion recognition represents a challenging process, it can provide
useful information regarding the individuals’ well-being and, generally speaking, contribute
to systems’ enhancement, according to the user’s needs. For example, it can be useful to
adjust medical and psychological treatments or even aid in detecting the veracity of informa-
tion in forensic investigations. Additionally, emotion identification can be a crucial asset in
the human-computer interaction field, once it enables the adjustment of the design and its
functional features to the users’ needs [184], [185].

Emotion recognition through physiological signs has already been reported, namely by us-
ing breathing rate, electrodermal activity, electromyogram, electroencephalogram, and ECG
[5], [185], [186]. Among this wide range of vital signs there are some more informative than
others. For instance, in [186] it was determined that a combination of multiple vital signs
can provide a better accuracy to identify the fear, happiness and a neutral condition state,
since all signals have different information that can be combined coherently. The authors also
suggest that the ECG is the most effective signal for this scope.

Emotions can be identified using machine learning algorithms applied to vital signs with
the goal to identify patterns. For instance, in [186] it was used the Random Forest (RFO)
and ANN applied to ECG, electrodermal activity and electromyogram zygomatic and medial
frontal signals. The most used algorithms for this purpose are the ANN (already explained
in Section 5.4), the Support-Vector Machines (SVM), the K-Nearest Neighbour (KNN) and
the RFO (see the references of Table 6.1). The SVM are learning algorithms, with the
objective of finding a hyperplane with the widest margin possible, in a N-dimensional space
(where N is defined as the number of classes one aims to distinguish), that separates the data
points into well defined clusters [173]. In other words, the hyperplane is a unique threshold
that allows the model to classify a cluster of data and it can be defined by looking to the
position of “support vector”, i.e. the nearest cluster points to the hyperplane. For instance,
Figure 6.1 shows an example where the samples could be easily separated into two cluster
using a linear kernel. However, more complex cases might require to use complex kernel
functions, such as polynomial or Gaussian Kernels [187]. The KNN is characterized for being

Figure 6.1: Illustration of the SVM algorithm (adapted from [187]).

a simple classification algorithm, since it is able to classify the data samples by evaluating
the labels of their K neighbors as depicted in Figure 6.2. Thus, the data label is determined
considering the majority vote of the K neighbors [173]. Finally, the RFO algorithm consists
on an ensemble learning method based in several decision trees, which can be trained following
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Figure 6.2: Illustration of the KNN algorithm (adapted from [188]).

different modes. For instance, with the bagging mode the decision trees are trained in parallel,
in order to reach a classification decision based in the majority vote. Each decision tree uses
a random data subset for training and the splits are made by evaluating one feature at the
time [189].

Nowadays, most of these physiological-based systems still rely on the direct contact with
sensors and it is recognized that the individual’s awareness of the monitoring process may
influence the results [5]. Moreover, the use in real life contexts, which is of great value to allow
for the establishment of individualized profiles, can also interfere with the signal. Therefore,
non-contact systems can be advantageous in these applications, as they can remotely monitor
vital signs.

The emotion recognition using vital signs captured remotely with a radar system have
already been reported, namely in [4], [52], [190]–[192]. Table 6.1 sums up the main char-
acteristics of the identified works. Even though, these works are still scarce and a proper
comparison with a certified equipment is lacking. In [52], the happiness, fear, sadness and
neutral state were identified using a CW radar operating at 2.4 GHz combined with a RGB
camera. The conducted procedure was monitored by psychologist professionals and their
feedback served mostly to assist on data labeling. In this case, the obtained results were only
compared with the ones obtained with the standalone camera or the standalone radar. The
same emotions were identified in [191], but without performing any type of validation. On the
other hand, a different set of emotions were distinguished in [190], namely the happiness, fear
and disgust. The vital signs were acquired using a UWB radar and the performance of nine
different classifiers was compared, but similarly to [191] no validation study was conducted.
At last, happiness, sadness, anger and pleasure were identified in [4] using the respiratory and
cardiac signals acquired by a FMCW radar.

All works used different radar front-ends. For instance, [52], [191] used CW radars op-
erating with a lower carrier frequency. The carrier frequency influences the sensitivity of
the system to detect micro-motions such as the ones related with the heart motion at the
chest-surface [18]. In this sense, higher carrier frequencies are more sensitive and might be
able to detect more easily the micro-motions caused by the heart. Nonetheless, such level
of sensitivity turn signals prone to be highly affected by random body motion during the
monitoring period and high carrier signals are also severely attenuated. The works [4], [190]
used higher carriers but with different radar operation modes, namely FMCW and UWB,
which have different implementation challenges in comparison with CW radars [20].

In general, all datasets are short varying between 5-35 subjects [190]. In this context, it
is important to note that according to [193], 20 subjects is enough to detect large effects of
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Work Reference [52] [4] [190] [191]

Set-up CW radar @ 2.4 GHz
+ RGB camera

FMCW radar @ 5.46
- 7.25 GHz

UWB radar @ 7.29 -
8.79 GHz

CW @ 2.4 GHz

Population (Total/Female/Male) 18/7/11 12/6/6 35/21/14 5/4/1

Vital Signs RS and CS RS and CS RR RS

No observations 2010 (1 min) 400 (2 min) 315 (5 min) 48-80 (1 min)

Tested Classifiers RFO SVM KNN, ETC, ADB,
GBM, SV, HV,
CNN, MLP

subspace KNN

Emotions H, N, F, S H, S, A, P H, F, D H, N, F, S

Emotional Trigger 30-min videos. All in
the same day

music, photos and
videos. All in the
same day

5-min videos. In
consecutive days.

3-5 minute videos
mixed. In the same
day.

No Features 63 → 23 27 3 → 1 11

Baseline Normalization Yes Yes No No

Feature Selection Method Embedded Embedded Embedded Manual

Performance Evaluation
CV 10-fold - 10-fold 5-fold

Test Hold-out with
70:30 ratio over the
dataset

Hold-out with 11/12
and 1/12 for test

Hold-out with vari-
ous ratios over the
dataset

-

Results
CV 89.6% - 66% 67.6%

Test 71% 72.3% 76% with 80:20 ratio 67.6%

CW - Continuous Wave, FMCW - Frequency-Modulated Continuous Wave, UWB - Ultra Wideband

CS - Cardiac signal, RS - Respiratory signal, RR - Respiratory rate, RFO - Random Forest, SVM - Support Vector Machines,

KNN - K-Nearest Neighbor, ETC - Extra tree classifier, ADB - AdaBoost classifier, GBM - gradient boost machine,

SV - soft voting, HV - hard voting, CNN - Convolutional neural networks, MLP - multi-layered perceptron,

H - Happiness, N - Neutral condition, F - Fear, S - Sadness, A - Anger, P - Pleasure, D - Disgust, CV - Cross-Validation

Table 6.1: Comparison of the results obtained in different works on emotion recognition using
radar systems.

the HRV parameters and hence more robust results might be obtained with such population
sizes. The emotions under study are different among all the considered studies. Some works
were dedicated to distinguish three emotions and others four, and in general the considered
emotions were: Fear, Happiness, Neutral condition, Sadness, Anger, Pleasure and Disgust.

It is also important to mention that the process of emotion elicitation, as well as the general
methodological procedure, may have a strong influence in results. For instance, depending
on the procedure used to elicit emotions and if this elicitation was or not successful, it may
be more difficult to distinguish between different emotional conditions [194], [195]. Also,
more authentic reactions may be obtained if the subject is not aware of the video’s content,
and if the emotional inductions are sufficiently spaced in time (which also helps do decrease
emotional contagion from one session to another). The works [4], [52], [191] induced all
the emotions on the same day and [190] on consecutive days. The emotion induction was
performed using thematic videos with different duration in [52], [190], [191] and by showing
music or photos in [4].

Thus, the induction protocol followed in [186] might be one that leads to more unbiased
results. In [186] the goal was to identify the happiness, fear and a neutral condition. The
experiment was conducted in three different days, spaced by at least one week. Each session
was composed by a baseline lasting 5 minutes (where no emotion was induced) and an emotion
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inducing period lasting between 25-30 minutes. Each day was dedicated to eliciting a different
emotion, by showing a set of thematic videos already used in previous studies [186], [196].
More specifically, happiness was induced via comedy videos, whereas fear was induced using
scary videos and documentaries were used on the baseline and also to induce the neutral
condition. Each set of videos was organized according to an increasing order of emotional
intensification, in order to allow for a continuous induction throughout the session. In order
to avoid biased results, the subjects did not have prior knowledge of the videos content.
Additionally, they were asked not to drink coffee in the previous hour and to avoid attending
the session if they were feeling stressed out or if an emotionally intense situation had happened.
As one could see throughout this PhD thesis, this consists on the Emotional Protocol, already
used in different work stages.

Regarding the used vital signs, the works [4], [52], used the RS and CS to compute features,
while [190], [191] only considered the RS. Different set of features were considered on each
work. More specifically, in [190] the authors considered as features the age, gender and the
respiratory rate being the latter the only feature considered. A group of 11 features was
manually selected in [191], and they were mainly focused on the signal waveform and spectral
content. Conversely, embedded methods might be preferential since it allows to learn which
is the best feature set during the training phase [197]. Thus, in [198] a total of 63 features
was computed over the RS and CS and a recursive feature elimination based on Gini gain was
applied iteratively, to determine which features provide more information [199], reducing the
dataset to 23 features. In [4] features were also selected with an embedded method, namely
the l1−SVM, which selects a subset of relevant features also during the training phase, leading
to a 27-length subset.

In order to obtain authentic and unbiased results an additional step needs to be applied
over the features. The physiological parameters differ between subjects, considering the same
emotional scenario. Furthermore, and assuming a neutral condition, the same subject might
present altered physiological parameters in different days and these differences are related to
several factors, among them the coffee ingestion, the subject’s mood or the lack of sleep [4].
In this context, for a fair analysis all subjects under study should be in a equivalent state,
therefore the computed features should be normalized. For this purpose, the signals captured
during the baseline are also used to compute the features and their mean value is subtracted
from the features computed over the further experiment. This procedure was only carried
out in [4], [52].

Finally, the results obtained in the literature cannot be compared directly, since different
RF front-ends were used and each work was dedicated to a different set of emotions. Ta-
ble 6.1 presents results exclusively for the multiclass strategy (i.e. the ability to distinguish
all emotions) and for a person-independent scenario, where the dataset is relative to all sub-
jects. Different machine learning algorithms were implemented with the goal to classify the
emotions. The works [4], [52], [191] implemented a single classification algorithm, namely the
RFO, the SVM and the subspace KNN, respectively. On the other hand, a total of 8 different
classification algorithms were implemented and their performance compared in [190]. Their
study included machine learning algorithms, the ensemble of their results through hard and
soft voting and the exploitation of deep learning models.

In order to evaluate the classifiers performance, almost all works used the K-Fold as cross-
validation method and then used a Hold-out strategy for testing. The Hold-out involves a
random data partition in train and test subsets. For instance, [52] used a 70:30 ratio, where
70% of the dataset was used in training and the remain 30% was used to test the classifiers
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performance. In [52] the data partition was repeated 10 times and the average and standard
deviation were analyzed. The same principle was followed in [190], but the authors tested
different ratios and selected the one providing the best accuracy results. Instead of using the
Hold-out strategy, the authors in [4] opted for using 11/12 subjects for training and test in a
single one. The obtained accuracy results varied between 67%− 72% to detect four emotions
in [4], [52], [191] and an accuracy of 76% was obtained in [190] to distinguish three emotions
using the 80:20 data partition (see Table 6.1).

Considering the state of the art presented above some loopholes were identified, among
them the lack of validation of the obtained results with a proper certified equipment and
the adopted emotion induction procedures which may have biased the results with emotional
contamination. Thus, a study on the usage feasibility of the Bio-Radar prototype described in
Chapter 2 for emotion recognition was carried out. This study included a complete validation
of the developed prototype, using an unbiased emotional induction protocol developed in
the Department of Education and Psychology of the University of Aveiro and previously
described in [186]. The happiness, fear and a neutral condition were identified using the
vital signs acquired by two systems simultaneously: the BRD and the BPC as the certified
measuring equipment. While the BPC uses a chest-band attached to the subject’s chest to
acquire the respiratory signal and the ECG is measured using a three-derivation of skin-
contact electrodes, the BRD system is able to capture both cardiac and respiratory signals
concurrently and without requiring the direct contact with the subject.

The conducted study is divided in two stages. Section 6.2 describes the first stage, which
was a preliminary study dedicated exclusively to the information encompassed in the RS and
the RBM. This stage served as a proof of concept, so the signals were processed with the
Simplified DSP algorithm presented in Section 3.1. The second stage presented in Section 6.3,
aimed to improve the preliminary results and it was implemented after developing the dynamic
algorithms for the CDC offsets removal, presented in Section 3.3. In this case, the CS was
also included, the population under study was increased and a statistical study was carried
out to evaluate which features are the most informative to distinguish between the elicited
emotions.

6.2 Study on the usage feasibility of bio-radar for emotion
recognition

The Bio-Radar signal is lowpass with a bandwidth equal to 0.2 − 2 Hz, which comprises
the respiratory bandwidth for a healthy adult (0.2 − 0.4 Hz) [121], the hyperpnea cases
(0.4 − 0.8 Hz) and the cardiac signature along with other random motions from the body
(0.8 − 2 Hz) [200]. Therefore, in this work stage along with the respiratory signal, one also
aimed at capturing other types of body motion that occur naturally due to the individual’s
reaction to specific emotions. These body movements, that have been seen as a source of
distortion in similar works, hold important information regarding human responsiveness to
specific emotions. The goal of this work stage is to verify how much information these two
elements are able to provide in the emotion recognition context.
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6.2.1 Data collection and signal processing

The experiment was conducted with nine volunteers using the Emotional Protocol. The
respiratory signal of all subjects was acquired using a preliminary version of the BRD proto-
type (namely the bio-radar prototype version 1 of Figure 2.6 which was developed in [2]) and
the BPC as reference.

Figure 6.3 shows the setup disposition and the conditions of the monitoring scenario used
in both work stages. The subject was seated with his/her arms laying on the table in front.
This position helped the subjects to remain stable during the experiment. The radar antennas
were located at a distance of half a meter, in front of the subject (under the computer monitor
as depicted in Figure 6.3).

Figure 6.3: Setup disposition used in both work stages for emotion recognition with the BRD
and the BPC acquiring simultaneously.

After acquisition BRD and BPC were processed offline in MATLAB. The Simplified DSP
algorithm was used to process the BRD signal. The BRD signal was received with a sampling
rate equal to 100 kHz and the BPC signal was acquired with a sampling rate equal to 1 kHz.
Once we are dealing with lowpass signals, both BRD and BPC signals were downsampled to
the new sampling rate equal to 100 Hz. Then BRD and BPC signals were synchronized and for
this purpose the subjects were asked to perform the breathing pattern shown in Figure 3.27.
The CDC offsets were removed in the BRD signal and the arc position was adjusted in
relation to the complex origin. The respiratory signal was recovered by performing phase
demodulation with the arctangent computation, resulting in the real signal y(n). Later,
the radar respiratory signal y(n) as well as the one acquired by the BPC were divided in
sub-segments with one minute duration for the feature extraction for classification.

6.2.2 Bio-radar signal viability for emotion recognition

Before implementing the machine learning algorithms for emotion recognition, a compar-
ison between BRD and BPC signals was made, with the goal to identify informative signal
patterns. Figure 6.4 shows two signal samples obtained during the Fear state test, acquired
simultaneously with these two systems. It depicts how BRD and BPC might present similar
information and it also depicts the additional information contained in the RBM captured by
the BRD. In this sample, it is possible to observe that the subject was frightened twice and
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Figure 6.4: Respiratory signal acquired during the Fear state [192]: by the BRD system
(on top) and by the BPC system (on bottom). Peaks with red dots were the moments where
subject got frightened. Segment ‘A’ contains an increase of the heartbeat rate and the remain
segments (‘B’ and ‘C’) sign the body motion of the subject.

these events are represented by two peaks with higher amplitudes, marked with a red point
in the figure. Immediately after each moment of fright, it is possible to identify an increase
in the heart rate during the exhale periods. This event is signed in green with the capital
letter ‘A’. The radar system can also detect the random motion of the subject, that occurs
naturally due to the sudden reactions of videos (such as laugh or fright), or for comforting
purposes. In fact, this random motion along with other signal signatures that arise from the
emotional induction, serve as additional information for the proper emotion recognition. For
example, the subject’s discomfort can be observed in the BRD signal from Figure 6.4. If the
he/she moves slightly his/her position the signal mean value change, as showed in the signal
slots marked as ‘B’ and ‘C’. On the other hand, this type of event is not evident in the BRD
signal.

6.2.3 Classification procedure

Features extraction

After extracting the vital signals, appropriate features were manually selected and com-
puted from one minute observations. Figure 6.5 represents the block diagram of the signal
segmentation process, which was adapted according to the features categories that are going
to be used. The signal at the Segmentation block input is the result of phase demodulation
y(n).

During the monitoring period, changes on the respiration pattern and other body motions
are expected according to the natural reaction of the body due to emotions. Thus, statistical
and waveform characteristics can be identified. In addition, the spectral evaluation is also
carried out, not only for the respiratory bandwidth 0.2−0.4 Hz, but also for higher frequencies
that can reveal heartbeat detection or sudden motions from the subject.
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Figure 6.5: Specification of the segmentation process for the different feature categories [192].

For spectral features, the input data is only divided in 1 minute sub-segments, without
any prior processing. On the other hand, for statistical and waveform features, a filter was
applied in the full signal before the sub-segmentation process. The filter used was a 2nd order
Butterworth with a bandpass equal to 0.05 − 1.5 Hz. The usage of this filter is important
to center the respiratory signal in zero and to remove noise that might have impact in the
features computation.

A total of 12 features were extracted from the segmented signals and they are shown in
Table 6.2.

Category Feature No Description

Statistical
F1 Mean

F2 Variance

Waveform

F3 Waveform width

F4 IBI of respiratory peaks

F5 Respiratory rate

Spectral F6-F11 Power spectral density in different bands

F12 Power spectral density ratio

Table 6.2: Features selected manually for the first stage of the emotion recognition [192].

More details are now provided over these features computation:

• F1-F2 corresponds to the mean value and variance of the one-minute segment;

• F3 is the mean value of all peak widths in that segment. The width is defined as the
distance between the samples where the signal intercepts a reference line. In this case,
the reference line is located beneath the peak, at half of the peak prominence;

• F4 corresponds to the mean value of the number of samples between consecutive peaks,
over the segment;

• F6-F11 are the magnitudes of the spectral components in the different frequency bands
(0 - 0.1 Hz, 0.1 - 0.2 Hz, 0.2 - 0.3 Hz, 0.3 - 0.4 Hz, 0.4 - 0.9 Hz, 0.9 - 1.5 Hz), obtained
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through the Power Spectral Density (PSD), using the Welch method with a sliding
Hamming window with 50% of overlap;

• F12 relates the spectral components within the low band (0.1 − 0.5 Hz) and the high
band (0.6 − 1.5 Hz). It is expected that the low band expresses only the respiratory
presence and the high band expresses a restless behavior together with the cardiac
component.

Once again these features have different natures so they were standardized applying equa-
tion (5.1).

Classifiers

In this work, three different classifiers were implemented and their performance was com-
pared. The same classification procedure was applied for both BPC and BRD signals, in
order to validate the ability to use of the developed prototype for this scope.

The classification was performed considering a binary and multiclass problems, both using
a dataset with 221 observations for each emotion. For the binary problem, only pairs of
emotions were considered, therefore the dataset length had 442 observations. On the other
hand, the multiclass case considered three elicited emotions, corresponding to a final dataset
length equal to 663 observations.

Notice that the observations were chosen after visual inspection of the signal, where noisy
segments were discarded. This resulted in an imbalanced dataset, since it was not possible
to have the same number of observations per subject, at each emotion. Thus, in order to
balance the dataset, the number of observations was limited to the minimum duration time
of all emotional conditions.

Three classification algorithms were chosen - SVM, KNN and RFO, considering their good
performance with short datasets [189]. Moreover, SVM and KNN were also used in literature
for the same purpose (for instance in [4], [191]) and since the goal of this work is to reinforce
the possibility to use radar systems in emotion recognition, that same algorithms should be
used. These algorithms were implemented for both binary and multiclass problems. Their
implementation used the following hyperparameters, selected manually by trial and error:

• SVM was applied with a radial basis function kernel [189], in both binary and multiclass
problems.

– Regarding the multiclass case, since SVM algorithms are based in binary classi-
fication only, a decision strategy based in voting was applied in order to reduce
the multiclass problem in a set of binary problems. In this sense, a one-versus-
one strategy selects the class through the major vote occurring within C(C − 1)/2
binary classifiers, where C is the total number of classes [201].

• The KNN algorithm uses the Euclidean distance as measure of proximity and the closest
neighbour (with k = 1) is considered as decision rule [202].

• Finally, the RFO algorithm consists in an ensemble of decision trees trained in parallel
to give a contribute to the final decision. This ensemble classifier was implemented with
the Bagging mode, i.e. each tree was trained with a bootstrap sample of the dataset
[189]. In order to prevent the deep grow of trees, a minimum leaf size was assigned to
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five observations. The out-of-bag score was then used to choose the number of trees
(see Figure 6.6) and 70 trees were selected.

– Additionally, the feature impact can also be studied from the RFO classifier. For
this purpose, the relevance of the feature selection on each node was analyzed and
the six more relevant features were chosen to create a new dataset.

Figure 6.6: Out-of-bag error curve to choose the appropriate number of trees to be further
used in RFO [192].

6.2.4 Results discussion

Since the dataset was small, the SVM and KNN classifiers were trained and tested using
the Leave-one-out cross-validation strategy. Leave-One-Out is an extreme case of the K-fold
cross-validation. Considering that the dataset has N observations, this strategy uses N-1
observations for training and leave one observation out for testing [189]. With this approach
there are N combinations of training sets with different single instances for testing. The final
result shows how many times the prediction was right on identifying the correct label. As for
the RFO case, the out-of-bag observations (samples not included in the bootstrap sample)
were used to estimate the performance of the classifier.

Table 6.3 present the results regarding the binary and multiclass problems for this first
emotion recognition stage.

Binary problem

Starting with the binary problem analysis, similar accuracies were obtained using both
BRD and BPC signals. Generally, the Happy vs. Fear case is the one that presents lower ac-
curacy, with a difference of less than 10%, if we compare with the other binary cases. This can
be explained by the similar responses for these two emotions, leading to an approximated fea-
ture result, which hinders the class identification. Since both positive and negative emotions
serve motivational purposes (reward or withdrawal, respectively), similar autonomic nervous
system responses favor environmental adaptation purposes, as to prepare the organism for
appropriate behavioral responses [203]. Although this remains a controversial topic in the
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Binary problem Multiclass problem

HN FH FN HNF HNF-F

SVM
70.8% 68.8 % 72.2 % 58.1 % 63.3 % BRD

79.2 % 73.5 % 81.7 % 65.2 % 63.3% BPC

KNN
72.6 % 72.4 % 72.4 % 58.2 % 66.2 % BRD

75.8 % 71.0 % 79.2 % 61.4 % 76.5 % BPC

RFO
77.4 % 73.8 % 77.8 % 65.2 % 67.1 % BRD

83.9 % 73.3 % 83.0 % 69.1 % 75.1 % BPC

HN - Happy vs. Neutral, FH - Fear vs. Happy, FN - Fear vs. Neutral

HNF - Happy vs. Neutral vs. Fear

HNF-F - HNF with reduced number of features

Table 6.3: Accuracy rate results for emotion recognition using the respiratory signal [192].

literature, several studies have corroborated this view, by showing an increased physiologi-
cal arousal (e.g., increased heart rate) not only in negative emotional states (which trigger
“fight or flight” responses) but also in positive emotional states [204]. The current results
support such view for respiratory signals captured using the BRD, since the same behavior
was observed with the BPC signals.

On the other hand, the algorithm with better performance was the RFO and the worst
accuracy results were obtained with the SVM classifier, which also presented the biggest
deviation between BRD and BPC signals, with a maximum drift of 10%, approximately.

Aside from these results and in order to properly validate the BRD system usage, the
McNemar test was performed [189], with the mid-p-value test. This test helps to understand
which type of signal could be used to identify more true labels accurately, or if the classifier
accuracy is similar using both systems. It verifies if the null hypothesis is accepted or rejected.
In this case, the null hypothesis stands as the classifier having the same accuracy of predicting
correctly the provided class labels for both BRD and BPC systems.

The McNemar test was performed for every classification algorithm and for every binary
case. To apply the test, the predicted values of the test set of the Leave-one-out strategy
loop were stored for all classifiers. Then, the null hypothesis was tested and indeed verified,
indicating that a BRD-based classifier have the same accuracy of predicting true labels as
a BPC-based classifier, for a specific binary problem. The test was applied with 5% of
significance level to compare the results of both classifiers.

Multiclass problem

Observing now the multiclass problem, the results were again similar within the different
classifiers and the different acquisition systems. With a detailed analysis it is possible to
verify that the results of the KNN and RFO classifiers were approximately the same for BRD
and BPC signals, with only 3.2% and 3.9% of difference, respectively. The difference was
slightly more evident for the SVM, with 7.1% of difference. Likewise the binary problem,
the best classification algorithm was the RFO with 65.2% of accuracy for the BRD case and
69.1% for the BPC. Consistently with the previous results, the BPC signal resulted in better
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accuracy results than the BRD. However, the McNemar test performed for every classification
algorithm did not rejected the null hypothesis at the 5% significance level, which sustain that
differences between accuracy results with BRD and BPC signals are not relevant.

An alternative way to evaluate the results is by computing the confidence interval of the
accuracy results. For this purpose, the normal approximation of binomial confidence interval
was computed through equation (6.1):

p̂± z
√
p̂(1− p̂)
N

(6.1)

where p̂ is the probability of a correct decision, N is the total number of observations and z is
equivalent to 1− α

2 quartile of the standard deviation. In this case, α = 0.05 was considered,
which results in z = 1.96. In fact, p̂ is also an estimate of accuracy, and it can be obtained
through the relation Ns

N , where Ns is the number of correct decisions [205]. Figure 6.7 shows
the performance of each classifier using the BRD and BPC signals, and their distribution
through the computed intervals.

Figure 6.7: Comparison of the classification accuracy for different classifiers considering the
BRD and BPC signals [192].

Results are disposed in consecutive pairs of ‘name/signal’, with the respective classifier
name and signal type. By analyzing this graph it is possible to observe that the results under
the same classifier deviate slightly between the different signals, by keeping an interval portion
in common.

Finally, RFO classifier allowed the execution of a preliminary study regarding the feature
importance. This study revealed which features had more influence on the achieved results
and this information can be used to presumably increase the accuracy results, by decreasing
the number of features used in dataset. The last column of Table 6.3 shows the accuracy
results after training and testing the classifiers with the most relevant features. In the BRD
case the selected features were F6, F7, F12, F4, F9 and F2 (disposed in decreasing order
of importance). In the BPC case, the selected features were F9, F7, F2, F3, F10 and F8.
There were some common features used by both systems, such as the variance (F2) and the
power spectral density in the range of 0.1 - 0.2 Hz, (F7) and in the range of 0.3 - 0.4 Hz
(F9). These features can depict modifications on the breathing signal characteristics, i.e. the
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change of the waveform over time, which can occur due to random motions or to sudden
change of emotional state (caused by laughs or frights) and also the dynamic range variation
of the breathing rate on a healthy person. It should be also highlighted the features that were
differently selected. For example, F4 which measures the time between peaks and F12 that
represents the ratio between low frequency components and high frequency components, were
only selected on the BRD based system. These features can encompass either the cardiac
signal (mostly detected in apnea periods), but mostly the RBM that is not easily detected by
the BPC, as seen previously.

With the limited number of features, the results increased in general (excepting SVM for
the BPC case). This determines the importance of the selected features and proves their
relation with the current emotional state of the subject. In conclusion, using exclusively the
respiratory signal and RBM, the BRD system is able to differentiate between the three elicited
emotions with an accuracy of 67.1%. In contrast, the BPC presented a better but yet similar
performance namely 75.1%, which is less than 10% difference, when compared with the BRD.

6.3 Performance comparison of emotion recognition using bio-
radar and contact-based methods

In the previous section, one could conclude that the differences between BRD and BPC
systems are not relevant. The developed work was only focused on the respiratory signal
and RBM, and despite the results showed that the respiratory signal is a highly informative
element, the obtained results can be improved. As seen in Chapter 3, the DSP algorithms
performance is greatly improved if the CDC offsets are removed dynamically. This dynamic
implementation allows to account with environment changes as well as keep track of the
subject RBM, without alter useful information.

This section describe the developments related with the second stage of emotion recogni-
tion using the BRD system. In order to step forward on this research, the BRD prototype
was generally improved not only at a hardware level, but also in a software level. On the
hardware side, the BRD prototype used to acquire the vital signs was the final selected in
Chapter 2 and it is depicted in Figure 6.3. On the software side, the Dynamic DSP algorithm
was implemented to pre-process and extract the vital signs before the features extraction, and
the cardiac signal extracted using the wavelet-based algorithms described in Chapter 5 was
included in the analysis. In this case, and considering the lack of signal resolution reported
Chapter 5, windowing approaches were used to extract the cardiac features, in order to take
advantage and to fully exploit the information contained in the cardiac signal without risking
to obtain biased results.

Finally, the population under analysis was increased to 20 subjects (20-subject dataset
from Table 3.6). The same classification procedure was adopted as previously, where the SVM,
KNN and RFO classifiers were applied to the signals acquired by BRD and BPC systems.
The features typically used in literature were surveyed and computed over BRD and BPC
signals, to subsequently study statistically which are able to differentiate between emotions.

6.3.1 Considerations on vital signs extraction

Similarly to the procedure conducted in the first work stage, both BRD and BPC signals
were pre-processed to obtain the RS and CS waveforms. Figure 6.8 presents the complete
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block diagram of the DSP algorithm implemented at this stage for both BRD and BPC
signals.

Figure 6.8: Block diagram of the BRD and BPC signals pre-processing before the classification
considered in the second stage of emotion recognition.

In sum the BRD signals are pre-processed using the Dynamic DSP algorithm and then the
arctangent was applied to recover the vital signs resulting in signal y(n). Signal y(n) contains
both RS and CS mixed together, so in order to obtain the yc(n) exclusively the algorithm
described in Chapter 5 was applied, starting by passing the y(n) signal by a 100th order FIR
BPF, with a pass-band within 0.7-2 Hz and then apply a multi-resolution analysis through
the DWT. On the BPC side, the only signal processing applied after synchronization was
dedicated to the ECG signal. A 15th order FIR BPF with a pass-band equal to 6-20 Hz was
applied to highlight the R-peak and remove noise [166].

6.3.2 Features extraction

After processing the BRD and BPC signals, they were divided in one-minute segments,
leading to a balanced dataset with size equal to 1626 minutes (542 minutes per emotion).
The dataset was balanced using the same strategy adopted in Stage 1. Several features were
computed over the one-minute segments, to further build the observation matrix which will
be used by the classifiers. For starters, the works [4], [52], [186], [190], [191] were analyzed and
almost all features were considered and extracted from the segments. Thereafter, a statistical
study was conducted over all features, aiming to select the ones that provide significant
information to differentiate between the different emotions. The features considered at this
stage can be once again divided in four different categories - waveform features, statistical
features, spectral features and HRV features - and they are compiled in Table 6.4.

Waveform, statistical and spectral features are computed directly over one minute seg-
ments, and more details are now provided:

• F1 for the BRD signal is computed using two different approaches - ANN result using
the individual models and through ZC - to later study the differences on results. For
the BPC case this feature corresponds to the inverse of the median of IBI;

• F2 is obtained through a zero-crossing approach fully introduced earlier in Chapter 3;

• F5-F10 correspond to the mean absolute value of the first and second derivative of CS,
RS, normalized RS and the IBI of the CS;

• F11 represents the energy ratio between RS and CS;
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Category Feature No. Description Applied Signal

Waveform

F1-F2 Signal Rate CS and RS

F3-F4 AppEn CS and RS

F5-F7 First derivative RS, RS-N, IBI-CS

F8-F10 Second derivative RS, RS-N, IBI-CS

F11 Energy Ratio RS

F12 Kurtosis RS

F13 Peak Width RS

F14 Variance RS

Statistical

F15-F18

Sk, Med, IQR, Av

IBI-CS

F19-F22 IBI-RS

F23-F26 CS

F27-F30 RS

F31-F34 Inhale (RS)

F35-F38 Exhale (RS)

Spectral
F39-F44 PSD RS

F45 PSD ratio RS

HRV parameters

F46-F47 SDNN IBI-CS, IBI-RS

F48-F49 RMSSD IBI-CS, IBI-RS

F50 pNN50 IBI-CS

F51-F52 DFA2 α1 and α2 IBI-CS

F53-F56 Poincaré plot for m = 1 IBI-CS

F57-F60 Poincaré plot for m = 10 IBI-CS

CS - Cardiac signal, RS - Respiratory signal, RS-N - Normalized respirtory signal, IBI-CS - Interbeat Interval for CS

IBI-RS - Interbeat Interval for RS, AppEn - Approximate Entropy, Sk - Skewness, Med - Median,

IQR - Inter-Quartile Range, Av - Average, PSD - Power Spectral Density,

SDNN - Standard deviation of all IBI, RMSSD - root mean square of the successive differences of the IBI,

pNN50 - Percentage of successive normal sinus IBI taking more than 50 ms, DFA - Detrend Fluctuation Analysis

Table 6.4: Initial set of features considered in the second stage of emotion recognition.

• F13 is the mean value of the width of peaks and valleys;

• F39-F44 correspond to the PSD over separated frequency bands, namely 0 - 0.1 Hz, 0.1
- 0.2 Hz, 0.2 - 0.3 Hz, 0.3 - 0.4 Hz, 0.4 - 0.9 Hz and 0.9 - 1.5 Hz;

• F45 is the PSD ratio between a lower frequency range within 0.1-0.4 Hz and a high
frequency range within 0.5 - 1.5 Hz;

F11 is being computed differently for BRD and BPC signals. For BRD, F11 corresponds
to the ratio between the RS and the signal resulting from the BPF application prior the
computation of the DWT coefficients, (i.e. the ratio between signals yBPF (n) and b(n) in
Figure 6.8). This filtered signal was considered instead of the wavelets results, for containing
all high frequency spectral components. For BPC, the F11 is the ratio between the signal
coming from the chest-band and the ECG signal. Note that at this work stage, the statistical
and waveform features did not require the application of any filter as it was necessary in the
first work stage, since the filter could remove characteristics that might be more important
for some of the features.

On the other hand, the HRV features needed to follow a different computation strategy.
The observation matrix applied to all classifiers has a N ×M dimension, where N is the
number of features and M is the number of observations and each observation corresponds
to the feature result computed over a one-minute signal. However, the Task Force in [158]
recommended to use signals with at least 5 minutes of duration to compute the HRV parame-
ters, as a gold standard. Therefore, we computed the HRV parameters using sliding windows
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with 5 minutes length, moving forward at a 1 minute pace, as depicted in Figure 6.9. The
observation number corresponds to the central minute of the 5-minute window.

Figure 6.9: Illustration of how HRV features are computed and assigned to each observation.

More details can be also provided about the HRV parameters:

• F47 and F49 are related to the respiratory peaks, so they were computed in one minute
segments;

• F46-F49 the results are presented in log transform to adjust for the unequal variance,
since data presented a non-normal distribution [156];

• F51-F52 were computed using a quadratic fitting and considering a short range (α1)
between 20 and 60 beats and a long range (α2) between 10 and 100 beats [206];

• F53-F60 correspond to the Poincaré plot features, namely the standard deviation in
crosswise (SD1), the standard deviation in lengthwise (SD2), the ratio between SD1 and
SD2 (SD12) and the SDRR. All the Poincaré plot parameters are computed without
and with delay (i.e. m = 1 and m = 10, respectively).

Additionally, a features normalization was conducted at this work stage. Features were
computed on baseline signals and on signals from the inducted conditions. In order to guaran-
tee a user-independent and day-independent analysis, the mean value of the baseline features
on a given day and for a specific subject was subtracted from the features computed for the
emotional condition of that day [207].

6.3.3 Statistical study over the features information

After computing all features and normalize them, the most informative ones were se-
lected through a statistical study. Before describing the conducted procedure, a note must
be exposed. As previously discussed in Chapter 5, when the CS is measured through the
mechanical motion of the heart at the chest surface, there is an interpersonal variation of
the heartbeat morphologies related with the differences on body mass index, age, sex, among
other health-related factors. This was in fact observed on the MAE differences presented in
Table 5.4 and for this reason ANN were developed as an alternative to decrease the MAE.
However, despite the error minimization, using ANN models increase the complexity of the
process, therefore, it is required to evaluate if the final results justify such complexity. In this
context, the impact of the heart rate accuracy was studied in this work stage, by performing a
feature selection and also running the classifiers results using the F1 computed through both
ANN (F1-ANN) and ZC (F1-ZC) approaches.

Figure 6.10 depicts the workflow being followed. First of all, the One-way analysis of
variance (ANOVA) test was applied over all features in order to inspect if the resultant
residuals have a normal distribution. In this case, it was considered the most voted answer
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Figure 6.10: Workflow of the statistical study for features selection.

of three different tests - the Kolmogorov-Smirnov test, the Anderson-Darling test and the
Lilliefors test. All features presented a non-normal distribution. Secondly, an hypothesis
testing is performed to verify which features represent statistical differences between the
classes being identified. Since all features have a non-normal distribution, the Kruskal-Wallis
test was conducted, since it makes no normality assumption about the population distribution
[208]. The Kruskal-Wallis test analyze the variance of ranks, in this case by inspecting the
medians of the features. At this stage, one intend to find the features presenting different
medians for distinctive classes. For each feature the resultant p−value was inspected and only
the features with p < 0.05 were considered further. Subsequently, the Pairwise T-test with
one-step Bonferroni correction was applied, to analyze which pair of classes each feature can
differentiate.

The third step of this analysis is building a priority queue of features. For each binary
classification namely Fear vs. Happy (FH), Fear vs. Neutral (FN) and Happy vs. Neutral
(HN), features were settled in a column, in ascending order according to the p−values obtained
in the Pairwise T-test. Thus, the first row of each column presents the features that better
distinguishes the correspondent classes (with lower p−values) and the last row presents the
less significant features (with higher p−values). From this point, the queue is build over the
rows, prioritizing the elements with lower p−values and removing the repeated entries.

The final step of this study is creating a correlation matrix, in order to remove features
with redundant information and simplify the classification models. If a given pair of features
present high correlation, it indicates that the variation of one affects directly the other. In
this case, one of them can be removed keeping always the one with more priority in the
queue. Thus, the final selected features were the ones presenting correlation values inferior
to 0.7, selected according to their position in the priority queue. For instance, Figures 6.11
and Figures 6.12 shows the correlation matrices before and after removing the redundant
elements for both BRD and BPC signals respectively, where the BRD case was the one using
F1-ANN. At the end, one could reduce an observation matrix with 60 features to 23 features
for the BRD if using F1-ANN approach or 22 if using F1-ZC. For the BPC 19 features were
selected. Table 6.5 presents the list of features for both systems and for both F1-approaches,
in decreasing order of importance, according to their priority queues.

Feature selection discussion

Starting with features selected for the ANN approach, in total there are 11 features com-
monly selected by both systems, namely the F25, F55, F51, F34, F2, F45, F27, F3, F12,
F43 and F9, which is approximately half of the set. This fact could indicate that both sys-
tems present a similar information content, despite the different particularities related to the
signals nature. The body motion is highly accounted on the BRD case, since the first four
features with more priority are dedicated to RS (and therefore indirectly related with RBM),
while the first four ones on the BPC case are relative to the CS. Besides, in total 5 and 8
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(a) (b)

Figure 6.11: Correlation matrix for feature selection considering F1-ANN approach for the
BRD case: (a) after the Pairwise T-test, (b) after removing redundant features.

(a) (b)

Figure 6.12: Correlation matrix for feature selection for the BPC case: (a) after the Pairwise
T-test, (b) after removing redundant features.

features were selected from the spectral and statistical categories on the BRD case, whereas
only 3 and 5 features were selected for the BPC case on the same categories.

On the other hand, if the F1 was computed through ZC, only three features were selected
differently. More specifically, the F1-ZC approach also selected F1, F52 and F50 and the F1-
ANN selected F58, F51, F18 and F47 differently. Since the F1 was selected if computed with
the ZC, one can conclude that the additional error contributed to distinguish between different
classes, which might lead to biased results. Furthermore, the selection of F1 discarded other
features correlated to it, that might have relevant information. Even though, both feature
sets are highly similar, therefore it is not expected to obtain disparate classification results
between these two cases.
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Bio-Radar (F1-ANN) Bio-Radar (F1-ZC) BIOPAC

Feature Description Feature Description Feature Description

F28 Median of RS F28 Median of RS F25 IQR of CS

F34 Mean of inhale time F34 Mean of inhale time F55 SD12 for m = 1

F2 RS rate F2 RS rate F24 Median of CS

F43 PSD in 0.4 - 0.9 Hz F43 PSD in 0.4 - 0.9 Hz F51 DFA2 α1

F23 Skewness of CS F23 Skewness of CS F34 Median of inhale time

F3 AppEn of CS F3 AppEn of CS F2 RS rate

F42 PSD in 0.3 - 0.4 Hz band F42 PSD in 0.3 - 0.4 Hz band F45 PSD ratio

F9 Second derivative of RS-N F9 Second derivative of RS-N F27 Skewness of RS

F27 Skewness of RS F27 Skewness of RS F41 PSD in 0.2 - 0.3 Hz

F25 IQR of CS F25 IQR of CS F3 AppEn of CS

F58 SD2 for m = 10 F45 PSD Ratio F10 Second derivative of IBI-CS

F51 DFA2 α1 F37 IQR of exhale time F4 AppEn of RS

F37 IQR of exhale time F1 CS Rate F12 Kurtosis of RS

F40 PSD in 0.1 - 0.2 Hz band F55 SD12 for m = 1 F35 Skewness of exhale time

F18 Mean of IBI-CS F52 DFA α2 F54 SD2 for m = 1

F45 PSD ratio F5 First derivative of RS F43 PSD in 0.4 - 0.9 Hz

F39 PSD in 0 - 0.1 Hz band F40 PSD in 0.1 - 0.2 Hz F19 Skewness of IBI-RS

F5 First derivative of RS F39 PSD in 0 - 0.1 Hz band F9 Second derivative of RS-N

F55 SD12 for m = 1 F11 Energy ratio F48 RMSSD for IBI-CS

F11 Energy ratio F12 Kurtosis of RS

F12 Kurtosis of RS F15 Skewness of IBI-CS

F15 Skewness of IBI-CS F50 pNN50

F47 SDNN of IBI-RS

Table 6.5: List of selected features for BRD and BPC systems in decreasing order of impor-
tance.

Additionally, one should note that the same features were computed over the BRD and
BPC signals for a fair comparison. This work aims to verify if both systems have the same
ability to detect emotions in the same conditions, rather than choosing the one with the best
performance. Therefore, it should be stated that more appropriate features can be selected
for the BPC system such as the frequency domain parameters of the HRV, and in that case
the features selected for the BPC might be different, as well as the results obtained further.

6.3.4 Classification results

After selecting which are the features with pertinent information to differentiate between
classes, three machine learning algorithms were implemented - SVM, KNN and RFO. The
classifiers hyperparameters used were the same previously presented in the first work stage
and the considered evaluation metrics were the following:

• Cross-Validation (CV ) using the leave-one-out strategy;

• First testing stage (T30) - using a hold-out strategy where 70% of the dataset of each
condition was used to train the model and the remain 30% was used to test it. For this
first testing stage, 19 subjects were considered and one was left out. The partition of
data as well as the selection of the subject to be left out were performed randomly. The
train-test procedure was repeated 20 times and the mean value and standard deviation
of the accuracy and F1-score were verified.

150



• Second testing stage (Tid) - accuracy and F1-score were evaluated for the subject being
left out in the T30 stage, serving as a new subject.

The performance results of the classification accuracy are again presented separately in the
binary and multiclass problems. The classification results were evaluated for both F1-ANN
and F1-ZC cases, and also for the BPC case, in order to compare performances.

Binary problem

The results obtained for the binary problem are presented in Table 6.6.

Classifiers
HN [m± std] FH [m± std] FN [m± std]

CV T30 Tid CV T30 Tid CV T30 Tid

SVM

82.2± 3.1 83.6± 4.7 50.6± 9.1 83.6± 2.3 83.7± 3.9 48.0± 6.2 84.9± 2.3 86.1± 3.1 50.8± 1.9 BRD1

78.8± 1.4 79.2± 2.7 49.2± 3.5 81.9± 2.1 82.8± 2.7 50.3± 6.0 82.4± 3.5 86.0± 4.0 52.1± 10.5 BRD2

80.1± 1.5 80.3± 3.1 55.2± 11.0 81.7± 2.5 83.7± 2.5 48.8± 11.3 79.8± 1.3 79.6± 2.7 60.6± 11.9 BPC

KNN

97.2± 0.5 97.3± 0.7 61.0± 12.0 97.9± 0.4 97.5± 0.9 35.9± 21.1 97.4± 0.4 97.8± 0.8 63.6± 15.9 BRD1

95.7± 0.7 96.0± 0.9 58.0± 19.8 95.9± 0.5 95.9± 1.1 48.5± 14.9 96.3± 0.6 96.6± 1.1 58.9± 19.2 BRD2

91.8± 0.8 91.8± 1.4 46.5± 14.3 91.8± 0.8 91.8± 1.4 46.5± 14.3 91.4± 0.7 91.1± 2.3 65.6± 12.5 BPC

RFO

99.5± 0.2 99.6± 0.4 55.9± 15.0 99.2± 0.4 99.4± 0.5 38.3± 32.1 99.3± 0.3 99.6± 0.7 67.0± 23.6 BRD1

94.6± 0.6 95.6± 1.1 58.4± 21.8 94.2± 0.9 95.5± 1.1 39.5± 15.7 94.8± 0.6 96.2± 1.2 62.8± 22.7 BRD2

91.0± 1.0 91.9± 1.6 74.6± 20.2 90.2± 1.3 91.6± 2.2 54.9± 23.8 91.2± 0.7 91.2± 1.6 71.4± 19.3 BPC

BRD1 - bio-radar results with F1 obtained through ANN, BRD2 - bio-radar results with F1 obtained through ZC, BPC - BIOPAC results

HN - Happy vs. Neutral, FH - Fear vs. Happy, FN - Fear vs. Neutral, m - mean value, std - standard deviation

Table 6.6: Accuracy results in (%) for the binary problem relative to the second stage of the
emotion recognition.

The first aspect that should be highlighted is that the accuracy increased in comparison
to the first work stage. By comparing only the CV results presented in Table 6.3 with the
ones in Table 6.6, one can conclude that by increasing the set of features, by removing the
individual and daily dependency and by carefully selecting the most important ones, increase
the performance for both BRD and BPC systems. The impact was more prominent in the
BRD system, which increased approximately 20% for all binary conditions. An inferior rise
was observed for the BPC, varying between 7% and 15%. Other important aspect is that,
while in Table 6.3 the FN condition was the one obtaining the best results, in this case no
condition stand out, presenting all equivalent performances. This effect was observed for both
BRD and BPC cases.

Observing now the test performance using the remain 30% of the data not used for training
(T30), one can verify the robustness of the model, since the testing results do not differ largely
from the CV ones. This was observed for all classifiers, whereas each presented similar but
yet different performances. For instance, in the BRD1 case, the SVM classifier presented
an average performance of 84.5% for all binary cases, while the KNN and RFO performed
better with an average of 97.5% and 99.5%, respectively. In general, the BRD case presented
a better accuracy than the BPC case, for both CV and T30, where the difference did not
exceeded 8%.

The Tid testing case was the one presenting the worst results. The standard deviation
increased abruptly indicating a large variance in results. This was somehow expected since the
subject used in test was not considered in the training phase. If the subject being tested do
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not have similarities with the data used to train the model, the model will not fit with his/her
behavior and the accuracy decreases, which explains the increase observed in the standard
deviation value. Hence, one can conclude that the data of 20 subjects may not be enough
to generalize the models for the general population. As for the classifiers performance in the
Tid, considering the BRD case, each classifier stand out as the best for a different binary case.
This time the BPC case performed better than the BRD, and the best results were obtained
with the RFO classifier, with 74.6% of accuracy for the HN case, 54.9% for the FH case and
71.4% for the FN case. Looking at the best results of the BRD, all binary cases presented an
accuracy varying between 48%− 67%.

The differences observed in T30 and Tid results obtained for BRD and BPC systems, can
be justified with the occurrence of random body motions (usually treated as noise), which are
easily captured by BRD but are less evident in BPC signals. Each emotional condition can
provoke motions specific to the emotion and emotional intensity experienced by the individuals
[209]. For instance, the fear induce frights that can be more subtle in some subjects or more
evident in others. Concurrently, some subjects reported that they found some comedy videos
funnier than others. Since BRD is more affected by external motions and BPC results are
exclusively dedicated to patterns in vital signs, the motion patterns might have an increased
individual variability rather than the vital signs solely [209].

Finally, the performance of the BRD classifiers was compared considering that F1 was
computed using two different approaches: ANN individual models (BRD1 results) and the
ZC method (BRD2 results). The ZC one was more traditional and less complex to implement,
but implied a high MAE depending on the subject at hand. The ANN presented an average
MAE of 1 BPM, but it requires a complex implementation. The results presented in Table 6.6
suggest that this complexity effort required to obtain the BRD1 results might compensate,
since an average of 99% of accuracy was obtained for all the binary cases, in CV and T30

cases. Nonetheless, it is worth to mention that the differences between BRD1 and BRD2 are
not relevant, being less than 5%.

6.3.5 Multiclass problem

Table 6.7 presents the results of the multiclass problem. For this case, besides the accuracy,
other metric was evaluated namely the F1-score. This metric establishes a balance between
recall and precision, which is more appropriated for short datasets applied in a multiclass
problem [186], [190].

The multiclass problem achieved similar performances compared with the binary one. The
CV is again close to the T30, indicating the robustness of the models. Better results were
obtained for the BRD1 on the T30, which could differentiate the three emotions with 99.7%
of accuracy and 99.9% of F1-score using the RFO classifier, while the BPC presented an
accuracy almost 10% below with 87.8% and 92.7% of F1-score, also using the same classifier.
Since the binary problem presented a high performance in all cases (also around 99%), the
BRD1 multiclass results were expected. As regard with the remain classifiers, for both BRD
and BPC, the SVM classifier was the worse and KNN presented a performance similar to the
RFO classifier.

The Tid results of the multiclass problem were presented the same order of magnitude as
the binary case. Likewise Table 6.3, a high standard deviation was verified in the Tid test and
the BPC performed better than the BRD most of the times.
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Accuracy [m± std] F1-score [m± std]

CV T30 Tid T30 Tid

SVM

76.8± 2.1 76.7± 3.5 34.6± 8.4 85.2± 3.9 60.4± 20.1 BRD1

73.3± 1.8 73.5± 3.5 33.8± 5.1 83.0± 2.5 65.5± 5.9 BRD2

72.9± 2.3 74.7± 2.5 39.4± 6.5 94.0± 4.7 37.2± 36.8 BPC

KNN

96.0± 0.4 96.4± 0.8 37.1± 9.0 98.0± 1.0 41.0± 28.4 BRD1

93.4± 0.7 93.8± 0.9 40.2± 13.3 96.5± 1.0 61.3± 15.9 BRD2

86.2± 1.0 86.6± 1.3 41.8± 7.4 92.8± 2.0 60.7± 19.6 BPC

RFO

99.2± 0.3 99.7± 0.3 35.3± 21.7 99.9± 0.2 40.8± 39.4 BRD1

92.7± 0.7 94.3± 1.2 38.4± 16.4 96.9± 0.9 50.3± 30.4 BRD2

86.5± 1.0 87.8± 1.4 51.5± 20.1 92.7± 1.9 59.1± 37.2 BPC

BRD1 - bio-radar results with F1 obtained through ANN

BRD2 - bio-radar results with F1 obtained through ZC, BPC - BIOPAC results

m - mean value, std - standard deviation

Table 6.7: Performance results in (%) for the multiclass problem relative to the second stage
of the emotion recognition.

6.4 Final considerations

This chapter was dedicated to perform a complete validation of the bio-radar prototype to
be used in emotion recognition. This validation was supported by comparing the classification
results with the ones obtained using the BPC as a certified measuring equipment. The work
was divided in two stages. The first stage was presented in Section 6.2, and it used only
the RS signal to distinguish the happiness, fear and a neutral condition. The second stage
was presented in Section 6.3, and it included the CS on the analysis. Furthermore, a total
of 60 features were computed and a statistical study was implemented to identify the most
informative ones. The individual and daily dependency contained in the baseline were also
canceled. In sum, the results accuracy increased more than 20% in comparison to the first
work stage.

In general, the latter results demonstrated that if classifiers include the population under
study in the training process, the BRD outperforms the BPC in the emotion recognition,
considering the same set of 60 features as starting point. More specifically, according to the
F1-score obtained in the multiclass problem, we were able to recognize ≈ 100% of the cases.

The statistical study implemented for both systems provided a reduced set of features,
where half of them were common in BRD and BPC, indicating that signals acquired by
radar contain equivalent information. Additionally, the body motion captured by BRD could
possibly explain its superior performance. For instance, frights have an inherent motion
pattern as well as chuckles, which are captured more easily by the BRD than the chest-band
of the BPC. Nonetheless, if new data is being tested in the classifiers, BPC stand out with a
better performance most of the times. This might also be related with the body motion due
to the increased individual reaction variability.

Regarding the results presented in the literature so far, a direct comparison cannot be
performed fairly. All works used different radar front-ends and the emotions under study
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were different. The works [4], [52], used both RS and CS to compute features, while [190],
[191] only considered the RS. The features normalization using the baseline information was
only implemented in [4], [52]. The works [4], [52], [191] presented an accuracy varying between
67%− 72% to detect four emotions, where [52], [191] were dedicated to the same emotion set
and [4] was focused on a different set. On the other hand, our work and [190] were dedicated
to three emotions, where [190] achieved 76%. Despite we obtained a better accuracy of 99%,
[190] was not focused on the same emotional set and used a completely different radar setup.
Therefore, one can only conclude that the results obtained in our work are in line with the
ones presented in the countable works of literature.

Additionally to the works presented on Table 6.1, the work presented in [186] can also
be included in the literature analysis, since they conducted a study on emotion recognition
focused on the same emotional set and following the same emotion induction protocol. Their
dataset was composed by the ECG, the electrodermal activity and the electromyogram of 55
subjects, acquired with BPC. They also conducted a classifier performance analysis similar
to the one herein presented, where one can stand out two of their testing cases. In their (a)
testing case, 12 subjects were left out of the training process and tested separately, and in
the (c) case, 30% of each emotional condition of the test data was included in the training
process. Their (a) case was similar to ours Tid, but we only used one subject to test separately
and their (c) case was similar to our T30, but we used 70% for training instead of only 30%.
Comparing now the F1-score results, in [186] 42% was obtained for the RFO classifier on
the (a) case, and we were able to obtain 40.8% testing in only one subject. For the (c)
case, also using the RFO classifier, a F1-score of 73% was obtained in [186], while we were
able to accomplish 99.9%. Our results are thus also in line with the ones obtained in [186]
and the observed differences might be mostly justified with the sample size, the number of
observations used for training and testing, and the different vital signs used in both works.
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Chapter 7

Conclusion

The main goal of this PhD was to verify the viability of using bio-radar systems in real
applications. In order to accomplish such purpose, it should be possible to integrate the system
in specific objects to confer a low profile appearance and streamline the manufacturing process
of the product at hand. Concurrently, the prototype performance must be assured for long-
time periods and deal successfully with low quality signals, retrieving important information
regardless the subject’s physical characteristics. For this purpose, a bio-radar prototype
was developed and applied in specific case study scenarios, limitations and potentials were
identified and appropriate solutions were designed to overcome the implementation issues and
enhance the system robustness.

The main prototype operation characteristics were firstly studied and selected considering
the purpose of the PhD. In this sense, a flexible front-end was opted which consisted on an
SDR operating in CW mode at 5.8 GHz. CW radars are narrow band and the vital signs
are extracted using accurate phase measurements. The carrier frequency respects a balanced
trade-off between sensitivity and system design simplicity. The SDR was selected to be used
as RF front-end for being compact and flexible to configure. A set of antenna design guidelines
were also provided, based on a state of the art review. Throughout the different work stages,
one could conclude that the appropriate antenna design could be different depending on the
application at hand. For instance, in acquisitions performed in front of the subject, directive
antennas might be more indicated to improve the SNR, but the same might not be applied
for alternate chest areas (e.g. sideways). Nonetheless, characteristics such as high gain and
crossed circular polarization should be kept commonly.

In order to study the prototype performance under the different perspectives, two specific
case studies were considered. The first case study was mostly dedicated to the system ap-
pearance. Therefore, in this framework, low profile solutions were developed to fully integrate
a bio-radar system in a car seat upholstery. For this purpose, textile materials were used to
manufacture antennas and they were embedded in the side lumbar support upholstery, aim-
ing to monitor the respiratory signal from the subject’s sideways. The system performance
was tested and the results showed that it is possible to acquire the respiratory signal from
sideways using textile antennas, with a similar precision as conventional substrate antennas.
For this specific application, the appropriate antenna design was selected and it was con-
cluded that single patch antennas might be more indicated, due to their wider beam in the
radiation pattern, that allows an easier alignment with the subject considering the limited
RCS. In sum, the results obtained in this case study demonstrated that it is possible to fully
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integrate a bio-radar in a specific application, by adapting the antennas design, since they
are the system element which is in the line-of-sight with the subject. A complete validation
was also performed by comparing the bio-radar performance to capture the respiratory sig-
nal from sideways, with a certified measuring equipment, which measures the full chest wall
expansion.

On the other hand, real application scenarios imply the bio-radar operation during long
term periods. With this fact, several challenges arise since the subject cannot stay entirely sta-
ble, neither the monitoring environment. Hence, the DSP algorithm implemented to extract
vital signs must adapt to eventual monitoring conditions changes. In real context scenarios,
the RBM generates high amplitude signals which overshadow the vital signs information, com-
promising the DSP algorithms effectiveness. Besides, the vital signals amplitude can severely
decrease, not only due to the subject physical characteristics, but also due to an eventual
misalignment with the antennas beam. In this sense, an algorithm was developed to extract
the vital signs considering long term acquisition periods. The developed algorithm determines
the CDC offsets related with the parasitic reflections occurring in the environment, using a
novel arc fitting method, which forces the arc center estimation to be outside the radar sam-
ples. This method revealed being highly effective when applied to weak signals, and robust
to sporadic body motions. The CDC offsets removal was implemented dynamically through a
windowing approach, to contemplate time changes in the acquired signal. The DSP algorithm
was also developed having in mind a real time implementation, by altering the average signal
angle in order to oscillate around 0◦.

The ability to extract the cardiac signal under the same circumstances was verified. For
this case, the impact of the subject’s inter-individual variability was more evident, since
only in half of the tested subjects the heart rate error was inferior to 3 BPM. The inter-
individual variability might be related to several factors, such as the body posture under test,
the individual chest wall motion, the physical body characteristics or even the psychological
state. Solutions such as machine learning algorithms might be used to decrease this error,
where individually trained models were the most effective. Additionally, it was inspected if it
would be possible to assess pertinent cardiac characteristics, considering the used prototype
and carrier frequency. One could conclude that due to the lack of signal resolution it is not
possible to estimate HRV parameters accurately, but even though it is possible to extract
useful information from these parameters, through windowing approaches.

Finally, the bio-radar vital signs usage was exploited by verifying if it is possible to esti-
mate the emotional state of a subject in a given moment. For this purpose, three different
emotions where induced by a video visualization, and the vital signs were acquired using the
bio-radar and a certified measuring equipment for comparison purposes. On a preliminary
study, where only the respiratory signal was used, similar accuracies were obtained by both
acquisition systems, demonstrating that the bio-radar signals can be used for psychophysio-
logical assessment. Later, the results were indeed improved by adding also the cardiac signal
as information and improving the prototype in general. In this case, the bio-radar system
outperformed the certified measuring equipment used as reference, achieving 99% of accuracy
on the emotion identification. It was concluded that this final result was obtained mostly due
to RBM that occurred according to the subject’s reaction to specific emotions. Therefore,
despite having impact in the vital signs extraction and even compromising the system’s ac-
curacy, the RBM have also useful information regarding the subject’s state, that should be
equally preserved.
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7.1 Future Work

The work developed in the PhD demonstrated that the bio-radar potential can be opti-
mized if it is integrated in specific applications. Only two case studies were evaluated, hence,
as the future work more applications should be considered and explored in order to step
forward in a future system quality certification.

In Chapter 4, it was studied how to integrate the bio-radar in a specific object considering
the vehicular scope. However, all tests were conducted in a laboratory environment using
a car seat model. More research is still required for automobile applications, to verify the
ability to operate the bio-radar inside a vehicle, considering the high multipath environment
and also the car trepidation during its mobility. To solve the multipath issue, alternate
antenna designs can be explored aiming to decrease the antenna beam and its side lobes.
One possible solution is the usage of dielectric lens in front of the antenna, or the usage of
MIMO (Multi-Input Multi-Output), to redirect a narrow beam to a pertinent location and
fully eliminate the acquisition of parasitic reflections. Although these two solutions imply
bulky antennas or larger antenna arrays, they might be suitable if the radar is incorporated
in alternate positions, such as in the ambulance ceiling to remotely monitor critical patients.

The impact of the inter-individual variability in the signs accuracy should be further
studied, as well as the impact of the body structure in the propagation channel. During
the work stages conducted in this PhD, signals with different SNR were received by different
subjects, under the same acquisition conditions. Since an electromagnetic signal is reflected
in the subject’s chest wall, the body is indirectly a radiating element and might have a
different impact in the signal received by the radar. It is important to understand the causes
of such variability, if they are relative to the gender or exclusively to the subject body. This
information is important to correctly calibrate the overall system.

On the other hand, one could verify that the RBM can be either a disruptive source for the
extracted signals, but also an informative element to assess the psychological condition of the
subject. Aiming to develop a system fully robust in long-term applications, it is important
to classify the types of RBM and identify which must be compensated and when. Then, the
RBM can be either compensated using DSP algorithms or using hardware solutions, such as
MIMO systems, by coherently combine signals acquired by different antenna elements and
thus recover signals in case of path loss.

Additionally, the ability to identify emotions with the bio-radar system demonstrated that
by using appropriate machine learning algorithms, informative patterns are indeed present in
the vital signs, and they can be captured more easily with the radar when compared with
conventional contact equipment. This conclusion open doors to multiple applications worth to
be explored, such as in the forensic research by implementing a remote and hidden polygraph.
Under these circumstances more authentic reactions can be assessed, since the subject is not
directly aware of being monitored. The prototype proposed in this PhD is suitable for that
purpose, since it can be hidden in objects keeping simultaneously its accuracy at a superior
level.

Finally, it is also worth to explore the ability to use the remotely captured vital signs
to assist in diseases diagnosis, either pulmonary or cardiac, such as dysfunctional breathing,
chronic obstructive pulmonary disease, arrhythmia or other pertinent conditions that could
be detected through the motion at the chest wall surface. In this case, the current bio-radar
front-end could be either explored using the proposed windowed-based approaches or it can
also be adjusted in order to increase its sensitivity, by using higher frequency carriers.
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