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REGULARIZATION ALGORITHMS FOR LINEAR COPOSITIVE PROBLEMS

Olga I. Kostyukova1,2 and Tatiana V. Tchemisova3,*

Abstract. The paper is devoted to the regularization of linear Copositive Programming problems
which consists of transforming a problem to an equivalent form, where the Slater condition is satisfied
and therefore the strong duality holds. We describe regularization algorithms based on a concept of
immobile indices and on the understanding of the important role that these indices play in the feasible
sets’ characterization. These algorithms are compared to some regularization procedures developed for
a more general case of convex problems and based on a facial reduction approach. We show that the
immobile-index-based approach combined with the specifics of copositive problems allows us to con-
struct more explicit and detailed regularization algorithms for linear Copositive Programming problems
than those already available.
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1. Introduction

Conic optimization is a subfield of convex optimization that studies the problems of minimizing a convex
function over the intersection of an affine subspace and a convex cone. For a gentle introduction to conic
optimization and a survey of its applications in Operations Research and related areas, we refer interested
readers to [15] and the references therein.

Copositive Programming (CoP) problems form a special class of conic problems and can be considered as an
optimization over the convex cone of so-called copositive matrices (i.e. matrices which are positive semi-defined
on the non-negative orthant). Copositive models arise in many important applications, including 𝒩𝒫-hard
problems. For the references on motivation and application of CoP see, e.g. [3, 7, 9].

In linear CoP, the objective function is linear and the constraints are formulated with the help of linear matrix
functions. Linear copositive problems are closely related to that of linear Semi-Infinite Programming (SIP) and
Semidefinite Programming (SDP). Copositive and semidefinite problems are particular cases of SIP problems,
but CoP deals with more challenging and less studied problems than SDP. The literature on the theory and
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methods of SIP, CoP, and SDP is quite extensive. We refer the interested readers to [1–3, 9, 25, 26], and the
references in these works.

In convex and conic optimization, optimality conditions, and duality results are usually formulated under
certain regularity conditions, so-called constraint qualifications (CQ) (see, e.g. [2, 10, 22, 26]). Such conditions
should guarantee the fulfillment of the Karush–Kuhn–Tucker (KKT)-type optimality conditions and the strong
duality property consisting in the fact that the optimal values of the primal problem and the corresponding
Lagrangian dual one, are equal and the dual problem attains its maximum. Strong duality is the cornerstone of
convex optimization, playing a particularly important role in the stability of numerical methods.

Unfortunately, even in convex optimization, many problems cannot be classified as regular (i.e. satisfying
some regularity conditions such as, for example, strict feasibility). In [8], we read: “. . . new optimization modeling
techniques and convex relaxations for hard nonconvex problems have shown that the loss of strict feasibility is
a more pronounced phenomenon than has previously been realized”. This phenomenon can occur because of
either the poor choice of functions that describe feasible sets or the degeneration of the feasible sets themselves.
According to [23], sometimes the loss of a certain CQ “. . . is a modeling issue rather than inherent to the problem
instance. . . ” which “. . . justifies the pleasing paradigm: efficient modeling provides for a stable program”.

Thus, the idea of a regularization appears quite naturally which is aimed at obtaining an equivalent and more
convenient reformulation of the problem with some required properties, one of which is that the regularized
problem must satisfy the generalized Slater condition.

The first works on the regularization of abstract convex problems (regularization procedures are called pre-
processing there) appeared in the 1980-s, followed by various publications on special classes of conic problems
(see, e.g. [5, 6]). Nevertheless, as Drusvyatskiy and Wolkowicz wrote in their paper [8] published in 2017, for
conic optimization in general, the research in the field of regularization algorithms is still in its infancy. At the
same time, the authors of [8] confirm that in order to make a regularization algorithm viable, it is necessary to
actively explore the structure of the problem, since for some specific applications of conic optimization, a rich
basic structure makes regularization quite possible and leads to significantly simplified models and enhanced
algorithms.

Several approaches to the regularization of conic optimization problems are proposed in the literature. In
[5, 6], the concept of minimal cone of constraints was used by Borwein and Wolkowicz to regularize abstract
convex and conic convex problems for which any CQ fails. The algorithm proposed there to describe the minimal
cone is based on the sequential reduction of the cone’s faces and was named by the authors Facial Reduction
Algorithm (FRA).

Another approach called the dual regularization or conic expansion was proposed by Luo, Sturm, and Zhang
(see [17] and the references therein). This approach tries to close the duality gap (the difference between the
primal and dual optimal values) of the regularized problems by expanding the dual constraints’ cone.

In [24], Waki and Muramatsu applied the facial reduction approach to a conic optimization problem in such
a way that each primal reduced cone is dual to the cone generated by the conic expansion approach.

The facial reduction approach has been successfully applied to SDP and second-order cone programming
problems, as well as to certain classes of optimization problems over symmetric (i.e. self-dual and homogeneous)
and nice cones (see, e.g. [18–21]). At the same time, the question of effective constructive application of this
approach to other classes of problems remains open. This is because the known FRAs are more conceptual than
practical.

In this paper, based on the results from [11,12,14], we develop a different approach to regularization of linear
CoP problems. This approach is based on the concept of immobile indices, i.e. indices of the constraints that
are active for all feasible solutions.

The purpose of the paper is to

(a) describe in details a finite algorithm for regularization of linear CoP problems that is based on the concept
of immobile indices but does not require any additional information about them;
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(b) analogize two approaches to the regularization of linear CoP problems, one based on facial reduction and
the other on the concept of immobile indices, and to compare the corresponding regularized problems
constructed using these approaches.

To the best of our knowledge, in CoP there has never been an attempt to develop detailed and easy-to-use
algorithms, based on the minimal cone representation (see, e.g. the FRA in [5,6] and the modified FRA in [24]).
Nor do we have any information about any other attempts to describe constructive regularization procedures for
linear copositive problems. The regularization algorithms presented in the paper are new, original, and timely
due to the growing number of eminent applications of CoP.

The paper is organized as follows. Section 2 contains equivalent formulations of the linear CoP problem
and the basic definitions. In Section 3, we consider two different approaches to regularization of copositive
problems. In Section 3.1, we show how the minimal face regularization from [5, 6] can be applied to linear
CoP problems; in Section 3.2, we briefly describe the one-step regularization proposed in [14] and based on the
concept of immobile indices, and compare the regularized problems obtained in this subsection with the problem
in Section 3.1. Section 4 is devoted to iterative algorithms for regularization of linear copositive problems. The
Waki and Muramatsu’s facial reduction algorithm is described in Section 4.1, a new regularization algorithm
REG-LCoP based on the immobile index set together with its compressed modification is introduced, justified,
and compared with the Waki and Muramatsu FRA in Section 4.2. A small clarifying example is proposed.
We conclude Section 4 with a brief discussion on the algorithms considered there. Section 5 contains some
conclusions.

2. Linear copositive programming problem: equivalent formulations and basic
definitions

Given an integer 𝑝 > 1, denote by R𝑝
+ the set of all 𝑝 vectors with non-negative components, by 𝒮(𝑝) and

𝒮+(𝑝) the space of real symmetric 𝑝×𝑝 matrices and the cone of symmetric positive semidefinite 𝑝×𝑝 matrices,
respectively, and let 𝒞𝒪𝒫𝑝 stay for the cone of symmetric copositive 𝑝× 𝑝 matrices:

𝒞𝒪𝒫𝑝 :=
{︀
𝐷 ∈ 𝒮(𝑝) : 𝑡⊤𝐷𝑡 ≥ 0 ∀𝑡 ∈ R𝑝

+

}︀
.

The space 𝒮(𝑝) is considered here as a vector space with the trace inner product

𝐴 ∙𝐵 := trace (𝐴𝐵).

Consider a linear copositive programming problem in the form

min
𝑥∈R𝑛

𝑐⊤𝑥, s.t. 𝒜(𝑥) ∈ 𝒞𝒪𝒫𝑝, (2.1)

where 𝑥 = (𝑥1, . . ., 𝑥𝑛)⊤ is the vector of decision variables. The data of the problem are presented by vector
𝑐 ∈ R𝑛 and the constraints matrix function 𝒜(𝑥) defined in the form

𝒜(𝑥) :=
𝑛∑︁

𝑖=1

𝐴𝑖𝑥𝑖 + 𝐴0, (2.2)

with given matrices 𝐴𝑖 ∈ 𝒮(𝑝), 𝑖 = 0, 1, . . . , 𝑛. It is well known (see e.g. [1]) that the copositive problem (2.1) is
equivalent to the following convex SIP problem:

min
𝑥∈R𝑛

𝑐⊤𝑥, s.t. 𝑡⊤𝒜(𝑥)𝑡 ≥ 0 ∀𝑡 ∈ 𝑇, (2.3)

with a 𝑝-dimensional compact index set in the form of a simplex

𝑇 :=
{︀
𝑡 ∈ R𝑝

+ : e⊤𝑡 = 1
}︀
, (2.4)
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where e = (1, 1, . . ., 1)⊤ ∈ R𝑝.
Denote by 𝑋 the feasible set of the equivalent problems (2.1) and (2.3):

𝑋 := {𝑥 ∈ R𝑛 : 𝒜(𝑥) ∈ 𝒞𝒪𝒫𝑝} =
{︀
𝑥 ∈ R𝑛 : 𝑡⊤𝒜(𝑥)𝑡 ≥ 0 ∀𝑡 ∈ 𝑇

}︀
. (2.5)

In what follows, we will suppose that 𝑋 ̸= ∅. Evidently, the set 𝑋 is convex.

Remark 2.1. Since 𝑋 ̸= ∅, then without loss of generality, we can consider that 𝐴0 ∈ 𝒞𝒪𝒫𝑝. Indeed, by fixing
a feasible solution 𝑦 ∈ 𝑋 and substituting the variable 𝑥 by a new variable 𝑧: = 𝑥 − 𝑦, we can replace the
original problem (2.1) by the following one in terms of 𝑧:

min
𝑧∈R𝑛

𝑐⊤𝑧, s.t. 𝒜(𝑧) ∈ 𝒞𝒪𝒫𝑝,

with 𝒜(𝑧) :=
∑︀𝑛

𝑖=1 𝐴𝑖𝑧𝑖 + 𝐴0, 𝐴0 := 𝒜(𝑦) ∈ 𝒞𝒪𝒫𝑝.

According to the commonly used definition, the constraints of the copositive problem (2.1) satisfy the Slater
condition if

∃ �̄� ∈ R𝑛 such that 𝒜(�̄�) ∈ int 𝒞𝒪𝒫𝑝 =
{︀
𝐷 ∈ 𝒮(𝑝) : 𝑡⊤𝐷𝑡 > 0 ∀𝑡 ∈ R𝑝

+, 𝑡 ̸= 0
}︀
. (2.6)

Here intℬ stays for the interior of a set ℬ.
Following [11,14], let’s define the set of normalized immobile indices 𝑇𝑖𝑚 in problem (2.1):

𝑇𝑖𝑚 :=
{︀
𝑡 ∈ 𝑇 : 𝑡⊤𝒜(𝑥)𝑡 = 0 ∀𝑥 ∈ 𝑋

}︀
. (2.7)

In what follows, the elements of the set 𝑇𝑖𝑚 are called immobile indices.
The following lemma follows from Proposition 1 and Lemma 1 in [14].

Lemma 2.2. Given the linear copositive problem (2.1),

(i) the Slater condition (2.6) is equivalent to the emptiness of the set 𝑇𝑖𝑚,
(ii) the normalized immobile index set 𝑇𝑖𝑚 is either empty or can be represented as a union of a finite number

of convex closed bounded polyhedra.

For a vector 𝑡 = (𝑡𝑘, 𝑘 ∈ 𝑃 )⊤ ∈ R𝑝
+ with 𝑃 := {1, 2, . . ., 𝑝}, define the sets

𝑃+(𝑡) := {𝑘 ∈ 𝑃 : 𝑡𝑘 > 0}, 𝑃0(𝑡) := 𝑃 ∖ 𝑃+(𝑡).

Given a set ℬ and a point 𝑙 = (𝑙𝑘, 𝑘 ∈ 𝑃 )⊤ in R𝑝, denote by 𝜌(𝑙,ℬ) the distance between these set and point,
𝜌(𝑙,ℬ) := min𝜏∈ℬ

∑︀
𝑘∈𝑃 |𝑙𝑘 − 𝜏𝑘|, and by convℬ the convex hull of the set ℬ.

Suppose that in problem (2.1), the normalized immobile index set 𝑇𝑖𝑚 is non-empty. Consider a finite non-
empty subset of 𝑇𝑖𝑚:

𝑉 = {𝜏(𝑖), 𝑖 ∈ 𝐼} ⊂ 𝑇𝑖𝑚, 0 < |𝐼| < ∞. (2.8)

For this set, define the following number and sets:

𝜎(𝑉 ) := min{𝜏𝑘(𝑖), 𝑘 ∈ 𝑃+(𝜏(𝑖)), 𝑖 ∈ 𝐼} > 0, (2.9)
Ω(𝑉 ) := {𝑡 ∈ 𝑇 : 𝜌(𝑡, conv𝑉 ) ≥ 𝜎(𝑉 )}, (2.10)

𝒳 (𝑉 ) :=
{︀
𝑥 ∈ R𝑛 : 𝒜(𝑥)𝜏(𝑖) ≥ 0 ∀𝑖 ∈ 𝐼; 𝑡⊤𝒜(𝑥)𝑡 ≥ 0 ∀𝑡 ∈ Ω(𝑉 )

}︀
. (2.11)

In [12], the following theorem is proved (see Thm. 7.1 in [12]).

Theorem 2.3. Consider problem (2.1) with the feasible set 𝑋. For any subset (2.8) of the set of normalized
immobile indices of this problem, the equality 𝑋 = 𝒳 (𝑉 ), holds true, where the set 𝒳 (𝑉 ) is defined in (2.11).
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Let {𝑒𝑘, 𝑘 ∈ 𝑃} be the standard basis of R𝑝.
In what follows we will need the following proposition.

Proposition 2.4. For any 𝜏 ∈ 𝑇𝑖𝑚, the following relations hold true:

𝑒⊤𝑘 𝒜(𝑥)𝜏 = 0 ∀𝑘 ∈ 𝑃+(𝜏), 𝑒⊤𝑘 𝒜(𝑥)𝜏 ≥ 0 ∀𝑘 ∈ 𝑃0(𝜏), ∀𝑥 ∈ 𝑋. (2.12)

Proof. Remind that
𝑡⊤𝒜(𝑥)𝑡 ≥ 0 ∀𝑡 ∈ 𝑇, ∀𝑥 ∈ 𝑋, (2.13)

and by definition, for any vector 𝜏 ∈ 𝑇𝑖𝑚, we have 𝜏⊤𝒜(𝑥)𝜏 = 0 ∀𝑥 ∈ 𝑋. Hence, for any 𝑥 ∈ 𝑋, this vector 𝜏 is
an optimal solution to the following quadratic programming problem:

QP : min 𝑡⊤𝒜(𝑥)𝑡 s.t. 𝑡 ∈ 𝑇.

Notice that relations (2.12) are nothing else than the first order necessary optimality conditions for the vector
𝜏 in problem (QP). The proposition is proved. �

3. Regularization of copositive problems

In this section, first, we remind a known regularization approach developed in [5, 6] for conic optimization
problems and based on the concept of the minimal face. We briefly describe how this approach can be applied
to linear CoP problems. After, for the copositive problem (2.1), we present another regularization approach
based on the concept of immobile indices and compare the regularized problems obtained using two considered
approaches.

3.1. Minimal face regularization

Let us, first, recall the necessary terms and notions.
For a given cone F ⊂ 𝒮(𝑝), its dual cone is defined as follows:

F* := {𝐷 ∈ 𝒮(𝑝) : 𝐷 ∙𝐵 ≥ 0 ∀𝐵 ∈ F}.

By definition, a convex subset F of the cone 𝒞𝒪𝒫𝑝 is its face if for any 𝑥 ∈ 𝒞𝒪𝒫𝑝, 𝑦 ∈ 𝒞𝒪𝒫𝑝, the inclusion
𝑥 + 𝑦 ∈ F implies 𝑥 ∈ F, 𝑦 ∈ F. It is evident that any face of the cone 𝒞𝒪𝒫𝑝 is also a cone.

Given the copositive problem (2.1) with the feasible set 𝑋 presented in (2.5), let Fmin be the smallest (by
inclusion) face of 𝒞𝒪𝒫𝑝 containing a set 𝒟 defined in terms of the constraints of this problem as follows:

𝒟 := {𝒜(𝑥), 𝑥 ∈ 𝑋}. (3.1)

In what follows, the face Fmin will be called the minimal face of the optimization problem (2.1).
Generally speaking, for the copositive problem (2.1), the approach suggested in [5, 6], is to replace the

constraint 𝒜(𝑥) ∈ 𝒞𝒪𝒫𝑝 with an equivalent constraint 𝒜(𝑥) ∈ Fmin. The resulting regularized problem takes
the form

min
𝑥∈R𝑛

𝑐⊤𝑥, s.t. 𝒜(𝑥) ∈ Fmin. (3.2)

The dual problem to (3.2) can be written in the form

max
𝑈∈𝒮(𝑝)

−𝐴0 ∙ 𝑈, s.t. 𝐴𝑗 ∙ 𝑈 = 𝑐𝑗 ∀𝑗 = 1, . . ., 𝑛; 𝑈 ∈ F*min, (3.3)

where F*min is the dual cone to the cone Fmin.
It is proved in [5,6], that the constraints of problem (3.2) satisfy the generalized Slater condition: there exists

�̄� ∈ 𝑋 such that 𝒜(�̄�) ∈ relint Fmin and hence the duality gap between the dual problems (3.2) and (3.3)
vanishes. Here relintℬ stays for the relative interior of a set ℬ.

Unfortunately, there is no information available about how to explicitly construct the cones Fmin and F*min

in a general case and, in particular, in the case of copositive problems.
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3.2. One-step regularization based on the concept of immobile indices

In our paper [14], for the copositive problem (2.1), we obtained a regularized dual problem that is different
from (3.3). The construction of this dual is based on the concept of immobile indices and can be thought of as
one-step regularization because it contains a unique step.

Consider the copositive problem (2.1). Let 𝑇𝑖𝑚 be the normalized set of immobile indices of this problem
defined in (2.7).

If 𝑇𝑖𝑚 = ∅, then problem (2.1) satisfies the Slater condition, which means that it is already regular and no
regularization is required. Now, suppose that 𝑇𝑖𝑚 ̸= ∅. In this case, the Slater condition is not satisfied and the
problem is not regular. Let us describe how one can convert problem (2.1) into a regularized one.

Consider the set conv 𝑇𝑖𝑚 and the set 𝑊 of all vertices of conv 𝑇𝑖𝑚:

𝑊 := {𝑡(𝑗), 𝑗 ∈ 𝐽}, 0 < |𝐽 | < ∞. (3.4)

Suppose that the elements 𝑡(𝑗), 𝑗 ∈ 𝐽, of the set 𝑊 are known. Then we can regularize problem (2.1) in just
one step.

In fact, it follows from Theorem 2.3 above and Theorem 3.2 and Corollary 3.3 in [12], that the set 𝑋 of feasible
solutions of the original problem (2.1) coincides with the set of feasible solutions of the following system:

𝑡⊤𝒜(𝑥)𝑡 ≥ 0 ∀𝑡 ∈ Ω(𝑊 ); 𝒜(𝑥)𝑡(𝑖) ≥ 0 ∀𝑖 ∈ 𝐽,

and the next condition is satisfied:

∃ �̄� ∈ 𝑋 such that 𝑡⊤𝒜(�̄�)𝑡 > 0 ∀𝑡 ∈ Ω(𝑊 ). (3.5)

Here the set Ω(𝑊 ) is defined by the rules (2.10) with 𝑉 = 𝑊.
Consequently, the original copositive problem (2.1) is equivalent to the following SIP problem:

min
𝑥∈R𝑛

𝑐⊤𝑥, (3.6)

s.t. 𝑡⊤𝒜(𝑥)𝑡 ≥ 0 ∀𝑡 ∈ Ω(𝑊 ), (3.7)
𝒜(𝑥)𝑡(𝑖) ≥ 0 ∀𝑖 ∈ 𝐽. (3.8)

Problem (3.6)–(3.8) can be considered as a regularized primal problem since

– it possesses a finite number of linear inequality constraints (3.8),
– the first group of constraints (3.7), satisfies the Slater type condition (3.5),
– the set Ω(𝑊 ) is compact.

Let us stress that in problem (3.6)–(3.8), the infinite index set Ω(𝑊 ) is obtained by removing the set 𝑇𝑖𝑚

together with the 𝜎(𝑊 )-neighborhood of its convex hull, from the original index set 𝑇 . Note here that the set
Ω(𝑊 )

(a) is explicitly constructed by the rules (2.9), (2.10), using the finite set 𝑊 = {𝑡(𝑗), 𝑗 ∈ 𝐽} of vertices of
conv𝑇𝑖𝑚,

(b) does not contain the set conv 𝑇𝑖𝑚,
(c) may be sufficiently small.

All these properties may be useful for numerical solving the problem (3.6)–(3.8).
It is evident that problem (3.6)–(3.8) can be written in the equivalent conic form

min
𝑥∈R𝑛

𝑐⊤𝑥, s.t. 𝒜(𝑥) ∈ 𝒦0, (3.9)
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where
𝒦0 :=

{︀
𝐷 ∈ 𝒮(𝑝) : 𝑡⊤𝐷𝑡 ≥ 0 ∀𝑡 ∈ Ω(𝑊 ); 𝐷𝑡(𝑗) ≥ 0 ∀𝑗 ∈ 𝐽

}︀
.

It can be shown that 𝒦0 ⊂ 𝒞𝒪𝒫𝑝.
The dual problem to (3.9) is as follows:

max
𝑈∈𝒮(𝑝)

−𝐴0 ∙ 𝑈, s.t. 𝐴𝑗 ∙ 𝑈 = 𝑐𝑗 ∀𝑗 = 1, . . ., 𝑛; 𝑈 ∈ 𝒦*0. (3.10)

In the problem above, 𝒦*0 is the dual cone to 𝒦0 and has the form

𝒦*0 = cl{𝐷 ∈ 𝒮(𝑝) : 𝐷∈𝒞𝒫(𝑊 )⊕ 𝒫*}, (3.11)

where

𝒞𝒫(𝑊 ) := conv
{︀
𝑡𝑡⊤ : 𝑡 ∈ Ω(𝑊 )

}︀
,

𝒫* :=

⎧⎨⎩𝐷 ∈ 𝒮(𝑝) : 𝐷 =
∑︁
𝑗∈𝐽

(︀
𝜆(𝑗)(𝑡(𝑗))⊤ + 𝑡(𝑗)(𝜆(𝑗))⊤

)︀
, 𝜆(𝑗) ≥ 0 ∀𝑗 ∈ 𝐽

⎫⎬⎭.

Here and in what follows, for given sets ℬ and 𝒢, clℬ denotes the closure of the set ℬ and ℬ ⊕ 𝒢 stays for
the Minkowski sum of the corresponding two sets.

Notice that for the pair of dual conic problems (3.9) and (3.10), the duality gap is zero.
As it was shown in [12], the cone (3.11) in problem (3.10) can be replaced by the following one (which has a

more explicit form since it does not contain the closure operator):

K*
0 : = {𝐷 ∈ 𝒮(𝑝) : 𝐷 ∈ 𝒞𝒫𝑝 ⊕ 𝒫*},

where 𝒞𝒫𝑝 denotes the set of completely positive matrices:

𝒞𝒫𝑝 := conv
{︀
𝑡𝑡⊤ : 𝑡 ∈ R𝑝

+

}︀
, (3.12)

and there is no duality gap for problem (3.9) and its dual problem in the form (3.10) with 𝒦*0 replaced by K*
0.

Note that the cones 𝒦0 and K*
0 are explicitly described in terms of indices (3.4) and this is an advantage of

the approach presented here over the one from 3.1.
The only drawback of the regularization procedure described here is the following: to apply the one-step

regularization, one needs to know the finite number of indices (3.4) which are the vertices of the set conv 𝑇𝑖𝑚.
Let us show that the regularized primal problem (3.9) can be modified as follows:

min
𝑥∈R𝑛

𝑐⊤𝑥, s.t. 𝒜(𝑥) ∈ 𝒦0, (3.13)

where

𝒦0 =
{︁

𝐷 ∈ 𝑆(𝑝) : 𝑡⊤𝐷𝑡 ≥ 0 ∀𝑡 ∈ Ω(𝑊 ), 𝑒⊤𝑘 𝐷𝑡(𝑗) = 0 ∀𝑘 ∈ 𝑃+(𝑡(𝑗)),

𝑒⊤𝑘 𝐷𝑡(𝑗) ≥ 0 ∀𝑘 ∈ 𝑃 ∖ 𝑃+(𝑡(𝑗)), ∀𝑗 ∈ 𝐽
}︁

.

In fact, due to Theorem 2.3 we have 𝑋 = {𝑥 ∈ R𝑛 : 𝒜(𝑥) ∈ 𝒦0}. It is evident that 𝒦0 ⊂ 𝒦0 and hence{︀
𝑥 ∈ R𝑛 : 𝒜(𝑥) ∈ 𝒦0

}︀
⊂ 𝑋. On the other hand, taking into account the inclusion {𝑡(𝑗), 𝑗 ∈ 𝐽} ⊂ 𝑇𝑖𝑚 and Propo-

sition 2.4, we conclude that 𝑋 ⊂
{︀
𝑥 ∈ R𝑛 : 𝒜(𝑥) ∈ 𝒦0

}︀
. Hence we have shown that 𝑋 =

{︀
𝑥 ∈ R𝑛 : 𝒜(𝑥) ∈ 𝒦0

}︀
and, consequently, in problem (3.9) the cone 𝒦0 can be replaced by the cone 𝒦0.

Note that the inclusions 𝒦0 ⊂ 𝒦0 and 𝒦0 ⊂ 𝒞𝒪𝒫𝑝 imply 𝒦0 ⊂ 𝒞𝒪𝒫𝑝.
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To show that the regularizations presented above are themselves deeply connected, let us give an explicit
description of the minimal face Fmin in terms of the vertices of the set conv 𝑇𝑖𝑚 and the index sets 𝑀(𝑗), 𝑗 ∈ 𝐽,
defined as:

𝑀(𝑗) :=
{︀
𝑘 ∈ 𝑃 : 𝑒⊤𝑘 𝒜(𝑥)𝑡(𝑗) = 0 ∀𝑥 ∈ 𝑋

}︀
, 𝑗 ∈ 𝐽. (3.14)

The following theorem can be proved (see the results obtained in [12]).

Theorem 3.1. Given the copositive problem (2.1), let {𝑡(𝑗), 𝑗 ∈ 𝐽} be the (finite) set of all vertices of the set
conv 𝑇𝑖𝑚. Then the minimal face Fmin of this problem can be described in two equivalent forms

Fmin = 𝐾min(1) :=
{︀
𝐷 ∈ 𝒞𝒪𝒫𝑝 : 𝑒⊤𝑘 𝐷𝑡(𝑗) = 0 ∀𝑘 ∈ 𝑀(𝑗), ∀𝑗 ∈ 𝐽

}︀
, and

Fmin = 𝐾min(2): =
{︀
𝐷 ∈ 𝒞𝒪𝒫𝑝 : 𝑒⊤𝑘 𝐷𝑡(𝑗) = 0 ∀𝑘 ∈ 𝑀(𝑗), 𝑒⊤𝑘 𝐷𝑡(𝑗) ≥ 0 ∀𝑘 ∈ 𝑃 ∖𝑀(𝑗), ∀𝑗 ∈ 𝐽

}︀
.

Now, having described the minimal face Fmin via immobile indices, we can compare the regularized problems
(3.2), (3.9), and (3.13) in more detail.

The regularized problem (3.2) is formulated using the facial reduction approach to the copositive problem
(2.1) and the regularized problems (3.9) and (3.13) are obtained using the immobile indices of this problem.
The difference between these three problems is that in problem (3.2), the constraint set is determined by the
minimal face Fmin, while the constraints of problem (3.9) are formulated with the help of the cone 𝒦0, and the
constraints of problem (3.13) use the cone 𝒦0.

It should be noticed that the minimal face Fmin and the cones 𝒦0 and 𝒦0 satisfy the inclusions

Fmin ⊂ 𝒦0 ⊂ 𝒦0.

At the same time, the cones Fmin and 𝒦0 are faces of the cone of copositive matrices 𝒞𝒪𝒫𝑝, while the cone 𝒦0

is generally not. In addition, one can show that 𝒦0 is an exposed face while the face Fmin as a whole is not.
For each of the conic problems mentioned above, we face certain challenges caused by the troubles associated

with the concrete construction of the respective cones. For example, for the copositive problem (2.1), the following
difficulties should be mentioned:

– to define the cones 𝒦0 and 𝒦0, the elements 𝑡(𝑗), 𝑗 ∈ 𝐽, of the finite set of indices (3.4) should be known;
– as far as we know, there are no explicit procedures for constructing the minimal face Fmin and its dual cone

F*min.

Theorem 3.1 shows how the minimal face Fmin can be represented in the form of the cones 𝐾min(1) and
𝐾min(2) via immobile indices. Notice that to construct these cones, one has to find not only the set of indices
(3.4), but also the corresponding sets 𝑀(𝑗), 𝑗 ∈ 𝐽 , defined in (3.14).

As mentioned above, regularity is an important property of optimization problems. As a rule, the regularity
of copositive problems is characterized by the Slater condition. In this regard, it is important to note that the
regularized problem (3.2) satisfies the generalized Slater condition while the regularized problems (3.9) and
(3.13) obtained here satisfy the Slater type condition (3.5). This difference can be important for further study
of linear CoP problems, as well as for the development of stable numerical methods for them.

4. Iterative algorithms for regularization of linear copositive problems

In Section 3, we considered general schemes of two theoretical methods that made it possible to obtain regu-
larizations of the linear copositive problem (2.1). In each of these schemes, we meet some difficulties associated
with explicit representations of the respective “regularized” feasible cones and their dual ones. In this section,
we consider and compare two different approaches to regularization aimed at overcoming these difficulties by
using algorithmic procedures.
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4.1. Waki and Muramatsu’s facial reduction algorithm

In [24] for linear conic problems, a regularization algorithm was proposed by Waki and Muramatsu. This
algorithm can be thought of as the Facial Reduction Algorithm (FRA) from [5, 6], applied to linear conic
problems in finite-dimensional spaces.

Let us describe the algorithm from [24] for the linear copositive problem (2.1) with the matrix constraint
function 𝒜(𝑥) defined in (2.2). Recall that here we suppose that problem (2.1) is feasible. Then, according to
Remark 2.1, we can assume that 𝐴0 ∈ 𝒞𝒪𝒫𝑝.

Denote
Ker𝒜 := {𝐷 ∈ 𝒮(𝑝) : 𝐴𝑗 ∙𝐷 = 0 ∀𝑗 = 0, 1, . . ., 𝑛}.

As above, let ℱ* denote the dual cone of a given cone ℱ⊂ 𝒮(𝑝).
For a given feasible copositive problem (2.1), starting with 𝒞𝒪𝒫𝑝, the Waki and Muramatsu’s algorithm

repeatedly finds smaller faces of 𝒞𝒪𝒫𝑝 until it stops with the minimal face Fmin.

Waki and Muramatsu’s FRA for the copositive problem (2.1)

Step 1. Set 𝑖: = 0 and ℱ0 := 𝒞𝒪𝒫𝑝.
Step 2. If Ker𝒜 ∩ ℱ*𝑖 ⊂ span{𝑌1, . . ., 𝑌𝑖}, then STOP: Fmin = ℱ𝑖.
Step 3. Find 𝑌𝑖+1 ∈ Ker𝒜 ∩ ℱ*𝑖 ∖ span{𝑌1, . . ., 𝑌𝑖}.
Step 4. Set ℱ𝑖+1: = ℱ𝑖 ∩ {𝑌𝑖+1}⊥ and 𝑖 := 𝑖 + 1, and go to step 2.

The description of the algorithm is very simple but, in practice, its implementation presents serious difficulties
which arise on step 2 and especially on step 3. As the matter of fact, in the case of the copositive problem (2.1),
the fulfillment of step 3 is hard already on the first two iterations.

Let us consider the initial iteration when 𝑖 = 0. On step 3, one has to find a matrix 𝑌1 ∈ Ker𝒜 ∩ ℱ*0 . Since
ℱ0 = 𝒞𝒪𝒫𝑝, then at the current iteration (𝑖 = 0) we know the explicit description of the dual cone for ℱ0:
ℱ*0 = 𝒞𝒫𝑝, where the cone 𝒞𝒫𝑝 is defined in (3.12). Therefore, the matrix 𝑌1 should have the form

𝑌1 =
∑︁
𝑖∈𝐼1

𝑡(𝑖)(𝑡(𝑖))⊤, 𝑡(𝑖) ≥ 0, 𝑡(𝑖) ̸= 0 ∀𝑖 ∈ 𝐼1, 0 < |𝐼1| ≤ 𝑝(𝑝 + 1)/2,

and the condition
∑︀

𝑖∈𝐼1
(𝑡(𝑖))⊤𝐴𝑗𝑡(𝑖) = 0 ∀𝑗 = 0, 1, . . ., 𝑛, has to be satisfied.

At the next iteration (𝑖 = 1), one is looking for a matrix 𝑌2 such that

C1: 𝑌2 ∈ ℱ*1 = cl{𝐷 ∈ 𝒮(𝑝) : 𝐷 ∈ 𝒞𝒫𝑝 ⊕ 𝛼𝑌1, 𝛼 ∈ R},
C2: 𝑌2 ̸∈ span{𝑌1},
C3: 𝐴𝑗 ∙ 𝑌2 = 0 ∀𝑗 = 0, 1, . . ., 𝑛.

The first difficulty arises when trying to satisfy the condition C1, as there is no explicit description of
the set ℱ*1 . Notice that this set is defined using the closure operator, this operator being essential for the
definition of ℱ*1 . Therefore, in general, for a matrix 𝑌2 satisfying the condition C1, it may happen that 𝑌2 ̸∈
{𝐷 ∈ 𝒮(𝑝) : 𝐷 ∈ 𝒞𝒫𝑝 ⊕ 𝛼𝑌1, 𝛼 ∈ R}.

In [24], there is also no any indication of how to find a matrix 𝑌2 satisfying the conditions C2 and C3.
Notice that the fulfillment of these conditions is a non-trivial task as well.

Thus, we can state that although the reported in [24] FRA is an easy-to-describe method, its practical
implementation is not constructively described, which makes it difficult to apply. There is no information
concerning which form should have the matrix 𝑌𝑖 at the 𝑖-th iteration (𝑖 ≥ 1) of the algorithm and how to meet
the conditions C1–C3 for it.

4.2. A regularization based on the immobile indices

Here we will describe and justify a distinct algorithm for regularization of the copositive problem (2.1). This
algorithm has a similar structure to the Waki and Muramatsu’s FRA considered in Section4.1 but is based on
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the concept of immobile indices and described in more detail, being, therefore, more constructive. Note from
the outset that although our algorithm exploits the properties of the set of immobile indices, it does not require
the initial knowledge of either this set or the vertices of its convex hull.

4.2.1. Algorithm REG-LCoP (REGularization of Linear Copositive Problems)

Consider the copositive problem in the form (2.1).

Iteration # 0. Using data of the original problem (2.1), let us form the following regular SIP problem:

SIP0 : min
(𝑥,𝜇)∈R𝑛+1

𝜇, s.t. 𝑡⊤𝒜(𝑥)𝑡 + 𝜇 ≥ 0 ∀𝑡 ∈ 𝑇,

with the index set 𝑇 defined in (2.4).
If there exists a feasible solution (�̄�, �̄�) of this problem with �̄� < 0, then set 𝑚* := 0 and go to the Final step.
Otherwise the vector (𝑥 = 0, 𝜇 = 0) is an optimal solution of the problem (SIP0).
It should be noticed that in the problem (SIP0), the index set 𝑇 is compact and the constraints satisfy the

Slater condition. Hence (see e.g. [4]), it follows from the optimality conditions for the vector (𝑥 = 0, 𝜇 = 0) that
there exist indices and numbers

𝜏(𝑖) ∈ 𝑇, 𝛾(𝑖) > 0 ∀𝑖 ∈ 𝐼1, |𝐼1| ≤ 𝑛 + 1, (4.1)

such that ∑︁
𝑖∈𝐼1

𝛾(𝑖)(𝜏(𝑖))⊤𝐴𝑗𝜏(𝑖) = 0 ∀𝑗 = 0, 1, . . ., 𝑛;
∑︁
𝑖∈𝐼1

𝛾(𝑖) = 1. (4.2)

It follows from these relations (see Prop. 4.2 below) that 𝐼1 ̸= ∅, 𝜏(𝑖) ∈ 𝑇𝑖𝑚 ⊂ 𝑇, and 𝑒⊤𝑘 𝒜(𝑥)𝜏(𝑖) = 0 ∀𝑘 ∈
𝑃+(𝜏(𝑖)), ∀𝑖 ∈ 𝐼1, ∀𝑥 ∈ 𝑋. Set 𝐿1(𝑖) := 𝑃+(𝜏(𝑖)), 𝑖 ∈ 𝐼1, and go to the next iteration.

Iteration # 𝑚, 𝑚 ≥ 1. By the beginning of the iteration, we have indices and sets 𝜏(𝑖), 𝐿𝑚(𝑖), 𝑖 ∈ 𝐼𝑚, such
that

𝜏(𝑖) ∈ 𝑇𝑖𝑚, 𝑃+(𝜏(𝑖)) ⊂ 𝐿𝑚(𝑖) ⊂ 𝑃, 𝑒⊤𝑘 𝒜(𝑥)𝜏(𝑖) = 0 ∀𝑘 ∈ 𝐿𝑚(𝑖), ∀𝑖 ∈ 𝐼𝑚, ∀𝑥 ∈ 𝑋. (4.3)

Consider a SIP problem

min
(𝑥,𝜇)∈R𝑛+1

𝜇,

SIP𝑚 : s.t. 𝑒⊤𝑘 𝒜(𝑥)𝜏(𝑖) = 0 ∀𝑘 ∈ 𝐿𝑚(𝑖); 𝑒⊤𝑘 𝒜(𝑥)𝜏(𝑖) ≥ 0 ∀𝑘 ∈ 𝑃 ∖ 𝐿𝑚(𝑖), ∀𝑖∈𝐼𝑚,

𝑡⊤𝒜(𝑥)𝑡 + 𝜇 ≥ 0 ∀𝑡 ∈ Ω(𝑊𝑚),

where 𝑊𝑚 := {𝜏(𝑖), 𝑖 ∈ 𝐼𝑚} and the set Ω(𝑊𝑚) is constructed by the rules (2.9), (2.10) with 𝑉 = 𝑊𝑚.
In the problem (SIP𝑚), the index set Ω(𝑊𝑚) is compact and the constraints satisfy the following Slater type

condition:

∃(̂︀𝑥, ̂︀𝜇) such that 𝑒⊤𝑘 𝒜(̂︀𝑥)𝜏(𝑖) = 0 ∀𝑘 ∈ 𝐿𝑚(𝑖); 𝑒⊤𝑘 𝒜(̂︀𝑥)𝜏(𝑖)≥0 ∀𝑘 ∈ 𝑃 ∖𝐿𝑚(𝑖), ∀𝑖 ∈ 𝐼𝑚,

𝑡⊤𝒜(̂︀𝑥)𝑡 + ̂︀𝜇 > 0 ∀𝑡 ∈ Ω(𝑊𝑚).

Hence, this problem is regular.
If problem (SIP𝑚) admits a feasible solution (�̄�, �̄�) with �̄� < 0, then STOP and go to the Final step with

𝑚* := 𝑚.
Otherwise, the vector (𝑥 = 0, 𝜇 = 0) is an optimal solution of (SIP𝑚). Since this problem is regular, the

optimality of the vector (𝑥 = 0, 𝜇 = 0) provides (see [16]) that there exist indices, numbers, and vectors

𝜏(𝑖) ∈ Ω(𝑊𝑚), 𝛾(𝑖), 𝑖 ∈ ∆𝐼𝑚, 1 ≤ |∆𝐼𝑚| ≤ 𝑛 + 1; 𝜆𝑚(𝑖) ∈ R𝑝, 𝑖 ∈ 𝐼𝑚, (4.4)
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which satisfy the following conditions:∑︁
𝑖∈Δ𝐼𝑚

𝛾(𝑖)(𝜏(𝑖))⊤𝐴𝑗𝜏(𝑖) + 2
∑︁
𝑖∈𝐼𝑚

(𝜆𝑚(𝑖))⊤𝐴𝑗𝜏(𝑖) = 0 ∀𝑗 = 0, 1, . . ., 𝑛; (4.5)

𝛾(𝑖) > 0 ∀𝑖 ∈ ∆𝐼𝑚; 𝜆𝑚
𝑘 (𝑖) ≥ 0 ∀𝑘 ∈ 𝑃 ∖ 𝐿𝑚(𝑖), ∀𝑖 ∈ 𝐼𝑚. (4.6)

Here and in what follows, without loss of generality, we suppose that ∆𝐼𝑚 ∩ 𝐼𝑚 = ∅. Moreover, applying to the
data (4.3), (4.4), the procedure DAM described in [13], it is possible to ensure that the following conditions
are met:

𝑃0(𝜏(𝑖)) ∩ 𝑃+(𝜏(𝑗)) ̸= ∅ ∀𝑖 ∈ ∆𝐼𝑚, ∀𝑗 ∈ 𝐼𝑚. (4.7)

Let us set

∆𝐿(𝑖) := {𝑘 ∈ 𝑃 ∖ 𝐿𝑚(𝑖) : 𝜆𝑚
𝑘 (𝑖) > 0}, 𝑖 ∈ 𝐼𝑚,

𝐿𝑚+1(𝑖) := 𝐿𝑚(𝑖) ∪∆𝐿(𝑖), 𝑖 ∈ 𝐼𝑚; 𝐿𝑚+1(𝑖) := 𝑃+(𝜏(𝑖)), 𝑖 ∈ ∆𝐼𝑚. (4.8)

It follows from (4.3) and (4.5) (see Prop. 4.3 below) that 𝑒⊤𝑘 𝒜(𝑥)𝜏(𝑖) = 0 ∀𝑘 ∈ ∆𝐿(𝑖), ∀𝑖 ∈ 𝐼𝑚, and
𝜏(𝑖) ∈ 𝑇𝑖𝑚, 𝑒⊤𝑘 𝒜(𝑥)𝜏(𝑖) = 0 ∀𝑘 ∈ 𝑃+(𝜏(𝑖)), ∀𝑖 ∈ ∆𝐼𝑚, ∀𝑥 ∈ 𝑋.

Go to the next iteration #(𝑚 + 1) with the new data

𝜏(𝑖), 𝐿𝑚+1(𝑖), 𝑖 ∈ 𝐼𝑚+1 := 𝐼𝑚 ∪∆𝐼𝑚, (4.9)

satisfying relations (4.3) with 𝑚 replaced by 𝑚 + 1.

Final step. It follows from Theorem 4.4 (see Sect. 4.2.2 below) that, in a finite number of iterations, the
algorithm REG-LCoP comes to the final step. Therefore, for some 𝑚* ≥ 0, the problem (SIP𝑚*) has a feasible
solution (�̄�, �̄�) with �̄� < 0.

If 𝑚* = 0, then the constraints of problem (2.1) satisfy the Slater condition with �̄�, and hence the problem
is regular.

Suppose now that 𝑚* > 0 and consider a problem

min
𝑥∈R𝑛

𝑐⊤𝑥,

REG : s.t. 𝑒⊤𝑘 𝒜(𝑥)𝜏(𝑖) = 0 ∀𝑘 ∈ 𝐿𝑚*(𝑖), 𝑒⊤𝑘 𝒜(𝑥)𝜏(𝑖) ≥ 0 ∀𝑘 ∈ 𝑃 ∖ 𝐿𝑚*(𝑖), ∀𝑖 ∈ 𝐼𝑚* ,

𝑡⊤𝒜(𝑥)𝑡 ≥ 0 ∀𝑡 ∈ Ω(𝑊𝑚*),

where the sets 𝑊𝑚* = {𝜏(𝑖), 𝑖 ∈ 𝐼𝑚*} and Ω(𝑊𝑚*) are the same as in the problem (SIP𝑚*). Problem (REG) has
a finite number of linear equality/inequality constraints and according to Theorem 4.4 it possesses the following
properties.

(A) The set of feasible solutions 𝑋reg of the problem (REG) coincides with the set of feasible solutions 𝑋 of
the original problem (2.1).

(B) There exists �̄� ∈ 𝑋 such that 𝑡⊤𝒜(�̄�)𝑡 > 0 ∀𝑡 ∈ Ω(𝑊𝑚*).

Hence the problem (REG) is equivalent to problem (2.1) and can be considered as its regularization. The
algorithm is described.

Remark 4.1. In the described above algorithm REG-LCoP, it is assumed that 𝑋 ̸= ∅. It is easy to modify
the algorithm so that this assumption can be removed.
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4.2.2. Justification of Algorithm REG-LCoP

In this subsection, we prove some propositions and theorem that justify the algorithm REG-LCoP.

Proposition 4.2. Let relations (4.1), (4.2) be satisfied. Then

𝐼1 ̸= ∅, 𝜏(𝑖) ∈ 𝑇𝑖𝑚, 𝑒⊤𝑘 𝒜(𝑥)𝜏(𝑖) = 0 ∀𝑘 ∈ 𝑃+(𝜏(𝑖)), ∀𝑖 ∈ 𝐼1, ∀𝑥 ∈ 𝑋. (4.10)

Proof. It is clear that the inequalities 𝛾(𝑖) > 0, 𝑖 ∈ 𝐼1, and the equality
∑︀

𝑖∈𝐼1
𝛾(𝑖) = 1 imply that 𝐼1 ̸= ∅.

Consider the first group of equalities in (4.2). Add to the first equality of this group, corresponding to the
𝑗 = 0, the remaining equalities, with 𝑗 = 1, . . ., 𝑛, multiplied by 𝑥𝑗 . As a result we get

∑︁
𝑖∈𝐼1

𝛾(𝑖)

⎛⎝ 𝑛∑︁
𝑗=1

(𝜏(𝑖))⊤𝐴𝑗𝜏(𝑖)𝑥𝑗 + (𝜏(𝑖))⊤𝐴0𝜏(𝑖)

⎞⎠ = 0 ∀𝑥 ∈ R𝑛

or equivalently ∑︁
𝑖∈𝐼1

𝛾(𝑖)(𝜏(𝑖))⊤𝒜(𝑥)𝜏(𝑖) = 0 ∀𝑥 ∈ R𝑛.

Taking into account the latest equalities, inequalities (2.13) and relations (4.1), we conclude that
(𝜏(𝑖))⊤𝒜(𝑥)𝜏(𝑖) = 0 for all 𝑖 ∈ 𝐼1 and 𝑥 ∈ 𝑋. By definition, this means that 𝜏(𝑖) ∈ 𝑇𝑖𝑚 ∀𝑖 ∈ 𝐼1. Then
it follows from Proposition 2.4 that for 𝑖 ∈ 𝐼1, the relations

𝑒⊤𝑘 𝒜(𝑥)𝜏(𝑖) = 0 ∀𝑘 ∈ 𝑃+(𝜏(𝑖)); 𝑒⊤𝑘 𝒜(𝑥)𝜏(𝑖) ≥ 0 ∀𝑘 ∈ 𝑃0(𝜏(𝑖)), ∀𝑥 ∈ 𝑋, (4.11)

hold true, wherefrom we conclude that relations (4.10) hold true too. The proposition is proved. �

Proposition 4.3. Suppose that for 1 ≤ 𝑚 < 𝑚*, the indices and sets 𝜏(𝑖), 𝐿𝑚(𝑖), 𝑖 ∈ 𝐼𝑚, satisfy (4.3) and the
indices, numbers and vectors (4.4) satisfy (4.5), (4.6). Then

𝜏(𝑖) ∈ 𝑇𝑖𝑚, 𝑒⊤𝑘 𝒜(𝑥)𝜏(𝑖) = 0 ∀𝑘 ∈ 𝑃+(𝜏(𝑖)), ∀𝑖 ∈ ∆𝐼𝑚, ∀𝑥 ∈ 𝑋, (4.12)

𝑒⊤𝑘 𝒜(𝑥)𝜏(𝑖) = 0 ∀𝑘 ∈ ∆𝐿(𝑖), ∀𝑖 ∈ 𝐼𝑚, ∀𝑥 ∈ 𝑋, (4.13)

where the sets ∆𝐿(𝑖), 𝑖 ∈ 𝐼𝑚, are defined in (4.8).

Proof. Consider equalities (4.5). Add to the equality corresponding to 𝑗 = 0 the remaining equalities corre-
sponding to 𝑗 = 1, . . ., 𝑛, multiplied by 𝑥𝑗 . As a result, we get

∑︁
𝑖∈Δ𝐼𝑚

𝛾(𝑖)(𝜏(𝑖))⊤

⎛⎝ 𝑛∑︁
𝑗=1

𝐴𝑗𝑥𝑗 + 𝐴0

⎞⎠𝜏(𝑖) + 2
∑︁
𝑖∈𝐼𝑚

(𝜆𝑚(𝑖))⊤

⎛⎝ 𝑛∑︁
𝑗=1

𝐴𝑗𝑥𝑗 + 𝐴0

⎞⎠𝜏(𝑖) = 0 ∀𝑥 ∈ R𝑛,

or equivalently ∑︁
𝑖∈Δ𝐼𝑚

𝛾(𝑖)(𝜏(𝑖))⊤𝒜(𝑥)𝜏(𝑖) + 2
∑︁
𝑖∈𝐼𝑚

(𝜆𝑚(𝑖))⊤𝒜(𝑥)𝜏(𝑖) = 0 ∀𝑥 ∈ R𝑛. (4.14)

According to (4.3) we have that 𝜏(𝑖) ∈ 𝑇𝑖𝑚, 𝑖 ∈ 𝐼𝑚. Then it follows from Proposition 2.4 that for 𝑖 ∈ 𝐼𝑚,
relations (4.11) hold true. These relations and the equalities in (4.3) imply

𝑒⊤𝑘 𝒜(𝑥)𝜏(𝑖) = 0 ∀𝑘 ∈ 𝐿𝑚(𝑖); 𝑒⊤𝑘 𝒜(𝑥)𝜏(𝑖) ≥ 0 ∀𝑘 ∈ 𝑃 ∖ 𝐿𝑚(𝑖), ∀𝑖 ∈ 𝐼𝑚, ∀𝑥 ∈ 𝑋. (4.15)

Hence it follows from the relations above and (4.6), (2.13), (4.14) that for all 𝑥 ∈ 𝑋

(𝜏(𝑖))⊤𝒜(𝑥)𝜏(𝑖) = 0, ∀𝑖 ∈ ∆𝐼𝑚; 𝜆𝑚
𝑘 (𝑖)𝑒⊤𝑘 𝒜(𝑥)𝜏(𝑖) = 0 ∀𝑘 ∈ 𝑃 ∖ 𝐿𝑚(𝑖), ∀𝑖 ∈ 𝐼𝑚,
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wherefrom we obtain

𝜏(𝑖) ∈ 𝑇𝑖𝑚 ∀𝑖 ∈ ∆𝐼𝑚; 𝑒⊤𝑘 𝒜(𝑥)𝜏(𝑖) = 0 ∀𝑘 ∈ ∆𝐿(𝑖), ∀𝑖 ∈ 𝐼𝑚, ∀𝑥 ∈ 𝑋. (4.16)

It follows from the inclusions 𝜏(𝑖) ∈ 𝑇𝑖𝑚 ∀𝑖 ∈ ∆𝐼𝑚, and Proposition 2.4 that for all 𝑖 ∈ ∆𝐼𝑚, relations
(4.11) hold true. Taking into account these relations, and relations (4.16) we conclude that (4.12) and (4.13)
hold true. The proposition is proved. �

Theorem 4.4. Given the CoP problem (2.1), in a finite number of iterations, the algorithm REG-LCoP
constructs a problem (REG) possessing the properties (A) and (B).

Proof. It follows from Propositions 4.2 and 4.3 that for any 𝑚, 1 ≤ 𝑚 ≤ 𝑚*−1, at the beginning of the Iteration
# 𝑚 we have indices and sets 𝜏(𝑖), 𝐿𝑚(𝑖), 𝑖 ∈ 𝐼𝑚, satisfying (4.3), and during this iteration the algorithm finds
indices, numbers, and vectors (4.4) satisfying (4.5) and (4.6). Notice that by the definitions of the sets Ω(𝑊𝑚),
𝑊𝑚 := {𝜏(𝑖), 𝑖 ∈ 𝐼𝑚} it holds:

𝜌(𝑡, conv𝑊𝑚) ≥ 𝜎(𝑊𝑚) > 0 ∀𝑡 ∈ Ω(𝑊𝑚).

Hence the procedure DAM from [13] can be correctly applied to the data (4.3) and (4.5). This procedure
consists of a finite number of operations and ensures the fulfilment of the conditions (4.7). It follows from these
conditions that the algorithm REG-LCoP runs a finite number 𝑚* of iterations and comes to final step with
a vector (�̄�, �̄�), �̄� < 0, which is a feasible solution to the problem (SIP𝑚*).

At the final step, the problem (REG) is formed on the basis of the problem (SIP𝑚*). Let 𝑋reg be the set of
feasible solutions to the problem (REG):

𝑋reg :=
{︀
𝑥 ∈ R𝑛 : 𝑡⊤𝒜(𝑥)𝑡 ≥ 0 ∀𝑡 ∈ Ω(𝑊𝑚*);

𝑒⊤𝑘 𝒜(𝑥)𝜏(𝑖) = 0 ∀𝑘 ∈ 𝐿𝑚*(𝑖), 𝑒⊤𝑘 𝒜(𝑥)𝜏(𝑖) ≥ 0 ∀𝑘 ∈ 𝑃 ∖ 𝐿𝑚*(𝑖), ∀𝑖 ∈ 𝐼𝑚*

}︀
As before, let 𝑋 be the set of feasible solutions of the original problem (2.1), and 𝒳 (𝑊𝑚*) the set defined by
rules (2.9)–(2.11) with 𝑉 replaced by 𝑊𝑚* . For 𝑚 = 𝑚*, relations (4.15) imply that 𝑋 ⊂ 𝑋reg. On the other
hand, it is clear that 𝑋reg ⊂ 𝒳 (𝑊𝑚*). It follows from Proposition 4.3 that 𝑊𝑚* ⊂ 𝑇𝑖𝑚, and consequently due
to Theorem 2.3, we have 𝑋 = 𝒳 (𝑊𝑚*). Hence we conclude that the problems (REG) and (2.1) have the same
sets of feasible solutions: 𝑋reg = 𝑋. The property (A) is proved.

By construction, the vector (�̄�, �̄�), �̄� < 0, is a feasible solution to the problem (SIP𝑚*). Hence �̄� ∈ 𝑋reg = 𝑋
and 𝑡⊤𝒜(�̄�)𝑡 ≥ −�̄� > 0 for all 𝑡 ∈ Ω(𝑊𝑚*). The property (B) is proved. �

4.2.3. Example

Let us illustrate the iterations of the algorithm REG-LCoP with a small example.
Consider the CoP problem (2.1) with the following data:

𝑛 = 4, 𝑝 = 4, 𝑐 = (3, 4, −1, −1)⊤,

𝐴0 =

⎛⎜⎝ 0 −1 0 0
−1 1 0 0
0 0 4 −1
0 0 −1 0

⎞⎟⎠, 𝐴1 =

⎛⎜⎝ 0 0 1 0
0 2 0 3
1 0 −1 0
0 3 0 0

⎞⎟⎠, (4.17)

𝐴2 =

⎛⎜⎝ 0 1 −2 0
1 4 1 0
−2 1 0 1
0 0 1 0

⎞⎟⎠, 𝐴3 =

⎛⎜⎝ 0 −1 0 0
−1 0 0 0
0 0 2 0
0 0 0 0

⎞⎟⎠, 𝐴4 =

⎛⎜⎝ 0 1 0 0
1 −2 0 0
0 0 0 0
0 0 0 0

⎞⎟⎠.

Let us apply the algorithm REG-LCoP to this problem.
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Iteration #0. On this iteration we solve a semidefinite programming problem (SIP0) with data (4.18). For this
problem, relations (4.2) hold true with 𝐼1 = {1}, 𝜏(1) = 𝑒1, 𝛾1 = 1. These relations are the sufficient optimality
conditions for the vector (𝑥 = 0, 𝜇 = 0) in this problem (SIP0) and hence this vector is an optimal solution of
the problem (SIP0).

Set 𝐿1(1) := 𝑃+(𝜏(1)) = {1}, 𝑖 ∈ 𝐼1, and go to the next iteration.

Iteration # 1. Using the indices and sets 𝜏(𝑖), 𝐿1(𝑖), 𝑖 ∈ 𝐼1, found on the previous iteration, let us form the
problem (SIP1):

min 𝜇

s.t. 𝑒⊤2 𝒜(𝑥)𝜏(1) = 𝑥2 − 𝑥3 + 𝑥4 ≥ 0, 𝑒⊤3 𝒜(𝑥)𝜏(1) = 𝑥1 − 2𝑥2 ≥ 0,

𝑡⊤𝒜(𝑥)𝑡 + 𝜇 ≥ 0 ∀ 𝑡 ∈ Ω(𝑊1),

where 𝑊1 = {𝜏(1) = 𝑒1}, Ω(𝑊1) := {𝑡 ∈ 𝑇 : 𝜌(𝑡, 𝜏(1)) ≥ 𝜎(𝑊1) = 1} =
{︀
𝑡 ∈ R4

+ : e⊤𝑡 = 1, 𝑡1 ≤ 1/2
}︀
. Notice

that in this example we have 𝑒⊤1 𝒜(𝑥)𝜏(1) ≡ 𝑒⊤4 𝒜(𝑥)𝜏(1) ≡ 0, and hence the constraints 𝑒⊤1 𝒜(𝑥)𝜏(1) = 0 and
𝑒⊤4 𝒜(𝑥)𝜏(1) ≥ 0 are omitted in the problem (SIP1).

The vector (𝑥 = 0, 𝜇 = 0) is an optimal solution to (SIP1) since relations (4.5) hold true with ∆𝐼1 = {2},
𝜏(2) = 𝑒4 ∈ Ω(𝑊1) 𝛾2 = 1, 𝜆1(1) = 0. Remind that these relations are the optimality conditions for (𝑥 = 0, 𝜇 =
0) in (SIP1).

Hence we go to the next iteration with

𝐼2 := 𝐼1 ∪∆𝐼1 = {1, 2}, 𝜏(1) = 𝑒1, 𝜏(2) = 𝑒4,

𝐿2(1) := 𝐿1(1) ∪∆𝐿1(1) = 𝐿1(1) = {1}, 𝐿2(2) := 𝑃+(𝜏(2)) = {4}. (4.18)

Iteration # 2. Using the known data (4.18), we form problem (SIP2):

min 𝜇

s.t. 𝑒⊤2 𝒜(𝑥)𝜏(1) = 𝑥2 − 𝑥3 + 𝑥4 ≥ 0, 𝑒⊤3 𝒜(𝑥)𝜏(1) = 𝑥1 − 2𝑥2 ≥ 0,

𝑒⊤2 𝒜(𝑥)𝜏(2) = 3𝑥1 ≥ 0, 𝑒⊤3 𝒜(𝑥)𝜏(2) = 𝑥2 − 1 ≥ 0,

𝑡⊤𝒜(𝑥)𝑡 + 𝜇 ≥ 0 ∀ 𝑡 ∈ Ω(𝑊2),

where 𝑊2 = {𝜏(1) = 𝑒1, 𝜏(2) = 𝑒4}, Ω(𝑊2) := {𝑡 ∈ 𝑇 : 𝜌(𝑡, conv𝑊2) ≥ 𝜎(𝑊2) = 1} ={︀
𝑡 ∈ R4

+ : e⊤𝑡 = 1, 𝑡1 + 𝑡4 ≤ 1/2
}︀
. As before, since in this example, we have 𝑒⊤1 𝒜(𝑥)𝜏(2) ≡ 𝑒⊤4 𝒜(𝑥)𝜏(2) ≡ 0,

the constraints 𝑒⊤1 𝒜(𝑥)𝜏(2) ≥ 0 and 𝑒⊤4 𝒜(𝑥)𝜏(2) = 0 are not presented in our problem (SIP2).
The problem (SIP2) possesses a feasible solution (�̄�, �̄�) with �̄� < 0. For example, we can take �̄� =

(4, 1.5, 0.5, 1)⊤, �̄� = −0.4. Hence, according to the algorithm, we should pass to the Final step with 𝑚* = 2.

Final step. Consider a problem (REG) that is formed on the base of the problem (SIP2), constructed at the
last iteration with 𝑚* = 2. In our example, the problem (REG) has the form

min 𝑐⊤𝑥

s.t. 𝑥2 − 𝑥3 + 𝑥4 ≥ 0, 𝑥1 − 2𝑥2 ≥ 0, 3𝑥1 ≥ 0, 𝑥2 − 1 ≥ 0,

𝑡⊤𝒜(𝑥)𝑡 ≥ 0 ∀ 𝑡 ∈ Ω(𝑊2), (4.19)

where, as before, Ω(𝑊2) =
{︀
𝑡 ∈ R4

+ : e⊤𝑡 = 1, 𝑡1 + 𝑡4 ≤ 1/2
}︀
.

As it was proved, this problem is equivalent to the original problem (2.1) with data (4.17) and possesses the
properties (A) and (B). In particular, for this problem, there is a feasible solution �̄� = (4, 1.5, 0.5, 1)⊤, such
that 𝑡⊤𝒜(𝑥)𝑡 ≥ 0.4 ∀ 𝑡 ∈ Ω(𝑊2). Another useful property consists in the fact that in problem (4.19), the set
of indices Ω(𝑊2) is smaller then the index set 𝑇 in the original problem (2.1).
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To illustrate the advantages of the regularized problem (REG), we solved this problem and the problem
(2.1) with data (4.17) by a simple discretization on an uniform grid superimposed on the sets 𝑇 and Ω(𝑊2),
respectively. The auxiliary discretized linear programming (LP) problems were solved by a computer programme
developed using the Matlab programming language, and all computations were performed with a personal
computer. The accuracy of computations was 10−16.

– By discretizing the regularized semi-infinite problem (4.19) using an uniform grid with a step ℎ = 0.1 overlaid
on the set Ω(𝑊2), we got an LP problem with 125 linear constraints. Having solved this problem (let us
denote this problem by (LP1)), we obtained a solution 𝑥0 = (2.0000, 1.0000, 4.5000, 4.5000) and the optimal
value of the problem 𝑐⊤𝑥0 = 1.
One can check that the found vector 𝑥0 satisfies all the constraints of the problem (2.1) with the data (4.17),
and hence is a feasible solution of this problem. Having verified the optimality conditions for linear copositive
problems obtained in [14], one can conclude that 𝑥0 is optimal in this problem.

– By discretization of the original problem (2.1) with the data (4.17) using the same uniform grid with the
step ℎ = 0.1 superimposed on the set 𝑇 , we got an LP problem with 286 linear constraints. Denote this
problem by (LP2). Having solved this problem, we obtained a solution �̃� = (0.7778, 0.5926, 2.0556, 2.4630)⊤

and the corresponding value of the objective function 𝑐⊤�̃� = 0.1852.
Recall that both discretized problems, (LP1) and (LP2), were obtained using the same grid’ step ℎ = 0.1.
But in the case of the problem (LP2), due to the inclusion Ω(𝑊2) ⊂ 𝑇 , we have got more than twice as
many constraints as in the LP problem (LP1).
Since we already know that the optimal value of the original problem (2.1) is equal to 1, but 𝑐⊤�̃� = 0.1852,
we can easy conclude that the found vector �̃� does not belong to the feasible set of the original problem.

In order to get a more accurate solution of the original problem, we gradually reduced the step ℎ of the grid.
For ℎ = 0.01, we obtained an LP problem with 176851 linear constraints whose optimal solution was

𝑥* = (1.8406, 0.9469, 4.1812, 4.2343)⊤ and the optimal value 𝑐⊤𝑥* = 0.8937.

For ℎ = 0.0083, we obtained an LP problem with 302621 constraints, optimal solution 𝑥** =
(1.8664, 0.9555, 4.2328, 4.2773)⊤ and the optimal value 𝑐⊤𝑥** = 0.9109.

It is important to stress that all vectors �̃�, 𝑥* and 𝑥** obtained by discretization of the original (not-
regularized) problem are not feasible in this problem.

A further reducing the grid’s step led to an increase in the number of constraints but not to an improvement
in the quality of solution.

4.2.4. On the comparison of the algorithms

To give another interpretation of the algorithm REG-LCoP and to better trace the compliance of the
algorithm REG-LCoP to the Waki and Muramatsu’s FRA from [24] (presented here in Sect. 4.1), let us
perform some additional constructions at the iterations of the algorithm REG-LCoP.

At the end of Iteration # 0, having data 𝜏(𝑖), 𝛾(𝑖), 𝐿1(𝑖), 𝑖 ∈ 𝐼1, let us set

ℱ0: = 𝒞𝒪𝒫𝑝, 𝑌1: =
∑︁
𝑖∈𝐼1

𝛾(𝑖)𝜏(𝑖)(𝜏(𝑖))⊤, ℱ1: = ℱ0 ∩ {𝑌1}⊥.

Notice here that, by construction,

𝑌1 ̸= O𝑝, 𝑌1 ∈ Ker𝒜, 𝑌1 ∈ ℱ*0 = 𝒞𝒫𝑝,

ℱ1 : = ℱ0 ∩ {𝑌1}⊥ = {𝐷 ∈ 𝒞𝒪𝒫𝑝 : 𝐷 ∙ 𝑌1 = 0} =
{︀
𝐷 ∈ 𝒞𝒪𝒫𝑝 : (𝜏(𝑖))⊤𝐷𝜏(𝑖) = 0 ∀𝑖 ∈ 𝐼1

}︀
=

{︀
𝐷 ∈ 𝒞𝒪𝒫𝑝 : 𝑒⊤𝑘 𝐷𝜏(𝑖) = 0 ∀𝑖 ∈ 𝐿1(𝑖), 𝑒⊤𝑘 𝐷𝜏(𝑖) ≥ 0 ∀𝑖 ∈ 𝑃 ∖ 𝐿1(𝑖), ∀𝑖 ∈ 𝐼1

}︀
,

where O𝑝 is the 𝑝× 𝑝 null matrix.



1368 O.I. KOSTYUKOVA AND T.V. TCHEMISOVA

Consider Iteration # 𝑚, 1 ≤ 𝑚 ≤ 𝑚*. By the beginning of the iteration, we have a cone ℱ𝑚 = ℱ𝑚−1 ∩
{𝑌𝑚}⊥ that can be described as follows:

ℱ𝑚 =
{︀
𝐷 ∈ 𝒞𝒪𝒫𝑝 : 𝑒⊤𝑘 𝐷𝜏(𝑖) = 0 ∀𝑘 ∈ 𝐿𝑚(𝑖), 𝑒⊤𝑘 𝐷𝜏(𝑖) ≥ 0 ∀𝑘 ∈ 𝑃 ∖ 𝐿𝑚(𝑖), ∀𝑖 ∈ 𝐼𝑚

}︀
. (4.20)

At the end of this iteration, we have new data (4.4). Let us set

𝑌𝑚+1: =
∑︁

𝑖∈Δ𝐼𝑚

𝛾(𝑖)𝜏(𝑖)(𝜏(𝑖))⊤ +
∑︁
𝑖∈𝐼𝑚

[︀
𝜏(𝑖)(𝜆𝑚(𝑖))⊤ + 𝜆𝑚(𝑖)(𝜏(𝑖))⊤

]︀
. (4.21)

From the equations in (4.5), we conclude: 𝑌𝑚+1 ∈ Ker𝒜. From (4.20), we get

ℱ*𝑚 = cl{𝐷 ∈ 𝒮(𝑝) : 𝐷 ∈ 𝒞𝒫𝑝 ⊕ 𝒫*𝑚},

𝒫*𝑚 :=

{︃
𝐷 ∈ 𝒮(𝑝) : 𝐷 =

∑︁
𝑖∈𝐼𝑚

[︀
𝜏(𝑖)(𝜆(𝑖))⊤ + 𝜆(𝑖)(𝜏(𝑖))⊤

]︀
, 𝜆𝑘(𝑖) ≥ 0 ∀𝑘 ∈ 𝑃 ∖ 𝐿𝑚(𝑖), ∀𝑖 ∈ 𝐼𝑚

}︃
.

Hence, by construction, 𝑌𝑚+1 ∈ ℱ*𝑚.

Consider the cone ℱ𝑚+1 := ℱ𝑚 ∩ {𝑌𝑚+1}⊥ and show that it can be described as follows:

ℱ𝑚+1 =
{︀
𝐷 ∈ 𝒞𝒪𝒫𝑝 : 𝑒⊤𝑘 𝐷𝜏(𝑖) = 0 ∀𝑘 ∈ 𝐿𝑚+1(𝑖), 𝑒⊤𝑘 𝐷𝜏(𝑖) ≥ 0 ∀𝑘 ∈ 𝑃 ∖ 𝐿𝑚+1(𝑖), ∀𝑖 ∈ 𝐼𝑚+1

}︀
. (4.22)

In fact, it follows from (4.21) that the equality 𝐷 ∙ 𝑌𝑚+1 = 0 can be rewritten in the form

0 = 𝐷 ∙ 𝑌𝑚+1 =
∑︁

𝑖∈Δ𝐼𝑚

𝛾(𝑖)(𝜏(𝑖))⊤𝐷𝜏(𝑖) + 2
∑︁
𝑖∈𝐼𝑚

(𝜆𝑚(𝑖))⊤𝐷𝜏(𝑖),

where 𝛾(𝑖) > 0 ∀𝑖 ∈ ∆𝐼𝑚; 𝜆𝑚
𝑘 (𝑖) ≥ 0 ∀𝑘 ∈ 𝑃 ∖ 𝐿𝑚(𝑖), ∀𝑖 ∈ 𝐼𝑚.

Taking into account (4.20) and the relations above, we conclude that for 𝐷 ∈ ℱ𝑚, the equality 𝐷 ∙ 𝑌𝑚+1 = 0
implies the equalities

(𝜏(𝑖))⊤𝐷𝜏(𝑖) = 0 ∀𝑖 ∈ ∆𝐼𝑚, 𝑒⊤𝑘 𝐷𝜏(𝑖) = 0 ∀𝑘 ∈ ∆𝐿(𝑖), ∀𝑖 ∈ 𝐼𝑚.

Notice that the relations 𝐷 ∈ 𝒞𝒪𝒫𝑝, (𝜏(𝑖))⊤𝐷𝜏(𝑖) = 0, 𝜏(𝑖) ≥ 0 ∀𝑖 ∈ ∆𝐼𝑚, imply

𝑒⊤𝑘 𝐷𝜏(𝑖) = 0 ∀𝑘 ∈ 𝑃+(𝜏(𝑖)) and 𝑒⊤𝑘 𝐷𝜏(𝑖) ≥ 0 ∀𝑘 ∈ 𝑃0(𝜏(𝑖)), ∀𝑖 ∈ ∆𝐼𝑚. (4.23)

Representation (4.22) follows from (4.20) and (4.23).
The matrices and cones

𝑌𝑚, ℱ𝑚, 𝑚 = 0, 1, . . ., 𝑚*, (4.24)

constructed by rules (4.21) and (4.22), satisfy the following relations:

𝑌𝑚 ∈ ℱ*𝑚−1 ∀𝑚 = 1, . . ., 𝑚*, 𝑌0 = O𝑝; (I)
𝑌𝑚 ∈ Ker𝒜 ∀𝑚 = 1, . . ., 𝑚*; (II)

ℱ𝑚 = ℱ𝑚−1 ∩ {𝑌𝑚}⊥ ∀𝑚 = 1, . . ., 𝑚*, ℱ0 = 𝒞𝒪𝒫𝑝. (III)

Now we see that the algorithm REG-LCoP allows one to get a more clear description of the structure of
the matrices 𝑌𝑚, 𝑚 = 1, . . ., 𝑚*, satisfying conditions (I)–(III), and quite constructive rules of their formation:

– for a given 𝑚, the matrix 𝑌𝑚 has a form (4.21) and is built on the basis of the optimality conditions for the
feasible solution (𝑥 = 0, 𝜇 = 0) in the corresponding regular SIP problem (SIP𝑚).
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As it was shown in Section 4.1, at each iteration, the Waki and Muramatsu’s FRA produces a set of matrices
and cones (4.24) satisfying the conditions (I)–(III), and the condition

𝑌𝑚 ̸∈ span{𝑌0, 𝑌1, . . ., 𝑌𝑚−1} ∀𝑚 = 1, . . ., 𝑚* − 1. (IV)

On the other hand, the algorithm REG-LCoP described in Section 4.2.1 at each iteration produces a set of
matrices and cones (4.24) satisfying the conditions (I)–(III) but not necessarily the condition (IV).

Since in the algorithm REG-LCoP, the fulfillment of the condition (IV) is not guaranteed at each iteration,
if compare this algorithm with the Waki and Muramatsu’s FRA, at the first glance it may seem that, in general,
the number of iterations executed by the algorithm REG-LCoP is larger. Such an impression is caused by the
fact that in Section 4.2.1, we described in more detail all the steps of the algorithm and explicitly indicated
all the computations carried out at each iteration. As for the Waki and Muramatsu’s FRA, its iterations are
described only in general terms.

In what follows, we set out a modification of the algorithm REG-LCoP, where the number of iterations is
reduced and it is guaranteed that all conditions (I)–(IV) are satisfied on each core iteration. This modification
is formal, being essentially another way of the iterations’ numbering. The real number of the calculations on
the steps of this modified algorithm is the same as on the iterations of the original one.

4.2.5. A compressed modification of the algorithm REG-LCoP

Consider the algorithm REG-LCoP presented in Section 4.2.1. Evidently, one can reduce the number of
iterations of the algorithm if squeeze into just one iteration that iterations of the algorithm which change the
description of the dual cone ℱ*𝑚, but do not change the cone ℱ𝑚 itself. In other words, we will only move to
the next core iteration when all conditions (I)–(IV) are satisfied. Formally, such a procedure can be described
as follows.

Suppose that the algorithm REG-LCoP has constructed matrices and cones (4.24), satisfying the properties
(I)–(III) and let 𝑚* > 0. Denote by 𝑚𝑠 ∈ {0, 1, . . ., 𝑚* − 1}, 𝑠 = 0, 1, . . ., 𝑠*, the iterations’ numbers such that

𝑚0 := 0, 𝑚𝑠 < 𝑚𝑠+1 ∀𝑠 = 0, 1, . . ., 𝑠* − 1; 𝑚𝑠* + 1 = 𝑚*,

𝑌𝑚𝑠+1 ̸∈ span{𝑌0, 𝑌1, . . ., 𝑌𝑚𝑠
} ∀𝑠 = 0, 1, . . ., 𝑠* − 1;

𝑌𝑚𝑠+1+𝑖 ∈ span{𝑌0, 𝑌1, . . ., 𝑌𝑚𝑠+𝑖} ∀𝑖 = 1, . . ., 𝑚𝑠+1 −𝑚𝑠 − 1, ∀𝑠 = 0, 1, . . ., 𝑠* − 1.

Here 𝑠* denotes the number of iterations for which the conditions above are met. Notice that the set
{𝑙, 𝑙 + 1, . . ., 𝑤} is considered empty if 𝑤 < 𝑙.

In other words, the condition (IV) is satisfied only for 𝑚 ∈ {𝑚𝑠 + 1, 𝑠 = 0, 1, . . ., 𝑠* − 1} and, possibly, for
𝑚 = 𝑚*. Set

𝑌0 := 𝑌0, ℱ̄0 := ℱ0, 𝑌𝑠+1 := 𝑌𝑚𝑠+1, ℱ̄𝑠+1 := ℱ𝑚𝑠+1 ∀𝑠 = 0, 1, . . ., 𝑠*.

It is easy to check that the following conditions hold true:

𝑌𝑠 ∈ ℱ̄*𝑠−1, 𝑌𝑠 ∈ Ker𝒜, ℱ̄𝑠 = ℱ̄𝑠−1 ∩
{︀
𝑌𝑠

}︀⊥ ∀𝑠 = 1, . . ., 𝑠* + 1;
𝑌𝑠 ̸∈ span

{︀
𝑌0, 𝑌1, . . ., 𝑌𝑠−1

}︀
∀𝑠 = 1, . . ., 𝑠*.

Thus, after the described above squeezing, we get 𝑠* core iterations of the modified algorithm. It follows from
the conditions above that 𝑠* ≤ dim(Ker𝒜).

Notice that for any 𝑠 = 0, 1, . . ., 𝑠* − 1, the iterations of the algorithm REG-LCoP having the numbers
𝑚𝑠 + 1 + 𝑖, where 𝑖 = 1, . . ., 𝑚𝑠+1−𝑚𝑠− 1 (the compressed iterations), are not useless. They can be considered
as the steps of a regularization procedure for the cone ℱ𝑚𝑠+1 at the current core iteration # 𝑠. At each of
these iterations, we reformulate the cone ℱ𝑚𝑠+1 in a new equivalent form. This additional information allows
us to improve (make more regular) the representation of the cone ℱ𝑚𝑠+1 and get a more explicit and useful
description of its dual cone ℱ*𝑚𝑠+1.
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4.2.6. A short discussion on the algorithms considered in this section

By analyzing and comparing the iterative algorithms presented above, we can draw the following conclusions.

(1) The Waki and Muramatsu’s facial reduction algorithm from [24], reformulated for copositive problems in
Section 4.1, is very simple in the description and runs no more than dim(Ker𝒜) iterations. But this algorithm
is more conceptual than constructive since it does not provide any information about the structure of the
matrix 𝑌𝑚 and the cone ℱ*𝑚 at its 𝑚-th iteration. Moreover, it is not explained in [24] how to fulfill steps 2
and 3 at each iteration.

(2) The algorithm REG-LCoP proposed in Section 4.2.1 also runs a finite number of iterations. This algorithm
is described in all details and justified. The quite constructive rules for calculating the matrix 𝑌𝑚 satisfying
the condition 𝑌𝑚 ∈ ℱ*𝑚, are presented using the information available at the Iteration #𝑚 of this algorithm.
These rules are derived from the optimality conditions for the optimal solution (𝑥 = 0, 𝜇 = 0) of the regular
problem (SIP𝑚). Notice that it is possible to develop a modification of the algorithm REG-LCoP which
runs no more than 2𝑛 iterations.

(3) Finally, to show that the described in Section 4.2.1 algorithm REG-LCoP is not worse (by the number
of iterations) than the FRA from the Section 4.1, we presented a compressed modification of the algorithm
REG-LCoP. This modification consists of no more than dim(Ker𝒜) iterations as well as the algorithm
from Section 4.1.

5. Conclusions

The main contribution of the paper is that, based on the concept of immobile indices, previously introduced
for semi-infinite optimization problems, we suggested new methods for regularization of copositive problems.
The algorithmic procedure of regularization of copositive problems is described in the form of the algorithm
REG-LCoP and is compared with the facial reduction approach based on the minimal cone representation.
We show that, when applied to the linear CoP problem (2.1), the algorithm REG-LCoP possesses the same
properties as the FRA suggested by Waki and Muramatsu in [24], but its iterations are explicit, described in
more detail and hence more constructive.

The described in the paper algorithms are useful for the study of convex copositive problems. In particular,
for the linear copositive problem, they allow to

– formulate an equivalent (regular) semi-infinite problem which satisfies the Slater type regularity condition
and can be solved numerically;

– prove new optimality conditions without any CQs;
– develop strong duality theory based on an explicit representation of the “regularized” feasible cone and the

corresponding dual (such as, e.g. the Extended Lagrange Dual Problem suggested for SDP by Ramana et al.
[21]).

The described in the paper regularization approach is novel and rather constructive. It is important to stress
that no constructive regularization procedures are known for linear copositive problems.
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