Factors driving metal partition in ionic liquid-based acidic aqueous biphasic systems

Ana R. F. Carreira,^a Helena Passos,^a* Nicolas Schaeffer,^a Lenka Svecova,^b Nicolas Papaiconomou,^c Isabelle Billard,^b and João A. P. Coutinho^a

^a CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal

^b Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management Univ. Grenoble Alpes), LEPMI, 38000 Grenoble, France

^c Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272, 06108 Nice, France.

*Corresponding author. Email: hpassos@ua.pt

Table S1. Experimental weight fraction data obtained for the different AcABS at (298.0 \pm 0.1) Kand atmospheric pressure (0.10 \pm 0.01) MPa.

[P ₄₄₄₁₄][HSO ₄] + HCl + H ₂ O					
[P ₄₄₄₁₄][HSO ₄] (wt %)	HCl (wt %)	[P ₄₄₄₁₄][HSO ₄] (wt %)	HCl (wt %)		
43.75	16.29	10.11	21.76		
39.26	16.72	9.79	21.82		
35.77	17.17	9.54	21.84		
32.02	17.55	9.29	21.84		
29.63	17.79	8.76	22.02		
27.88	18.03	8.28	22.57		
25.69	18.50	7.67	22.64		
23.93	18.90	7.20	22.76		
22.60	19.12	6.67	22.99		
21.09	19.40	6.25	23.02		
19.91	19.67	5.85	23.09		
18.76	19.99	5.47	23.29		
18.05	19.96	5.22	23.25		
16.86	20.31	4.94	23.25		
16.02	20.47	4.65	23.48		
15.27	20.57	4.45	23.49		
14.57	20.78	4.24	23.55		
13.47	20.94	4.10	23.59		
13.07	20.98	3.91	23.56		
12.41	21.30	3.76	23.59		
11.95	21.40	3.60	23.74		
11.68	21.40	3.49	23.72		
11.14	21.54	3.38	23.76		
10.72	21.67	3.26	23.74		
10.43	21.64	10.11	21.76		
	[P44414][HSO4]	+ H ₂ SO ₄ + H ₂ O			
[P44414][HSO4] (wt %)	H ₂ SO ₄ (wt %)	[P ₄₄₄₁₄][HSO ₄] (wt %)	H ₂ SO ₄ (wt %)		
44.87	13.63	12.70	16.98		
43.09	13.82	12.17	17.09		
41.01	13.94	11.82	17.13		
39.58	14.08	11.35	17.20		
37.90	14.04	10.96	17.25		
36.83	14.15	10.43	17.39		
35.55	14.27	10.06	17.42		
34.38	14.27	9.67	17.43		
33.20	14.38	9.24	17.59		
31.73	14.70	8.85	17.63		
30.63	14.86	8.42	17.72		
29.64	14.90	7.98	17.82		
28.05	14.94	7.69	17.87		

24.73	15.34	7.39	17.94
24.20	15.45	7.16	17.99
23.66	15.51	6.93	18.01
23.16	15.52	6.69	18.06
22.65	15.54	6.48	18.10
21.93	15.69	6.25	18.17
21.43	15.69	6.08	18.35
20.74	15.86	5.80	18.38
20.33	15.94	5.47	18.42
19.90	15.86	5.20	18.56
19.11	16.07	5.01	18.53
18.51	16.11	4.75	18.67
17.96	16.13	4.53	18.69
17.44	16.33	4.33	18.74
16.86	16.35	4.10	18.85
16.34	16.36	3.94	18.82
16.03	16.40	3.78	18.88
15.65	16.57	3.68	18.84
14.57	16.60	3.56	18.94
14.09	16.72	3.43	19.05
13.65	16.78	3.30	19.00
13.07	16.86		

Table S2. Experimental weight fraction data obtained for the developed AcABS at (323.0 \pm 0.1) K and atmospheric pressure (0.10 \pm 0.01) MPa.

	[P44414][HSO4] + HCl + H2O					
[P ₄₄₄₁₄][HSO ₄] (wt %)	HCl (wt %)	[P ₄₄₄₁₄][HSO ₄] (wt %)	HCl (wt %)			
38.68	6.39	15.05	7.43			
37.93	6.29	14.65	7.65			
36.06	6.41	13.83	7.71			
35.36	6.48	13.54	7.56			
33.60	6.65	13.26	7.56			
30.10	6.29	13.05	7.60			
29.30	6.33	12.74	7.60			
28.17	6.34	12.60	7.59			
27.21	6.47	12.32	7.66			
25.87	6.64	12.06	7.73			
23.98	6.71	11.80	7.74			
22.90	6.69	11.48	7.70			
22.61	6.68	11.26	7.78			
22.08	6.75	10.98	7.87			
21.54	6.69	10.61	7.76			
21.29	6.87	10.45	7.82			
20.42	6.87	10.23	7.79			

20.26	6.88	10.04	7.86
20.00	6.96	9.81	7.82
19.48	7.00	9.70	7.89
18.70	6.96	9.51	7.92
18.39	7.03	9.31	7.89
17.97	7.18	9.10	7.90
17.80	7.27	8.98	7.97
17.38	7.23	8.85	8.02
16.88	7.36	8.70	8.05
16.48	7.36	8.53	8.09
16.09	7.36	8.37	8.12
15.86	7.36	8.16	8.10
15.41	7.39	8.01	8.11
	[P ₄₄₄₁₄]Cl +	$H_2SO_4 + H_2O$	
[P ₄₄₄₁₄]Cl (wt %)	H ₂ SO ₄ (wt %)	[P ₄₄₄₁₄]Cl (wt %)	H ₂ SO ₄ (wt %)
47.98	11.63	22.91	8.46
37.94	9.43	22.08	8.88
35.31	8.99	20.22	8.69
33.42	8.92	19.48	8.46
31.33	8.72	18.66	8.56
30.14	8.90	17.79	8.66
28.29	8.93	11.98	8.91
26.86	8.64	11.59	9.10
25.81	8.44	11.12	9.00
24.90	8.63	10.74	9.22
23.49	8.49	10.36	9.19
	[P ₄₄₄₁₄][HSO ₄]	+ H ₂ SO ₄ + H ₂ O	
[P ₄₄₄₁₄][HSO ₄] (wt %)	H ₂ SO ₄ (wt %)	[P ₄₄₄₁₄][HSO ₄] (wt %)	H ₂ SO ₄ (wt %)
62.45	6.43	19.21	6.83
53.50	6.27	18.37	6.88
46.85	6.47	17.22	6.90
41.52	6.36	16.87	6.99
37.91	6.43	16.08	6.84
35.00	6.41	15.36	7.04
32.74	6.39	14.73	6.90
31.12	6.50	14.40	6.93
29.31	6.45	14.00	6.94
28.08	6.60	13.67	6.94
24.79	6.69	13.44	7.03
23.87	6.74	12.97	7.14
23.02	6.80	12.46	7.06
22.01	6.88	12.22	7.12
21.00	6.88	11.83	7.28
20.28	6.95		

The mixture points were selected considering the phase diagrams in molarity (mol·kg⁻¹) to correctly compare the performance of different acids and ILs in metals extraction. IL concentration was maintained constant at 0.85 mol·kg⁻¹ for all systems to facilitate the understanding of the IL anion influence on metal extraction. Two different acid concentrations were selected based on the following criteria: [Acid]₁ = [binodal curve] at [IL] = 0.85 mol·kg⁻¹ + 0.5 mol·kg⁻¹, [Acid]₂ = [binodal curve] at [IL] = 0.85 mol·kg⁻¹ + 2 mol·kg⁻¹. In the AcABS based on H₂SO₄ it was not possible to maintain the acid criteria due to the different binodal curves of the [P₄₄₄₁₄]Cl + H₂SO₄ and [P₄₄₄₁₄][HSO₄] + H₂SO₄ systems, with the [P₄₄₄₁₄]Cl + H₂SO₄ system having a larger monophasic area than [P₄₄₄₁₄][HSO₄] + H₂SO₄. Due to the vicinity of the HNO₃ systems to the origin, the acid criteria were not applied to these systems. Instead, HNO₃ systems were studied in the same mixture point applied to the [P₄₄₄₁₄][HSO₄] + H₂SO₄ system.

Table S3. Distribution coefficient (*D*) and extraction efficiency percentage (*EE* %) of the HCI-based AcABS at (298 \pm 1) K, 6.5 mol·kg⁻¹ of acid and different metal concentrations in the systems (0.005 vs 0.01 mol·kg⁻¹).

			D				EE (%)	
	[Metal]	Со	Cu	Mn	Ni	Со	Cu	Mn	Ni
IL	(M)	±σ	±σ	±σ	±σ	±σ	±σ	±σ	±σ
	0.005	21 ± 1	E 4 ± 0 4	1 2 + 0 1	0.06 ±	95.0 ±	0C ± 1	51 ±	5.2 ±
	0.005	21 ± 1	5.4 ± 0.4	1.2 ± 0.1	0.01	0.2	00 I I	3	0.8
[F 44414]CI	0.01	18.0 ±	60+05	0.89 ±	0.084 ±	94.4 ±	07 ± 1	46 ±	7.3 ±
0.01		0.9	0.9 ± 0.5	0.05	0.004	0.6	0/ 1 1	3	0.7

Table S4. Total mol percentage of $[P_{44414}]^+$, H^+ and Cl^- in the top and bottom phase of the $[P_{44414}][HSO_4]$ -HCl-H₂O system at 6.5 and 8.0 mol·kg⁻¹ of HCl at (298 ± 1) K.

Mixture point (IL, HCl) (wt %)	Phase	[P ₄₄₄₁₄] ⁺ %	H ⁺ %	Cl⁻%
(20, 10)	Bottom	n.d.	58.2 ± 0.2	54.5 ± 0.1
(30, 19)	Тор	100 ± 2	41.8 ± 0.1	45.5 ± 0.2
(20, 22)	Bottom	n.d.	72.7 ± 0.4	69 ± 2
(30, 23)	Тор	100 ± 2	27.3 ± 0.3	31 ± 2

Figure S1. Binodal curves determined in this work and by Mogilireddy *et al.*[1] at (298 ± 1) K (A) and (323 ± 1) K (B). The mixture points (MP) used to study the extraction of metals on the HCl (+), H_2SO_4 (\diamond) and HNO_3 (×) systems are also represented. The MP of H_2SO_4 and HNO_3 are overlapping at acid concentrations of 2.5 and 4.0 mol·kg⁻¹.

Table S5. Distribution coefficient (*D*) of the HCI-based AcABS at 298 and 323 K (\pm 1 K) and at different HCI concentrations. Co(II), Cu(II), Mn(II) and Ni(II) were studied in multi-elemental assays while Ce(IV) was studied in single-elemental assays.

					D		
IL	Т (К)	[HCI] (mol·kg ⁻¹)	Co±σ	Cu±σ	Mn±σ	Ni±σ	Ce±σ
	20.0	6.5	18.0 ± 0.9	6.9 ± 0.5	0.89 ± 0.05	0.084 ± 0.004	0.225 ± 0.005
[P ₄₄₄₁₄]Cl	298	8	20 ± 2	4.4 ± 0.3	1.21 ± 0.07	0.0332 ± 0.0001	0.15 ± 0.03
	323	8	26 ± 2	6.1 ± 0.5	2.2 ± 0.2	0.013 ± 0.004	0.15 ± 0.02
	20.9	6.5	15.6 ± 0.1	7.4 ± 0.2	0.84 ± 0.01	0.100 ± 0.003	-
[P ₄₄₄₁₄][HSO ₄]	298	8	24.7 ± 0.3	5.1 ± 0.3	1.27 ± 0.09	0.05 ± 0.02	-
	323	8	26.7 ± 0.4	6.1 ± 0.1	2.08 ± 0.06	0.0115 ± 0.0004	_

Table S6. Extraction efficiency (*EE* %) of the HCI-based AcABS at (298 and 323) K \pm 1 K and at different HCI concentrations. Co(II), Cu(II), Mn(II) and Ni(II) were studied in multi-elemental assays while Ce(IV) was studied in single-elemental assays.

			EE (%)					
IL	Т (К)	[HCI] (mol·kg ⁻¹)	Co±σ	Cu±σ	Mn±σ	Ni±σ	Ce±σ	
	200	6.5	94.4 ± 0.6	87 ± 1	46 ± 3	7.3 ± 0.7	10.2 ± 0.9	
[P ₄₄₄₁₄]Cl	298	8	94.1 ± 0.6	78 ± 2	49 ± 2	2.56 ± 0.05	9.4 ± 0.9	
	323	8	94.5 ± 0.6	80 ± 1	59 ± 3	0.9 ± 0.2	8.5 ± 0.8	
	209	6.5	94.2 ± 0.2	88.518 ± 0.004	46.7 ± 0.9	9.5 ± 0.5	Ι	
[P44414][HSO4]	296	8	95.34 ± 0.06	81 ± 1	51 ± 2	4 ± 1	-	
	323	8	94.6 ± 0.3	80.0 ± 0.8	58 ± 2	0.75 ± 0.08	_	

Figure S2. UV-Vis spectrum of the HCI-H₂O mixture at 6.5 mol·kg⁻¹ (A and B) and 8.0 mol·kg⁻¹ (C and D) of HCl at 298 K with Co(II), Cu(II), Mn(II) and Ni(II) in solution. B and D are a zoom-in of spectra A and C, respectively.

Table S7. Water and acid content on the IL-rich phase of the $[P_{44414}]CI-HCI-H_2O$ system at (298,313 and 323) K ± 1 K.

Temperature (K)	HCl (mol)	H₂O (mol)
298	2.6E-03 ± 1.4E-04	1.0E-02 ± 2.0E-3
313	2.5E-03 ± 4.3E-05	7.3E-03 ± 1.7E-03
323	2.3E-03 ± 1.2E-05	6.1E-03 ± 1.7E-3

Table S8. Total mol percentage of $[P_{44414}]^+$ and Cl^- in the top and bottom phase of the $[P_{44414}]Cl-H_2SO_4-H_2O$ system at 3.0 and 4.0 mol·kg⁻¹ of H_2SO_4 at (298 ± 1) K.

Mixture point (IL, H ₂ SO ₄) wt%	Phase	[P ₄₄₄₁₄] ⁺ %	Cl⁻%
(27 22)	Bottom	n.d.	52.8 ± 0.2
(27, 22)	Тор	100 ± 2	47.2 ± 0.2
	Bottom	n.d.	57.2 ± 0.1
(27, 28)	Тор	100 ± 3	42.8 ± 0.2

Table S9. Distribution coefficient (*D*) of the H_2SO_4 -based AcABS at 298 and 323 K (± 1 K) and at different H_2SO_4 concentrations. Co(II), Cu(II), Mn(II) and Ni(II) were studied in multi-elemental assays.

				Ľ)		
IL	т (К)	[H ₂ SO ₄] (mol·kg ⁻¹)	Co±σ	Cu±σ	Mn±σ	Ni±σ	
	208	3	0.49 ± 0.03	0.70 ± 0.01	0.45 ± 0.03	0.50 ± 0.02	
[P ₄₄₄₁₄]Cl	298	290	4	1.4 ± 0.1	2.7 ± 0.2	1.6 ± 0.2	1.18 ± 0.04
	323	4	1.3 ± 0.1	4.0 ± 0.4	1.11 ± 0.08	1.06 ± 0.03	
	200	2.5	1.01 ± 0.05	0.87 ± 0.04	1.30 ± 0.06	1.00 ± 0.04	
[P ₄₄₄₁₄][HSO ₄]	298	4	1.1 ± 0.1	0.89 ± 0.05	1.5 ± 0.2	1.05 ± 0.08	
	323	4	0.98 ± 0.03	0.91 ± 0.03	1.01 ± 0.01	0.96 ± 0.03	

Table S10. Extraction efficiency percentage (EE %) of the H ₂ SO ₄ -based AcABS at (298 and 323) K
\pm 1 K and at different H ₂ SO ₄ concentrations. Co(II), Cu(II), Mn(II) and Ni(II) were studied in multi-
elemental assays.

			EE (%)				
IL	т (к)	$[H_2SO_4]$ $(mol \cdot kg^{-1})$	Co±σ	Cu ± σ	Mn±σ	Ni ± σ	
[P ₄₄₄₁₄]Cl	298	3	31 ± 1	39.32 ± 0.09	29 ± 1	31.8 ± 0.6	
		4	54 ± 3	73 ± 2	59 ± 5	50 ± 4	
	323	4	49 ± 2	75 ± 2	45 ± 2	43.8 ± 0.1	
[P ₄₄₄₁₄][HSO4]	200	2.5	48.9 ± 0.3	45.2 ± 0.4	55.3 ± 0.3	48.7 ± 0.4	
	296	4	48 ± 3	43 ± 1	56 ± 3	47 ± 2	
	323	4	42 ± 1	40 ± 1	43 ± 1	42 ± 1	

IL	Acid	Т (К)	Phase	Volume (mL)
		209	Bottom	0.85
		298	Тор	0.98
	HCI	323	Bottom	0.92
			Тор	0.73
		200	Bottom	0.73
	Ц.со.	298	Тор	0.80
	П2304	272	Bottom	0.80
		525	Тор	0.73
		208	Bottom	1.25
		298	Тор	0.69
		222	Bottom	1.21
		323	Тор	0.65
		208	Bottom	0.82
	нсі	290	Тор	0.95
		272	Bottom	0.94
[D][HCO.]		525	Тор	0.82
[F44414][H3O4]		200	Bottom	0.81
	Ц.со.	290	Тор	0.82
	H2304	272	Bottom	0.89
		525	Тор	0.71
		200	Bottom	1.22
		290	Тор	0.64
		272	Bottom	1.18
		525	Тор	0.66

Table S11. Phase volumes (mL) of the systems depending on the temperature, type of acid andIL. The presented phase volumes are from the multi-elemental assays at the highest acid content.

Table S12. Distribution coefficient (*D*) of the HNO₃-based biphasic systems at (298 and 323) K \pm 1 K and at different HNO₃ concentrations. Co(II), Cu(II), Mn(II) and Ni(II) were studied in multielemental assays whereas Ce was studied isolated in single-elemental assays.

			D					
IL	т (К)	[HNO₃] (mol·kg ⁻¹)	Co±σ	Cu ± σ	Mn±σ	Ni±σ	Ce±σ	
[P ₄₄₄₁₄]Cl	298	1.0	-	-	-	-	1.02 ± 0.05	
		2.5	0.01 ± 0.01	0.020 ± 0.001	0.03 ± 0.01	0.01 ± 0.01	0.27 ± 0.3	
		4.0	0.03 ± 0.01	0.001 ± 0.001	0.03 ± 0.01	0.05 ± 0.02	0.00 ± 0.00	
	323	4.0	0.70 ± 0.01	0.33 ± 0.05	0.93 ± 0.04	0.67 ± 0.03	0.57 ± 0.06	
[P ₄₄₄₁₄][NO ₃]	298	1.0	_	_		Ι	4.4 ± 0.5	
		2.5	0.20 ± 0.02	0.010 ± 0.001	0.02 ± 0.03	0.05 ± 0.03	1.6 ± 0.1	
		4.0	0.05 ± 0.02	0.000 ± 0.001	0.05 ± 0.02	0.08 ± 0.02	0.9 ± 0.1	
	323	4.0	0.30 ± 0.04	0.05 ±0.03	0.4 ± 0.1	0.29 ± 0.07	1.53 ± 0.02	

Table S13. Extraction efficiency percentage (*EE* %) of the HNO₃-based biphasic systems at (298 and 323) K \pm 1 K and at different HNO₃ concentrations. Co(II), Cu(II), Mn(II) and Ni(II) were studied in multi-elemental assays whereas Ce(IV) was studied in single-elemental assays.

			EE (%)				
IL	Т (К)	[HNO₃] (mol·kg ⁻¹)	Co±σ	Cu±σ	Mn±σ	Ni±σ	Ce±σ
[P ₄₄₄₁₄]Cl	298	1.0	_	_	_	_	30 ± 2
		2.5	0.3 ± 0.4	0.84 ± 0.03	1.2 ± 0.5	0.6 ± 0.3	11 ± 2
		4.0	1.4 ± 0.3	0.72 ± 0.09	1.3 ± 0.5	2.5 ± 0.4	0.00 ± 0.00
	323	4.0	24 ± 1	13 ± 3	30 ± 3	23.4 ± 0.9	20.6 ± 0.2
[P ₄₄₄₁₄][NO ₃]	298	1.0	-	-	-	-	64 ± 2
		2.5	9 ± 1	0.43 ± 0.01	1 ± 1	2 ± 2	42 ± 2
		4.0	2.3 ± 0.7	0.13 ± 0.06	2.3 ± 0.9	3.6 ± 0.7	31 ± 3
	323	4.0	11 ± 1	2 ± 1	14 ± 3	10 ± 2	39 ± 1

Table S14. Distribution coefficient (*D*) of the H_2SO_4 -based AcABS at (298 ± 1) K at 4 mol·kg⁻¹ of H_2SO_4 spiked with different HCl weight fractions.

		D					
IL	HCl (wt %)	Co±σ	Cu±σ	Mn ± σ	Ni ± σ		
[P ₄₄₄₁₄]Cl	0	1.4 ± 0.1	2.7 ± 0.2	1.6 ± 0.2	1.18 ± 0.04		
	1	0.58 ± 0.01	2.22 ± 0.09	0.534 ± 0.003	0.51 ± 0.02		
	5	1.09 ± 0.06	7.0 ± 0.3	0.58 ± 0.01	0.53 ± 0.01		
	10	5.5 ± 0.3	16.3 ± 0.8	1.00 ± 0.04	0.70 ± 0.03		

Table S15. Extraction efficiency percentage (*EE* %) of the H₂SO₄-based AcABS at (298 \pm 1) K at 4 mol·kg⁻¹ of H₂SO₄ spiked with different HCl weight fractions.

		EE (%)				
IL	HCl (wt%)	Co±σ	Cu±σ	Mn±σ	Ni ± σ	
[P ₄₄₄₁₄]Cl	0	54 ± 3	73 ± 2	58 ± 5	49.7 ± 4	
	1	38 ± 1	70.0 ± 0.2	35.9 ± 0.6	35 ± 2	
	5	52.2 ± 0.7	87.5 ± 0.3	36.8 ± 0.1	34.81 ± 0.06	
	10	83.7 ± 0.6	93.83	48.1 ± 0.8	39.4 ± 0.6	

Figure S3. UV-Vis spectrum of the H_2SO_4 - H_2O mixture at 1.0 mol·kg⁻¹ of H_2SO_4 , spiked with 5 wt % of HCl and Co(II) as a metal source at (300.0 and 313.0) K ± 0.1 K.

References

[1] V. Mogilireddy, M. Gras, N. Schaeffer, H. Passos, L. Svecova, N. Papaiconomou, J.A.P. Coutinho, I. Billard, Understanding the fundamentals of acid-induced ionic liquid-based aqueous biphasic system, Phys. Chem. Chem. Phys. 20 (2018) 16477–16484. https://doi.org/10.1039/c8cp02862a.