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Abstract: The pulp and paper industry is recognized as a well-established sector, which throughout
its process, generates a vast amount of waste streams with the capacity to be valorized. Typically,
these residues are burned for energy purposes, but their use as substrates for biological processes
could be a more efficient and sustainable alternative. With this aim, it is essential to identify and
characterize each type of waste to determine its biotechnological potential. In this context, this
research highlights possible alternatives with lower environmental impact and higher revenues. The
bio-based pathway should be a promising alternative for the valorization of pulp and paper industry
wastes, in particular for bioproduct production such as bioethanol, polyhydroxyalkanoates (PHA),
and biogas. This article focuses on state of the art regarding the identification and characterization of
these wastes, their main applied deconstruction technologies and the valorization pathways reported
for the production of the abovementioned bioproducts.

Keywords: bioethanol; biogas; pulp and paper industry; polyhydroxyalkanoates; wastes valorization

1. Introduction

The current climate concerns, which are a consequence of industrialization, population
growth, and the modification of consumption patterns, demand a reduction in fossil fuels
utilization and waste generation [1,2]. The circular economy model proposes the reuse
and the recycling of resources instead of the dominant linear economic strategy of “take,
make and dispose”, reducing the environmental impact [3,4]. The circular economy model
corresponds to a closed cycle within a zero-waste approach. Its implementation would lead
to several benefits, including: (i) a reduced requirement of virgin materials and primary
raw materials; (ii) increased use of renewable resources instead of non-renewable ones;
(iii) the minimization of the waste generated [5]. Additionally, by establishing a cyclical
model, the costs associated should be curtailed with environmental legislation and taxes,
reducing waste management expenses and the dependence on imports. Consequently, the
price volatility of commodity markets will decrease [5,6].

Following this approach, residual biomass and sub-products derived from industrial
processes can be considered possible raw materials with a high potential to produce energy
and other value-added products [1,3,5]. In 2004, to push for this transition, the European
Union (EU) stipulated a target of 70% reusing and recycling wastes by 2030, prioritizing
its reintegration into the value chain. Simultaneously, landfills started to be abolished [7].
Despite its low efficiency, the incineration of wastes for energy recovery is still a common
practice in the EU, and the opportunity for valorization using other routes is lost. Moreover,
the risk of releasing and emission persistent organic pollutants is increased [7,8].

For these reasons, sub-products or wastes of lignocellulosic biomass (LCB) origin
are perfect candidates to serve as feedstock to produce fuels, chemicals, and materials,
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according to the biorefinery concept [2,9]. The successful conversion of LCB into added-
value products depends on the effective deconstruction and identification of precursors
with potential for further bioprocessing [10].

The pulp and paper industry is one of the world’s largest industries and is undoubtedly
the major consumer of woody biomass [11,12]. About 146.5 million cubic meters of wood
were estimated to be consumed by the European pulp and paper industries in 2020 [13].
Nowadays, the social and legislative pressure on the transition to the green economy in this
specific industrial field is high. As a result, companies increasingly seek opportunities to
invest in new technologies and adjust their technological processes within the biorefinery
and circular economy concepts [14]. Around 11 million tons of waste are estimated to be
generated by the pulp and paper industry annually in Europe alone. Different types of
wastes are generated in pulp and paper mills along the process stages, comprising mainly
wood residues (bark, sawdust, fines, rejects), spent pulping liquors, and sludge. Due to the
complexity of these wastes, a deep knowledge of their chemical and structural composition
is essential to achieve the fractionation needed to obtain value-added compounds [15].

This work intends to review the developed processes within the circular economy
concept to convert wastes from the pulp and paper industry into added value bioproducts.
One of the most popular bioproducts is bioethanol, and the different processes for its
production will be reviewed. On the other hand, less studied bio-based products, but
still very innovative and promising, are polyhydroxyalkanoates (PHA). Furthermore,
considering the versatility of anaerobic digestion, biogas production was proposed as an
alternative to close the loop, focusing on the circular economy model.

2. Wastes Resulting from Each Step of Pulp and Paper Processing: Composition and
Potential for Valorization

During the pulp and paper processing, high volumes of water are consumed, and
different waste streams are generated. The accurate determination of the chemical compo-
sition of waste streams is challenging since it depends on several factors, including wood
source, manufacturing processes, the chemicals used, the operational conditions, the type
and grade of final products or the wastewater treatment techniques [16–19]. The chemical
composition is essential to envisage the possible routes for the valorization of each waste.
Even for energetic purposes through thermochemical pathways, namely combustion and
gasification, the knowledge of lignin and extractives’ content is fundamental since it is
related to the calorific value [20].

This section identifies the different wastes obtained during the various steps involved
in the pulp and paper production, and some of the typical and emergent applications are
discussed. The pulp and paper processes are organized into the following steps: wood
preparation, pulping, papermaking, and wastewater treatment, as described in Figure 1.
Concerning the chemical characterization of wastes, most of the examples found in the
literature are related to the Eucalyptus globulus. The popularity of this wood source for
pulp and paper production is related to the high forest productivity coupled with the high
cellulose and low lignin contents, which results in a high pulping yield [13,18,21–23].

2.1. Wood Preparation

Typically, wood preparation comprises harvesting, debarking, chipping, and screening
processes [24].

2.1.1. Harvesting

The first step in pulp processing, wood harvesting, occurs in the forests, generating
branches and stumps as wastes. In general, these wastes are left in the forest for soil
nutrition or are forwarded to the pulp and paper sites for power generation in the biomass
boiler [25–27].
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Figure 1. Simplified flowsheet of the wood preparation, pulping, papermaking process and wastewater treatment processes. 
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Branches
In 2016, about 44 tons of branches were estimated to be generated per 100 tons of

produced pulp [26]. Branches derived from E. globulus are mainly constituted by glucose
and xylose, corresponding to about 47.0% and 15.1% (dry weight), respectively. In terms of
lignin, this accounted for up to 25% [26]. Recently, Fernandes et al. [13] characterized E.
globulus branches, accounting for a cellulose and hemicelluloses content of 41.3% and 22.3%,
respectively. Klason lignin represented 17.9%, while ashes and extractives have a similar
fraction of around 10.0% [13]. However, there is a scarcity of studies regarding the chemical
composition of these wastes, derived from other wood sources and their possible valoriza-
tion routes, turning them into a good opportunity for researchers to find feasible processes
for converting branches into profitable applications within the circular economy concept.

Stumps
The stump involves the near-the-ground stem and the roots, constituting the basal

part of the tree [28]. The chemical composition (oven-dry mass) of E. globulus stumps
revealed about 67% carbohydrates, 24.8% lignin and 15% extractives [20]. Pinto et al. [29]
also reported the characterization of the same wood source, with a monosaccharides
fraction accounting for about 46.6% (27.7% glucose, 14.9% xylose, 0.8% galactose, 0.3%
arabinose, 0.2% rhamnose), lignin 29.6% and extractives 12.9%. Compared to wood, the
stumps usually have a higher concentration of extractives, which may have a negative
impact on the subsequent pulping and bleaching operations [30].

The thermochemical conversion for bioenergy was already proposed for stumps [20,31].
This technology is based on the controlled heating and/or oxidation of biomass, encom-
passing pyrolysis, gasification, and combustion steps [32]. However, further studies are
still needed to evaluate the consequences of applying combustion and gasification to this
feedstock, namely operational problems due to extractives and characterization of solid
by-products generated. This latter issue is fundamental to understanding if the resulting
ashes could be incorporated into soils to minimize the effects caused by the removal of the
stumps from the fields [31].

Figure 1. Simplified flowsheet of the wood preparation, pulping, papermaking process and wastewa-
ter treatment processes.

Branches
In 2016, about 44 tons of branches were estimated to be generated per 100 tons of

produced pulp [26]. Branches derived from E. globulus are mainly constituted by glucose
and xylose, corresponding to about 47.0% and 15.1% (dry weight), respectively. In terms of
lignin, this accounted for up to 25% [26]. Recently, Fernandes et al. [13] characterized E.
globulus branches, accounting for a cellulose and hemicelluloses content of 41.3% and 22.3%,
respectively. Klason lignin represented 17.9%, while ashes and extractives have a similar
fraction of around 10.0% [13]. However, there is a scarcity of studies regarding the chemical
composition of these wastes, derived from other wood sources and their possible valoriza-
tion routes, turning them into a good opportunity for researchers to find feasible processes
for converting branches into profitable applications within the circular economy concept.

Stumps
The stump involves the near-the-ground stem and the roots, constituting the basal

part of the tree [28]. The chemical composition (oven-dry mass) of E. globulus stumps
revealed about 67% carbohydrates, 24.8% lignin and 15% extractives [20]. Pinto et al. [29]
also reported the characterization of the same wood source, with a monosaccharides
fraction accounting for about 46.6% (27.7% glucose, 14.9% xylose, 0.8% galactose, 0.3%
arabinose, 0.2% rhamnose), lignin 29.6% and extractives 12.9%. Compared to wood, the
stumps usually have a higher concentration of extractives, which may have a negative
impact on the subsequent pulping and bleaching operations [30].

The thermochemical conversion for bioenergy was already proposed for stumps [20,31].
This technology is based on the controlled heating and/or oxidation of biomass, encom-
passing pyrolysis, gasification, and combustion steps [32]. However, further studies are
still needed to evaluate the consequences of applying combustion and gasification to this
feedstock, namely operational problems due to extractives and characterization of solid
by-products generated. This latter issue is fundamental to understanding if the resulting
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ashes could be incorporated into soils to minimize the effects caused by the removal of the
stumps from the fields [31].

2.1.2. Debarking

The debarking is crucial since high bark content in wood leads to extended cooking
times and increases the requirements for bleaching chemicals, negatively impacting the
quantity and quality of the pulp produced [33,34].

Bark
Bark corresponds to about 11–15% (oven-dry mass) of the stem [21,34,35]. It is esti-

mated that about 100–300 kg of bark is generated per ton of dry pulp produced [35]. In
general, bark has a lower concentration of carbohydrates and lignin than wood, resulting
in a higher content of ash and extractives [21,36]. However, a wide range of values for each
parameter was found in the literature, which can be related to various factors, including
geographic location, type of soil, tree age, climate and even the sampling method [18,19].
According to Neiva et al. [21], the polysaccharides fraction represented about 61.14% (oven-
dry basis) of E. globulus bark, with glucose and xylose being the majority compounds,
accounting for 37.47 and 15.21%, respectively. To a lower extent, lignin, extractives and
ashes represented 21.86, 9.86 and 5.37%, respectively. Gomes et al. [37] also found a signifi-
cant content of polysaccharides, 67.17% (oven-dry basis), 24.42% of lignin and a minimal
content of extractives (2.04%) and ashes (2.63%). Pinto et al. [26] showed that E. globulus
bark is composed by 41.0% of glucose, 12.3% of xylose, 28.9% of lignin, 8.9% of ashes and
only 2.0% of extractives. In contrast, spruce bark contained lower polysaccharides content
(41.7%), higher lignin (35.8%) and similar extractives (4.5%) and ashes (3.6%) fraction. A
similar composition was reported by Frankó et al. [38].

The bark is commonly used for energy and steam production in the pulp and paper
industry or even just left in the forest for soil nutrition [21,27]. Despite being a straightfor-
ward approach, bark incineration has a low economic return, generating problems related
to fouling and corrosion due to the high ash content and environmental concerns [18,39].
Other applications already explored for bark include the production of wooden panels, the
absorption of pollutants, and animal bedding [39]. Some authors have already studied the
effect of bark incorporation into the pulping process reporting economic advantages for
the pulping mill [36,40,41]. Nevertheless, an additional step before the pulping process
may be fundamental to reduce the content of ashes and extractives, for a viable process
yield. From a biorefinery perspective, sequential pre-extraction steps could also recover
extractives, which have high added value applications in the food and pharmaceutical
industries [13,20,28]. Several authors have focused on the recovery of extractives from E.
globulus bark by supercritical fluid extraction [42–44]. Furthermore, research showing that
E. globulus bark is an appropriate source of high-value triterpenic compounds was already
published [27,45].

In the last years, research focused on more profitable valorization routes, namely for
the production of biochar, bio-oil, and syngas, the extraction of bioactive compounds, the
production of nanoparticles and fermentable sugars, among others [18,46]. The carbohy-
drates´ fraction of bark can be converted into a wide range of chemicals, including furans,
sugar alcohols, and polyols, which can be employed to produce sweeteners, adhesives, and
others [18,21]. To fully exploit the bark, the extraction of the polyphenolic fraction should be
performed before converting the carbohydrates. Due to its anti-inflammatory, antioxidant,
antimicrobial, and antibacterial properties, the polyphenolic fraction has the potential for
high-added-value applications in food, cosmetics, and pharmaceutical industries [18,21,47].
Even though the many possible routes for the valorization of bark, with a market share
estimated to grow continuously, most of the applications previously mentioned are not
yet implemented at an industrial scale [39]. In fact, heterogeneous structure and diverse
chemical composition are the two main challenges, making processes even more complex
when compared to wood and constituting an obstacle to designing a universal technology
for its valorization [18,39].
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2.1.3. Chipping and Screening

The chipping process converts wood into smaller pieces. The wood chips are then
submitted to a screening operation to ensure an optimum size for pulping processes [33,34].
On the screening, the wood chips are categorized according to their size. Oversized pieces
must be re-chipped, whereas undersized chips should be rejected, but they still have
the potential to be further valorized [48]. These small fibers are regularly designated by
sawdust [34,49].

Sawdust
Currently, sawdust is commonly used for energy generation by the pulp and pa-

per industry [50]. Other applications include manufacturing fiberboards and particle
boards [15,51,52] and the production of pellets, a significant renewable solid fuel [51–53].
The small size of sawdust does not allow its use for pulping due to overprocessing [48].
Pinto et al. [26] showed that E. globulus sawdust is composed of 48.4% glucose, 13.9% xylose
and 27.7% lignin, 1.1% ashes and 1.1% extractives. No considerable divergences were
found for Eucalyptus grandis sawdust, accounting for polysaccharides fraction up to 50%
and lignin for about 30.3%. However, a negligible amount of ashes were detected (0.8%),
while extractives represented 5.3% [48].

Due to its high polysaccharides content [54], sawdust is an attractive resource for
microbial bioprocesses manufacturing biofuels, chemicals and materials [50]. Typically,
there are no requirements for mechanical pretreatment before its conversion into bio-
based products due to its small size [55]. Sawdust was already successfully applied in
several processes, including its direct liquefaction to produce bio-oils [56], the production
of xylooligosaccharides [57], nanofibrillated cellulose [58,59], activated carbons [60,61], and
lightweight insulating bricks [62].

Therefore, most of the wastes derived from wood preparation are typically combusted
for heat and power generation, resulting in a huge amount of fly ash. Fly ash is mainly
composed of minerals, such as iron oxide, silica, and alumina. Moreover, it contains
metal oxides, namely the oxides of sodium, calcium, magnesium, potassium, sulfur, and
titanium [35]. Most of the ash is still landfilled [63]. Alternative applications that have been
studied include the use of fly ash as binder, soil amendment, cementitious material, and
absorbent [35,63].

2.2. Pulping Processes

The main aim of the pulping process is to convert wood into a fibrous mass designated
by pulp [24]. Mechanical or chemical cooking methods can be applied, originating pulps
with different properties and applications [24,34]. Chemical pulping is the most widely
used process, representing up to 70% of the total pulp produced globally [64,65].

Typically, the chemical pulps are obtained after feeding the wood chips to the digester
with the cooking liquor, aiming to perform LCB delignification. After cooking, the pulp
is redirected to the washing unit to remove all impurities, namely cooking chemicals and
dissolved organic compounds. There are two leading chemical pulping technologies, the
sulfite and the kraft processes. From the former, the resulting waste stream is denominated
sulfite spent liquor (SSL), and from the latter, black liquor (BL) [24,66]. Finally, the pulp is
forwarded to be bleached and dried in different operational units.

2.2.1. Sulfite Process

The sulfite process is a flexible method, being operated at different pH values and
is typically categorized according to the pH range of operation: acid bisulfite (pH 1–2),
bisulfite (pH 3–5), neutral sulfite (pH 6–9), and alkaline sulfite (pH 10–13) [65]. Typically,
the operating temperature ranges between 130 ◦C and 180 ◦C. In this process, the sulfur
dioxide (the basic pulping reagent) is combined with a pulping base, usually Na+, Ca2+,
Mg2+, or NH4

+ [65]. Mg2+ is the most common base used in the sulfite process since it leads
to better penetration with cooking chemicals, resulting in a more uniform cooking process.
Moreover, chemical recovery systems have been developed to regenerate pulping base and
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sulfur dioxide from SSL [66–68]. The main drawbacks of the sulfite process, compared to
kraft pulping, are the higher cooking time, higher sulfur dioxide losses and the shorter
range of wood species allowed for pulping [18].

Spent Sulfite Liquor (SSL)
SSL is a highly acidic and dark brown liquid by-product resulting from the sulfite

process [67]. Its composition depends on the operational conditions, and the type of
monosaccharides relies on the wood species used in the cooking process: softwood spent
sulfite liquor (SSSL) predominantly contains hexoses, while hardwood spent sulfite liquor
(HSSL) is mainly composed of pentoses [65]. Free monomeric sugars released from hemicel-
luloses hydrolysis are readily available in SSL, representing a clear advantage for microbial
bioprocessing. Compared to LCB wastes, the utilization of SSL avoids the requirement
of a previous extensive pretreatment and subsequent hydrolysis for bioprocessing [69].
Lignosulphonates and sugars are the major SSL components and are recognized as promis-
ing raw materials for added-value products. SSL also contains extractives and volatile
compounds, such as acetic acid, furfural, and methanol [67]. Marques et al. [68] quantified
the major components of HSSL derived from E. globulus, namely lignosulfonates (ca. 46%
of liquor dry matter) and sugars (ca. 25%). Xylose was the predominant sugar (ca. 68%),
but galactose, glucose, rhamnose, arabinose and mannose were also identified. Moreover,
acetic acid and furfural were also detected, and are considered potential inhibitors for
further bioprocessing [68]. Compared to HSSL, SSSL from spruce (Picea abies) contained a
slightly higher amount of lignosulfonates and mannose (ca. 43% wt) was the major sugar
followed by xylose, galactose, glucose and arabinose [65].

SSLs are produced in large amounts, around 90 billion liters annually worldwide [70].
Typically, SSL is concentrated in multi-effect evaporators with water recovery followed
by burning for energy production and chemicals recovery [64]. However, more promis-
ing alternatives for the valorization of SSL were developed, namely the recovery of lig-
nosulfonates [67,71,72] and the production of several added-value products like xylitol,
bioethanol, furfural, hydrogen, and PHA [73–77]. Other alternatives include the valoriza-
tion of acetic acid, methanol, succinic acid, and vanillin, which were also reviewed [77].

The valorization of SSL has a well-established market for decades, using lignosul-
fonates as binders (pelletizing of animal feed, ceramics, dust control, fertilizers), dispersants
(ceramics, dyes, pigments), emulsifiers (asphalt, inks, waxes), concrete plasticizing agents
or adhesives [18,78–81]. Most of these applications rely on the good water-solubility of
lignosulfonates [81].

2.2.2. Kraft Process

Kraft pulping promotes the reaction of an aqueous solution containing NaOH and
Na2S (commonly designated by white liquor) with the lignin present in wood at a tempera-
ture between 150 and 175 ◦C, pressure ranging from 7 to 12 bar, and pH values between 13
and 14 [18,24,34,82,83]. Currently, kraft pulping is the dominant chemical process world-
wide, corresponding to 91% of chemical pulping and 75% of all pulp produced [18,84,85].
Kraft process widely replaced the sulfite pulping process due to the possibility of using
a higher diversity of wood species, originating pulp with better-quality properties, and
providing a more efficient recovery of energy and chemicals [65,82,86,87]. Kraft pulp mills
are designed to be self-sustainable, and in some cases, surplus energy is produced [24,84].
Compared to sulfite pulping, the main disadvantage of kraft pulping is its lower selectivity
and yield [66], and the odorous emissions caused by sulfur compounds, which must be
controlled due to environmental issues [18,24].

Black liquor (BL)
BL is one of the main sub-products of the kraft pulping process with the potential

for valorization [18]. This by-product is a highly alkaline, viscous and brown colored
liquid, resulting from the high lignin content [67]. About 10 tons of BL are estimated to
be generated per ton of pulp produced, accounting for an annual global production of
about 1.3 billion tons [18]. In general, BL is mainly composed of lignin (about 25 to 45% wt),
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saccharinic acids (25–35% wt), formic and acetic acid (10% wt) and extractives (3–5% wt).
In minor amounts, it also contains methanol and inorganic elements (mainly sodium
and sulfur). Compared to SSL, BL contains a negligible amount of sugars, hindering its
bioprocessing [67,85,88]. The composition of BL varies considerably depending on the
cooking process conditions and the origin of the wood [89].

Typically, the BL is evaporated to recover water, and the concentrated stream is burned
in a recovery boiler for energy production and cooking chemicals recovery [84,90–92].
However, the technical lignin is a promising building block for producing a wide range
of chemicals, contributing to fulfilling biorefinery sustainability requirements and overall
economic feasibility [93,94]. LignoBoost® and LignoForce™ commercial technologies are
already a reality in some pulping mills, allowing the recovery of kraft lignin from BL by pre-
cipitation [90,93,95–97]. Some applications that have been explored include polyurethane
foams, polylactic acid, resins, binder to replace bitumen in asphalt mixtures, among oth-
ers [93,98]. Nevertheless, most of these applications require kraft lignin modifications to
improve its potential as a starting material for chemical and polymer synthesis. There are
still some technical barriers due to the structural complexity and heterogeneity of lignin [94].
Moreover, kraft lignin is water-soluble at high pH only and precipitates after dilution or
lowering of the pH [81].

During the chemical recovery cycle of BL, inorganic wastes containing different miner-
als are generated, including green liquor dregs, calcite mud, and slacker grits. Dregs have
been applied for correcting soil acidity, fertilizer and wastewater treatment. Due to the
calcium carbonate composition, grits and lime mud have used as replacement of calcareous
raw materials in construction sector. Moreover, lime mud has been used as a soil remedial
agent or fertilizer [35].

2.3. Papermaking Process

The papermaking process can be divided into five main stages: (a) stock preparation,
(b) web formation, (c) press, (d) drying, and (e) finishing. This process can be described
as a continuous dewatering operation to increase the dry content of the paper web until
the end of the process [49,66]. The main aim of the stock preparation consists of obtaining
fibers to match the requirements of the papermaking process with the desired properties
and quality of the final product. Therefore, stock preparation involves several operations,
namely refining and blending additives, aiming to improve the paper’s strength and optical
properties [49,66]. The pulp suspension is transformed into a continuous sheet during
the web formation through a uniformly distributed flow into the machine direction. This
step allows for a high moisture reduction by about 80–85% [49,66]. The press section aims
to remove water by applying mechanical pressure. In the drying section, the residual
moisture present in the paper sheet is removed by heating, achieving a dryness ranging
between 90 and 98% [49,66]. The last step, commonly designated as finishing, includes the
transformation operations, namely calendering, winding, sheeting, and packaging [49,66].
During this stage, a large volume of wastewater is generated [99].

2.4. Wastewater Treatment

Large volumes of wastewater are generated during several pulp and paper operations,
namely wood preparation, pulp washing and bleaching and paper manufacturing [99–102].
The properties of wastewater derived from each process stage are highly dependent on the
type of raw material, pulping process, the recirculation of effluent and the amount of water
used. Due to the presence of complex organic and inorganic compounds, several methods
have been employed for industrial wastewater treatment [99].

Pulp and Paper Mill Sludge
The spent biomass and residual organic material remaining after wastewater treatment,

designated by pulp and paper mill sludge (PPMS), are a significant source of waste derived
from the pulp and paper industries [15,102]. It is estimated that from one ton of paper
produced, about 40–50 kg of sludge (dry basis) are generated. In general, the wastewater
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from a pulp mill is subjected to primary and secondary wastewater treatments, from
which are generated the respective PPMSs that correspond to about 70% and 30% of the
total sludge generated, respectively [16]. The primary treatment removes the suspended
solids [87] through sedimentation and floatation [102]. The resulting, primary PPMS is
rich in fillers, such as calcium carbonate, and titanium dioxide, and screen rejects, such
as fines fibers [102–104]. In terms of chemical composition, primary PPMS comprises
mainly 45–60% wt of carbohydrates (mostly xylan), 35–50% wt of inorganic matter (ashes,
mostly calcium carbonate) and lignin (5–20% wt) [105].

Secondary PPMS is the residue with the highest microbial content resulting from the
biological treatment of wastewater [102,106]. The microbial populations developed in these
systems use organic matter as substrate for oxidation to carbon dioxide, water, and growth,
originating more microbial biomass [16,102]. For this reason, the secondary PPMS is often
designated as waste activated sludge, biosludge or biological sludge [102]. The two PPMSs
differ in the organic content, ash content and heating value and are often combined to
facilitate their handling, forming the so-called “mixed PPMS” [102,104,106,107].

Typical applications of PPMS comprise landfilling, composting, incineration or com-
bustion [102]. However, these applications have low economic value and raise severe
environmental and sustainable issues [15,102]. The utilization of PPMS should be a target
for the circular economy due to the potential negative costs resulting from its disposal, that
account for about 60% of the wastewater treatment operating costs [104,108,109]. Further-
more, increasingly strict environmental restrictions are being imposed on pulp and paper
industries contributing to higher disposal costs [104,110,111]. Since 1986, sewage sludge
for land applications has been restricted in the EU. The EU Directive (86/278/EEC) defined
specific requirements concerning the quality of sludge, the soil for application, the loading
rate, and the crops that may be grown on the treated lands [112]. Alternatively, PPMS has
been used for energy recovery through combustion, pyrolysis, direct liquefaction, anaerobic
digestion for biogas production, and bioethanol production [15,102]. Another promising ap-
plication includes the integration of sludge in materials, such as biocomposites, bioplastics,
cement and asphalt [102].

3. Deconstructing Residues for Further Valorization through Bioprocessing

The complexity of residues from the pulp and paper industry generally requires the
use of deconstruction technologies before their valorization. These technologies are crucial
to improving bioprocessability through promoting the accessibility of hydrolytic agents to
the lignocellulosic matrix or reducing/neutralizing the inhibitors present. The selection
of the appropriate technology depends on the following factors: the type of raw material,
energy requirements, operational conditions, environmental impact, inhibitory compounds
released, and cost-effectiveness [15,113,114].

For the residues deriving from wood preparation (branches, stumps, wood, bark and
sawdust), categorized as LCB, two main steps are generally required before bioprocessing,
namely, pretreatment and hydrolysis [23,115–118]. However, to minimize the harmful
effect of the inhibitors, some detoxification technologies are required [116,119]. For the
pulp and paper mill sludge resulting from wastewater treatment, some pretreatments were
performed, focusing essentially on the improvement of sugars hydrolysis yields. In general,
these pretreatments include de-ashing operations [105,120].

3.1. Residues from Wood Preparation
3.1.1. Lignocellulosic Biomass Pretreatments

LCB is mainly composed of a complex network of cellulose (33–54%), hemicelluloses
(11–37%) and lignin (17–32%) [121]. This composition varies substantially according to
the species, genera, weather, soil fertility, among others [115]. Due to the recalcitrance of
LCB and to ensure the access of hydrolysis agents to cellulose and hemicelluloses, lignin
separation needs to be promoted before further bioprocessing [115]. The pretreatment
step represents a big challenge, mainly due to the complex and organized morphological
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structure of LCB that determines the intrinsic characteristics such as recalcitrance and het-
erogeneity of residues [122]. Moreover, the physicochemical properties of LCB are highly
dependent on the origin of biomass and influence the performance, yield, and type of prod-
ucts generated during the pretreatment [123,124]. An efficient pretreatment should avoid
the degradation of sugars. Depending on the selected pretreatment, the separation of each
LCB fraction into three streams for further valorization can also be promoted, contributing
to the economic feasibility [113,125–127]. For all reasons abovementioned, designing a
unique pretreatment that generates low concentrations of inhibitory compounds and is
simultaneously efficient and economical is rather complex [116]. This complexity can be
confirmed by several recent review papers describing the different pretreatment methods
applied to the LCB [113,128–130].

Since the kraft pulping process allows for the separation of lignin, Pinto et al. [26]
assessed its performance in branches, sawdust, and bark from E. globulus. Using the con-
ventional pulping process as a pretreatment step for residues can signify a new paradigm
for the pulp and paper industry. Besides being a well-established technology to produce
pulp, this is an alternative with relatively low investment costs and risks since the neces-
sary process units already exist in pulping mills [84]. Among all the wastes tested from
wood preparation, branches were demonstrated to be the best source of polysaccharides
due to the higher pulp yield [26]. However, there is a scarcity of studies related to the
branches, namely their chemical composition, possible pretreatments, and valorization
routes. Stumps typically contain a significant amount of contaminants, including soil and
sand. Therefore, caution is crucial during collecting, handling, and processing to avoid con-
tamination [20]. Sometimes, an additional cleaning step may be required [20,30]. Regarding
bark, the use of a pretreatment step has been extensively studied [18]. The main pretreat-
ments employed were kraft pulping and hot water extraction (HWE) [26,40,41,131,132].
Besides these two processes, steam explosion (SE) was also extensively applied to saw-
dust [48,50,59,133–135]. Other tested alternatives included mechanical refining, microwave
irradiation, organosolv, and soda pulping [48,50,135].

3.1.2. Hydrolysis of Polysaccharides

After the appropriate pretreatment, the hydrolysis process converts the polysaccha-
rides from cellulose and hemicelluloses into monosaccharides for further microbial conver-
sion to added-value products [116,117]. The hydrolysis process can be catalyzed mainly by
acids or enzymes [115,136].

Acid hydrolysis can be carried out by using sulfuric acid diluted (0.5–1.5%) or concen-
trated acid (30–70%) [115,116]. Despite the low cost of this method, it presents problems
of security and corrosion. Furthermore, during this process, some inhibitors, such as
furfural, acetic acid, and phenolic compounds, may be formed that hinder biological
processes [105,137].

Enzymatic hydrolysis (EH) presents several advantages over acid hydrolysis, such as
higher efficiency, lower corrosion and security issues. Moreover, it releases a lower amount
of microbial inhibitors. Furthermore, this method is considered eco-friendly due to milder
reaction conditions (45–55 ◦C and pH 4–5) and the biodegradability of enzymes [121].
Cellulose and hemicelluloses are hydrolyzed by cellulases and hemicellulases systems,
respectively [116]. Cellulases attack β-1,4 glycosidic bonds of cellulose, generating glucose.
Hemicelluloses are more susceptible to hydrolysis than cellulose due to their amorphous
and branched nature [136,138]. However, the degradation of hemicelluloses requires com-
plex systems of xylanases and accessory enzymes due to the different types of linkages in
their chains [116,139]. Xylose, galactose, mannose and arabinose are the main monosac-
charides released [82,136]. The slow rate of the EH can be a result from the inhibition
of cellulase activity caused by the presence of several compounds, namely lignin and
xylan [121]. Besides the non-productive binding of cellulases to lignin and hemicellu-
loses, EH is also inhibited by soluble carbohydrates (glucose, cellobiose, oligosaccharides
derived from hemicelluloses) and soluble aromatic compounds (e.g., phenolics) present
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in hydrolysis slurry [140]. Some promising strategies to overcome this problem include
the production of enzymes with enhanced catalytic activity and the optimization of the
operating conditions [121,122]. Even with some costs decreasing, the cost of the commercial
enzymatic consortia is another main bottleneck of this process, hindering the scale-up [121].
Therefore, some strategies have been proposed to improve the economic feasibility of this
process, namely operation with high solids loading content and fed-batch [121,141]. High
gravity technology that applies high substrate loadings has economic and environmental
benefits. However, this approach could increase the level of inhibitors in reaction broth,
decreasing the hydrolysis rate by cellulases and the growth rate of the microorganisms.
Furthermore, high substrate loading increases the viscosity, hindering the mass transfer
phenomena, and increases mixing power and impeller speed [142–144]. Few studies were
found describing the EH of wood-derived wastes. Asada et al. [133] compared the EH
performance of sawdust and residues resulting from extractions with water and methanol
of steam-exploded sawdust. The SE pretreatment was performed at 45 atm for five minutes
resulting in the highest glucose yield (81%) during the EH step, producing 27.6 g L−1 of
glucose from 50 g L−1 of residue. Guigou et al. [48] subjected sawdust from E. grandis to
several combined pretreatments to fractionate biomass for further valorization. Firstly, the
sawdust was pretreated by autohydrolysis at 170 ◦C and 40 min. After this first step, three
assays with an additional pretreatment were performed: mechanical refining, kraft pulping,
and soda pulping. According to the results reported, all additional pretreatments positively
affected the EH efficiency. The highest EH efficiency of 95 ± 2% was obtained for the
autohydrolysis followed by kraft pulping (140 min, 2.7% active alkali) [48]. Kemppainen
et al. [145] studied the fermentability of the spruce bark subjected to three pretreatments: SE,
HWE, and in combination (HWE+SE). Both HWE and the sequential pretreatment led to a
similar hydrolysis yield of 63% after using cellulases supplemented with β-glucosidase and
pectinase. The information concerning integrated configurations (such as SSF) is detailed
in the corresponding section.

3.2. Residues from Pulping Processes

From the point of view of residues valorization, as abovementioned, the presence
of monomeric sugars represents a high competitive advantage of SSL [69]. The main
challenge associated with SSL bioprocessing is the presence of some degradation prod-
ucts, such as acetic acid, furfural and low molecular weight lignosulfonates, that inhibit
microbial metabolic activities [53,77,146,147]. The detoxification of SSL is a way to re-
duce these inhibitory effects focused on improving its bioprocessability through the neu-
tralization and/or removal of the inhibitors [116,119]. Noteworthy, these processes are
time-consuming and may lead to loss of sugars incurring additional costs [117].

The pretreatment of SSLs is usually focused on the removal of these inhibitory com-
pounds and the separation of lignosulfonates and sugars fractions. SSL purification and
fractionating were already studied using ion exchange resins [147,148]. Alternatively, bi-
ological methods are generally considered more environmentally friendly than typical
detoxification methods, namely due to minimal chemicals demand and milder operational
conditions [149,150]. A successful improvement in fermentability of HSSL was reached
by Pereira et al. [119], after promoting its biological detoxification by Paecilomyces variotii
NRRL-1115, using a sequential batch reactor.

3.3. Residues from Wastewater Treatment

Some examples of pretreatments applied to primary PPMS included hot air oven, elec-
trohydrolysis and steam explosion [151]. For secondary PPMS, pretreatments mostly tested
are hydrothermal, ultrasounds and chemical processes [151]. Veluchamy and Kalamd-
had [152] reviewed the main pretreatments employed to PPMS reported in the literature. A
similar summary was presented by Kumar et al. [151], who reviewed the pretreatments per-
formed before submitting different types of PPMS to anaerobic digestion, aiming to boost
methane production. Furthermore, the significant amount of ashes from sludge, mainly
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calcium carbonate (CaCO3), may hinder the bioconversion process leading to a low product
concentration due to the irreversible binding of enzymes to ash [102,103,105,153]. Some
strategies to overcome this limitation were studied, namely through ash removal [153,154].
Kang et al. [120] showed that de-ashing primary PPMS allowed a reduction in the enzyme
dosage of about 30%. The challenge of the de-ashing operation is related to the conservation
of the carbohydrates fraction, whereas keeping the ash content low enough to ensure the
fermentability of the materials [120]. Mendes et al. [105] tested several pretreatments for
primary PPMS, namely acid neutralization through the addition of chemical agents, such as
EDTA, CH3COOH, HNO3, HCl, H2SO4, or spent acid (a residual stream from the pulp and
paper mill). The authors also evaluated a sequence of washing cycles with reused water as
an alternative. Finally, the CO2 bubbling was also assessed. For EH assays, only the pri-
mary PPMS pretreated with HCl and spent acid was tested using 35 FPU gcarbohydrates

−1 of
commercial Cellic CTec2 or Accellerase 1500. The authors demonstrated that Celllic CTec2
was the most suitable enzymatic consortium for producing cellulosic sugars from primary
PPMS, regardless of the pretreatment technology or initial carbohydrate content. Untreated
primary PPMS provided conversion yields lower than 20% after 24 h. The EH with Cellic
CTec2 using an initial carbohydrate concentration of 46 g L−1 of primary PPMS pretreated
with HCl has resulted in a concentration of glucose and xylose of 33.1 g L−1 and 7.3 g L−1,
respectively, corresponding to the highest EH yield of 88% [105]. Dey et al. [155] sub-
mitted primary PPMS (previously subjected to sequential steam explosion and sodium
hydroxide pretreatments) to fed-batch EH with 18% (w w−1) of total solids loading (7%
followed by 6% and 5% (w w−1)). The experiment was conducted at 50 ºC, 300 rpm, two
liter working volume and an enzymatic loading of 158 FPU gtotal solids

−1. After 60 h, a
maximum glucose and xylose concentration of 79.56 g L−1 and 8.65 g L−1 were attained,
respectively. Authors also concluded that the addition of the overall enzymatic consortium
at the beginning benefited the overall performance and solids loading higher than 18%
(w w−1) did not boost the release of sugars [155]. Recently, Arthur et al. [156] accomplished
considerable savings in overall enzyme dosages by applying cellulase recycling strategies
in PPMS ethanol fermentation. The performance of simultaneous saccharification and
fermentation (SSF) configuration was maintained during consecutive experiments by recy-
cling either the enzyme-containing supernatant or whole broth with no requirements for
enzyme separation methods. This approach could represent considerable cost savings for
the overall process [156].

4. Getting Value from Wastes: Production of Bioethanol, PHA and Biogas

The residues generated by the pulp and paper industry have the potential to be con-
verted into bioproducts after suitable deconstruction technologies. Several products were
successfully obtained by microbial conversion, namely bioethanol, biomethane, biohydro-
gen, succinic acid, and PHA [157]. Among them, bioethanol, PHA and biogas are some of
the most promising, and the current state of their production from wastes derived from the
pulp and paper industry is discussed in this section.

4.1. Bioethanol

Currently, one of the main applications for anhydrous bioethanol in the EU is, as
biofuel, blended with gasoline in different proportions [136,158,159]. Additionally, ethanol
is recognized as a promising building block for the chemicals platform and is utilized as a
commodity in the cosmetic and pharmaceutical industries [64,136,158,160].

Cellulosic bioethanol is a second generation biofuel since its production does not
interfere with the food chain and is one of the main alternatives to the first generation,
obtained from food crops [158,160,161]. To promote the use of second generation biofuels,
the EU established Renewable Energy Directive II, which defined a target of at least 3.5% of
transportation fuels derived from advanced biofuels in 2030 [140,162–164]. Moreover, the
EU set out targets to limit the share of first generation biofuels to 7% by 2030 [162,163].
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Currently, bioethanol production can follow different configurations. The first configu-
ration developed was the separate hydrolysis and fermentation (SHF). The main advantage
of SHF is the operation of each step can be optimized separately. However, during EH, the
accumulation of monosaccharides, namely glucose, often causes product inhibition, which
is a significant drawback [125]. Then, to overcome this limitation, the SSF configuration,
with both saccharification and fermentation steps in a single reaction vessel, was pro-
posed [11,116,165]. This approach avoids enzymatic inhibition since the monosaccharides
formed during hydrolysis are immediately fermented into ethanol. This configuration
is more economically attractive since it reduces operation time and requires less equip-
ment [116,165]. However, the SSF process requires a compromise between the optimal
working temperature to maximize the enzymatic activity, usually between 45 ◦C and 60 ◦C,
and the suitable temperature for the ethanol-producing microbial strains in the range
of 25–35 ◦C [166,167]. Some authors have already upgraded this configuration to simulta-
neous saccharification and co-fermentation (SSCF), aiming to consume both hexoses and
pentoses. For that, a recombinant or natural C5 fermenting yeast is required. Alternatively,
a consortium of microorganisms can be used [168,169].

Another emerging configuration is the consolidated bioprocessing (CBP), which in-
tegrates all the stages for the conversion of LCB into ethanol in a single step, including
microbial enzymes production, hydrolysis, and fermentation. In this configuration, geneti-
cally engineered ethanologenic yeast strains are required to avoid the need for the addition
of exogenous enzymes [11,165,169]. Moreover, this configuration reduces the number of
unit operations and, consequently, the maintenance and capital costs [166]. However, the
conversion efficiency is still low and it is a time-consuming process (from three to twelve
days), hindering its application on a commercial scale [115,170].

Several residues from the pulp and paper industry were already tested for bioethanol
production. These studies are summarized in Table 1, referring to the feedstock, pre-
treatment, configuration, microorganism, as well as the main process parameters, such as
ethanol concentration and productivity.

4.1.1. Bioethanol Production from Sawdust

Guigou et al. [48] subjected sawdust from E. grandis to several combined pretreat-
ments to fractionate biomass for further valorization. Firstly, the sawdust was pretreated by
autohydrolysis, and after that, three additional pretreatments were evaluated: mechanical
refining, kraft pulping, and soda pulping. Following a pre-saccharification and simulta-
neous saccharification and fermentation (PS-SSF), the best results were achieved for the
combination of autohydrolysis and soda pulping, which provided the highest ethanol yield
of 85 ± 1%, with a maximum ethanol concentration of 58 ± 3 g L−1 and a productivity
of 1.2 ± 0.3 g L−1 h−1 [48]. These results are summarized in Table 1.

4.1.2. Bioethanol Production from Bark

Regarding the conversion of E. globulus bark into bioethanol, studies are scarce (Table 1).
Recently, Amândio et al. [132] assessed the bioethanol production from E. globulus bark
previously submitted to kraft pulping through SHF configuration. The maximum ethanol
concentration of 50.8 ± 0.5 g L−1 was achieved using Ethanol Red® (Saccharomyces cere-
visiae yeast) after 20.5 h, corresponding to the productivity of 2.48 ± 0.02 g L−1 h−1

and 81.0 ± 0.6% of the theoretical yield (0.511 gethanol gsugars
−1) [132].

Gomes et al. [37] tested the fermentability of the hydrolysate obtained from solids
derived from hydrothermal pretreatment of E. globulus bark. Two different strategies were
attempted for bioethanol production: SSF and PS-SSF. The highest ethanol production
(about 38 g L−1) was achieved through the PS-SSF approach, with a solids loading of 17.5%
and nutrient supplementation, with a conversion efficiency of 73% of the theoretical yield
and a productivity of 0.52 g L−1 h−1 [37].

Kemppainen et al. [145] studied the SSF configuration using spruce bark previously
pretreated through HWE and HWE+SE. For bark consistency of 15%, a maximum ethanol
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concentration of 21.0 g L−1 and yield of 66.4% was attained from HWE+SE spruce bark.
HWE spruce bark achieved only a slight reduction in performance [145].

Frankó et al. [38] studied the use of mixtures of woodchips with different ratios of
spruce (Picea abies) bark as the substrate for bioethanol production through both configu-
rations, SHF and SSF. Regardless of the bark content, SSF proved to be the most efficient
considering the overall efficiency of the process. Overall, the mixture with the bark content
of 30% (dry matter) provided the highest ethanol yield, 76.8% and 77.5% for SHF and SSF,
respectively. The SSF process attained ethanol concentrations from 20.9 g L−1 to 45.8 g L−1

for the proportions of bark from 100–0% (only bark-free spruce woodchips), respectively.
Therefore, an increase in the bark proportion negatively affected the ethanol conversion
yield and resulted in higher extractives and ash contents than wood chips [38]. It is worth-
while mentioning that due to the lower carbohydrates content of bark, the production
of ethanol that could be expected, per dry ton metric of bark, would be lower than for
wood [36].

4.1.3. Bioethanol Production from SSL

SSL from hardwood (HSSL) was the object of several studies focused on assessing
its fermentability since it is a waste already enriched in monosaccharides, especially in
xylose, although with some lignin derivatives [76,127,171]. Nigam [172] studied bioethanol
production from HSSL of E. globulus by Scheffersomyces stipitis Y-7124 after boiling and
overliming with Ca(OH)2 as a detoxification step. The gradual adaptation of S. stipitis to
HSSL coupled with the fermentation step carried out using microaerophilic conditions (an
oxygen transfer rate of two mmol O2 L−1 h−1) proved to be efficient strategies, providing
an ethanol concentration of about 20 g L−1, with a productivity of 0.44 g L−1 h−1 and a
yield of about 82% [172].

Xavier et al. [147] achieved the best fermentation yield (96%) and productivity
(1.22 g L−1 h−1) for the ion-exchange purified HSSL at pH 5.8. A maximum ethanol
concentration of about 8.1 g L−1 was attained, a value slightly lower than the operation at
pH 7.0 [147].

By using a bio-detoxified HSSL by S. stipitis NRRL Y-7124, Pereira et al. [119] achieved
a maximum concentration of 2.4 g L−1 after 28 h, corresponding to an ethanol yield of 47%.
Later, Pereira et al. [173] successfully improved ethanol production (4.60 g L−1) by using
an evolutionary engineering strategy to adapt S. stipitis NRRL Y-7124 to 60% (v v−1)
HSSL [173]. The stable isolate S. stipitis C4 showed higher resistance to inhibitors than
the parental strain and better performance in a two-stage aeration fermentation strategy
with 60% of HSSL [74]. This approach allowed one to achieve an ethanol concentration
of 12.2 g L−1, corresponding to an ethanol efficiency of 74.4%, with no requirements for the
detoxification step [74]. Table 1 summarizes all these studies.

4.1.4. Bioethanol Production from Pulp and Paper Mill Sludge (PPMS)

Several studies regarding PPMS valorization for bioethanol production were already
published (Table 1). Mendes et al. [174] compared two different approaches for ethanol
production from PPMS: SSF batch and SSF fed-batch operation modes. The Novozymes
commercial consortium (NS 22192) was used for the EH and the S. cerevisiae ATCC 26602
yeast for the fermentation step. SSF batch process was reported to achieve the best results,
presenting higher ethanol productivity, 0.78 g L−1 h−1 instead of 0.52 g L−1 h−1 and a
slightly higher ethanol concentration, 41.7 g L−1 instead of 39.7 g L−1 for fed-batch [174].

Mendes et al. [105] tested the hydrolysates derived from primary PPMS, composed
of 82–85% of glucose and 15–18% of xylose, with two different yeasts, S. stipitis and S.
cerevisiae. The PPMS was previously submitted to hydrolysis with HCl and spent acid.
Regardless of pretreatment, the highest ethanol production was achieved by S. stipitis.
Fermentation of primary PPMS pretreated with HCl produced an ethanol concentration
of 10.5 g L−1, while pretreated with spent acid resulted in about 8.5 g L−1. In both cases,
the ethanol yield was 76.5% [105].
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Kang et al. [175] submitted primary PPMS to SSF and SSCF configurations. The SSF
was carried out with S. cerevisiae ATCC-200062 strain, while in the SSCF, the recombi-
nant Escherichia coli ATCC-55124, with the ability to ferment xylose, was used together
with S. cerevisiae. Ethanol concentrations of 25.5 g L−1 and 32.5 g L−1 were reported for
SSF and SSCF in batch, respectively, corresponding to theoretical yields of 74.5% and
95.8%. Fed-batch assays allowed significantly higher ethanol concentrations of 45.0 g L−1

and 42.0 g L−1 for SSF and SSCF to be reached, but with lower yields of 70% and 68%,
respectively. Despite the high ash content of primary PPMS, it could be successfully con-
verted to ethanol. Nevertheless, the high ash content limited operation at a high solids
loading, resulting in low product concentration.

To overcome this constraint and improve the process yield, Kang et al. [120] tested
the fermentability of de-ashed primary PPMS. The authors showed that de-ashing of
primary PPMS allowed a considerable reduction in the enzyme dosage and, simultaneously,
improved ethanol production, achieving a concentration of 24.7 g L−1 and 30.3 g L−1,
corresponding to 72.8% and 73.6% of the theoretical yield for SSF and SSCF, respectively.
The fed-batch strategy boosted ethanol production to 47.8 g L−1 and 60 g L−1 for SSF and
SSCF, respectively [120].

4.2. Polyhydroxyalkanoates (PHA)

PHA are bio-based and biodegradable biopolymers and, consequently, excellent candi-
dates to replace conventional plastics from a sustainable point of view. They are composed
of monomeric units known as hydroxyalkanoates, with 3-hydroxybutyrate (HB) and 3-
hydroxyvalerate (HV) being the most common [176]. The high diversity of monomers of
PHA and all their possible combination allows for a wide range of characteristics, from
thermoplastics to elastomers. This possibility raised the attention of different industrial
branches, making them suitable for many applications and markets, including in the
medical field, and as building blocks for the synthesis of fine chemicals [177].

Several bacteria and archaea synthesize PHA as intracellular carbon and energy stor-
age [176]. This storage occurs under conditions of nutrients´ excess or growth limitations.
The accumulated polymers can be depolymerized when the monomers are needed for the
biosynthesis of other metabolites or energy generation [177]. Their production is reported
by pure cultures or mixed microbial cultures (MMC), microbial populations of unknown
composition, like activated sludge from wastewater treatment plants [178]. While pure
cultures produce PHA from a diversity of substrates, MMC require a feeding enriched in
short chain organic acids (SCOA). Despite the necessity of a preliminary step of acidification
of residues, MMC processes do not require sterile conditions. Given such a wide range of
producers, PHA production was already tested using several complex substrate sources,
like LCB.

As shown in the revision by Al-Battashi et al. [179], LCB is a suitable substrate for PHA
production, but its processing often requires preliminary pretreatment and hydrolysis steps.
Different types of wastes from the pulp and paper industry were already used as substrates
for PHA production, ranging from wood hydrolysates to industrial wastewaters [179].
Table 2 summarizes those studies, referring to the type of carbon source used, the main
process parameters, and polymer characteristics.
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Table 1. Bioethanol production from pulp and paper wastes.

Substrate Pretreatment Configuration Enzymatic
Consortium

Hydrolysis
Efficiency (%) Microorganism [Ethanol]max

(g L−1)
Prodethanol
(g L−1 h−1)

Yethanol
(%) Ref.

Eucalyptus sawdust Autohydrolysis +
soda pulping PS-SSF Cellic Ctec2 N.A. S. cerevisiae

PE-2 58 ± 3 1.2 ± 0.3 85 ± 1 [48]

E. globulus bark Kraft SHF Cellic Ctec2 N.R. Ethanol Red® 50.8 ± 0.5 2.48 ± 0.02 81.0 ± 0.6 [132]
E. globulus bark Hydrothermal PS-SSF Cellic Ctec2 N.A. Ethanol Red® 38.03 ± 0.33 0.52 73.14 [37]

Spruce bark HWE+SE SSF
Celluclast 1.5 L,

Novozym 188 and
Pectinex Ultra SP-L

N.A. S. cerevisiae
VTT-B-08014 21.0 N.R. 66.4 [145]

Spruce wood chips
mixed with bark

SO2-catalysed
steam SSF Cellic Ctec3 N.A. Ethanol Red® 34.5 ± 0.4 2.5 ± 0 77.5 ± 1.3 [38]

HSSL
Boiling +

overliming with
Ca(OH)2

N.A. N.A. N.A. S. stipitis
NRRL-7124 20.20 ± 0.43 0.44 ± 0.02 82.00 ± 0.41 [172]

HSSL Ion-exchange
resins N.A. N.A. N.A. S. stipitis

NRRL-7124 8.1 1.22 96 [147]

HSSL

Biological
detoxification by
using P. variotii

NRRL-1115

N.A. N.A. N.A. S. stipitis
NRRL-7124 2.4 0.09 47.0 [119]

HSSL

pH adjustment to
7.0 with KOH
followed by

aeration

N.A. N.A. N.A. S. stipitis C4
isolate 4.60 0.05 32 [173]

HSSL

pH adjustment to
7.0 with

KOHfollowed by
aeration

N.A. N.A. N.A. S. stipitis C4
isolate 12.2 0.03 74.4 [74]

Primary PPMS N.A. SSF Enzymatic extract
NS 22192 N.A. S. cerevisiae ATCC

26602 41.7 ± 1.2 0.78 ± 0.03 48.9 ± 1.4 [174]

Primary PPMS HCl SHF Cellic CTec2 88 S. stipitis DSM
3651 10.5 0.20 76.5 [105]

Primary PPMS Spent acid SHF Cellic CTec2 72 S. stipitis DSM
3651 8.5 0.16 76.5 [105]

Primary PPMS N.A. SSF Spezyme CP and
Novozyme-188 N.R. S. cerevisiae

ATCC-200062 25.5 N.R. 74.5 [175]

Primary PPMS N.A. Fed-batch SSF Spezyme CP and
Novozyme-188 N.R. S. cerevisiae

ATCC-200062 45.0 N.R. 70 [175]

Primary PPMS N.A. SSCF Spezyme CP and
Novozyme-188 N.R. E. coli

ATCC 55124 32.5 N.R. 95.8 [175]
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Table 1. Cont.

Substrate Pretreatment Configuration Enzymatic
Consortium

Hydrolysis
Efficiency (%) Microorganism [Ethanol]max

(g L−1)
Prodethanol
(g L−1 h−1)

Yethanol
(%) Ref.

Primary PPMS N.A. Fed-batch SSCF Spezyme CP and
Novozyme-188 N.R. E. coli

ATCC 55124 42.0 N.R. 68 [175]

Primary PPMS De-ashing SSF Spezyme CP and
Novozyme-188 N.R. S. cerevisiae

ATCC-200062 24.7 N.R. 72.8 [120]

Primary PPMS De-ashing Fed-batch SSF Spezyme CP and
Novozyme-188 N.R. S. cerevisiae

ATCC-200062 60.0 N.R. 70 [120]

Primary PPMS De-ashing SSCF Spezyme CP and
Novozyme-188 N.R. E. coli

ATCC 55124 30.3 N.R. 73.6 [120]

Primary PPMS De-ashing Fed-batch SSCF Spezyme CP and
Novozyme-188 N.R. E. coli

ATCC 55124 47.8 N.R. 70 [120]

N.A.—not applicable; N.R.—non reported data.
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4.2.1. PHA Production from Residues of Wood Preparation

Dried poplar particles were submitted to HWE pretreatment and subsequent EH by
Yin et al. [171]. The hydrolysates produced were used with acetic acid as a co-substrate
for PHA production by activated sludge. The highest polymer concentration achieved
in the accumulation assays was 2.3 g L−1 of the copolymer poly(3-hydroxybutyrate-co-3-
ehydroxyvalerate) (P(3HB-co-3HV)), after optimization of the carbon/nitrogen (C/N) ratio
to 33 g g−1 and pH to 8 [171], as shown in Table 2.

Waste poplar biomass was also used as raw material using MMC. After an acidified
stream (containing acetic, propionic and butyric acids) production, the MMC was able
to accumulate PHA up to a content of 50% of P(HB-co-HV) with a yield of 0.71 g COD
PHA g−1 COD [180] (Table 2).

4.2.2. PHA from Lignin

Lignin is a widely studied substrate for PHA production, as reviewed by Xu et al. [181],
which is an interesting approach as, although lignin can be extracted and valorized as
aforementioned, its characteristics limit processability options. Lignin is regarded as waste
in most cases since its toxicity hinders biological processes. So far, all the studies report
the use of pure cultures and most reported low productivities compared to other wastes
or by-products for PHA production. The most promising results, using lignin from the
pulp and paper industry, were reported by Shi et al. [182] (Table 2), where kraft lignin was
used as the carbon source for PHA production by Cupriavidus basilensis B-8. In batch assays,
a PHA production of 0.13 g L−1 was obtained, but following a fed-batch configuration
significantly improved the amount produced, reaching 0.32 g L−1. The maximum PHA
accumulation reported was 18.5% cell dry weight (cdw). The biodegradation of kraft lignin
was also successful, with the removal of 41.5% of lignin, 37.7% of total carbon and 43.0% of
color after seven days of incubation [182]. Kumar et al. [183] also conducted an exploratory
study of PHA production using lignin derivates by a lignin-degrading bacterial strain,
Pandoraea sp. ISTKB. This bacteria was able to use kraft lignin and accumulated 21% of
P(HB-co-HV) after 96 h [183].

4.2.3. PHA from Wastewaters

Wastewaters from pulp and paper processing are residues that are hard to process due
to high concentrations of complex carbon sources and toxic compounds. For this reason,
their treatment before disposal is complex and requires high amounts of energy [184]. Un-
like other bioproducts, the valorization of wastewaters from the pulp and paper industry
by PHA production by MMC increased in recent years since it is a common ability of
microorganisms thriving in activated sludge processes. Furthermore, production by MMC
has lower operating costs, which can compensate the wastewaters’ low yields of produc-
tion. As shown in some of the following studies, this approach can not only produce a
valuable biopolymer using low-value substrates, but also works as a wastewater treatment
procedure, reducing the organic load of the effluent and degrading toxic compounds before
disposal.

To achieve an effective PHA accumulation process by MMC, it is essential to select
a culture with a high capacity for accumulating biopolymer by the imposition of ade-
quate reactor conditions, like aerobic dynamic feeding (ADF) or anaerobic/aerobic system
(AN/AE). This process should be followed by an accumulation step to maximize PHA
production. Since SCOA are the preferred substrates, an initial acidification step to convert
the organic matter could be applied in order to increase the amount of organic acids. This
configuration is normally designated as a three-step process [185].

Wastewater from fiberboard production was used in a study conducted by Mato
et al. [186] using MMC. After converting the wastewater through an acidogenic fermen-
tation process into SCOA, the acidified effluent was used in a batch test to produce PHA
by an MMC selected in an aerobic sequential batch reactor (SBR), operated under ADF
conditions. Very low storage yields were obtained, with a maximum accumulation of PHA
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of 25% (cdw). The authors suggested that such results might be due to high concentrations
of ammonia in the media, usually known to enhance the bacterial growth process against
the storage process. Nonetheless, during the process, a chemical oxygen demand (COD)
removal of 80% was achieved, contributing to the biodegradation of the effluent used [186].
The same research group conducted another study with the same wastewater, but this time
using an inoculum selected with a SCOA-enriched synthetic medium. This change resulted
in a 39% increase in storage yield, suggesting that the selected culture was better adapted
to accumulate PHA [187]. Table 2 presents a summary of the results obtained in the studies
described below.

Bengtsson et al. [188] used whitewater from a paper mill producing liner and fluting
from recycled fibers paper as a substrate for PHA production using a three-step production
process with different selection strategies. In both cases, the first step of the process con-
sisted of acidogenic fermentation of the whitewater to produce SCOA to be used as carbon
sources by the MMC in the selection step. In this step, ADF and AN/AE were attempted in
order to define the best selection strategy. As seen in Table 2, AN/AE enrichment had better
productivity of 0.093 gPHA gbiomass

−1 h−1 but both methods led to similar accumulation
percentages and yields in terms of YPHA/S (gPHA gCOD

−1). Nonetheless, only AN/AE
enrichment led to the formation of significant amounts of PHMV, which could improve the
polymer properties [188].

Pozo et al. [189] used kraft mill effluents in a batch system for PHA production and
evaluated the influence of the MMC origin and the ammonium concentration. Three
different sources of inoculum were tested: activated sludge treatment plant; sewage of
paper; and kraft pulp mills. The source of the inoculum did not have a significant impact
on PHA production, which ranged from 0.10 to 0.14 mgPHA mgCOD

−1. The authors also
observed that lower C/N of these types of effluents promoted higher COD removal (80%)
but were less beneficial for PHA accumulation [189].

Jiang et al. [178] also studied the feasibility of producing PHA from paper mill wastew-
ater using MMC in a three-step process. The microbial enrichment obtained could accu-
mulate copolymer P(3HB-co-3HV) with a maximum of 77% (cdw) PHA of cell dry weight
within five hours. This is the best result reported until now, using effluents from the pulp
and paper industry as substrate [178].

Tobella et al. [190] worked with kraft cellulose industry effluents and studied the simul-
taneous production of PHA and degradation of a toxic compound, 2,4,6-trichlorophenol
(2,4,6-TCP), by Sphingopyxis chilensis S37 and Wautersia sp. PZK. Both bacteria were able
to synthesize PHA, specifically HB and 3-hydroxyhexadecanoic acid, respectively, using
the paper mill effluent. PHA accumulation capacity was not accounted for, but polymer
detection by flow cytometry showed that, for S. chilensis S37, 80% of the cells accumulated
PHA and 60% of the 2,4,6-trichlorophenol present was degraded. Wautersia sp. PZK had
the best results since it thoroughly degraded 2,4,6-trichlorophenol, and more than 90% of
the cells accumulated PHA in 72 h [190].

4.2.4. PHA from Spent Liquor

Finally, HSSL was also tested in PHA production by MMC, with the advantage of not
requiring any kind of pretreatment. Queirós et al. [191] reported the use of this sub-product
for the production of PHB, with a maximum accumulation of 67% (cdw) and productivity
of 0.057 gPHA gbiomass

−1 h−1, as shown in Table 2. The change to a three-step process
seemed to have benefits, with higher biomass concentrations and volumetric productivity.
This was an indication that, even though a lower accumulation capacity was reported (22%)
for the selection step, this value could increase significantly in the accumulation step [192].
SSL was also tested as a substrate for PHA production by halophilic microorganisms. PHB
was identified by fluorescent microscopy on Halorhodospira halophila grown on 6.6% w w−1

dry matter SSL [193].
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Table 2. PHA production from pulp and paper wastes.

Substrate Pretreatment Microorganism PHA Composition PHA
(% w w−1)

Biomass
(g L−1)

PHA
(g L−1)

YPHA/S
(gPHA

g substrate
−1)

ProdVOL
(gPHA L−1 h−1)

ProdSP
(gPHA gbiomass

−1 h−1) Ref.

Wood particles HWE + EH MMC PHB:PHV (85:15%) N.R. N.R. 2.3 N.R. N.R. N.R. [171]
Waste wood Hydrothermal + EH MMC PHB:PHV (94:6%) 50 6.30 3.15 0.711 0.237 0.029 [180]

Kraft lignin N.A. C. basilensis B-8 P(S3HB):P(R3HB):PHB
(98:1:0.4%) 19 3.87 0.74 0.15 0.015 0.004 [182]

Kraft lignin N.A. Pandoraea sp.
ISTKB PHB:PHV 21 0.08 0.02 N.R. N.R N.R. [183]

Wood mill
effluent N.A. MMC PHB:PHV (46:54%) 29 3.93 1.14 0.232 N.R. N.R. [187]

N.A. MMC PHB:PHV (81:19%) 25 7.88 1.97 0.572 0.303 0.038 [186]
Paper mill

effluent N.A. MMC N.R. 48 2.63 1.26 0.113 0.152 0.058 [188]

PHB:PHV:PHMV
(6:47:47%) 42 2.63 1.10 0.103 0.244 0.093 [188]

Kraft mill
effluent N.A. MMC N.R. N.R. N.R. 0.08 0.143 0.001 N.R. [189]

N.A. S. chilensis S37 PHB (100%) N.R. N.R. N.R. N.R. N.R. N.R. [190]

N.A. Wautersia sp.
PZK

Long chain length
PHA N.R. N.R. N.R. N.R. N.R. N.R. [190]

HSSL N.A. MMC
PHB:PHV (68:32%) 22 3.4 0.75 0.42 0.170 0.051 [192]

PHB (100%) 67 0.88 0.60 0.773 0.050 0.057 [191]
N.A. MMC PHB:PHV (86:14%) 77 N.R 0.83 0.801 0.083 N.R. [178]

N.A.—not applicable; N.R.—non reported data; 1 gCOD gCOD
−1; 2 CmmolPHA Cmmolsubstrate

−1; 3 gPHA gCOD
−1.
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4.3. Biogas

Anaerobic digestion (AD) is defined as the biological degradation of organic com-
pounds into different end products by a MMC in the absence of oxygen [194]. This process
typically consists of four stages: hydrolysis; acidogenesis; acetogenesis; and methanogene-
sis. During the hydrolysis stage, macromolecules such as cellulose, starch, proteins, and
lipids are decomposed into monomers such as sugars, amino acids and fatty acids. These
monomers are then converted into C2–C5 based SCOA and alcohols, as well as H2 and CO2
in the acidogenesis stage. SCOA and alcohols are then converted into acetic acid during
the acetogenesis stage. Finally, methane is produced through the conversion of acetic acid
to CH4 and CO2 (acetoclastic methanogenesis), or the reduction in formic acid, or CO2, to
CH4 (hydrogenotrophic methanogenesis), during the methanogenesis [151,195]. Generally,
hydrolysis is the rate-limiting step due to the complexity of the feedstocks used. When this
is not the case, methanogenesis becomes the limiting step [195,196]. The end product of
anaerobic digestion is biogas, composed of methane (50–75%), carbon dioxide (25–50%),
hydrogen (5–10%), and nitrogen (1–2%) [194]. The biogas can be combusted to generate
heat and/or electricity or upgraded and refined into transportation biofuel. On the other
hand, the remaining digestate is still rich in nutrients and can be further valorized into
fertilizers or biochar [16].

Given the versatility of AD, its use has been proposed for the valorization of all kinds
of feedstocks, from agricultural and industrial residues to municipal solid waste. The
pulp and paper industry is also a great candidate for AD. Compared to the conventional
biological treatment, the implementation of this process allows for the reduction in the
produced wastes simultaneously with the production of biogas [194]. Besides, the ability
to handle a high organic loading rate is another advantage of the AD, given the highly
concentrated wastewaters produced in the pulp and paper industry [151].

The literature shows that AD is already proven for many pulp and paper industry
streams, with varying reactor configurations and operational conditions [151,194,195,197].
Most studies focus on BL [198,199], lignin [200–202], PPMS [203–206], different sources of
wastewaters [200,207–209] and condensates resulting from the condensation formed during
the concentration of spent liquor [201,202]. Studies with BL report COD removals up to 80%,
with maximum methane production of 36.9 µmol mL−1, showcasing the potential of AD for
effluent treatment [199]. Biogas production from the degradation of lignin waste streams
was tested by several authors [210]. Some of the best results were achieved when wet
explosion pretreatment was applied, with 44.4% of the lignin fraction converted to biogas
during the anaerobic digestion process after the pretreatment compared to only 12.6% for
the non-pretreated counterpart, representing methane yields of 320 and 70 L kg−1 volatile
solids day−1 [211]. Similarly, the high recalcitrant nature of PPMS makes the hydrolysis
step the bottleneck of AD, and a pretreatment step is often applied [203]. Bayr et al. [205]
tested several pretreatment methods and reported a 31% increase in methane yield when a
hydrothermal pretreatment (150 ◦C, 10 min) was applied. AD is particularly interesting
for condensate valorization, as these wastes have yet to be applied for other biological
processes. For example, using a submerged anaerobic membrane bioreactor, COD removal
efficiencies of 93–99% were achieved with a methane production rate of 0.35 L g−1 COD
removed and methane content of 80–90% in produced biogas [201]. Still, the characteristics,
process conditions and developments of AD of these wastes are already well-reviewed and
documented [151,194,197,210,212,213].

Anaerobic digestion is being used for wastewater treatment from pulp and paper mills
since the middle of the 80s [214,215]. Most of the studies have been focused on strategies for
improving the AD of pulp and paper industry wastes, namely co-digestion with nitrogen-
rich wastes for optimum C/N ratios, pretreatment technologies to decrease sludge retention
times and remove inhibitors, and bioaugmentation by introducing microbial strains and
consortia that can efficiently degrade recalcitrant compounds [151,194,212,213].

The use of forest-based LCB like bark, wood chips, and sawdust generally has slow
anaerobic decomposition rates [216]. Nonetheless, some studies showed that AD of a
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mixture of pretreated pine sawdust and food waste was possible [217] and that the addition
of wood chips during the AD of food waste could increase the methane production yield
by 640% [218]. Rasi et al. [216] also studied the effect of HWE and pyrolysis on the AD
of softwood bark. Their results showed that the cascade processing of the wood, tannins,
and polyphenols extraction with hot water, followed by pyrolysis, whose liquid fraction
is used in AD, enhances methane production (from 53 and 46 to 99 and 55 mL CH4 g
volatile solids added

−1 of pine and spruce bark, respectively) and creates more value from the
same residue [216].

Spent liquor is also not an ideal candidate for AD due to its high content of recalcitrant
COD [219,220]. However, some studies showed that dilution, fungal pretreatment, and the
addition of hydrogen peroxide enhanced its anaerobic biodegradability, increasing COD
removal and methane production over 10 and 15 times, respectively [219,221]. Overall, this
reported data shows that AD has a tremendous potential to be integrated into a biorefinery
based on the pulp and paper industry.

4.4. Challenges and Future Perspectives for Conversion of Wastes into Bioethanol, PHA, and
Biogas

Regarding cellulosic ethanol production, some challenges still need to be overcome.
In particular, the low sugar concentrations which can result in reduced ethanol concentra-
tions with high costs associated with the downstream processing [126,161]. Moreover, the
presence of toxic compounds and contaminants could inhibit the activity of the fermenting
microorganisms. The inability of the most natural microorganisms to ferment both hexoses
and pentoses is another limitation [158]. Another major bottleneck hindering large-scale
cellulosic ethanol production is the overall production cost, in particular, the cost of the
enzymatic consortium, which could represent up to 40% of the minimum selling price of
ethanol [156]. Therefore, solid loading optimization during pretreatment and enzymatic hy-
drolysis steps, onsite production of enzymatic consortium and integration of process steps
are the main critical domain topics for further research [222]. Following a co-production
strategy within a multi-product biorefinery could be a potential alternative to offset the
high capital and production costs, improving competitiveness and representing extra rev-
enues [37,164]. Some authors have studied some possibilities, namely the integration of the
production of cellulosic ethanol with xylooligosaccharides [37,223,224] PHA [225], among
others.

Current research shows that PHA production from wood industry wastes is a good
possibility, especially when considering the combined biodegradation of those effluents.
This technology development can be applied to pulp and paper to treat wastewaters and
other waste streams and contribute to waste management implementation since their
valorization routes are very limited. The circular economy pushing for technical cycle
solutions could be applied by using them as suitable feedstocks for PHA production.
Regardless of its potential, there are still some challenges that need to be overcome before
scaling up and process optimization. Some authors reported limitations with oxygen mass
transfer when using paper mill effluents, microbial inhibition from compounds present
in the waste streams used and some inorganic compounds precipitation, which could
stimulate biofilm formation and cause problems in the PHA extraction [178,191]. Further
research should focus on overcoming these challenges and increasing PHA productivities
to implement a wood waste-based PHA production process.

Concerning the anaerobic digestion, despite being already a reality for wastewater
treatment in the pulp and paper industry, there is still scope for improvement. The main
challenges are related to feedstock variability responsible for process performance fluctu-
ation, low process efficiency and lower product quality [215]. Besides the calorific value
of biogas being lower than natural gas, it is highly dependent on many operating condi-
tions, including feedstock composition, temperature, retention time, among others. Biogas
could contain impurities (such as nitrogen gas, oxygen, carbon monoxide and ammonia)
responsible for corrosion and toxicity [215].
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Overall, waste-based bioprocesses presented some challenges related to the intrinsic
heterogeneity of feedstock. For that reason, the process should be flexible enough to en-
sure the quality of the final product, regardless of the variations in the process feed [164].
Moreover, the multi-product biorefinery seems to be a potential alternative to stimulate
economic feasibility. The employment of this concept in existing pulp and paper mills
could significantly reduce transport, disposal, infrastructure and energy costs, with the
possibility of an additional revenue stream. Finally, government policies and financial
de-risking by investment incentives could also support the employment of these technolo-
gies at the commercial scale, which must be economically competitive with the existing
alternatives [222].

5. Conclusions

The valorization of wastes and residues derived from pulp and paper mills by inte-
grating them within a biorefinery concept is a promising approach. Some benefits include
increasing revenues, expanding the portfolio of products, and boosting market opportuni-
ties. The pulp and paper industry already has well-established industrial facilities, logistics,
and services, which is a competitive advantage for implementing an integrated biorefinery.
Furthermore, this integration can reduce production costs, contributing to a more com-
petitive market for bio-based products. The three products chosen, bioethanol, PHA, and
biogas, illustrate how these residues can be treated and, at the same time, valorized, closing
the loop proposed by the circular concept. However, the feasibility of these processes
depends on several factors, namely availability and transport of feedstock, technology
readiness level of the available techniques, capital and operation costs, industrial plant
capacity, revenues, and others. The assessment of the techno-economic impact of the modifi-
cations to be implemented in the existing pulp and paper processes is crucial. The selection
of the valorization route for each residue will depend on the economic assessment and the
life-cycle analysis, opting for the most feasible, sustainable, and profitable alternative.
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Abbreviations

ADF Aerobic dynamic feeding
AN/AE Anaerobic/aerobic system
AD Anaerobic digestion
BL Black liquor
C/N Carbon/nitrogen ratio
Cdw Cell dry weight
COD Chemical oxygen demand
CBP Consolidated bioprocessing
EH Enzymatic hydrolysis
[Ethanol]max Maximum ethanol concentration (g L−1)
EU European Union
HB 3-hydroxybutyrate
HSSL Hardwood spent sulfite liquor
HV 3-hydroxyvalerate
HWE Hot water extraction
LCB Lignocellulosic biomass
MMC Mixed microbial cultures
P(3HB-co-3HV)) Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
PHA Polyhydroxyalkanoates
Prodethanol Volumetric productivity (gethanol L−1 h−1)
ProdSP Specific productivity (gPHA gbiomass

−1 h−1)
ProdVOL Volumetric productivity (gPHA L−1 h−1)
PS-SSF Pre-saccharification and simultaneous saccharification and fermentation
PPMS Pulp and paper mill sludge
SHF Separate hydrolysis and fermentation
SBR Sequential batch reactor
SCOA Short chain organic acids
SSCF Simultaneous saccharification and co-fermentation
SSF Simultaneous saccharification and fermentation
SSSL Softwood spent sulfite liquor
SE Steam explosion
SSL Sulfite spent liquor
Yethanol Ethanol yield (%)
YPHA/S PHA yield (gPHA gsubstrate

−1)
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