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Abstract: Poly(2,5-furandicarboxylate)s incorporating aliphatic moieties represent a promising family
of polyesters, typically entirely based on renewable resources and with tailored properties, notably
degradability. This study aims to go beyond by developing poly(isosorbide 2,5-furandicarboxylate-
co-dodecanedioate) copolyesters derived from isosorbide (Is), 2,5-furandicarboxylic acid (FDCA), and
1,12-dodecanedioic acid (DDA), and studying their degradation under environmental conditions,
often overlooked, namely seawater conditions. These novel polyesters have been characterized
in-depth using ATR-FTIR, 1H, and 13C NMR and XRD spectroscopies and thermal analysis (TGA
and DSC). They showed enhanced thermal stability (up to 330 ◦C), and the glass transition temper-
ature increased with the content of FDCA from ca. 9 to 60 ◦C. Regarding their (bio)degradation,
the enzymatic conditions lead to the highest weight loss compared to simulated seawater con-
ditions, with values matching 27% vs. 3% weight loss after 63 days of incubation, respectively.
Copolymerization of biobased FDCA, Is, and DDA represents an optimal approach for shaping the
thermal/(bio)degradation behaviors of these novel polyesters.

Keywords: isosorbide; 2,5-furandicarboxylic acid; biobased (co)polyesters; environmental degradation

1. Introduction

Public awareness concerning the accumulation of polymers (commonly known as
plastics) in landfill and aquatic environments is increasing as a result of a lack of effective
waste management and systems worsened by limited information about their behavior
under environmental conditions [1–6]. Additionally, the fact that most of the currently used
polymers are synthesized from dwindling and polluting fossil feedstocks [7,8] is also of
major general concern. These two issues have driven the need to, on the one hand, focus on
the development of (bio)degradable polymers, especially for specific fields of application,
and, on the other hand, to shift to the use of biobased polymers as a replacement for those
derived from fossil resources. These approaches will ultimately contribute to reducing the
current global plastic pollution and lead to more sustainable development [5,7–10].

Recently, biobased aliphatic-(hetero)aromatic polyesters have received much inter-
est because of their ability to behave as high-performance materials possessing target
(bio)degradability, which may be fine-tuned by simply adjusting the relative propor-
tion of the aliphatic and the aromatic fractions [11–13]. In this regard, Sousa et al. [11]
studied the degradation and thermal properties of a set of copolyesters prepared from
2,5-furandicarboxylic acid (FDCA) by the two-step bulk polytransesterification reaction.
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FDCA is a prominent bio-derived monomer for polyester synthesis. Poly(ethylene 2,5-
furandicarboxylate)-co-poly(lactic acid)s incorporating only 8 mol% of lactyl units have
excellent degradability while displaying very high thermal stability and high glass tran-
sition (Tg) values (ca. 324 and 76 ◦C, respectively) similar to those of the PEF homolog.
Another study reported the poly(1,20-eicosanediyl 2,5-furandicarboxylate), also prepared
by bulk polytransesterification, which has economic interest for food packaging appli-
cations and promising degradability under hydrolytic conditions [12]. Other authors
explored the degradation of copolymers of FDCA with succinic acid [14], dimerized fatty
acids [15], or diglycolic acid [16], among several others. However, the properties of these
materials can be advantageously improved if biobased 1,4:3,6-dianhydro-D-glucitol, also
known as isosorbide (Is), was used as a building-block component. Indeed, the presence of
isosorbide, owing to its molecular structure rigidity, good thermal stability, stereochemi-
cal properties, and hydrophilicity, can impart improved glass transition temperature and
hydrolytic and/or (bio)degradability properties to such polymers [17–22]. In this vein,
Lomelí-Rodríguez et al. [23] studied the effect of isosorbide on aliphatic polyester coat-
ings, demonstrating that the introduction of 50 mol% of this monomer into the polyester
backbone increased the Tg from 10 to 53 ◦C. The degradability of isosorbide and aliphatic
dicarboxylic acid (e.g., succinyl, glutaryl, and adipoyl dichlorides)-based polyesters has
also been explored [24–26]. Bikiaris and colleagues [17], studied the poly(decamethylene
2,5-furandicarboxylate)-co-(isosorbide 2,5-furandicarboxylate) copolyesters. The syntheses
of these copolyesters were based on the polytransestrification of bis(hydroxyisosorbide)-
2,5-furandicarboxylate and bis(hydroxydecamethylene)-2,5-furandicarboxylate monomers,
enabling thus that all added isosorbide and 1,10-decanediol moieties were incorporated in
the copolymer backbone. At low isosorbide content (5–20 mol%), the copolyesters show
an improvement in mechanical performance with respect to related poly(decamethylene
2,5-furandicarboxylate) homopolyester, reaching Young’s modulus of 559 MPa (15 mol% of
Is). Degradation studies in soil revealed that weight loss tends to increase with increasing
decamethylene moiety molar ratio in the copolyester main chain. More recently, the same
authors studied a poly(isosorbide furandicarboxylate-co-azelate) series of copolyesters [27].
However, the degradation of these polymers in seawater or other aquatic conditions re-
mains unknown.

In this context, the preparation of novel biobased polyesters from FDCA, Is, and
dodecanedioic acid (DDA) by bulk polytransesterification and an assessment of their
degradation in an aqueous environment has been accomplished. The choice of these
monomers is associated, apart from the renewable origin of all these monomers and the
previewed polymers’ enhanced properties, and the fact that they are original, with their
commercial availability (or very near to the market). In the particular case of the linear
aliphatic unit, DDA is readily accessible by oxidation of Vernonia galamensis oil [28,29] and
is commercially available. It is used in a wide variety of applications, including powder
coatings, adhesives, paint materials, corrosion inhibitors, and surfactants [30,31]. The
novel (co)polyesters have been characterized in detail in terms of their structure (FTIR,
1H, and 13C NMR spectroscopies), thermal properties (DSC, DMTA, and TGA), and the
extent of degradation under different hydrolytic conditions assessed gravimetrically and
by analyzing the exposed surface of the films using scanning electron microscopy (SEM).

2. Materials and Methods
2.1. Materials

2,5-Furandicarboxylic acid (FDCA, 98%) was purchased from TCI Chemicals
(Zwijndrecht, Belgium). 1,12-Dodecanedioic acid (DDA 98%) was supplied by Fluka
(Oeiras, Portugal). Dibutyltin(IV) oxide (DBTO) was purchased from TEGOKAT 248.
Isosorbide (Is, 99%), titanium(IV) isopropoxide (Ti(OiPr)4, 99.999%), deuterated chloroform
(CDCl3, 99.5 atom % D), lipase from porcine pancreas (PPL), and sea salts (NutriSelectTM

Basic) were obtained from Sigma–Aldrich (Oeiras, Portugal). Methanol (analytical grade),
chloroform (HPLC grade), and sodium phosphate monobasic anhydrous (NaH2PO4) were



Polymers 2022, 14, 3868 3 of 13

provided by Fisher Scientific (Porto Salvo, Portugal). Sodium phosphate dibasic (Na2HPO4,
99+%) was acquired from ACROS Organics (Porto Salvo, Portugal). All chemicals and
solvents were used as received without further purification.

2.2. Synthesis of Dimethyl 2,5-Furandicarboxylate (DMFDC)

The synthesis of DMFDC followed a previously reported procedure [32]. Briefly,
DMFDC was prepared by allowing to react FDCA with an excess of methanol under acidic
conditions at 80 ◦C for approximately 15 h. The reaction mixture was allowed to cool
down to room temperature, and the ensuing white precipitate was isolated by filtration,
thoroughly washed with cold methanol, and dried.

2.3. Synthesis of Poly(Isosorbide 2,5-Furandicarboxylate-Co-dodecanedioate)
(Co)Polyesters (PIsFDDs)

PIsFDD (co)polyesters were synthesized by bulk polyesterification reactions using ca.
1.0 g of DMFDC, a variable amount of DDA (DMFDC/DDA molar ratios = 100/0, 90/10,
70/30, 60/40, 20/80, 10/90, and 0/100), and a stoichiometric amount of isosorbide. Poly-
mers prepared from higher molar ratios of DMFDC (DMFDC/DDA molar ratios = 100/0,
90/10, 70/30, and 60/40) were synthesized as previously reported elsewhere [12], starting
with a molar ratio of DMFDC + DDA/Is = 1/2.05, and using Ti(OiPr)4 as catalyst (0.1 wt%
relative to the total monomer weight). In the first step, the reaction mixture was progres-
sively heated for 4 h from 160 ◦C to 170 ◦C under a nitrogen atmosphere. Afterward, the
reaction medium was kept at 160 ◦C, and an additional amount of DMFDC + DDA was
added (molar ratio of 1/1.05). Subsequently, the temperature was raised to 190 ◦C for 4.5 h
under a nitrogen atmosphere. In the second step, vacuum (~10−3 mbar) was applied, and
the temperature raised up to 250 ◦C. Then, the mixture was dissolved in chloroform with
some drops of TFA, and the polymers were precipitated by pouring the solution into an
excess of cold methanol, filtered, and dried.

Polymers prepared with lower amounts of DMFDC (DMFDC /DDA molar ratios = 0/100,
10/90, 20/80) were synthesized using a similar procedure as just described, except that the
maximum temperature allowed to reach in the third step was between 210–220 ◦C (6 h).
Polymer films were prepared by slowly melting their powder up to a maxim temperature
of 185 ◦C in a mold and then, cutting them into square shape specimens (ca. 0.5 × 0.5 cm2).

2.4. Characterization Techniques

Attenuated total reflectance Fourier transform infrared spectroscopy (ATR FTIR) spec-
tra were obtained using a PARAGON 1000 Perkin Elmer FTIR Spectrophotometer (Waltham,
MA, USA) equipped with a single horizontal Golden Gate ATR cell. The spectra were
recorded at a resolution of 8 cm−1 and 128 scans in the spectral region of 500–4000 cm−1.

1H and 13C Nuclear Magnetic Resonance spectroscopy (1H, 13C NMR) analyses
of samples dissolved in CDCl3 were recorded using a Bruker AMX 300 spectrometer
(Wissembourg, France), operating at 300 and 75 MHz, respectively. All chemical shifts were
expressed in parts per million (ppm) using tetramethylsilane (TMS) as the internal reference.

Intrinsic viscosity [η] measurements of (co)polyesters were performed using an
Ubbelohde type viscometer, at 25 ◦C, in a mixture of phenol/1,1,2,2-tetrachloroethane
(50/50 wt%/wt%). All (co)polyesters were dissolved in that solvent mixture (0.1 g per
20 mL) and kept at 140 ◦C for 20 min to achieve complete dissolution. The intrinsic viscosity
was determined by the ratio of specific viscosity and samples solution concentration: ηsp/C,
where ηsp = (t1 − t0)/t0 , and t0 and t1 are the solvent mixture elution time of the solvent
mixture and (co)polyesters solutions, respectively.

Differential Scanning Calorimetry analysis (DSC) thermograms were obtained with a
Pyris Diamond DSC calorimeter from Perkin Elmer (Waltham, MA, USA), using nitrogen
as purging gas (20 mL·min−1) and aluminum pans to encapsulate the samples (ca. 5 mg).
The calorimeter was calibrated for heating temperature with approximately 10 mg of
each of the following metals: 99.999% pure indium, Tm =156.60 ◦C, and 99.999% pure lead
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Tm = 327.47 ◦C. Scans were conducted with a heating rate of 10 ◦C·min−1 in the temperature
range of −40 to 250 ◦C.

Thermogravimetric analyses (TGA) were carried out with a Shimadzu TGA50 analyzer
(Kyoto, Japan) equipped with a platinum cell, using platinum pans to encapsulate the
samples. Thermograms were recorded under a nitrogen flow (20 mL·min−1) and heated at
a constant rate of 10 ◦C·min−1 from room temperature up to 800 ◦C.

Dynamic Mechanical Thermal Analysis (DMTA) of thick samples (10.0 × 5 × 1 mm3),
placed in a foldable stainless-steel materials pocket of Triton technology, was performed
with a Tritec 2000 DMTA Triton equipment (WA, USA) operating in the single cantilever
bending geometry. Tests were carried out in multifrequency mode (1 and 10 Hz), from −80
to 250 ◦C, at 2 ◦C·min−1. The Tg of the PIsFDD (co)polyesters were determined from the
maximum of Tan δ vs. T curve, at 1 Hz.

X-ray diffraction (XRD) analyses were carried out using the Philips X’pert MPD
instrument operating with CuKα radiation (λ = 1.5405980 Å) at 40 kV and 50 mA. Samples
were scanned in the 2θ range of 5 to 70◦, with a step size of 0.026◦ and time per step of 67 s.

Scanning electron microscopy (SEM) images of the surface of the films were acquired
using a field emission gun-SEM Hitachi SU70 microscope (Tokyo, Japan) operating at 4 kV.
Samples were deposited onto a sample holder and coated with evaporated carbon twice.

2.5. PIsFDDs Degradation under Simulated Sea Water, Enzymatic, and PBS
Hydrolytic Conditions

In vitro simulated seawater experiments were carried out using square-shape speci-
mens (0.5 × 0.5 cm2 of ca. 16–31 mg) of (co)polyesters (PIsDD, of PIsF, PIsFDD 60/40 and
10/90) incubated on 10 mL of NutriSelectTM Basic sea salts’ solution (35 g·L−1, pH 8.2) at
ca. 18 ◦C. Pure hydrolytic and enzymatic experiments were carried out with film speci-
mens (0.5 × 0.5 cm2 of ca. 16–31 mg), using 10 mL of a phosphate buffer solution (0.1 M,
pH 7.4), additionally having porcine pancreas lipase (1 mg·mL−1) in the case of enzymatic
degradation tests, and incubated at 37 ◦C for 63 days. The specimens were taken out from
the solutions at regular intervals (each 3 or 7 days), rinsed thoroughly with distilled water,
dried under vacuum for 3 days, and weighed. In order to prevent saturation, the buffer
solution was renewed every 7 days. The weight-loss percentage was calculated as follows:
weight loss (%) = [(w0 − wd)/w0 × 100], where w0 and wd stand for the initial and prior
incubation specimens’ weight, respectively. Each experiment was carried out in triplicate.

3. Results and Discussion

A series of fully biobased poly(isosorbide 2,5-furandicarboxylate)-co-(isosorbide 1,12-
dodecanedioate) (PIsFDD) (co)polyesters were herein prepared for the first time using
biobased monomers, namely isosorbide, dimethyl 2,5-furandicarboxylate (FDCA derivate),
and 1,12-dodecanedioic acid and the conditions described in Scheme 1. These new polymers
have both stiff and soft units, owned to the furanic and isosorbide moieties and to 1,12-
dodecanedioate units, respectively, thus tailoring the properties of the resulting materials,
most notably their thermal as well as (bio)degradation behavior. The (co)polyester isolation
yields, after purification, were around ~60%, and their intrinsic viscosities were near
0.2 dL·g−1. Detailed values for each polymer are summarized in Table 1.

Table 1. Feed (F/DDfeed) and real (F/DDreal) molar ratios of furan and 1,12–dodecanedioate moieties.

Polymer F/DDfeed (mol%) F/DDreal (mol%) [η]/dL·g−1

PIsDD 0/100 0/100 0.20
PIsFDD

(10/90) 10/90 6/94 0.18
(20/80) 20/80 12/88 0.17
(60/40) 60/40 47/63 0.17
(70/30) 70/30 62/36 0.12
(80/20) 80/20 76/24 0.13

PIsF 100/0 100/0 0.20
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copolyesters.

3.1. Structural Characterization of PIsFDDs

The elucidation of the expected chemical structure of the newly prepared (co)polyesters
was confirmed by ATR FTIR spectroscopy. Accordingly, the spectra of Figure 1 display
a very intense band near 1723 cm−1, assigned to the C=O stretching vibration, charac-
teristic of ester groups, and another typical band at 1271 cm−1, assigned to the C-O-C
stretching mode also from ester groups. The presence of these two bands, as well as the
absence of a noticeable OH bond stretching near 3400 cm−1, confirms the success of these
polymerizations. It is also observed that the relative intensity of the two bands near 2976
and 2820 cm−1 (anti-symmetrical and symmetrical C-H stretching modes) increased with
the content of 1,12-dodecanedioate (DD) in the (co)polyester backbone, as evidenced in
Figure 1 spectra. Oppositely, the relative intensity of the characteristic absorption bands of
the furan ring, at 3130 cm−1 (=C-H) and 1575 cm−1 (C=C), decreased instead with the DD
amount increment (or furan units decrease). The ATR FTIR spectra of all (co)polyesters are
available as Electronic Supplementary Material (Figure S1 of supplementary material).
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The 1H NMR spectra (Figure S2 of supplementary material) confirm the expected
basic structure of the furan-based polyesters (PIsF and PIsFDDs), displaying, accordingly, a
resonance ascribed to the furan ring protons (δ ~ 7.25 ppm). In the case of those polymers
incorporating 1,12-dodecanedioate units (PIsDD and PIsFDDs), their spectra show several
typical proton resonances at (δ ~ 2.33, 1.63, and 1.27 ppm attributed to the various methylene
groups (C(O)CH2, C(O)CH2CH2 and mid-chain CH2, respectively). All spectra show the
isosorbide methylene proton resonances, split into four multiplets in the neighborhood of
furan moiety, at δ ~ 5.40, 5.07, 4.69, 4.14, and 3.99 ppm ((Hb + He), (Hg), (Hd), (Hc), and (Hf),
respectively). These resonances chemically deviate to higher fields when the isosorbide
unit is linked to the DD moiety (Figure S2 of supplementary material).

The knowledge of the real molar percentages of the 2,5-furandicarboxylate (%F) and
1,12-dodecanedioate (%DD) moieties effectively incorporated in the copolyesters’ backbone
is of fundamental importance for the correct interpretation of structure-properties relation-
ships. Therefore, the molar percentage of each diacid monomer effectively incorporated in
the copolyester was assessed using 1H NMR relative integration areas (Ia and Ih as shown
in Figure S2 of supplementary material), according to the following equations:

%F = [(Ia/2)/(Ia/2 + Ih/4)]× 100,
%DD = [(Ih/4)/(Ih/4 + Ia/2)]× 100

(1)

Results summarized in Table 1 show that the real F/DD molar fractions are in accept-
able agreement with the original molar feed ratios, despite some tendency to incorporate
more DD units than the F ones. This is most probably due to the higher reactivity of DDA
compared to DMFDC under the applied reaction conditions.

3.2. Crystallization Behavior and Thermal Properties

The XRD patterns of the novel PIsFDD 10/90 and 20/80 copolyesters, as well as the
PIsDD homopolymer counterpart (Figure 2), i.e., those polymers incorporating higher
amounts of the softer DD units, were revealed to have a semi-crystalline nature, showing
accordingly five main diffraction peaks at 2θ = 5.1◦, 17.9◦, 19.5◦, 21.2◦, 24.8◦, similarly to
previously reported data [33]. Oppositely, in the case of the PIsFDD 60/40 and 40/60,
the almost identical amount of two different repeating units, randomly incorporated into
their backbone, resulting in an essentially amorphous character, with a halo centered at
2θ ≈ 19◦. Nevertheless, a broad peak near 2θ ≈ 18.4◦ is detected for the 70/30 copolymer,
evidencing some order. The very rigid PIsF and PIsFDD 90/10 (co)polymers are also
essentially amorphous [34], most probably due to the inability of the very rigid chains
to close pack and crystallize, whereas in the case of PIsFDD 80/20–70/30 copolymers,
although a broad halo centered at the same angle (2θ ≈ 18◦) is detected, they also show a
broad peak evidencing some order.
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In regard to the thermal behavior, the DSC traces displayed in Figure 3 and Figure S3
of Supplementary Material and relevant data summarized in Table 2 show, according to
the semi-crystalline nature of PIsDD, a melting transition at 72.3 ◦C, whereas very similar
or slightly lower values were obtained for the PIsFDD 10/90 and 20/80 copolyesters (71.9
and 70.5 ◦C, respectively).
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Table 2. Thermal properties of PIsFDD (co)polyesters with different compositions.

Sample DSC DMTA b TGA

Tg/◦C Tm/◦C a Tβ/◦C Tg/◦C Td,5%/◦C Td,max/◦C

PIsDD - 72.3 - −6.3 323.9 423.0
PIsFDD

(10/90) 9.0 a 71.9 - 1.7 330.4 423.5
(20/80) −8.5 70.5 - 0.2 286.7 422.7
(60/40) 38.8 - −13.6 52.2 314.9 407.7
(70/30) 59.9 - −11.3 73.8 312.1 404.0

PIsF - - - 137.9 327.3 398.7
a Assessed from the 1st DSC heating scan, b Assessed from the maximum observed in the Tan δ vs. T curve, at
1 Hz.

Oppositely, the copolymers with higher amounts of stiff furan moieties (PIsFDD
70/30), showed no melting feature in their DSC traces, displaying only a glass transition
slightly below 60 ◦C, in agreement with its amorphous character as highlighted before on
XRD patterns.

PIsF is reported to be an amorphous polyester with a Tg at approximately 157 ◦C [34],
however, in the present study, by DSC analysis, this transition was not detected, but the
DMTA trace showed a glass transition around 138 ◦C. Overall, as expected, the replacement
of the very flexible DD fragment by the stiffer F structure induces an increase in Tg by
restricting the mobility of the chains. DMTA traces (Table 2 and Figure S4 of Supplementary
material) clearly illustrate this, showing a drastic increase in Tg, from −6.3 up to 137.9 ◦C,
along with the F content increase and related stiffness. In line with previous results, we
noticed that DMTA results tend to be higher than those obtained by DSC [35]. Moreover, in
some of the tan δ traces, it was also possible to observe the β transition and the onset of the
melting event.
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In order to assess the thermal stability of PIsFDD (co)polyesters, a TGA analysis of all
polymers was carried out (Figure 4 and Table 2). The decomposition temperatures at 5%
weight loss (Td,5%) and the maximum degradation temperature (Td,max) are summarized
in Table 2. All copolyesters were thermally stable to at least up about 312 ◦C (Td,5%).
They exhibited a single weight loss step with Td,max values ranging between 404 and
424 ◦C. Td,max of the PIsDD homopolymer is quite consistent with what has been reported
before in the literature (Td,max = 423 ◦C) [25]. In general, PIsFDD (co)polyesters, with the
exception of PIsFDD 20/80, showed higher thermal stability than PEF (Td,5% = 300 ◦C;
Td,max = 398 ◦C) [32]. Furthermore, it was observed that with the increase in the amount of
the DD moiety, there was an increase in Td,max. A similar trend was also reported before for
similar polyesters [36].
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3.3. Degradation Assays

To further investigate the potential of these biobased PIsFDD (co)polyesters and assess
their (bio)degradation behavior under an aqueous environment, their degradability in
three different conditions, namely: (a) in PBS at pH 7.4, (b) enzymatic degradation in the
presence of porcine pancreatic lipase, at pH 7.4, and (c) simulated seawater conditions
(sea salts solution at pH 8.2) were tested. These latter experimental conditions are quite
relevant considering that today a high percentage of polymer debris ends up in aquatic
environments, particularly in the ocean. Gravimetric (Figure 5) and SEM microscopy
(Figure 6) analyses were used to study the (co)polyester films’ weight loss and morphology
throughout the experiments, respectively.

The enzymatic degradation prompted the highest weight loss for all polymers stud-
ied, with values matching 27% weight loss after 63 days of incubation of PIsDD films,
followed by PIsFDD 10/90 with ~16%. These results are in line with those previously
reported for poly(1,20-eicosanediyl 2,5-furandicarboxylate) degradation studies under
similar conditions [12] and enhanced compared to poly(lactic acid) (PLA) [11], which is
quite promising.
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Figure 5. (Co)polyesters weight loss along time for hydrolytic degradation (a) in PBS; (b) under
porcine pancreas; lipase-catalyzed degradation and (c) under simulated sea water conditions. Each
value is the average of three weight measurements with standard deviation within 0.3−3.2%.

Simulated seawater conditions were conducted to the overall lowest weight losses
(around 3%), despite the slightly higher pH value. In this case, salinity must play a role.
Therefore, one can anticipate the need for the correct disposal of these polymers after
their use.

Overall, PIsF homopolymer showed the lowest weight loss (Figure 5); regardless of
the conditions applied, at maximum, the weight loss was around 3% for pure hydrolytic
conditions carried out in PBS for 63 days. Therefore, one can anticipate this high-Tg polymer
resistance to degradation under similar aqueous conditions. However, it is important to
note that PIsF is a very brittle material that hampered enzymatic degradation gravimetric
studies after 35 days of incubation due to the impossibility of handling the material.

Following a similar trend, it was found that, in general, increasing the F moiety content
in the copolyesters backbone led to a decrease in weight loss in all degradation conditions,
with the exception of PIsFDD 10/90 degradation under hydrolytic degradation in PBS,
which loses more weight than PIsDD, despite the absolute value under enzymatic con-
ditions is higher. This finding can be related to a lower crystallinity of PIsFDD 10/90
compared to PIsDD, which may facilitate water diffusion into the polymeric matrix, pro-
moting increased hydrolytic ester cleavage. The same was not observed, however, with
the enzymatic studies, probably because, in this case, the specificity of the enzymes also
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played a role. Lipases are well-known for their higher affinity for degrading polymers with
aliphatic moieties rather than (hetero)aromatic ones [37].
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Figure 6. Comparison between typical SEM micrographs of PIsFDD 10/90 and PIsF after 63 days of
degradation in PBS, enzymatic, and simulated sea water condition environments (1k times magnification).

The surface morphologies of (co)polyesters films before and after degradation in PBS,
under porcine pancreas enzymatic degradation, and in simulated sea conditions were analyzed
at the microscopic scale using SEM (Figure 6 and Figure S5 from supporting information).

Figure 6 clearly shows extensive changes in the surface morphology of the enzymatic
treated PIsFDD 10/90 sample after 63 days of incubation compared to both pure hydrolytic
conditions in PBS and in simulated seawater conditions, corroborating the weight loss
findings. In particular, and also in accordance with the highest weight loss, PIsDD film also
shows extensive degradation (Figure S5) under enzymatic conditions. Oppositely, in the
case of simulated seawater conditions, degradation is almost imperceptible. Note that the
cubic white spots detected on the film surface are due to sea salt crystals, obviously not
observed for other conditions.

Based on these findings, the degradation under enzymatic conditions is obviously
more severe than under hydrolytic conditions (PBS and simulated sea water), demon-
strating that the porcine pancreas lipase has effectively contributed to the degradation of
these polyesters.
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4. Conclusions

In this work, aiming at obtaining fully biobased polyesters featuring a combina-
tion of good thermal properties with improved (bio)degradability, poly(isosorbide 2,5-
furandicarboxylate-co-dodecanedioate) (co)polyesters series were successfully synthesized
using the two-step bulk polymerization approach and typical reaction temperature for such
systems (or even slightly lower than previously reported in the literature [17]). Their com-
positions, assessed by 1H NMR, were clearly controlled by the feed molar ratio. Depending
on the F/DD moiety ratio, they acquired amorphous or semi-crystalline structures, and
thermal properties varied accordingly. DMTA analysis showed that the glass transition val-
ues increased with the increasing amount of stiff furan moiety incorporated in the polymer
backbone chain (from ≈ 0.2 ◦C to 73.8 ◦C) as expected for stiff furan ring-bearing polymers.
Furthermore, all PIsFDDs had good thermal stability, as high as Td,5% ~ 330 ◦C, in line
with PEF. Regarding their (bio)degradation, the enzymatic conditions lead to the highest
weight loss compared to hydrolytic conditions (PBS and simulated seawater conditions),
demonstrating that porcine pancreas lipase has effectively contributed to the degradation
of these polyesters. Some degradation is, however, detected both under PBS incubation and
simulated seawater conditions. Based on their properties, PIsFDDs stand out as promising
biobased polymers with potential utility in environmentally friendly plastic applications.
Further characterization, such as mechanical properties and degradation in soil, is planned
for the future.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/polym14183868/s1, Figure S1: ATR-FTIR spectra of all PIsFDD
copolyesters studied and related PIsF and PIsDD homopolyesters, Figure S2: (A) Chemical structures
of the triad units of the PIsFDD (co)polyesters. (B) 1H NMR spectra in CDCl3 of PIsFDD copolyesters
and related PIsF and PIsDD homopolyesters, Figure S3: DSC heating traces of PIsFDD (co)polyesters,
Figure S4: Tan δ traces of all studied polymers, at 1 and 10 Hz, Figure S5: SEM micrograph of PIsDD
after 63 days of incubation with porcine pancreas enzyme (1.0 k magnification).
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