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The mechanical design of sheet metal forming parts tends to be more virtual,
reducing delays and manufacturing costs. Reliable numerical simulations can
also lead to optimized metallic parts using accurately calibrated advanced
constitutive models. Thus, the aim of this thesis is to improve the represen-
tation of the mechanical behavior of the material in the numerical model, by
developing efficient and accurate methodologies to calibrate advanced con-
stitutive models.

A recent trend in material characterization is the use of a limited number of
heterogeneous mechanical tests, which provide more valuable data than clas-
sical quasi-homogeneous tests. Yet, the design of the most suitable tests is
still an open question. To that extent, an overview of heterogeneous mechani-
cal tests for metallic sheets is provided. However, no standards exist for such
tests, so specific metrics to analyze the achieved mechanical states are sug-
gested and applied to four tests. Results show that the use of various metrics
provides a good basis to qualitatively and quantitatively evaluate heteroge-
neous mechanical tests.

Due to the development of full-field measurement techniques, it is possible
to use heterogeneous mechanical tests to characterize the behavior of ma-
terials. However, no analytical solution exists between the measured fields
and the material parameters. Inverse methodologies are required to calibrate
constitutive models using an optimization algorithm to find the best material
parameters. Most applications tend to use a gradient-based algorithm with-
out exploring other possibilities. The performance of gradient-based and -free
algorithms in the calibration of a thermoelastoviscoplastic model is discussed
in terms of efficiency and robustness of the optimization process.

Often, plane stress conditions are assumed in the calibration of constitutive
models. Nevertheless, it is still unclear whether these are acceptable when
dealing with large deformations. To further understand these limitations, the
calibration of constitutive models is compared using the virtual fields method
implemented in 2D and 3D frameworks. However, the 3D framework requires
volumetric information of the kinematic fields, which is experimentally difficult
to obtain. To address this constraint, an already existing volume reconstruc-
tion method, named internal mesh generation, is further improved to take into
account strain gradients in the thickness. The uncertainty of the method is
quantified through virtual experiments and synthetic images.

Overall, the impact of this thesis is related to (i) the importance of establishing
standard metrics in the selection and design of heterogeneous mechanical
tests, and (ii) enhancing the calibration of advanced constitutive models from
a 2D to a 3D framework.
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O projeto mecanico de pecas por conformacao de chapas metdlicas tende a
ser mais virtual, reduzindo atrasos e custos de producéo. Simulagdes numé-
ricas confiaveis também podem levar a pecas optimizadas usando modelos
constitutivos avancados calibrados com precisdo. Assim, o objetivo desta
tese € melhorar a representagdo do comportamento mecanico do material no
modelo numérico, através do desenvolvimento de metodologias eficientes e
precisas para a calibracao de modelos constitutivos avancados.

Uma tendéncia recente na caracterizacdo de materiais € o uso de um nu-
mero limitado de ensaios mecanicos heterogéneos, que fornecem dados mais
valiosos do que os ensaios classicos quase-homogéneos. No entanto, a con-
cepcao de ensaios mais adequados ainda é uma questdo em aberto. Este
trabalho detalha os ensaios mecanicos heterogéneos para chapas metdlicas.
No entanto, ndo existem ainda normas para estes ensaios, pelo que métricas
especificas para analisar os estados mecanicos sdo sugeridas e aplicadas a
quatro ensaios. Os resultados mostram que o uso de varias métricas dispo-
nibiliza uma boa base para avaliar ensaios mecéanicos heterogéneos.

Devido ao desenvolvimento de técnicas de medicdo de campo total, é
possivel utilizar ensaios mecanicos heterogéneos para caracterizar o com-
portamento dos materiais. No entanto, nao existe uma solugéo analitica entre
os campos medidos e os parametros do material. Metodologias inversas sao
necessadrias para calibrar os modelos constitutivos usando um algoritmo de
otimizacdo para encontrar os melhores parametros do material. A maioria
das aplicagoes tende a usar um algoritmo baseado em gradiente sem explo-
rar outras possibilidades. O desempenho de varios algoritmos na calibragéo
de um modelo termoelastoviscoplastico é discutido em termos de eficiéncia
e robustez do processo de otimizagao.

Frequentemente, sao utilizadas condi¢oes de estado plano de tensao na cali-
bracao de modelos constitutivos, hipotese que é questionada quando se trata
de grandes deformacgdes. A calibracdo de modelos constitutivos é compa-
rada usando o método de campos virtuais implementado em 2D e 3D. No
entanto, a implementagéo 3D requer informagoes volumétricas dos campos
cinematicos, o que é experimentalmente dificil de obter. Um método de re-
construgao volUmica jé existente € melhorado para considerar os gradientes
de deformacao ao longo da espessura. A incerteza do método é quantificada
através de ensaios virtuais e imagens sintéticas.

No geral, o impacto desta tese esta relacionado com (i) a importancia de
estabelecer métricas na selecdo e concepcdo de ensaios mecanicos he-
terogéneos, e (i) promover desenvolvimentos na calibragdo de modelos
constitutivos avangados de 2D para 3D.
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La conception mécanique des pieéces métalliques tend a étre plus virtuelle,
réduisant les délais et les colts de fabrication. Des simulations numériques
fiables peuvent conduire a des piéces optimisées en utilisant des modeéles
mécanigues avancés calibrés avec précision. Ainsi, I'objectif de cette these
est d’améliorer la représentation du comportement mécanique du matériau
dans le modéle numérique, en développant des méthodologies efficaces et
précises pour calibrer des modéles de comportement avancés.

Une tendance récente dans la caractérisation des matériaux est I’utilisation
d’un nombre limité d’essais mécaniques hétérogénes, qui fournissent des
données plus riches que les essais classiques quasi-homogenes. Pourtant,
la conception des tests les plus adaptés reste une question ouverte. Ce tra-
vail détaille les essais mécaniques hétérogenes pour les toles métalliques.
Cependant, aucune norme n’existe pour de tels tests, ainsi des métriques
spécifiques pour analyser les états mécaniques sont suggérées et appliquées
a quatre tests. Les résultats montrent que I'utilisation de diverses métriques
fournit une bonne base pour évaluer des essais mécaniques hétérogénes.

L'utilisation des essais mécaniques hétérogénes pour caractériser le com-
portement des matériaux est rendue possible par des mesures de champ.
Cependant, aucune solution analytique n’existe entre les champs mesurés et
les parametres du matériau. Des méthodologies inverses sont nécessaires
pour calibrer les modéles de comportement a I’'aide d’un algorithme d’optimi-
sation afin de déterminer les meilleurs parameétres de matériau. Un algorithme
basé sur le gradient est trés fréquemment utilisé, sans explorer d’autres pos-
sibilités. La performance de plusieurs algorithmes dans la calibration d’un
modéle thermoélastoviscoplastique est discutée en termes d’efficacité et de
robustesse du processus d’optimisation.

Souvent, des conditions de contraintes planes sont supposées dans la cal-
ibration des modeles, hypothese qui est remise en cause dans le cas de
forte localisation des déformations. La calibration de modéles de comporte-
ment est comparée a I'aide de la méthode des champs virtuels développée
dans les cadres 2D et 3D. Cependant, le cadre 3D nécessite des informations
volumétriques des champs cinématiques, ce qui est expérimentalement dif-
ficile a obtenir. Une méthode de reconstruction volumique déja existante est
encore améliorée pour prendre en compte les gradients de déformation dans
I’épaisseur. L'incertitude de la méthode est quantifiée par des expériences
virtuelles, a I'aide d’images de synthése.

Dans I’ensemble, I'impact de cette thése est lié a (i) I'importance d’établir
des métriques dans la sélection et la conception d’essais mécaniques
hétérogénes, et (i) a faire progresser la calibration de modéles de
comportement avancés d’un cadre 2D a un cadre 3D.
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1 Introduction

1.1 Motivation

The mechanical design of sheet metal forming parts tends to be more and more virtual, by numer-
ical simulation. The sheet metal forming industry is economically driven, so it is only natural that
one of their main goals is to decrease associated delays and costs in the manufacturing process.
Nevertheless, designing better products and improving their performance by using innovative
materials is also crucial (ADAMS AND ASKENAZI 1999). This is only possible due to the major
developments in simulation and computational systems that have allowed every engineer access
to, for example, finite element analysis (FEA) software. This leads to the development of many
computational tools, some of general application and others tailored for specific tasks. In the
scope of sheet metal forming, computational analysis software is meaningless without accurate
information on the part being manufactured, ranging from something as simple as the initial blank
dimensions to how the material behaves. Generally, industrial processes use phenomenological
constitutive models to characterize the material behavior from a macroscopic description (BAN-
ABIC 2010). Compared to the alternative micromechanical models based on the crystallographic
texture of the material, the phenomenological approach is much simpler, easier to implement,
and computationally efficient. Their accuracy depends much on the model’s ability to repro-
duce the real behavior under several mechanical states and deformation amplitudes. Advanced
phenomenological models can describe multiple phenomena, but require the determination of
many material parameters. This leads to exhaustive experiments and complicated methodologies
(YOSHIDA AND UEMORI 2002; CAZACU ET AL. 2006; REYNE AND BARLAT 2022). Therefore, the
topic of parameter identification of constitutive models has received increased attention due to
the need for reliable input data (BANABIC ET AL. 2020).

Conventionally, the parameters of constitutive models are determined from experimental data
acquired by standard mechanical tests, such as uniaxial, biaxial and shear tests (KUWABARA ET AL.
1998; BOGER ET AL. 2005; VINCZE ET AL. 2005). An advantage of these tests over other methods is
the relatively straightforward way to obtain the stress-strain curves required to calibrate constitutive
models. These tests generate quasi-homogeneous strain and stress fields, only describing the
material behavior for a specific mechanical state, ranging from uniaxial compression to biaxial
tension (OLIVEIRA ET AL. 2022B). Therefore, to characterize the material behavior for different
mechanical states, additional tests need to be carried out. For example, to calibrate an advanced
plasticity model describing the material anisotropy under various mechanical states, 13 quasi-
homogeneous tests are required (BARLAT ET AL. 2005). Moreover, the stress field generated by
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these tests does not resemble the multiple mechanical states simultaneously observed in many
sheet metal forming processes (THUILLIER ET AL. 2010; BANABIC 2010).

Recently, the development of non-contacting full-field measurement techniques has led to
advances in experimental testing (GREDIAC AND HILD 2012). Instead of obtaining a single stress-
strain curve out of a mechanical test, these techniques allow the extraction of complete coordinates
field from the surface of the specimen, which can then be used to calculate derived quantities,
such as displacements or strains. One of the most widespread techniques is the digital image
correlation (DIC) technique, which correlates the evolution of a pattern applied to the surface of
the specimen (SUTTON ET AL. 2009). Consequently, these advances opened up the opportunity to
explore new test configurations, with the goal of obtaining more mechanical data from a single
mechanical test (ROSSI ET AL. 2022B). Since then, many so-called heterogeneous mechanical tests
have been proposed (AQUINO ET AL. 2019). These tests are distinguished by complex specimen
geometries that achieve heterogeneous strain field. In general, the tests are either uniaxial or
biaxial loading, with a few exceptions. Moving from homogeneous to heterogeneous mechanical
tests will eventually allow the reduction of experiments to characterize a material behavior, as
well as improving the quality of the calibrated models (TEACA ET AL. 2010; POTTIER ET AL.
2011). However, designing heterogeneous tests is a complicated task, proven by the increased
complexity of the most recent methodologies to arrive at such geometries (SOUTO ET AL. 2017). For
example, one test was proposed by using a test simulator to generate synthetic images (ROSSI ET AL.
2016A), and another by using topology optimization (BARROQUEIRO ET AL. 2020). The scientific
community seems not yet fully convinced of the advantages of heterogeneous mechanical tests.
There is a strong need to establish ways to evaluate existing and novel methodologies, as well as
clear standards for the so-called “Material Testing 2.0” (PIERRON AND GREDIAC 2021).

Due to the heterogeneity of such tests, it is no longer possible to directly obtain the stress-
strain relationship from experimental data. Thus, inverse methodologies to identify the material
parameters were developed, where an iterative procedure is employed (COOREMAN ET AL. 2007;
ANDRADE-CAMPOS ET AL. 2022). Among several inverse methodologies, the most widely used is
the finite element model updating (FEMU) since its publication by KAVANAGH AND CLOUGH
(1971). In FEMU, a finite element model of the real test configuration is modeled, and the material
parameters are iteratively updated by repeatedly performing a FEA until a close correspondence
between numerical simulations and real experiments is achieved. Although this methodology is
popular, it incurs high computational effort due to many simulations required. Moreover, having
the information of the real boundary conditions may be delicate and is also a drawback of FEMU.
As an example, KACEM ET AL. (2021) has shown the influence of boundary conditions for rupture
tests. More recently, the virtual fields method (VFM) has been largely investigated and efficiently
used in various applications (PIERRON AND GREDIAC 2012). The VFM is derived from the principle
of virtual work (PVW), which is a statement of equations of equilibrium in the weak form. One
interesting feature of the VFM is that it directly uses the actual displacement field acquired during
the experimental test, and, by means of special virtual fields, it does not require to reproduce the
boundary conditions of the real test. An overview of inverse methodologies based on full-field
measurements can be found in AVRIL ET AL. (2008B), where the authors conclude that the inverse
methods are highly sensitive to errors in the experimental data. MARTINS ET AL. (2018A) has
compared the performance of, among others, the FEMU and the VFM, concluding that the latter
provides the best compromise between the final solution and computational effort.

A key feature common to all inverse methodologies is the requirement for an optimization
procedure to update the material parameters. A general-purpose optimization algorithm is com-
monly employed, but as of yet, there is no clear consensus on this topic (ANDRADE-CAMPOS
ET AL. 2007; DE-CARVALHO ET AL. 2011; KOWALEWSKI AND GAJEWSKI 2019).

Often, the material behavior of thin sheet metals is conveniently characterized using plane
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stress constitutive models (HILL 1990; VEGTER AND VAN DEN BOOGAARD 2006), provided the
specimen thickness is small relative to its width and height. This leads to simplification of
identification procedures, such as the use of two-dimensional (2D) instead of three-dimensional
(3D) finite element models with the FEMU. Nevertheless, it also leads to considerable improvement
in its computational efficiency. However, when dealing with thick plates and necking at large
deformations, plane stress assumptions may no longer be valid. Indeed, after necking, a triaxial
stress state develops and eventually leads to rupture of the material (BRIDGMAN 1952; HILL 2001).
As a result, the hardening behavior beyond the point of diffuse necking is usually extrapolated
from the pre-necking information, but can lead to large errors in the predicted stress-strain curve.
Moreover, the triaxial state developed in the necking region is not used, but represents rich
mechanical information that could improve the material characterization. These limitations and
the use of plane stress conditions can also be linked with the limitations of DIC, which only
provide the kinematic fields on the surface of the material. An alternative technique, named
digital volume correlation (DVC), could potentially reconstruct the 3D kinematic fields over the
whole volume (BAY ET AL. 1999). However, this technique requires highly advanced and costly
experimental apparatus and is limited to materials that present a heterogeneous microstructure,
such as wood or composites. Moreover, the application of inverse methodologies up to rupture,
and in particular the VFM, has not been extensively investigated. A few studies using the VFM in
a 2D framework have shown that its validity after necking is violated (KIM ET AL. 2013; MARTINS
ET AL. 2021). This means the model does not accurately predict the behavior of the material after
necking. Therefore, there is a need and interest in extending the VFM to a 3D framework (ROSSI
AND PIERRON 2012A), to provide a more accurate representation of the data.

1.2 Objectives

This thesis deals with the development of efficient and accurate methodologies for robust numeri-
cal characterization and proper determination of the material parameters for advanced constitutive
models. As already established, this field concerns many topics that need to be addressed to make
further advances. Concerning the virtual forming of metallic sheets, the parameter identification
of constitutive models can be divided in three pillars, which can be understood as necessary steps
of the process: (i) material testing, including the mechanical tests, experimental and numerical
techniques to acquire and reconstruct the kinematic fields; (ii) constitutive models, used to de-
scribe different phenomena of material behavior; and (iii) inverse methodologies, employed in
the identification of the material parameters governing the constitutive models (see Figure 1.1).

In many cases, there are research groups solely dedicated to the development of constitutive
models, while other groups are more focused on researching inverse methodologies. Although
each of these pillars is often investigated separately, they are not independent and can each
contribute to the entire process. The process is a multiplicative system (FARNAM STREET 2016),
which means that if one pillar fails, it will undoubtedly jeopardize the successful outcome of the
parameter identification. One could say that the integration of all these pillars is the essence of
the “Material Testing 2.0” paradigm. This thesis will not only provide an overview of the field, but
will also contribute to each pillar by expanding on current research.

As such, a critical topic is the design of heterogeneous mechanical tests that achieve several
mechanical states and a wide range of deformation. To gain a better understanding, an overview of
heterogeneous mechanical tests reported in the literature is the starting point. Furthermore, it can
still be quite difficult to select the most appropriate test based on qualitative or quantitative metrics.
Recently, there have been a few studies that have tackled this problem, but their approaches
are mostly quantitative and complex from an implementation point of view. In this thesis, a
contribution is made by suggesting standard metrics, based on the strain and stress fields, to
qualitatively evaluate the richness of heterogeneous mechanical tests. It is expected that these
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Figure 1.1 lllustrative images of the three pillars addressed in this thesis: (a) material testing (Aquino
et al. 2019), (b) constitutive models (Barlat et al. 2005), and (c) inverse methodologies (Cooreman
et al. 2007).

metrics will be used after any experiment or numerical simulations, providing a way to easily
compare different studies.

The topic of constitutive models can be further divided in the development and selection of the
models. The former is important to accurately describe different material phenomena, and will
be crucial for the development of a new generation of materials. However, selecting the correct
model to describe a given phenomenon might be as important. A model might be well calibrated,
but not adequate to describe the material behavior, leading to unreliable numerical simulations.
Therefore, there is a great need in the scientific and industrial communities for indicators and tools
that help select constitutive models. Nevertheless, the numerical implementation of constitutive
models can be an arduous task, requiring expertise and time. To bridge the gap between selection
and implementation, this thesis aims to explore the use of an open source library of constitutive
models and contribute to its spread among the scientific community.

A largely developed topic is the use of inverse methodologies, in particular the FEMU and the
VFM. While the latter is not yet fully adopted and is restricted to highly specialized research groups,
the former is already established in the scientific community. Both methods need an optimization
algorithm to find the best material parameters. However, studies tend to use a gradient-based least
squares algorithm, or default algorithms in a given programming language, without knowledge of
its characteristics. Therefore, this thesis investigates the use of different optimization algorithms
within the FEMU. These algorithms are compared regarding their efficiency and robustness. It is
expected to contribute to the definition of more efficient optimization strategies.

Perhaps the VFM is the inverse methodology that creates the biggest interest nowadays in
the scientific community. The computational efficiency and direct use of experimental data in
the identification procedure are its major advantages. Its use within a 2D framework has already
been largely investigated, because the VFM is still limited to surface measurements. However,
the VFM is not inherently limited, but rather the experimental techniques to acquire volume
kinematic fields inside the material. By further developing and proposing new techniques to
reconstruct the deformation field inside the material, the use of the VFM in a 3D framework is
promoted. Therefore, this thesis aims to contribute to the enhancement of a numerical method
able to reconstruct the kinematic fields inside the material. In the future, it is expected to use this
method in combination with the VFM to more accurately describe the material behavior up to
rupture. Until then, the VFM can be extended to a 3D framework and its use investigated within
a numerical approach. By investigating the limitations of the VFM in 2D and 3D frameworks, we
can learn more about the VFM and how it can be improved.
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Scientific Contributions

The studies developed during this thesis have led to contributions to scientific and industrial com-
munities through the publication of articles in international journals and conference proceedings.
The contributions made as a first author are as follows:

P1.

P2.

P3.

P4.

Oliveira MG, Thuillier S, Andrade-Campos A. Analysis of heterogeneous tests for sheet
metal mechanical behavior. Procedia Manufacturing, 47:831-838, 2020.

Oliveira MG, Martins JMP, Coelho B, Thuillier S, Andrade-Campos A. On the optimization
efficiency for the inverse identification of constitutive model parameters. Proceedings of the
24th International ESAFORM Conference on Material Forming, Liége, Belgium, 14-16 April,
2021.

Oliveira MG, Thuillier S, Andrade-Campos A. Evaluation of heterogeneous mechanical
tests for model calibration of sheet metals. The Journal of Strain Analysis for Engineering
Design, 57(3):208-224, 2022.

Oliveira MG, Lattanzi A, Thuillier S, Andrade-Campos A, Rossi M. Error estimation of
the 3D reconstruction of a displacement field from DIC measurements. Key Engineering
Materials, 926:2129-2136, 2022.

In addition, the following contributions were made as a second author:

1.

Ha GX, Oliveira MG, Andrade-Campos A, Manach PY, Thuillier S. Prediction of coupled
2D and 3D effects in springback of copper alloys after deep drawing. International Journal
of Material Forming, 14(5):1171-1187, 2021.

Andrade-Campos A, Bastos N, Conde M, Gongalves M, Aquino J, Lourenco R, Martins
JMP, Oliveira MG, Prates P, Rumor L. On the inverse identification methods for forming
plasticity models using full-field measurements. IOP Conference Series: Materials Science
and Engineering, 1238:012059, 2022.

Moreover, these contributions would not have been possible without the development of computa-
tional tools. Although some parts of the software were based on others, a large part was originally
developed in Python and Fortran, combining the accessibility of a modern programming language
with the speed and efficiency of one of the oldest. All of these software programs are available
open source and are listed as follows:

S1.

S2.

S3.

S4.

S5.

S6.

Unified Material Model Driver for Plasticity
Available at: https://github.com/migueljgoliveira/unified-material-model-driver-for-plasticity

Heterogeneous Tests Post-Processing
Available at: https://github.com/migueljgoliveira/heterogeneous-tests-post-processing

Finite Element Model Updating
Available at: https://github.com/migueljgoliveira/finite-element-model-updating

Internal Mesh Generation
Available at: https://github.com/migueljgoliveira/internal-mesh-generation

Stereo-Vision Simulator
Available at: https://github.com/migueljgoliveira/stereo-vision-simulator

Virtual Fields Method
Available at: https://github.com/migueljgoliveira/virtual-fields-method
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6 Introduction

1.4 Thesis Outline

This chapter provides an overview of the contents addressed in this thesis. Therefore, every chapter
has its own introduction as well as a review of the current state of the art. Including the present
chapter, this thesis is divided in eight chapters, which are outlined in Figure 1.2 and organized as
follows:

Chapter1 Introduces the motivation for this thesis by highlighting the latest developments and
technological challenges in the field. Enumerates the scientific contributions of this thesis and
describes its content.

Chapter 2 Introduces fundamental mathematical concepts applied to the constitutive modeling
of elastoplasticity. Several yield criteria and hardening laws used throughout this thesis are
presented and mathematically described. Additionally, an open source user subroutine library for
plasticity models is presented and its use investigated.

Chapter 3 Presents a literature survey of heterogeneous mechanical tests by focusing on the
type and amount of mechanical information provided. Moreover, the tests are classified according
to the loading type, either uniaxial, biaxial or other.

Chapter 4 Discusses the use of standard metrics to evaluate heterogeneous mechanical tests.
All these metrics are calculated from the stress and strain tensors. A metric named rotation
angle is also suggested to evaluate the sensitivity of tests to anisotropy. To illustrate the approach,
four heterogeneous mechanical tests are selected from the literature and numerically evaluated
through the use of the suggested metrics.

chapter 1
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chapter 8

Figure 1.2 Schematic of the thesis structure, including chapters and scientific contributions.
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Chapter 5 Compares the use of optimization algorithms, one gradient-based and two gradient-
free algorithms, in the inverse identification of constitutive model parameters. To avoid unnec-
essary implementation and take advantage of highly developed programming languages, the
optimization algorithms available in Python’s optimization libraries are used. A FEMU based
approach is developed and implemented in the calibration of a thermoelastoviscoplastic model.
The results are discussed in terms of efficiency and robustness of the optimization process.

Chapter 6 Investigates a numerical method able to reconstruct the volume displacement field
inside a flat specimen. This method can potentially enable the material characterization at large
deformations and up to rupture. However, its inherent error was not yet fully investigated, and
improvements are proposed to address possible sources of error. Moreover, the uncertainty of the
method is evaluated through a simulated 3D test and the measurement chain associated with a
virtual stereo-DIC system composed of four cameras.

Chapter 7 Extends and investigates the use of VFM in a 3D framework, and compares it with a
2D framework. For that purpose, a code is developed in Python programming language, coupled
with its optimization library, and uses an open source user subroutine for the stress reconstruction.
The prediction of the load and the identification of the Swift hardening law are analyzed and
compared for both frameworks.

Chapter8 Presents, globally, the main conclusions and contributions of this thesis. Furthermore,
outlines some perspectives of potential future developments following the thematics addressed.






2 Constitutive Modeling

2.1 Introduction

Material modeling in mechanics is the description of the mechanical behavior of materials through
mathematical models, also known as constitutive models, based on physical and empirical ev-
idence. In practice, the stress tensor acting on a material body is obtained from constitutive
models, as a function of the deformation history. For each material, different constitutive models
might be required to describe its unique behavior. In fact, a complete characterization of the
material behavior might require the description of different phenomena, such as anisotropy, strain
hardening behavior, rupture, or Bauschinger’s effect (BANABIC ET AL. 2020). Consequently, the
development and selection of the constitutive model can play a major role in accurately predicting
the material’s behavior.

One of the most important phenomena of sheet metal characterization is the anisotropic
behavior that some materials exhibit. This phenomenon is mainly related to the crystallographic
structure of the materials, which is affected by thermomechanical processes and is characterized
by the symmetry of the mechanical properties with respect to three orthogonal planes. The
intersection lines of the symmetry planes are the orthotropic axes, and in the case of rolled
sheet metals, their orientations are defined as (see Figure 2.1): rolling direction (RD), transverse
direction (TD), and normal direction (ND).

Figure 2.1 Orthotropic axes of rolled sheet metals, respectively, rolling direction (RD), transverse
direction (TD), and normal direction (ND). Tensile test specimen represented on the sheet metal at an
angle 6 from the RD (van den Boogaard 2002).

In sheet metal forming processes, anisotropy can have a big effect on predicting the drawing
limits of the sheet. As such, a parameter known as the Lankford strain ratio or coefficient r,
was introduced to measure the material anisotropy (LANKFORD ET AL. 1950). This parameter
is defined as the ratio of the specimen’s width strain ey to the thickness strain ¢,,, along with
different material orientations 6 as
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When the material demonstrates isotropic behavior, ry will be equal to 1 for any value of 8 between
0° and 90°. Therefore, in order to quantify the material anisotropic behavior, several uniaxial
tensile tests are usually performed with the material at different orientations. The three most
common orientations are 0°, 45°, and 90° from the RD.

In sheet metal forming, materials generally present a linear elastic behavior at the initial
stages of deformation. However, after a given amount of deformation, the material might undergo
irreversible deformations and not recover its initial configuration. In this case, the material has
deformed plastically, and the stress-strain relationship is no longer linear. Different phenomena
are responsible for governing transition from the elastic to the plastic regime, as well as controlling
the deformation.

In the following sections, the theoretical basis of constitutive models adopted throughout this
thesis is described. Emphasis is given to the used constitutive models describing each material’s
mechanical behavior, though many others could have been presented. Afterwards, an open source
library of plasticity models is investigated.

2.2 Linear Elasticity

A material body that regains its initial shape after being submitted to an external force is said to be
in the elastic regime. In this case, the material body only undergoes elastic deformations (DUNNE
AND PETRINIC 2005). It is then possible to determine the material body’s linear state of stress
through Hooke’s law, which corresponds to

o = D¢® (2.2)

where o represents the Cauchy stress tensor, and &° is the elastic strain tensor, both defined in the
(x,y, z) coordinate system (see Figure 2.1). According to the Voigt notation, this relationship can
be rewritten as

GXX [ E)e{X |
Oyy £yy
Ozz -D &72 ’ (2.3)
Oxy 2e%y
OVXZ zg)e(Z
| Oyz | | 25?72 |

where D is the elasticity matrix in three dimensions. The elasticity matrix depends on the material’s
elastic constants, the Young’s modulus E and the Poisson’s ratio v, as

1—v Vv v 0 0
v 1—v v 0 0
E 4 4 1-» O 0 0
Ta+va-2»]| o 0 0 1‘22” 0 0 2:4)
0 0 0 0 1‘22” 0
0 0 o o o ==
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2.3 Plasticity

An elastoplastic material is characterized by, after a certain level of stress, undergoing irreversible
deformations (plasticity). Therefore, the material’s behavior is elastic up to an elastic limit,
corresponding to the yield stress oy, after which the material presents a plastic strain. In the
case of metals, made up of many crystals in which atoms are organized regularly, the origin of
plasticity is associated with crystal slip. It results that many important phenomena are observed
in macroscopic plasticity (DE BORST ET AL. 2012):

1. plastic slip does not lead to volume change, known as the incompressibility condition of
plasticity;

2. plasticslip isashearing process, thus, hydrostatic stress can often be assumed not to influence
plastic strain;

3. plastic yielding is often considered an isotropic process.

Experimentally, the stress-strain behavior of an elastoplastic material is classically determined
from a uniaxial tensile test, as schematically represented in Figure 2.2.

1 stress

perfectly
plastic

strain

&P I &

Figure 2.2 Schematic representation of the classical stress-strain relationship of an elastoplastic
material from a uniaxial tensile test. The classical additive decomposition of strain into elastic and
plastic parts is also represented.

In Figure 2.2, the linear elastic behavior of the material is observed up to oy. From this point
onward, the material is on the plastic regime. If the stress does not increase further with the
increase of strain, it is said the material is perfectly plastic, even though that is usually not the
case with sheet metals. On the other hand, when the stress increases with the development of
plastic strain, the material undergoes a phenomenon known as strain hardening. If the specimen
is unloaded at a given strain in the plastic regime (after the yield stress point), it would cease
to deform plastically and present a linear decreasing stress-strain relationship equal to E. Once
the stress is zero, the material recovers some strain, known as the elastic strain £°, while other
remains, known as the plastic strain eP. Consequently, the total strain ¢ is equal to the sum of the
elastic and plastic strains as

e=2¢e%+¢P. (2.5)

Equation 2.5 is known as the classical additive decomposition of strain, which is convenient in the
definition of mathematical models that, separately, describe the physical phenomena of elasticity
and plasticity. Generally, to describe the plastic behavior, a few elements are required:

1. ayield criterion, expressing the relationship between stress components at the onset of
plastic yielding;
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2. an associated flow rule, expressing the relationship between strain- and stress-rate;

3. a hardening law, describing the evolution of the yield surface with plastic deformation.

2.3.1 Yield Criterion

As mentioned above, the yield criterion expresses the relationship between stress components at
the onset of plastic yielding. Consequently, it is also responsible for determining the transition
between the elastic and plastic regimes (DE SOUZA NETO ET AL. 2008). Generically, the yield
criterion can be defined in an implicit function as

$(o,&P) = (o) — ay(e?) = 0, (2.6)

where G is the equivalent stress, and &P is the equivalent plastic strain governing the hardening
behavior. Mathematically, Equation 2.6 represents a surface in the 3D space, known as yield
surface, which is necessarily closed, smooth, and convex. Therefore, a given material point is
on the plastic regime when ¢(o, £P) = 0, while ¢(a, €P) < 0 is associated to the elastic regime. It
should be noted that the condition ¢(o, £°) > 0 is not admissible and has no physical meaning.

Yield criteria can be differentiated for their ability to describe the material anisotropic behavior.
On the one hand are the isotropic yield criteria, often used to describe the behavior of a material
that behaves similarly in all directions under a given loading state. On the other hand, if the
material presents a different behavior depending on the loading direction, it is said to be anisotropic,
and specific yield criteria able to describe this behavior are required. Additionally, yield criteria
can also be differentiated as micromechanical or phenomenological. The first approach is based
on the mechanism of plastic deformation in metallic crystals at the microscopic level, while
the latter corresponds to the macroscopic description of the mechanical behavior. Compared
to microscopic criteria, the latter are simpler, easier to implement, and lead to computationally
efficient numerical simulations. In the field of sheet metal forming, several authors are solely
dedicated to the development of novel yield criteria, comprehensively presented in BANABIC
(2010). Throughout this thesis, only phenomenological yield criteria are considered, and the ones
used are presented.

von Mises

The von Mises isotropic yield criterion was independently proposed by HUBER (1904) and VON
MISES (1913), and later developed by HENCKY (1924). The criterion is based on the observation
that hydrostatic pressure cannot induce plastic yielding of the material, thus often known as
J,-plasticity. The von Mises yield criterion can be expressed in terms of the deviatoric Cauchy
stress tensor s as

Qi
I

S:s, (2.7)

N W

with

1
s=o0-— gtr(a')l, (2.8)
where I represents the second order identity tensor, and tr(o) represents the trace of the Cauchy

stress tensor. The criterion can be expressed in terms of the normal and shear stress components,
and can be written as

26% = (Oxx — Uyy)z + (Uyy - o'zz)z + (0y, — o'xx)z + 6(U>%y + O')%z + O')%z)- (2.9)
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Hill 1948

The Hill 1948 anisotropic yield criterion was proposed as a generalization of the von Mises
criterion (HILL 1948). Because of its simplicity and physical meaning, it is one of the most used
yield criterion to describe the anisotropic behavior of metals. It can be expressed as

G2 = F(Oyy — 0,,)* + G(0,; — 0xx)* + H(0yx — 0yy)* + 2Lay, + 2Mog, + 2Nogy, (2.10)

where F, G, H, L, M, and N are material-dependent parameters describing the anisotropic behavior.
In plane stress conditions (g,, = oy, = gy, = 0), the parameters are reduced to F, G, H, and N.
These four parameters can also be obtained as a function of the Lankford strain ratios r, 1,5, and
fyo, Tespectively, evaluated at 0°, 45°, and 90° from the RD of the sheet metal, according to:

__ N st g _ (o +10)Qns +1)
1+ rryg’ 1+1’ 1+n’ 210(1 + 1)
The Hill 1948 yield criterion reduces to the von Mises yield criterion when F = G = H = 0.5 and

L=M=N-=1.5.

F (2.11)

Y1d2000-2d

The Y1d2000-2d anisotropic yield criterion describes the anisotropic behavior of a material under
plane stress conditions (BARLAT ET AL. 2003). It can be expressed as

26% = |X; — X;3|" + |2X5 + X7)" + [2X7 + X5, (2.12)

where a is a material-dependent parameter, usually, assuming the values of 6 or 8, depending
on the crystallographic structure of the material, respectively, body-centred cubic (BCC) or face-
centred cubic (FCC). X; and X/ (i = 1, 2) are the eigenvalues of the tensors X’ and X" obtained after
two linear transformations on the stress tensor. These transformations can be directly determined
from o as

Ia

X' =Lo and X' =L, (2.13)
where L' and L” are the linear transformation tensors defined as

N 2 0
12 -1 0llx
L=|1, =§ 1 ol (2.14)
2 Of Loy
| Ls | i 3]
and
(L], ] [—2 2 2 -2 0][as]
i, 1 -4 -4 4 0||a,
U=||=5] 4 -4 -4 1 o||al, (2.15)
i -2 8 2 =2 0||a
1 | [ 0 0 0 0 0o

with ay (k = 1, ..., 8) the anisotropy coefficients representing the material-dependent parameters.
It is worth noting that when all coefficients are equal to 1 and a = 2, the Y1d2000-2d criterion
reduces to the von Mises criterion.



14 Constitutive Modeling

Y1d2004-18p

The Y1d2004-18p is an advanced non-quadratic yield criterion (BARLAT ET AL. 2005) given by

3 3
45 =% > 8i-8iI" (2.16)

where a is a material-dependent parameter, S} and ij’ are the principal values of the tensors §’
and §” defined by two linear transformations on s as

§ =C’'s and §" =C"s, (2.17)
where C’ and C” are the matrices containing the 18 anisotropy coefficients, with the form of C as

0 —c¢p —c;3 0 0 O
—Cy 0 —c3 0 0 O
C= —C31 —C3p 0 0O O (2.18)
0 0 0 ¢ O O
0 0 0 0 ¢5 O
| 0 0 0 0 0 cg]

Similarly to the Y1d2000-2d criterion, the exponent a usually assumes the values of 6 or 8, de-
pending on the crystallographic structure of the material, respectively, BCC or FCC (LOGAN AND
HOSFORD 1980). When the coefficients are all equal to 1 and a = 2 (or 4), the Y1d2004-18p yield
criterion reduces to the von Mises criterion.

2.3.2 Associated Flow Rule

The associated flow rule is valid in the theory of plasticity for the generality of metallic materials.
A plasticity law is said to be associated if the same potential is used to describe the plastic behavior
in terms of yield surface and plastic deformation. As the material deforms plastically after the
onset of plastic yielding, the normality hypothesis is used to determine the direction of plastic
flow. This hypothesis determines that the plastic strain rate P develops in a direction normal to
the tangent of the yield surface (see Figure 2.3) and is given by

Gl
D — j T
é 35 (2.19)
where the magnitude is determined by the plastic multiplier A and the direction by 3¢/dc. The

determination of 1 is based on the condition that during plastic loading a given material point
remains on the yield surface, also known as the consistency condition.

2.3.3 Hardening Law

The hardening law regulates the evolution of the yield surface after the onset of plastic yielding
according to the evolution of plastic deformation as a function of the equivalent plastic strain P.
The yield surface evolution is usually associated with three types of hardening laws (see Figure 2.4):
1. isotropic hardening;
2. kinematic hardening;

3. mixed hardening.
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Figure 2.3 Schematic representation of the von Mises yield surface in the principal stress space for
plane stress conditions. The plastic strain rate is represented in a normal direction to the tangent of
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Figure 2.4 Schematic representation of the evolution of the von Mises yield surface and stress-strain
relationship (a) without strain hardening, and for different types of hardening: (b) isotropic hardening,
(c) kinematic hardening, and (d) mixed hardening.
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In isotropic hardening, the development of plastic deformation results exclusively from the uniform
expansion of the yield surface in all directions, while its center is kept fixed throughout the loading
path. On the other hand, in kinematic hardening, the development of plastic deformation results
only from the translation of the yield surface in the stress space. Lastly, in mixed hardening,
the development of plastic deformation combines both isotropic and kinematic hardening laws,
leading to simultaneous expansion and translation of the yield surface.

Many models exist to describe the isotropic hardening behavior of metallic materials (such as
Ludwick). One of the most known and used models is the Swift’s law, given as

oy = K(go + &), (2.20)
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with

€ = (%)% : (2.21)

where K, €, n, and o are material-dependent parameters, respectively, the strength coefficient,
the initial yield strain, the strain-hardening exponent, and the initial yield stress.
Another well known isotropic hardening law is the Voce’s law, given as

gy = gy + Q[1 — exp(—beP)], (2.22)

where Q and b are material-dependent parameters.

The Johnson-Cook model can describe the hardening behavior of metals under various tem-
peratures and strain rates (JOHNSON AND COOK 1983). A decoupled formulation characterizes
the model, because it describes the yield stress evolution by taking into account strain hardening,
temperature, and strain rate effects as independent phenomena. The model can be written as

oy = [A+B(EP)n] [1 - (ﬂYl] [1 + Cln (i)] , (2.23)

Tm - Ttr €o

where A, B, and n are material-dependent parameters describing the strain hardening behavior.
The effects of temperature are described by the temperature T, the transition temperature T,
(governing the threshold of temperature effect), the melting temperature T;,,, and the exponent m.
Lastly, the strain rate sensitivity is described by the parameters C and £, defining the threshold of
strain rate dependence.

Kinematic hardening is typically used to predict the Bauschinger effect, often observed in
materials subject to cyclic loading. Also, when considering mixed hardening, the generic yield
function from Equation 2.6 takes the form of

¢(o, a,&P) = 7j(c — a) — o, (eP) = 0, (2.24)

where 7 is the equivalent stress as a function of the tensor 7 = o — a. The back stress tensor «
describes the kinematic hardening and is defined in the stress space analogously to the stress
tensor. To account for the need to describe the hardening behavior under cyclic loading, several
models have been proposed, such as by PRAGER (1955), ZIEGLER (1959), or the more advanced by
YOSHIDA AND UEMORI (2002).

The kinematic hardening model considered in this study is based on the additive contribution
of several back stress terms as proposed by CHABOCHE (1986), following a modification of the
model originally proposed in 1966 by FREDERICK AND ARMSTRONG (2007). This model defines
the evolution of the back stress tensor ¢ as

n
6= =
i=1

where ¢; and y; (i = 1, ..., n) are material-dependent parameters, éP is the plastic strain rate (see
Equation 2.19) and " is the equivalent plastic strain rate. Additionally, this model has also been
formulated based on the stress tensor as

n n

. . C; 2]

& = Z &; = Z (5117 - yicxl-) &, (2.26)
i=1

i=1

2 .
<§Ciép - ]/i“l'fp> , (225)
1

n
1=

According to CARBONNIERE ET AL. (2009), this formulation leads to an uncoupling between
the initial anisotropy and the hardening behavior, which is not the case when using the original
formulation based on the plastic strain tensor.
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2.4 Unified Material Model Driver for Plasticity

The Unified Material Model Driver for Plasticity (UMMDp) was developed by the Japan Association
for Nonlinear Computer Aided Engineering (JANCAE)! It is an open source user subroutine
library for plasticity models that supports various anisotropic yield criteria, isotropic and kinematic
hardening laws. Moreover, it is compatible with several FEA software: Abaqus/Standard, ANSYS,
ADINA, LS-DYNA, and MARC (see Figure 2.5). The structure of the UMMDp is modular, flexible,
and relatively easy for any user to implement their own models into the library. Although this
library could have a huge potential, few validations are reported, and none outside the original
contributions are found yet (TAKIZAWA ET AL. 2018; OIDE ET AL. 2018; INOUE ET AL. 2018; IDA
ET AL. 2018).

FEA Software
i ABAQUS ANSYS ADINA LS-DYNA MARC i
I
1 T T T T 1
1 I
Hardening Law Yield Criterion

| Linear | | — von Mises |
! ! ! Gotoh 1977 !
1 i 1 ! 1
! Swit Isotropic | | | Hill 1948 !
1 Voce 1 : Y1d89 :
1 1

: Ludwick ! | [ YId2004-18p !
I i i Hill 1990 I
| i I—.—' I CPB 2006 !
: Mbed ! i Y1d2000-2d :
1 Prager 1 I I
! _ | | e Hu 2005 !
: Ziegler e— : : BBC 2005 :
! Armstrong 1 I —= Yoshida 2011 1
i i | BBC 2008 |
: Chaboche ! | [—e Karafillis-Boyce :
| Yoshida-Uemori ! ! Vegter 2006 !

Figure 2.5 Framework of the UMMDp, including the compatible FEA software, the yield criteria and
hardening laws.

With this study, it was intended to start exploring the capabilities of the UMMDp, as well as val-
idate its use with Abaqus/Standard (DASSAULT SYSTEMES 2019). To validate a few models, a user
material subroutine (UMAT), developed for Abaqus/Standard in the scope of previous doctoral the-
ses, is used as a reference (GRILO ET AL. 2013; GRILO 2015; SOUTO 2015). This UMAT implements
the Y1d2004-18p anisotropic yield criterion, various isotropic hardening laws, and the non-linear
kinematic hardening law composed of three back stress terms from Equation 2.26. This UMAT
has already been successfully used in the identification of material parameters (GRILO ET AL. 2016;
SOUTO ET AL. 2015B; PRADEAU ET AL. 2016), thus constitutes a reliable reference in the validation
of the UMMDp. For simplicity, the latter UMAT is hereon designated as UMAT_Y1d2004_Mixed.
Nevertheless, the built-in constitutive models provided by Abaqus/Standard are used as a second
reference, hereon designated as Std_Aba.

Initially, the implementation of the Y1d2004-18p anisotropic yield criterion is discussed by
analyzing differences between the formulation in the UMMDp and the UMAT_Y1d2004_Mixed.

The JANCAE, a non-profit organization, has held lectures twice a year for four days each since 2001 to provide
training on theories and technology related to nonlinear simulation for researchers and engineers engaged in various
computer-aided engineering (CAE) businesses. Since 2009, as one of the subcommittee activities, it has developed and
verified the user subroutine library the UMMDp (https://www.jancae.org/annex/annexUMMDe/index.html).
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Afterwards, FEA simulations of homogeneous tests and a deep drawing cup test are performed to
validate the UMMDp and analyze its computational efficiency.

2.4.1 Formulation of YId2004-18p

Concerning the formulation of the Y1d2004-18p anisotropic yield criterion implemented in the
UMMDp and the UMAT_Y1d2004_Mixed, there are two important details to discuss: (i) the
order of the anisotropy coefficients, and (ii) the formulation of the yield criterion. Firstly, it
is important to note that in the formulation of Y1d2004-18p in the UMMDp, the order of the
anisotropy coefficients differs from the one in the original formulation (see Equation 2.18). This
difference is related to the Voigt notation of the Cauchy stress tensor, which is given by (oxy, 0yy,
22> Oyz» Oxz» Oxy) in the original formulation and by (oxx, Oyy, 052, Oxys Tyz» Oxz) in the UMMDp,
while the formulation in the UMAT_Y1d2004_Mixed is known to be the same as in the original
formulation. This difference in the Voigt notation changes the order of the anisotropy coefficients
Ca45 Cs5, and Cgg aS

Ceo Caq Co6
Caa = 4 Css = 1Cu . (2.27)
Css Co6 Css

Barlat et al. (2005) UMMDp UMAT_Y1d2004_Mixed

Secondly, in the original formulation of the yield criterion, the value 4 in the left hand side of
Equation 2.16 is constant. However, in the formulation of the UMMDp, this value takes the form
of a coefficient R, herein named coefficient of equivalent stress, and defined as

3 3
] —_— Q/ U a
Re® =) > |S;-§/ . (2.28)
i=1j=1
In the UMMDyp, the coefficient depends on the values of the material parameters c;,, ¢;3, €21, €23,
c31, and c3,, and is computed according to

3
R= B/ - B|", (2.29)
i=1j=1
with
C]
B, = 24/pcos 3 + Hy,
O+4n
B, = 2\/§cos< 3 )+H1,
0+2
By =2 pcos( ki ﬂ)+H1,
p =H;i +H,,
1 3
=5 (2H1 + 2H,H, + 2H3) ) (2.30)

6 = arccos (#) ,

1
H, = 9 (c12 + €13 + Ca3 — 2¢51 + €35 — 2¢31),
1
H, = 2—7[(023 —2¢y1) (€33 — 231) + (€32 — 2¢31) (€12 + €13) + (€12 + €13) (€23 — 2¢21)],

1
H; = 51 (€12 + €13) (a3 — 2¢51) (€32 — 2¢31) -
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The latter set of equations was deduced from the source code files of the UMMDp. The scientific
background for this formulation is not documented, but it appears to be related to assuming oy, as
the yield stress in the RD. This assumption can be imposed by the following condition as

Txx _ (3‘;12) -1, (2.31)

o]
where & depends on the anisotropy coefficients as

A ’ " na ’ ’ " n |a ’ ’ " noa
§=|cly+ 13—y — i3l +cip + i3 + 265 — a3l + lepp + ¢l — 2¢5; — ¢35
’ ’ " n a ’ ’ " n a ’ ’ " n a
+ |cas — 2¢h; — ¢y — i3] + ¢y — 20y + 2¢5; — 3] + [ep3 — 265 + 265 — ¢, (2.32)
’ ’ " n a ’ ’ " n a ’ ’ " n a
+ |3y — 265, — iy — 5|+ |c5y — 265 + 2¢51 — 53] + (¢ — 2651 + 2¢5; — ¢5,| .

According to Equation 2.16, for a given set of material parameters with R = 4, it is not guaranteed
that Equation 2.31 is satisfied. In the formulation of the UMMDp, the value of R can be calculated
from the material parameters, thus satisfying Equation 2.31. This approach is more practical in
terms of the identification procedure, as it reduces the number of externally imposed constraints.
For example, GUNER ET AL. (2012) and MARTINS ET AL. (2019) both used such constraint in the
identification of the material parameters of the Y1d2000-2d yield criterion, to obtain oy as the yield
stress in the RD.

To validate this assumption, a comparison between both formulations is performed with
oyx = 100 MPa, and the material parameters reported by SOUTO ET AL. (2015B) presented in
Table 2.1, with the exponent a equal to 6. The obtained results are presented in Table 2.2, where it
is observed that in the original formulation of the yield criterion, Equation 2.31 is not satisfied,
whereas in the formulation of the UMMDp it is, with R = 4.215. Although the formulation of
the UMMDp calculates R, it is possible to manually assign its value to 4. Therefore, to fairly
compare the UMMDp with the UMAT_Y1d2004_Mixed, the constant value of 4 is adopted in all
the following analysis.

Additionally, the order of the anisotropy coefficients in C' and C” is analyzed with a simple
validation test. A prescribed stress tensor o is given as input to the yield criterion, and the

Table 2.1 Material parameters for the Y1d2004-18p yield criterion used in the verification of the
coefficient of equivalent stress (Souto et al. 2015b). All parameters are dimensionless.

Parameter

Term C12 C13 C21 Ca3 C31 C32 Caq Css Ce6

(o4 1.264 0.974 1.242 1.049 0.579 0.708 1.000 1.000 1.365
c” 0.792 0.672 0.838 0.929 0.996 0.768 1.000 1.000 0.678

Table 2.2 Comparison of the Yld2004-18p anisotropic yield criterion formulation between the original
formulation and the UMMDp, under uniaxial tensile loading.

Formulation

Parameter Barlatetal. 20056 UMMDp

&l 3072.416 3072.416
R[] 4.000 4.215
O-xx/o_- (-] 0.991 1.000

G [MPa] 100.875 100.000
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resulting equivalent stress &, first and second derivatives of the yield criterion represented by,
respectively, d¢/do and 3°¢/(dc)?, are analyzed. By manually prescribing a stress tensor as input to
the yield criterion, it is possible to successfully compare its formulation. However, when running
a numerical simulation with a FEA software, the input is more difficult to control, and it would be
equal to both the UMAT_Y1d2004_Mixed and the UMMDp. The material parameters used in this
verification are presented in Table 2.3, according to the values reported for the material 6111-T4
by BARLAT ET AL. (2005), with a = 8.

Table 2.3 Set of YId2004-18p material parameters used in the verification of the coefficients order
(Barlat et al. 2005). All parameters are dimensionless.

Parameter

Term C12 C13 €21 C23 C31 C32 Caa Css Ce6

(o4 1.241 1.078 1.216 1.223 1.093 0.889 0.501 0.557 1.349
c” 0.775 0922 0.765 0.793 0.918 1.027 1.115 1.112 0.589

In Table 2.4, the prescribed input stress tensor and the results of first and second derivatives
of both the UMAT_Y1d2004_Mixed and the UMMDp, with and without modifications, are pre-
sented. In all formulations, the order of the anisotropy coefficients is maintained according to
Equation 2.31. Nevertheless, the position of the prescribed stress tensor out-of-plane components

Table 2.4 Comparison of the first and second derivatives of the yield criterion, for a given stress
tensor, for the UMAT_Y1d2004_Mixed and the UMMDp, with and without modifications. The high-
lighted values correspond to the differences between formulations.

Input Output
. 0 3¢
Formulation o [MPa] 3 [-] W [-]
UMAT_YId2004_Mixed [ -1497 [-0.6327 [ 0.004 -0.002 -0.001 0.000 0.000 0.003 ]
-5 0.266 -0.002 0.003 -0.001 0.001 0.000 -0.001
35 0.366 —-0.001 -0.001 0.002 0.000 0.000 -0.001
-12 -0.168 0.000 0.001 0.000 0.017 -0.002 0.001
-19 -0.120 0.000 0.000 0.000 -0.002 0.008 0.000
| 204 | | 1.205 | [ 0.003 -0.001 -0.001 0.001 0.000 0.002 |
UMMDp
without modification [ -1497 [ -0.6327] [ 0.004 -0.002 -0.001 0.000 0.003 0.000 |
-5 0.266 —-0.002 0.003 -0.001 0.001 |-0.001 0.000
35 0.366 —-0.001 -0.001 0.002 0.000 -0.001 0.000
-12 -0.168 0.000 0.001 0.000 0.017 | 0.001 -0.002
204 1.205 0.003 -0.001 -0.001 0.001 0.002 0.000
| -19 | | -0.120] [ 0.000 0.000 0.000 -0.002 0.000 0.008 |
with modification [ -149] [-0.632] [ 0.004 -0.002 -0.001 0.000 0.000 0.003 |
-5 0.266 —0.002 0.003 -0.001 0.001 0.000 -0.001
35 0.366 —0.001 -0.001 0.002 0.000 0.000 -0.001
-12 -0.168 0.000 0.001 0.000 0.017 -0.002 0.001
-19 -0.120 0.000 0.000 0.000 -0.002 0.000 0.002
| 204 | | 1.205 | [ 0.003 -0.001 -0.001 0.001 0.000 0.008 |
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oy, and oy, had to be changed using the UMMDp without modification, to obtain the same value
of equivalent stress (& = 355.769) as the UMAT_Y1d2004_Mixed. However, by changing the order
of oy, and oy, it led to differences in the first and second derivatives out-of-plane components.
These differences are not in terms of values, but rather in terms of the positions at which they
appear, which are consistent with the positions oy, and oy, in the prescribed stress tensor.

Although the latter situation is not documented in the UMMDyp, it is understood that the
formulation used in the yield criterion cannot be the same for each software for which the UMMDp
is prepared for, as shown in Table 2.5 that there are two different orders of Voigt notation used by
the software. Abaqus/Standard (DASSAULT SYSTEMES 2014) and ADINA (ADINA R&D 2021)
share the first type of notation, while LS-DYNA (LIVERMORE SOFTWARE TECHNOLOGY 2021),
ANSYS (ANSYS, INC. 2021) and MARC share the second. Because the software used in this study
is Abaqus/Standard, the formulation of the yield criterion in the UMMDp is modified according
to the Voigt notation of the stress tensor used in this FEA software (oxx, Oyy, 0,5, Oxys Oxz> Oyz),
resulting in a new relation of the anisotropy coefficients c,4, c55 and cg¢ as

Caq Caq Caq

Css = 1 Css = 1 Css . (2.33)
C C C

667 Barlat et al. 2005 66 UMMDp 66/ UMAT Y1d2004_Mixed

With the modification applied to the yield criterion in the UMMDp, the results of equivalent stress,
first and second derivatives are now identical for the UMAT_Y1d2004_Mixed and the UMMDp
(see Table 2.4). Therefore, the modification is validated and maintained in all subsequent analyses.
It is recommended that the Voigt notation be verified for the other yield criteria implemented in
the UMMDp, taking into account the software to be used. In addition, future modifications to
the UMMDp can include an automatic detection of the software and change the Voigt notation
accordingly.

Table 2.5 Convention of Voigt notation for each finite element software prepared for the UMMDp.

Software Voigt notation

ABAQUS/Standard  gyy Oyy 045 Oxy Oxz Oy

ADINA Oxx Oyy Ozz Oxy Oxz Oyz
LS-DYNA Oxx Oyy Ozz Oxy Oyz Oxz
ANSYS Oxx Oyy Ozz Oxy Oyz Oxz
MARC Oxx Uyy Ozz o-xy O-yz Oxz

2.4.2 Numerical Validation

After implementing the modifications to the UMMDp, it is possible to directly compare the results
of the Std_Aba, the UMAT_Y1d2004_Mixed and the UMMDp by using FEA simulations. With
that purpose, single-element homogeneous tests and a deep drawing cup test are used in this
validation. The results are compared for the von Mises yield criterion and the Y1d2004-18p yield
criterion, using the parameters from Table 2.3. In addition, a mixed hardening law, composed of
the Voce law, is used for isotropic hardening (see Equation 2.22), and the non-linear kinematic
hardening law of Equation 2.26 is used for the kinematic hardening, using the material parameters
presented in Table 2.6. The latter material parameters were identified from real experiments of a
DCO04 mild steel with 0.7 mm of thickness in SOUTO ET AL. (2015B).
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Table 2.6 Material parameters of the Voce isotropic hardening law and kinematic hardening law
used in numerical simulations (Souto et al. 2015b).

Isotropic hardening Kinematic hardening

0o [MPa] QI[MPa] b[-] c/yi[MPal yi[-] c/y,[MPal  y,[-] cs/ys MPal v [-]

100.0 110.3 5.92 44.57 22.85 106.2 258.38 5629.7 0.0258

Single-Element Homogenous Tests

Three types of homogeneous tests, namely, tensile, shear and biaxial, are modeled using a single
3D element of 1 mm? with boundary conditions according to Figure 2.6. The use of single ele-
ment models, particularly in the tensile and shear tests, is justified by the homogeneous strain
distributions commonly observed in real experiments, using classical tests. In the case of the
biaxial test, it has been previously shown, compared to a bulge test, that the evolution of the
strain tensor components ey, and &y, is approximately identical (SOUTO 2015). The numerical
models are displacement-driven, with imposed displacements of 0.6 mm for the tensile and shear
tests, and 0.4 mm in each direction for the biaxial test. In addition, the 8-node brick element with
reduced integration (C3D8R) is used.

A uy,=0

B u,=0 I
X

C uy=0 z
(©

Figure 2.6 Boundary conditions applied on the numerical models of the single-element homoge-
neous: (a) tensile, (b) shear, and (c) biaxial.

The three tests are each performed with three combinations of constitutive models, namely,
using the von Mises yield criterion with mixed hardening, using the Y1d2004-18p yield criterion
with isotropic hardening at 0° from RD, and using the Y1d2004-18p yield criterion with mixed
hardening at 0° from RD. In the first case, all three user material subroutines are used. However, in
the other two cases only the UMMDp and the UMAT_Y1d2004_Mixed are used, because Std_Aba
allows the use of Y1d2004-18p. The evolution of strain and stress tensor components was analyzed
and compared. In particular, the evolution of ey, — oyx, exx — €yy, and exy — €, are presented for
the tensile and the biaxial tests, while the evolution of oy, — €y is presented for the shear tests.
Nevertheless, all the results are identical independently of which user material subroutine is used,
thus validating its use for this particular application. For that reason, in Figure 2.7, the shown
curves are representative of all user material subroutines correspondent.

Deep Drawing Cup Test

Additionally, it is recommended to compare the results of each user material subroutine for a
more complex model, as well as their convergence efficiency. For that purpose, a deep drawing
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Figure 2.7 Results of the numerical simulations of homogeneous tensile, shear and biaxial tests
using the three user material subroutines represented by ¢, - oxx and e,y - oyy (l€ft), x4 - €5y (center),
and e,y - £, (right) using: (a)-(c) the von Mises yield criterion with mixed hardening, (d)—(f) the Y1d2004-
18p yield criterion with isotropic hardening at 0° from RD, and (g)—(i) the YId2004-18p yield criterion
with mixed hardening at 0° from RD.

cup test is carried out using the setup presented in Figure 2.8a, for a sheet 0.7 mm thick. The FEA
simulation is displacement-driven with an imposed vertical displacement of 15 mm in the punch,
considering an implicit integration scheme using Abaqus/Standard. To reduce the computational
cost of the simulation, only one quarter of the blank is modeled by assuming symmetry conditions.
In addition, the finite element mesh of the blank is built using the 8-node brick elements with
reduced integration (C3D8R). The mesh presents two regions of varying element size, one coarse in
the center region and in contact with the punch, therefore not achieving considerable deformation,
and another finer in regions withstanding higher deformations (see Figure 2.8b). The blank is
also built with 4 elements through the thickness, leading to a total of 47 011 elements. The tools,
namely the die, the punch and the blank holder, are modeled as analytical rigid surfaces. The
contact between the blank and the tools is assumed to present a friction coefficient of 0.06 and
modeled using the Coulomb friction model. Moreover, a force of 15kN is applied on the blank
holder.
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Figure 2.8 Schematic of the deep drawing cup test (dimensions in mm): (a) setup and geometry
(Souto et al. 2015b) and (b) finite element mesh used in the blank.

Two FEA simulations are performed using two combinations of constitutive models, namely,
one using the von Mises yield criterion with a mixed hardening law (test 1), and another using the
Y1d2004-18p yield criterion with a mixed hardening (test 2). The results of major strain ¢;, minor
strain €,, and total back stress tensor component o, are analyzed for each user material subroutine
and presented in Figure 2.9. Similarly to the homogeneous tests, it is observed that the results for
the deep drawing cup test are identical between the UMMDp, the UMAT_Y1d2004_Mixed, and
the Std_Aba, thus a single map representative of the three user material subroutines is shown in
Figure 2.9. It should be noted that the finite element mesh of test 2 is highly distorted at the end
of the test, as no rupture criterion has been considered. Nevertheless, this simulation is still valid
for comparison purposes.

Analyzing the convergence and computational time of the UMAT_Y1d2004_Mixed and the
UMMDyp, it is important to refer that both are implemented with a backward-Euler scheme with a
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Figure 2.9 Maps of the major strain ¢; (left), minor strain ¢, (center), and total back stress tensor
component ayy (right) of the deep drawing cup simulations at the last time instant for (a)—(c) test 1
and (d)—(f) test 2.
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sub-incremental method. However, it is unclear if the algorithm is implemented with the same
conditions, and the computation of the consistent tangent matrix is not identical. What is known
is that the code complexity in the UMMDp is higher than in the UMAT_Y1d2004_Mixed. Some
examples are: (i) the implementation of the yield criteria in the UMMDp is programmed using
arrays, while in the UMAT_Y1d2004_Mixed the differential equations are previously derived in
an external software and then implemented in the subroutine in the form of scalar operations;
(ii) in the UMMDp, the user can select the level of printing information during the analysis, so
that every time a printing option is available, the subroutine must check the level required by the
user, while in UMAT_Y1d2004_Mixed, the amount of printing is low, and it should be commented
if the user does not wish it to be printed; and (iii) a large number of yield criteria, isotropic and
kinematic hardening laws are available in the UMMDp, and the subroutine is required to select
each option every time it is called. On the other hand, in UMAT_Y1d2004_Mixed, there are only
available options for selecting the isotropic hardening law.

All simulations required 2032 increments for the step corresponding to the displacement of
the punch, and the number of cutbacks was identical in each increment.

In terms of the computational time, the total central processing unit (CPU) time required
by both user material subroutines is analyzed for test 2. In this case, the UMMDp is approxi-
mately 14 % slower than the UMAT_Y1d2004_Mixed (see Table 2.7). To verify the influence of
the if programming conditions on the selection of constitutive models and the printing, a new
simulation is performed, named UMMDp_Simplified, where these conditions are removed. Now,
the UMMDp_Simplified is approximately 11 % slower than the UMAT_Y1d2004_Mixed, which
represents a relatively good improvement.

Table 2.7 Total CPU time of the deep drawing cup test 2.

User material subroutine Time [h]

UMMDp 53.946
UMMDp_Simplified 52.614
UMAT_Y1d2004_Mixed 47.544

However, the computational gap is significant, and it is therefore relevant to investigate if
it is related to the stress integration algorithm or programming efficiency. For that purpose,
it is monitored for a single element of the model, from the first yield increment onward, the
number of Newton-Raphson (NR) iterations in the global equilibrium per increment, the number
of sub-increments in the stress integration scheme, and the number of NR iterations in the
stress integration scheme, per increment. Moreover, the ratio of NR iterations between the
UMMDp and the UMAT_Y1d2004_Mixed is used in the analysis. Values above 1 mean the
UMAT_Y1d2004_Mixed required more NR iterations than the UMMDp, and vice versa. The CPU
time required per increment is also monitored for the same element.

In Figure 2.10a, the number of NR iterations in the global equilibrium per increment is
presented. However, this analysis shows that the two subroutines are identical. On the other
hand, analyzing the results for the ratio of NR iterations presented in Figure 2.10b, it is observed
that the UMAT_Y1d2004_Mixed requires more iterations, particularly in the late stages of the test.
The same is observed on average through the test, as the average value 1.037 indicates.

Regarding the number of NR iterations in the stress integration scheme, a large difference
between the two user material subroutines is observed (see Figure 2.11a). Analyzing Figure 2.12b,
where above the threshold are the points where the UMAT_Y1d2004_Mixed takes more iterations
than the UMMDp and vice versa, the average ratio of 2.624 indicates the ability of the UMMDp
to converge faster than the UMAT_Y1d2004_Mixed. Further observing the results of the sub-
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increments required in each NR iteration (see Figure 2.11d), it is interesting to observe that
the UMMDp only requires one sub-increment per NR iteration in each increment, while the
UMAT_Y1d2004_Mixed requires at least two sub-increments and a maximum of 15.

From these results, it is possible to conclude that the UMMDp presents higher levels of
efficiency, even though the total CPU time was higher than the UMAT_Y1d2004_Mixed. The
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Figure 2.10 Results for global equilibrium of (a) NR iterations and (b) ratio of NR iterations, per
increment, of the deep cup drawing test with the Y1d2004-18p yield criterion and a mixed hardening
law.
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Figure 2.11 Results for stress integration scheme of (a) NR iterations, (b) ratio of NR iterations per
increment, (c) sub-increments, and (d) sub-increments per NR iteration, per increment, of the deep
cup drawing test using the YId2004-18p yield criterion with mixed hardening.
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results of the CPU time per increment presented in Figure 2.12a show that the UMMDp is slower
than UMAT_Y1d2004_Mixed, and that the simplification in the code does not improve the CPU
time considerably. In Figure 2.12b, the ratio of the CPU time of the UMAT_Y1d2004_Mixed by
the UMMDp is represented, where the values above 1 mean the UMAT_Y1d2004_Mixed is slower
than the UMMDp and vice versa. It is possible to see the differences in the CPU time. Overall, the
UMMDp requires fewer iterations than UMAT_Y1d2004_Mixed to converge to the solution, but
the difference in CPU time is significantly in favor of the UMAT_Y1d2004_Mixed. Thereby, it is
possible to assume that this difference is related to the programming efficiency of the material
user subroutines, and not to the algorithm’s efficiency.
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Figure 2.12 Results for stress integration scheme of (a) CPU time and (b) ratio of the CPU time, per
increment, of the deep cup drawing test using the Y1d2004-18p vyield criterion with mixed hardening.

2.4.3 Conclusions

The UMMDp is a valuable open source library to FEA software thanks to its wide range of
constitutive models. Even though it presents great potential, it still lacks numerical validations of
the implemented models. The Y1d2004-18p yield criterion in the UMMDp presented an interesting
formulation of the yield criterion, which might be of great use in material parameter identifications.
However, the observed incoherence between the Voigt notation of the stress tensor used in its
formulation and the FEA software conventions is of great importance. When accounting for
the implemented modifications to the Y1d2004-18p, the results are similar to the user material
subroutine used as reference, validating its formulation. The analyzed kinematic hardening law
in the UMMDp also presents similar results to the user material subroutines used as reference,
validating its formulation. Finally, the numerical simulations performed validate the use of
Y1d2004-18p yield criterion, isotropic and kinematic hardening laws in the UMMDp. Even though
the UMMDp proved significantly slower in the deep drawing cup test than the reference, it is
nevertheless advantageous, as it enables the use of complex yield criteria, without the need to
implement them from zero. Therefore, the UMMDp will be used for the remainder of studies of
this thesis.






3 Overview of Heterogeneous
Mechanical Tests

3.1 Introduction

To decrease associated delays and costs, the mechanical design of sheet metal forming parts
tends to be nowadays more and more virtual, by using numerical simulation. Therefore, the
characterization of materials has received increased attention due to the need for precise input data
to computational analysis software. The material mechanical behavior is numerically described
through constitutive equations and material parameters. Conventionally, the identification of
material parameters is achieved using standard quasi-homogeneous mechanical tests (RUSINEK
AND KLEPACZKO 2001; AN ET AL. 2004; GILLES ET AL. 2011). In this approach, the strain field
is quasi-homogeneous for tensile conditions along the gauge part of the sample before necking
occurs, and in shear conditions, the heterogeneity is negligible, which is restrictive. Moreover,
from a single classical test, it is difficult to extract many material parameters, requiring several
tests to identify many parameters of a single constitutive model. As such, the number of material
parameters to identify might range from only 3, considering an isotropic material using the von
Mises yield criterion with the Swift hardening law (REIS ET AL. 2017). On the other hand, some
studies have identified many material parameters. For example, in SOUTO ET AL. (2015B), 24
parameters are identified for an highly anisotropic material using the Y1d2004-18p yield criterion
with a mixed hardening law.

More recently, research has focused on alternative identification methods based on hetero-
geneous strain fields, measured using full-field experimental techniques (PRATES ET AL. 2016;
PIERRON AND GREDIAC 2021). The accuracy of these alternative methods depends on three main
issues: (i) the geometry of the specimen to be used, (ii) the choice of an appropriate measurement
technique of the strain field and (iii) the definition of an identification strategy. By using these
techniques, it is possible to extract a greater amount and variety of information from the strain
field developed during the test. Ideally, the use of a single heterogeneous test could be sufficient
to characterize the material behavior (ROSSI ET AL. 2022B). However, the selection of a geometry
that demonstrates a rich strain field, both in type and amount of information, is still a topic under
research (THOBY ET AL. 2022). Additionally, the use of full-field measurement techniques requires
inverse methodologies to determine the material parameters of a given constitutive model. The
identification procedure consists of minimizing the gap between experimental and numerical data,
measured by an objective function, for example, defined in a least square form. In sheet metal
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characterization, the thickness of the material is generally small, of the order of a few millimeters
or below, and stress levels in the ND to the sheet plane are most of the time neglected. In addition,
measuring deformation perpendicular to the plane of the sheet is a difficulty in conventional DIC
techniques. For that reason, studies investigating the material’s behavior tend to assume that it
presents isotropic behavior in the ND to the sheet plane.

To evaluate the richness of the test, studies generally use the major and minor stresses diagram,
and the major and minor strains diagram, in the sheet plane, respectively, illustrated in Figures 3.1a
and 3.1b. Both types of representation illustrate the mechanical state observed at different material
points of the test. In the case of the major and minor stresses diagram, the mechanical states
are represented by the ratio of minor stress o, by major stress g;. For example, at o,/0; = 1
corresponds to an equibiaxial state, and at 0,/0; = —1 to a shear state. In the case of the major
and minor strains diagram, the mechanical states are represented by the ratio of minor strain €, by
major strain ¢;. For example, at €,/¢; = 1 corresponds to a equibiaxial state, and at ¢,/e; = —0.5
to a uniaxial state.

Uniaxial tension
Equi biaxial

Biaxial tension
tension

Pure shear
Major strain (g)

Uniaxial compression
Plane strain

@ O
&

o=
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R 4
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Figure 3.1 Different mechanical states reached during testing of sheet metal defined in the (a) major
and minor stresses diagram (Brosius et al. 2011), and (b) major and minor strains diagram (Paul et al.
2013), in the sheet plane.

One of the goals of using heterogeneous mechanical tests is to apply them in the identification
of material parameters with inverse methodologies. Therefore, the following sections provide
an overview of heterogeneous mechanical tests reported in the literature, with a focus on the
type and quantity of information. Details of applications to identify the material parameters are
also provided if applicable. The tests are presented chronologically in order of their publication,
and are distinguished between uniaxial, biaxial, and out-of-plane loading. The latter tests are
more complex, requiring advanced experimental apparatus with contact between the material
and tools. Therefore, friction exists and should be accounted for. On the other hand, the first
and second type of tests are simpler, and no contact is required between the material and the
tools. Additionally, no occurrence of out-of-plane of shear stresses is observed, that is, the tests are
insensitive to the material parameters associated with these stresses. For each test, a description
of the geometry, materials and constitutive models used will be provided when this information is
available. In some cases, the studies do not explain how the test has been designed or selected, so
no information is reported.

3.2 Uniaxial Loading Tests

MEUWISSEN (1998) was one of the pioneer studies that used heterogeneous mechanical tests for
the characterization of sheet metals through a mixed numerical-experimental methodology. In
this study, an irregular specimen with two holes was used, both in virtual and real experiments, to
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estimate the parameters of constitutive models (see Figure 3.2a). One of the conclusions of the
study was that the test leads to richer mechanical information, although with a single test it was
impossible to characterize all the anisotropic properties of the materials. Additionally, MEUWISSEN
ET AL. (1998) also proposed a shear-like specimen to investigate the material characterization
of an aluminum alloy with 0.5 mm of thickness (see Figure 3.2b). These tests were selected so
that the strain and stress levels in the materials varied over a wide range. However, it is unclear
how the geometry was obtained. Later, the shear-like specimen was also used to characterize a
dual-phase steel (HADDADI AND BELHABIB 2012) and a pure titanium with 0.5 mm of thickness
(POTTIER ET AL. 2011).

KAJBERG AND LINDKVIST (2004) designed a specimen with a narrow part in the middle to
control the location of plastic instabilities (see Figure 3.2c). This way, it was possible to focus the
acquisition cameras in this region and achieve better spatial resolution. The test achieved high
values of equivalent plastic strain (around 0.75), leading to a successful characterization of the
hardening behavior up to large strains.

BELHABIB ET AL. (2008) and HADDADI AND BELHABIB (2012) proposed a heterogeneous tensile
test for the identification of material parameters of a dual-phase steel with 1 mm of thickness using
full-field measurements (see Figure 3.2d). The specimen consists of a hybrid geometry between a
classical tensile test and a plane tensile test, and was designed with the aim of presenting: (i) large
strain heterogeneity in the gauge area; (ii) large strain paths diversity; and (iii) good sensitivity of
the strain fields to the material parameters. The study performed real experiments using this test,
but from the available data, it is not easy to identify the type of strain paths achieved.

ROBERT ET AL. (2012) investigated the use of the specimens proposed by MEUWISSEN ET AL.
(1998) and BELHABIB ET AL. (2008) to identify the material parameters of Hill 1948 yield criterion
and Ludwig isotropic hardening law for a 2024-T3 aluminum alloy. Through real experiments, it
was observed that the range of strain paths is located between uniaxial tension and plane strain
for both specimens. The maximum major strain values observed are approximately 0.20 and
0.16 (concentrated in the notches), respectively, for the specimen of BELHABIB ET AL. (2008)
and MEUWISSEN ET AL. (1998). The study concludes that for this specific material, the specimen
proposed by BELHABIB ET AL. (2008) exhibited similar strain paths, but for higher values of strain
and a better distribution over the surface of the specimen.

AVRIL ET AL. (2008C), PIERRON ET AL. (2010), ROSSI ET AL. (2016B), and MAREK ET AL. (2017)
investigated the use of a double notched specimen with similar geometries to characterize the
material parameters using VFM (see Figure 3.2e). According to ROSSI ET AL. (2016B), this shape
is often used because it can produce a heterogeneous strain field, is easy to machine, and, in
plasticity, allows to have a large zone of the specimen under plastic deformation. However, ROSSI
ET AL. (2016B), observe that the adopted notched specimens generate states of stress covering only
a small part of the yield surface, so that a good identification of material parameters of Hill 1948
yield criterion is obtained using a 45° specimen or the combination of 0° and 90° angle from RD.

COOREMAN (2008) proposed two perforated specimens of different geometric complexity to
identify the material parameters of the Hill 1948 yield criterion and the Swift hardening law (see
Figures 3.2f and 3.2g). In total, there were 6 material parameters to identify. By comparing the
identification against a traditional approach using multiple conventional uniaxial tensile tests, the
study showed that using a single heterogeneous test yields better results. The study concluded that
mechanical tests should be proposed according to the forming process, which will be employed
afterwards.

KIM ET AL. (2014) investigated four different geometries of heterogeneous tests (see Figure 3.3)
that should present very heterogeneous stress states from a uniaxial load, and that the relative
errors between the identified parameters using the VFM and the input values in the FEA simu-
lations should be less than 1 %. The study considers the latter condition important, because the
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Figure 3.2 Geometry of uniaxial loading specimens (dimensions in mm): (a) Meuwissen (1998),
(b) Meuwissen et al. (1998), (c) Kajberg and Lindkvist (2004), (d) Belhabib et al. (2008), (e) Pierron et al.
(2010), and (f)~(g) Cooreman (2008).

identification was unsuccessful in various geometries, producing heterogeneous stress states due
to high strain concentration in a few elements. Geometry A exhibits various stress distributions,
from biaxial tension, uniaxial tension and pure shear to uniaxial compression. Though this geom-
etry yields satisfactory identification results, this specimen tends to buckle in the experiments.
Geometry B exhibits a similar stress distribution to geometry A, and the identification results were
successful, even though it is considered that the specimen will eventually buckle when imposing
a large displacement. Geometry C exhibits biaxial stress states in the central area between the two
holes. However, in the experiments, it was found that necking occurs prematurely in the hole areas,
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leading to unsuccessful identification. Geometry D exhibits a stress distribution mainly concen-
trated over the uniaxial tension range. The identification using this geometry was unsuccessful, as
the specimen does not provide sufficient information to identify each material parameter. Finally,
the study combined two tests of geometry B in different directions, and the identification results
are satisfying. Although applied to dynamic testing, FU ET AL. (2021) designed a specimen similar
to geometry B, named M-shaped specimen.
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Figure 3.3 Geometry of the specimens (dimensions in mm) proposed by Kim et al. (2014).

GOGA (2014) proposed a specimen for plane stress analysis, which only requires a uniaxial
testing machine (see Figure 3.4a). Due to its geometry, the specimen exhibits tension in the vertical
arm and compression in the horizontal one. The geometry was numerically and experimentally
investigated for an aluminum alloy, and appears to exhibit various mechanical states. However,
the test was only carried out in the elastic regime.

ROSSI ET AL. (2016A) proposed a couple of specimens based on a numerical procedure that
relies on a test simulator that can generate synthetic images similar to the ones obtained during an
actual test, to identify the hardening behavior of sheet metals with the VFM. The external shape of
the specimen is fixed, while in the zone of measurement, there are two notches whose geometries
are defined according to 7 independent design variables (see Figure 3.4b). The study proposes a
few geometries (with different variables) considered optimal geometries, which present a diffuse
plastic strain distribution, while non-optimal geometries exhibit a strain concentration only close
to the notches.

SOUTO ET AL. (2017) proposed a specimen, known as butterfly test, based on an optimization
procedure of the outer shape (see Figure 3.4c). A dedicated indicator guides the optimization
that quantifies, among others, the heterogeneity of strain states (SOUTO ET AL. 2015A). Later,
AQUINO ET AL. (2019) investigated the experimental application of the specimen to characterize a
0.7 mm thick mild steel. One interesting aspect of this test is that the shape of the top boundary is
created using special grips with the desired shape. To avoid sliding between the specimen and the
grips, special patterned contact marks were used in the jaws. The study performs experiments
and numerical simulations of the test, observing that the range of principal strains distribution is
between shear and close to plane strain, but most of the specimen is the uniaxial tension region.
The maximum value of major strain observed is approximately 0.8, but only a few points are
observed in this range. Most material points are concentrated for values lesser than 0.4. The
identification procedure uses two different material orientations (0° and 90° from the RD), and
the results show that the identified parameters can reproduce the real material behavior.

JONES ET AL. (2018) proposed a specimen to investigate the identification of material pa-
rameters of a viscoplastic material model for a 1.5 mm thick stainless steel, using the VFM (see
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Figure 3.4 Geometry of uniaxial tensile specimens (dimensions in mm): (a) Goga (2014), (b) Rossi
et al. (2016a), (c) half-shape of Souto et al. (2017), (d) Jones et al. (2018), (e) Klisters and Brosius
(2019), and (f) Barroqueiro et al. (2020).

Figure 3.4d). The study designed the specimen via an iterative process, starting with an initial
shape selected by engineering intuition, and then performing a finite element analysis of the spec-
imen using the reference material model parameters. Afterwards, the design is manually adjusted
until the geometry met the following criteria: (i) maximize stress heterogeneity, (ii) maximize
range of strain rates, (iii) minimize large gradients in stress or strain near sample edges, (iv) restrict
the geometry to planar, but with arbitrarily complex in-plane geometry, while preventing buckling,
and (v) be a uniaxial loading test. Strain paths that occur in the specimen are not presented, as
the study does not explore in detail the characteristics of the optimized specimen.

KUSTERS AND BROSIUS (2019) developed a specimen to achieve various stress states in the
plastic regime (see Figure 3.4e). This test is intended to be used in damage characterization, and
has also been designed to achieve more than one failure mode in each experiment.

BARROQUEIRO ET AL. (2020) developed an innovative methodology to design heterogeneous
mechanical tests from topology optimization and a dedicated indicator. The goal was to design
tests promoting uniformity of equivalent stress, while simultaneously achieving uniaxial tension,
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uniaxial compression and shear stress states. Following this innovative methodology, a specimen
mainly achieving tensile stress states was obtained (see Figure 3.4f). The geometry has already
been experimentally investigated, but huge buckling was observed.

FU ET AL. (2020) proposed a specimen, named bridge-like, that exhibits balanced heteroge-
neous stress states (see Figure 3.5a). This test was designed based on the plate buckling theory
to avoid significant buckling under compressive loadings. One important aspect of their study
focused on avoiding the use of buckling devices, because they block the field of view during
experiments. The test has been experimentally validated under cycling loadings and has shown
to not be liable to buckle within a reasonable range of in-plane compression. The study also
performed a calibration of the Hill 1948 yield criterion and a non-linear mixed hardening law,
and found that by combining two tests with different material orientations, it yielded accurate
and robust results.

MACEK ET AL. (2020) developed a heterogeneous test that primarily achieves a biaxial stress
state away from free edges, to avoid difficulties with DIC measurements (see Figure 3.5b). Addi-
tionally, the study also wanted to avoid any stress concentrations or high strain gradients. Their
goal was to use this test to identify only biaxial related parameters of the Y1d2000-2d yield criterion,
in combination with classic uniaxial tensile tests. One issue was the pronounced buckling of the
upper and lower bridges during experimental tests.

Another specimen designed by topology optimization was proposed by CHAMOIN ET AL. (2020)
to maximize the sensitivity of displacement fields to material parameters (see Figure 3.5c). The
obtained geometry was directly manufacturable. Both numerical and experimental results that
confirm the validity of the methodology were obtained. However, this study is only applied to fir
wood and the identification of a shear modulus.

CONDE ET AL. (2021) used shape optimization methodologies to design a perforated specimen
(see Figure 3.5d). In this study, the exterior geometry was fixed, and only the interior shape was
optimized to maximize stress heterogeneity. The obtained specimen demonstrates to achieve
stress states ranging from uniaxial tension to compression. Although this specimen has not yet
been experimentally validated, it has already been successfully applied to the identification of
material parameters of Swift hardening law (CONDE ET AL. 2022).

ZHANG ET AL. (2022A) designed a new specimen using shape optimization of the exterior
notches by maximizing the heterogeneity of strain states (see Figure 3.5e). Interestingly, this study
uses the same indicator as proposed by SOUTO ET AL. (2015A). This specimen has shown to achieve
strain states located between shear to uniaxial tension, though closer to the latter. Additionally,
the study validated the use of this test to successfully identify the material parameters of the Hill
1948 and the Y1d2000-2d yield criteria.

GONCALVES ET AL. (2022) extended the study of BARROQUEIRO ET AL. (2020) to plasticity
and obtained new geometries (see Figure 3.5f). A large part of the specimen presents strain
states between uniaxial compression and uniaxial tension. In terms of equivalent plastic strain,
it is observed that the highest values are concentrated in small regions and away from regions
of uniaxial tension. So far, this test has not yet been applied in the identification of material
parameters or experimentally validated.

CHAPELIER ET AL. (2022) developed an innovative methodology that leads to the improvement
of existing specimens, instead of generating new geometries from scratch. This methodology is
based on a non-invasive CAD-inspired optimization strategy, which relies on univariate spline
tools to update the finite element model mesh. An example is shown in Figure 3.5g, where
the shape and position of holes are optimized to improve the sensitivity of the tests to material
parameters of a given model.

Many uniaxial loading tests exist, as shown by the 25 different tests here presented. It is
expected that this number continues to increase, as studies will continue to design tests using even
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Figure 3.5 Geometry of the specimens proposed : (a) Fu et al. (2020), (b) Macek et al. (2020),
(c) Chamoin et al. (2020), (d) Conde et al. (2021), (e) Zhang et al. (2022a), (f) quarter-shape of Gongalves
et al. (2022), and (g) Chapelier et al. (2022).

more innovative methodologies. The first heterogeneous tests used, in general, simple notches or
holes, while nowadays irregular shapes and multiple holes are more prominent. If future tests
follow the trend here observed, the complexity of the specimens will increase. This will lead to
the need for advanced manufacturing processes and complex experimental apparatus, such as
buckling devices. However, selecting the best test is not an easy task due to lack of comparative
studies using suitable metrics. The following section provides an overview of biaxial loading tests.
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3.3 Biaxial Loading Tests

The use of a cruciform specimen, coupled with full-field displacement or strain measurements,
has gained interest in the development of inverse identification strategies. In general, this test
allows reaching strain paths ranging from uniaxial tension (in the arms region of the specimen)
to equibiaxial tension (in the center region of the specimen), and high strain gradients from
the center region of the specimen to the end of the arms region. Also, by changing the load or
displacement ratio over the two normal loading axes, several biaxial stress states in the central
region of the specimen can be achieved. However, this type of test only allows obtaining low
values of equivalent plastic strain before rupture occurs. Nevertheless, by loading the specimen
in two directions (RD and TD), it is possible to characterize a larger spectrum of the material
anisotropy compared to most uniaxial loading tests (HANNON AND TIERNAN 2008).

MAKINDE ET AL. (1992) pioneered the development of heterogeneous mechanical tests to
tackle the lack of suitable standard biaxial loading tests. The study designed a cruciform specimen
using a statistical method of factorial and response surface designs in combination with FEA
simulations. The resulting geometry presents a circular reduced central region (see Figure 3.6a),
and the stress and strain states distribution was better than other geometries.

YU ET AL. (2002) designed an optimal shape of a cruciform specimen by manually adjusting
the geometrical parameters. The specimen was designed to obtain a uniform stress distribution
in the central region and achieve large deformations. The geometry presents a chamfer on the
arms and on the central region (see Figure 3.6b). Moreover, different strain paths in the central
region, ranging from uniaxial tension to biaxial tension, can be obtained by adjusting the velocity
of boundary conditions.

COOREMAN (2008) proposed a biaxial test on a perforated cruciform specimen (see Figure 3.6¢)
to simultaneously identify the material parameters of Hill 1948 anisotropic yield criterion and
Swift isotropic hardening law to describe the plastic behavior of a dual-phase steel with 0.8 mm of
thickness. The study performed an experimental test with this specimen using DIC and use of
7 load steps in the identification procedure. The isovalues distribution of strain at the last step
show that the test presents considerable heterogeneity, though the levels of strain in the RD and
the TD are relatively low. On the other hand, the levels of shear strain are considerably high.
Additionally, the obtained values of equivalent plastic strain at the end of the last load step are low
(approximately 0.23), indicating that this test might not adequately represent the higher strain
values that occur in sheet metal forming operations. The results of the Swift hardening law are
satisfactory, except for the parameter controlling the initial yield strain, which was justified by the
lack of information close to the yield point.

ZIDANE ET AL. (2010) investigated several cruciform specimen geometries and identified a
promising one for which necking appears in the central region. Based on the most promising
geometry, an optimized geometry was manually proposed by adjusting two geometrical parameters
(see Figure 3.6d). This geometry concentrates and achieves stress states between uniaxial tension
and biaxial tension in the central region, and has been numerically and experimentally validated
for an aluminum alloy.

TEACA ET AL. (2010) designed two cruciform specimens that achieve a wide range of me-
chanical states and are highly sensitive to the material anisotropy (see Figure 3.7). to identify the
material parameters of an advanced anisotropic yield criterion for two materials with 1 mm of
thickness. The material characterization is performed for stress paths ranging from uniaxial to
plane strain tension with the specimen UT/PST and from uniaxial to equibiaxial tension with
the specimen UT/EBT. For the UT/PST specimen, average mechanical states in the arms (RD
region) and connecting parts between arms are close to uniaxial tension and plane strain tension,
respectively. In the case of the UT/EBT specimen, mechanical states along the RD vary between
equibiaxial tension in the center and uniaxial tension in the central ligament of the arm. According
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Figure 3.6 Geometry of biaxial loading specimens (dimensions in mm): (a) Makinde et al. (1992),
(b) quarter-shape of Yu et al. (2002), (c) Cooreman (2008), and (d) Zidane et al. (2010).

to the study, the main advantage of both specimens is the multiple mechanical states achieved in
a single biaxial test, allowing the reproduction of mechanical states close to those encountered
in industrial sheet metal forming processes. Nevertheless, the observed mechanical states and
deformation levels are similar to those observed in other cruciform specimens.

SCHMALTZ AND WILLNER (2014) explored the usability of the biaxial test on three cruciform
specimen geometries (see Figure 3.8), promoting different types of heterogeneous strain fields.
The study identified the material parameters of the Hill 1948 yield criterion and an isotropic
hardening law for a 2 mm thick steel. The first geometry is designed to present a homogeneous
strain distribution in the center region of the specimen, without using slits or perforations (G#1).
The second geometry presents the same shape as the first, but with a hole in the center region of
the specimen to generate an heterogeneous strain distribution (G#2), and the third geometry is de-
signed so that under biaxial tensile conditions, the center region rotates, generating tension, shear
and compressive stresses (G#3). Additionally, the study performed a fourth test to generate more
compressive stresses (G#4), using the same geometry as G#2, but loaded by compressive forces in
the y direction and by tensile forces in the x direction. From the experimentally determined strain
state, tests G#2 and G#3 present a wide range of strain distributions comparatively to test G#1 in
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Figure 3.7 Geometry of the biaxial loading specimens (dimensions in mm) proposed by Teaca et al.
(2010).

the tensile spectrum, with test G#2 also presenting some equibiaxial tension state, though with
relatively small values of major and minor strains. On the other hand, test G#4 presents a strain
distribution mainly in the shear state, with both dominant tensile and compressive components.
The study concludes that the test G#4 should yield the best identification results, though this is
not observed later in their identification. The study argues that the implemented model does not
take into account that the real material behavior in the compression region is different compared
to the one in the tensile direction, and does not include kinematic or anisotropic hardening.
PRATES ET AL. (2014) proposed an inverse methodology for determining the material param-
eters of the Hill 1948 yield criterion and the Swift hardening law from a single biaxial tensile
test using an optimized 1 mm thick cruciform specimen (see Figure 3.9a). The geometry of this
specimen was designed to reproduce heterogeneous strain paths observed in sheet metal forming
operations. The specimen geometry demonstrated to cover a range of strain paths from equibiax-
ial tension to uniaxial tension. The proposed specimen was not experimentally tested, and the
numerical results show that at the center of the specimen, the equivalent plastic strain presents
low values of approximately 0.03, while the maximum values of approximately 0.3 are obtained

(a) G#1 (b) G#2 (c) G#3

Figure 3.8 Geometry of the biaxial loading specimens (dimensions in mm) proposed by Schmaltz
and Willner (2014).
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along the arms of the specimen. Moreover, the study performed a sensitivity study using five
virtual materials (variations of the parameters of the constitutive models). The results showed
that variations in the material parameters of the hardening law did not influence the strain paths,
but in the anisotropic material parameters could lead to substantial differences.

LIU ET AL. (2015) designed an optimized cruciform sample with a thickness-reduced central
zone and four slots at each arm (see Figure 3.9b), to characterize the hardening behavior of an
aluminum alloy with 2 mm of thickness. The optimized geometry was obtained from a parametric
study of five variables controlling the position of notches and slots. The use of a thickness-reduced
central zone and slots at each arm in biaxial tensile specimens is to concentrate strains in the
central zone, avoiding strain localization at notches. The study performed an experimental test
of the specimen using DIC to calculate the strain fields on the surface. The equivalent strain
reaches 0.30 just before crack, and the principal strains are about 0.16 for the major strain and
0.14 for the minor strain in the center of the specimen. The maximum deformation is observed in
the fillet between the flat central zone and the non-reduced thickness zone on the central axis
of the specimen (TD). Although the maximum equivalent plastic strain is relatively high, the
range of strain paths is not wide — mainly between equibiaxial and uniaxial stress — therefore not
providing a wide variety of strain paths required to characterize the material states in sheet metal
forming operations. The study attempted to identify the hardening behavior of the material using
three distinct yield criteria (one isotropic and two anisotropic), and the results are relatively good.
However, it was not investigated the potential of the specimen to identify the material parameters
of anisotropic yield criteria.

ZHANG ET AL. (2015) investigated the use of a cruciform specimen without slits or perforations
(see Figure 3.9c) to identify the material parameters of anisotropic yield criteria for an aluminum
alloy and a dual-phase steel, respectively, with 1 mm and 1.75 mm of thickness. The experimental
results of the designed cruciform specimen show that the observed strain path is nearly equibiaxial
for both materials in the central region. It then changes gradually along the diagonal direction
to nearly uniaxial tension near the corner. Overall, the observed strains are relatively small for
both materials, and the range of strain paths is not good enough to characterize the anisotropic
behavior of a given material.

MARTINS ET AL. (2019) investigated the use of the same geometry as ZHANG ET AL. (2015), as
well as some variations to identify the material parameters of the Hill 1948 and the Y1d2000-2d
yield criteria with the Swift isotropic hardening law using virtual experimental data of a mild steel
and an aluminum alloy. The study concluded that the original geometry proposed by ZHANG
ET AL. (2015) lacks information for shear stress states for the mild steel using the Hill 1948 yield
criterion, and that using the adapted geometry (see Figure 3.9d), an increase of areas with shear
states is observed. Then, an identification of the material parameters for the aluminum alloy using
the Y1d2000-2d yield criterion was carried out using the adapted geometry. The results show that
the adapted test is sensitive to the material, because the shear paths are different comparatively to
the mild steel. Also, the plastic behavior of the aluminum alloy leads to more information near
plane strain, but leads to a decrease of information in the shear region. From these two studies, it
is essential to note that the richness of the test seems to depend significantly on the used material.
Therefore, it is of utmost importance to analyze the richness of a test for more than one material.

KIM ET AL. (2021) designed a cruciform specimen that generates combined tension and shear
states on in the gauge section. The specimen shape is based on the combination of a general
cruciform specimen and a simple shear specimen (see Figure 3.9¢). Its geometry was optimized
by evaluating several shapes restricted by geometrical constraints to avoid generating plastic
deformation outside the gauge section (KIM ET AL. 2022). The optimize shape showed large
stress concentrations near the fillets, but provided good stress uniformity in the central region for
different combinations of force ratio, leading to either a predominant tension or shear state.
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Figure 3.9 Geometry of biaxial loading specimens (dimensions in mm): (a) Prates et al. (2014),
(b) Liu et al. (2015), (c) Zhang et al. (2015), (d) Martins et al. (2019), and (e) Kim et al. (2021).
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In general, the biaxial test with cruciform specimens results in relatively low values of equiva-
lent plastic strain, while some studies use thickness-reduced center regions of the specimen to
increase these. However, the mechanical state usually ranges from equibiaxial to uniaxial tension,
with a reduced number or even no strain paths in the shear state.

3.4 Out-of-Plane Loading Tests

POTTIER ET AL. (2012) designed an experimental procedure based on out-of-plane displacements
similar to the Nakazima test. However, the specimen geometry is designed to exhibit highly
heterogeneous strain paths (see Figure 3.10a), where a hemispherical punch is used to apply the
prescribed displacement at the sample center, which is circular, tightly encircled and fastened
between the die and the holder. The specimen is designed to exhibit tension (at 0° and 90° from
the RD), shear (at 0° and 90°), and expansion, as well as an isoprobability of fracture in the tension
and the shear zones (isotropic material). The strain level in expansion remains weaker than in
the tension or shear zones, where the maximum levels of strain are relatively high, of 0.62 and
0.95, respectively. From the identification results, the study concludes that the test can lead to
the identification of material parameters of an anisotropic plastic model. WANG ET AL. (2019)
used this test to characterize the anisotropic behavior of an aluminum alloy at 200 °C, using the
Y1d2000-2d yield criterion. The obtained results were validated using a deep drawing test, which
showed a good agreement between experiments and numerical simulations.

HAPSARI ET AL. (2018) designed a micro incremental deformation test based on the principle
of single point incremental forming (see Figure 3.10b). This test consists of locally deforming a
clamped blank using a hemispherical tool, where large deformations (approximately 240 %) and
multiple strain paths can be achieved. The study characterizes the ductile damage behavior of a
copper foil with 0.21 mm of thickness. In a first step, the study identifies the material parameters
of a hardening law using classic uniaxial tensile tests up to 0.3 values of deformation. Then, the
material parameters of the same hardening law with a damage model are identified by using
a FEMU approach, where the objective function was composed of the forming forces between
experiments and numerical simulations. The identified material parameters of the hardening law
in the second step are similar to those obtained in the first step. Nevertheless, without the second
step, it would not have been possible to identify the damage material parameters due to damage
growth and necking in the tensile tests.
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Figure 3.10 Configuration of the out-of-plane loading tests proposed by (a) Pottier et al. (2012) and
(b) Hapsarri et al. (2018).
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3.5 Conclusions

An extensive overview of heterogeneous mechanical tests reported in the literature to characterize
the mechanical behavior of sheet metals has been presented. In Figure 3.11, a distribution of
designed tests over time is presented, where it is shown that this topic emerged approximately 20
years ago and has since seen more than 40 new tests developed. Historically, the uniaxial loading
tests have always been largely developed, though it is seen that the biaxial loading tests have also
been similarly investigated up to 2014. However, the trend has been to design uniaxial loading
tests using different and innovative methodologies.
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Figure 3.11 Distribution over time of designed heterogeneous mechanical tests for sheet metals,
divided in uniaxial, biaxial and out-of-plane loading.

Many studies have focused on the use of cruciform specimens under biaxial loading, where it
is possible to achieve mechanical states ranging from uniaxial to equibiaxial tension. To reach
large levels of deformation, some studies have experimented with the use of perforated cruciform
specimens, thick-reduced zones, or even slots in the arms. However, the levels of strain are still
relatively low to fully characterize the hardening behavior of the material. Other studies have
used uniaxial loading tests, where it is possible to use complex geometries and achieve various
mechanical states (such as shear, uniaxial tension, or biaxial tension). To design the specimen
geometries, some studies use innovative methodologies, such as shape or topology optimization.
Nevertheless, it was also shown that others are manually proposed based on the authors experience
and creativity. However, a single test might not characterize the material behavior or fully retrieve
the best material parameters. For that reason, some studies have combined two identical tests
with different material orientations to enrich the quality of available data. Moreover, one common
problem with these tests is their sensitivity to the material, as the mechanical state and level of
deformation can vary. Therefore, it is not an easy task to quantify the richness of the heterogeneous
test in a general way.

Regarding the application of heterogeneous tests to identify the material parameters of consti-
tutive models, it is fair to observe that studies tend to focus on simple yield criteria and isotropic
hardening laws. Only a single study is reported that identifies the material parameters for a
non-linear kinematic hardening law, where reverse loading conditions are necessary. When the
identification is performed with finite element based inverse methods (such as FEMU), accurate
reproduction of the tests boundary conditions is essential for its success (KACEM ET AL. 2021).
However, the latter is not always easy due to possible sliding between the grips and specimen,
lateral loads, or contact between the tools and the specimen.
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Furthermore, only a few specimens are analyzed by different studies and conditions, resulting
in a lack of information on the proposed tests. The comparison of the proposed specimens is not
trivial, as some studies do not present the same information, or their results lack information to
assess the richness of the tests. These tests are not yet able to extensively characterize the material
behavior, as it is achievable using multiple quasi-homogeneous tests. Nevertheless, the use of
heterogeneous mechanical tests is promising in terms of the decrease in the number and cost of
experiments, by providing richer mechanical information in a single experiment.



4 Evaluation of Heterogeneous
Mechanical Tests

4.1 Introduction

The mechanical design of sheet metal forming parts tends to be more virtual, decreasing associated
delays and manufacturing processes costs. Consequently, materials’ mechanical characterization
has received increased attention due to the need for accurate input data to computational analysis
software.

The mechanical behavior of the materials can be numerically described through constitutive
models, which can be calibrated using standard quasi-homogeneous mechanical tests (SOUTO
ET AL. 2015B). Nevertheless, from a single classical mechanical test, it is difficult to extract many
material parameters. It requires several tests to identify many material parameters of a single
constitutive model (BARLAT ET AL. 2005; CAZACU ET AL. 2006).

More recently, research has focused on alternative methods based on mechanical tests that
induce heterogeneous strain fields, measured through full-field experimental techniques, pro-
viding significantly more valuable data (HADDADI AND BELHABIB 2012; GREDIAC ET AL. 2020).
Ideally, a single mechanical test should be enough to characterize the material’s mechanical be-
havior. However, the accuracy of these alternative methods depends on several factors (PIERRON
AND GREDIAC 2021): (i) the applied load and shape of the specimen used in the mechanical test
(PIERRON 2020), (ii) the choice of an appropriate strain field measurement technique (BLAYSAT
ET AL. 2020), or (iii) the definition of an identification strategy (PRATES ET AL. 2016). Indeed, the
heterogeneity does not lead to any analytical post-treatment, and a suitable inverse methodology,
such as the FEMU (AQUINO ET AL. 2019) or the VFM (GREDIAC ET AL. 2006; PIERRON AND
GREDIAC 2012), is required.

Although many challenges still exist in this field, research still focuses on selecting and
designing the most suitable heterogeneous mechanical tests for sheet metals’ constitutive model
calibration. In recent times, the design of novel heterogeneous mechanical tests using different
strategies has increased (see Chapter 3). An innovative approach adopted a shape optimization
procedure to design a butterfly-shaped specimen under uniaxial tensile loading (SOUTO ET AL.
2016; SOUTO ET AL. 2017). A different approach analyzed configurations of notched specimens by
evaluating the error between synthetic images and numerical simulations (ROSSI ET AL. 2016A).
More recently, some studies used topology optimization, allowing more flexibility in the design
process, and resulting in complex geometries (BARROQUEIRO ET AL. 2020; CHAMOIN ET AL. 2020).
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Another study proposed a bridge-like specimen based on the plate buckling theory (FU ET AL.
2020). The bridge-like specimen is the first attempt to design a heterogeneous mechanical test
that can characterize the mechanical behavior of sheet metals under cyclic loadings.

Generally, the quality and quantity of heterogeneous mechanical tests have increased. How-
ever, a qualitative or quantitative comparison is not straightforward, because studies use different
materials and representations of output data. To solve this problem, SOUTO ET AL. (2015A) pro-
posed a quantitative indicator to evaluate and classify mechanical tests. The indicator evaluates
the mechanical test up to rupture and is based on the strain heterogeneity. Although this method-
ology is innovative, it can depend on the material, and did not consider the sensitivity of the tests
to material anisotropy (MARTINS ET AL. 2019). Additionally, the sensitivity of heterogeneous
mechanical tests to the material parameters is a relevant metric to evaluate their richness (SOUTO
ET AL. 2015A). In this scope, HAPSARI ET AL. (2018) used an indicator that quantifies the identifi-
ability of a parameters’ subset based on the largest and smallest eigenvalue of the dimensionless
sensitivity matrix. Nevertheless, this methodology depends highly on the constitutive model and
can be computationally expensive. More recently, ZHANG ET AL. (2022B) also investigated the
identifiability of the anisotropic material parameters through a sensitivity analysis. The study
concluded, among other things, that the material orientation plays a major role in the success of
the identification. Moreover, the study recommends against evaluating the identification quality
by comparison to the reference parameters or the objective function values. Instead, representa-
tions of the material behavior should be used, such as the Lankford coefficients or normalized
yield stresses at various material orientations. Another interesting study evaluated the robustness
of heterogeneous mechanical tests in terms of measurement biases through virtual experiments
(THOBY ET AL. 2022).

To fill the existing gap in the evaluation of heterogeneous mechanical tests, this study proposes
metrics based on the strain and stress states. Within a numerical approach, four heterogeneous
mechanical tests are evaluated by considering three different materials. Furthermore, a metric
based on the Mohr’s circle formulation is proposed to evaluate the tests’ sensitivity to material
anisotropy.

4.2 Heterogeneous Mechanical Tests

The four heterogeneous mechanical tests selected were selected from the previous survey to include
different shapes in the present study (see Chapter 3). In general, these tests were proposed to
maximize the strain field heterogeneity. One test resembles a uniaxial tensile test (see Figure 3.2d),
another is biaxial loading (see Figure 3.8c), and two others are uniaxial loading with complex
geometries (see Figures 3.3b and 3.4d).

The tests are modeled using symmetry conditions to reduce the computational cost of numer-
ical simulations, and the loading is displacement driven. The tests, named A, B, C, and D, and
boundary conditions of the finite element models are described and shown in Figure 4.1. It should
be noted that the x and y axes correspond to the global coordinate system (x, y), respectively,
coincident with the TD and the RD for all tests. The material coordinate system (x’, y") rotating
with deformation is initially coincident with the global coordinate system.

Test A is a biaxial tensile test with a centered hole, designed to generate a heterogeneous
strain field (SCHMALTZ AND WILLNER 2014). The authors considered that the test could reach
levels of deformation able to properly calibrate the hardening behavior, and that it was also able
to characterize the anisotropic behavior. The specimen’s design is interesting, as the arms are
wide and create a short empty region between them. However, the specimen’s geometry is not
easily modeled because of the lack of given dimensions. The authors concluded that the range of
stress states was confined between uniaxial tension and equibiaxial tension states. Nevertheless,
the test constitutes a good basis for this analysis because it presents classical characteristics of a
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Figure 4.1 Geometry (dimensions in mm) and boundary conditions of the finite element models
for the heterogeneous mechanical tests (a) A, (b) B, (c) C, and (d) D. The specimen’s geometry is
represented using symmetry conditions, while the full geometry is recalled on the right-hand side.

biaxial tensile test and adds features that enhance the heterogeneity of strain and stress states.
The numerical model uses symmetry conditions along the x and y axes, with both corresponding
to loading directions (see Figure 4.1a).

Test B was designed as a hybrid shape between a uniaxial tensile test and a uniaxial plane
strain tensile test (BELHABIB ET AL. 2008). The shape’s interest was investigated by comparing it
with standard mechanical tests and evaluating the strain field’s heterogeneity and sensitivity to
material parameters. Additionally, the numerical comparison accounted for the limitations of DIC,
by not considering the regions of the sample near the free edges, and where strain level is below
DIC accuracy. This study concluded that the new heterogeneous mechanical test performed better
than standard mechanical tests in all criteria. Thanks to its simple geometry, test B represents a
good benchmark in this analysis, avoiding the complexity of other heterogeneous mechanical
tests. The numerical model uses symmetry conditions along the x and y axes, with the latter
corresponding to the loading direction (see Figure 4.1b).

Test C is a uniaxial tensile test, designed from empirical knowledge and trial and error, re-
sulting in a geometry resembling a Greek capital letter sigma ¥ (KIM ET AL. 2014). The authors
showed that this test exhibits various stress states. Also, combining two tests loaded in different
material orientations increased the mechanical information and improved the calibration. Test C
is numerically modeled using one symmetry condition along the y axis, aligned to the loading
direction (see Figure 4.1c).

Test D is a uniaxial tensile test, designed via an iterative process of finite element analyses
(JONES ET AL. 2018). The process started with a shape based on empirical knowledge, then manu-
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ally adjusted to meet several criteria, such as maximizing stress heterogeneity and minimizing
large gradients in strain near free edges. The optimized geometry resembles a capital letter “D”,
and the authors showed that it could cover a reasonable extent of stress states. Similarly to test C,
one symmetry condition along the y axis is used in the numerical model of test D, which coincides
with the loading direction (see Figure 4.1d).

The numerical models are developed in 2D, assuming a plane stress state formulation. A four-
node bilinear plane stress element, with reduced integration and stiffness hourglass control, is used,
as well as a large strain formulation. A refined mesh with a maximum element size of 0.1 mm is
used, to obtain many material points approaching a continuous state of the material. Furthermore,
to account for the limitations of a subset-based DIC system, which does not provide information
near the specimen’s free edges, the results are analyzed for a region of interest (ROI), defined by
an arbitrary boundary of 0.25 mm on the free edges of the specimen. The numerical simulations
are performed with automatic time stepping, and a maximum increment size of 0.01. Finally,
the numerical simulations are performed with Abaqus/Standard software (DASSAULT SYSTEMES
2019), and the constitutive models are implemented through the UMMDp (see Section 2.4).

4.3 Virtual Materials

Three virtual materials are considered to account for the heterogeneous mechanical tests’ sen-
sitivity to different materials: (i) an aluminum alloy (AA2090-T3) with a nominal thickness of
1.6 mm (YOON ET AL. 2006; COMSA ET AL. 2011; ABEDINI ET AL. 2018); (ii) a dual-phase steel
(DP600) with a nominal thickness of 0.8 mm (OZTURK ET AL. 2014); and (iii) a cold-rolled sheet
of 99.9 % pure copper (Cu) with a nominal thickness of 0.1 mm (PHAM ET AL. 2017; THUILLIER
ET AL. 2018).

For simplicity’s sake, a plane stress state formulation is chosen. The elastic properties of
the materials, the material parameters of the Yld2000-2d anisotropic yield criterion, and the
Swift isotropic hardening law are provided in Table 4.1 (see Section 2.3 for details on the models
formulation). It is worth highlighting that the material parameters of AA2090-T3 and DP600 are
selected from the literature. On the other hand, the material parameters of Cu were identified using
a classical approach, with quasi-homogeneous mechanical tests using a methodology identical to
SOUTO ET AL. (2015B). Although the latter identification is not presented in this study, it can be
said that a good agreement was obtained between experimental and numerical data. Therefore,
the three materials considered in this study come from real experiments, providing a realistic
description of the mechanical behavior up to a certain deformation level. Moreover, the same
phenomenological models are used for the three materials to have a straightforward and easier
comparison between them

Concerning the material’s mechanical behavior, DP600 is characterized by a much higher
initial yield stress than AA2090-T3 and Cu, while the latter presents a much lower hardening rate
than the former (see Figure 4.2). Moreover, Figures 4.3a and 4.3b present the normalized yield
stress and the Lankford coefficient for various material orientations. These representations show
the considerable variation of both normalized yield stress and Lankford coefficient of AA2090-T3
compared to Cu and DP600. Besides, the latter exhibits, on average, values close to 1 in both
representations, while the Lankford coefficients of Cu are below 1, representing a relatively high
normal anisotropy. The yield surface projection on the plane of normalized RD-TD and shear-RD
stress also highlights the anisotropic behavior, respectively, represented in Figures 4.3c and 4.3d.

4.3.1 Forming Limit Curves

In evaluating heterogeneous mechanical tests, it is relevant to consider the maximum deformation
the material can sustain relative to a specific condition. This condition can be, among others,
a rupture criterion or a forming limit curve (FLC). The latter is a feature of the forming limit
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Table 4.1 Elastic properties of the materials and parameters used in the YId2000-2d anisotropic
yield criterion and the Swift isotropic hardening law, for AA2090-T3 (Yoon et al. 2006; Abedini et al.
2018), DP600 (Ozturk et al. 2014) and Cu.

Material
Model Parameter AA2090-T3 DP600 Cu
Elasticity E [GPa] 69 210 104
V[ 0.33 0.3 0.28
Y1d2000-2d o [-] 0.860 1.011  0.893
a, [-] 0.929 0.964 1.013
as [-] 0.957 1.191  0.644
ag [-] 0.977 0.995 0.985
as [-] 1.063 1.010  0.981
g [-] 1.039 1.018  0.857
a; [-] -1.251 0.977 0.958
ag [-] 1.45 0935 1.322
al-] 8 6 8
Swift o, [MPa] 279.6 355.1 240.2
K [MPa] 646.0 979.5 350.8
n -] 0.227 0.194 0.129

diagram (FLD), typically used to evaluate the formability of sheet metals (KEELER 1961; ZHANG
ET AL. 2018). The FLC corresponds to the strain limits the material can sustain without failing.
Essentially, the FLC separates the regions where the material may fail (above the FLC), from the
regions where it is safe (below the FLC).

With the purpose of a fair comparison between the heterogeneous mechanical tests, an FLC
is virtually generated for each material. The adopted shape is a simplified version of real FLCs,
but based on typical FLCs and the materials’ strain hardening exponent » (see Table 4.1) for the
maximum value in the plane strain tensile region (g,/¢; = 0), with €, and ¢,, respectively, the
major and minor strains (PAUL 2013). Moreover, the virtually generated FLCs are characterized
by a slope of —1.0 (left-hand side) and 0.5 (right-hand side), as presented in Figure 4.4. Reference
data is also added in Figure 4.4 for comparison with the virtually generated FLCs (COMSA ET AL.
2011; OZTURK ET AL. 2014; PHAM ET AL. 2017). Although not exact, the virtually generated FLCs
are correct approximations of the reference data. Considering the analysis is limited to monotonic
loadings, a material point A is expected to present a linear strain path. Thus, if at time instant ¢
the material point A; is located at a given position in the FLD, the strain path is linear, and the
material point is expected to reach the FLC at A . However, the purpose of using the FLC here is
simply to know when it is reached. By numerically evaluating the vertical distance (evaluated on
the major strain axis, for the same value of minor strain) from the material point A; to the FLC,
represented by the point By, it is possible to identify when the limit is reached. Consequently, this
distance, represented by Wgp ¢, is numerically evaluated as
s‘f“

E]ft ’

Were = (4.1)

where sf‘ and 5113‘ are, respectively, the major in-plane principal strain at the material point A,
and at the corresponding point B; on the FLC (see Figure 4.4). Whenever the condition Wgpc > 1
is satisfied, the FLC is reached and the test stops.
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Figure 4.2 Virtual representation of the strain hardening behaviour of AA2090-T3, DP600, and Cu,
through the yield stress as a function of the equivalent plastic strain.
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Figure 4.3 Virtual representations of the anisotropic behavior of AA2090-T3, DP600, and Cu:
(a) anisotropy of normalized yield stress along material orientations between 0° to 90° from the RD,
(b) anisotropy of Lankford coefficient along material orientations between 0° to 90° from the RD,
(c) projection of initial yield surface on the plane of RD-TD normalized stress, and (d) projection of
initial yield surface on the plane of shear-RD normalized stress.
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Figure 4.4 Virtual FLCs of AA2090-T3, DP600, and Cu, characterized by the materials’ strain
hardening exponent n in the plane strain tension region, and by a slope of —1.0 on the left-hand
side and 0.5 on the right-hand side of the diagram. Reference data (REF) from the literature is also
represented for each material (Comsa et al. 2011; Ozturk et al. 2014; Pham et al. 2017). The position
in the FLD of a material point A at the time instant ¢t is represented by A;, while A, is the position of
A when it reaches the FLC on a linear strain path. Material point B, represents the position used to
evaluate the vertical distance from A, to the FLC.

4.4 Evaluation Metrics

As many heterogeneous mechanical tests already exist, selecting the best one is not a straightfor-
ward task. To aid in the decision or design process, studies tend to use standard metrics to evaluate
the richness of the tests. This section presents the five metrics selected to evaluate heterogeneous
mechanical tests: equivalent plastic strain, major and minor strains, major and minor stresses,
stress triaxiality and Lode angle parameter, and rotation angle.

Indeed, total strains can be experimentally measured, and linear strain paths used for the
determination of FLDs are easily represented through a strain-based diagram. However, some
studies prefer a stress-based representation. To represent the six independent stress tensor compo-
nents, it is worth using several invariants, such as the principal values, but also the hydrostatic
pressure and position in the deviatoric plane. For simplicity’s sake, the definition of each metric
already assumes a plane stress state formulation.

4.41 Equivalent Plastic Strain

The equivalent plastic strain &P is a metric that quantifies the level of plastic strain reached during
the tests and is given by

t
& = f £hdt, (4.2)
0

where £” is the equivalent plastic strain rate (see Equation 2.19). This metric is relevant for metallic
materials and in the context of sheet metal forming. Indeed, if more data is available for higher
levels of equivalent plastic strain, the calibration accuracy is expected to improve. Concerning
heterogeneous mechanical tests, it is beneficial to achieve high equivalent plastic strain levels
in many regions. This way, the equivalent plastic strain can also be used as a measure of the
heterogeneity of the tests, where a large region of the test presenting high levels of strain is desired,
rather than observing strain localization in a reduced region.
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4.4.2 Major and Minor Strains

The major and minor strains, respectively, €; and ¢,, with €; > ¢,, are the principal values of the
strain tensor ¢ calculated on the sheet plane as

Exx + € Exx — Eyy )2
e = xx2 yyi\/( xx2 yy> +edy, withi=1,2, (4.3)

where ¢y, €4y, and ¢y, are the strain tensor components calculated on the global coordinate
system.

The combination of major and minor strains values can characterize the strain state. This
metric analysis is typically presented using the major and minor strains diagram, as shown in
Figure 4.5a. Then, as reference values of ¢,/¢; define typical mechanical states for isotropic
materials (such as €,/¢; = —0.5 defining uniaxial tension and shear by €,/¢; = —1, as listed in
Table 4.2), the diagram identifies the strain states achieved. The major and minor strains diagram
is also known as the FLD.

Moreover, the major and minor strains are relevant to infer the diversity of strain states
achieved. A primary characteristic of using the major and minor strains to evaluate heterogeneous
mechanical tests is that it can be experimentally measured (ZHANG ET AL. 2015).

4.4.3 Major and Minor Stresses

The major and minor stresses, respectively, o; and o,, with o; > o,, are the principal values of the
stress tensor o calculated on the sheet plane as

Oy + O Oxx — Oyy \ 2
o = xx2 yyi\/( XX2 yy) +ody, withi=1,2, (4.4)

where oy, 0yy, and oy are the stress tensor components calculated on the global coordinate
system.

Analogously to the major and minor strains, the mechanical state analyzed through the
stress tensor represents the stress state. This analysis is typically presented using the major
and minor stresses diagram, as shown in Figure 4.5b. Similarly to the major and minor strains,
reference values of o,/0; represent typical mechanical states (such as uniaxial tension represented
by 0,/0, = 0 and shear by 0,/0; = —1, as listed in Table 4.2).

These last two metrics are commonly used to evaluate mechanical states’ distribution, either
through a strain- or stress-based representation. Because the strain fields are obtained from
experiments, a strain-based representation is usually associated with experimental data (BELHABIB
ET AL. 2008; GUNER ET AL. 2012; ROBERT ET AL. 2012; SOUTO ET AL. 2015A; AQUINO ET AL. 2019;
WANG ET AL. 2019; MAREK ET AL. 2020). On the other hand, a stress-based representation is
more associated with numerical data, because it cannot be directly obtained from experiments
(COOREMAN ET AL. 2008; AVRIL ET AL. 2008C; KIM ET AL. 2014; ROSSI ET AL. 2016B; JONES ET AL.
2018; BARROQUEIRO ET AL. 2020; FU ET AL. 2020; THOBY ET AL. 2022). Studies considering both
representations are limited (SCHMALTZ AND WILLNER 2014; MARTINS ET AL. 2019).

4.4.4 Stress Triaxiality and Lode Angle Parameter

The stress triaxiality and the Lode angle parameter are two dimensionless indicators that can
characterize a mechanical state. Both represent the stress tensor o, through stress invariants,
and have been used in studies related to ductile fracture (BAI AND WIERZBICKI 2008; DANAS
AND PONTE CASTANEDA 2012; KIRAN AND KHANDELWAL 2014). Nevertheless, their interest in
evaluating the richness of heterogeneous mechanical tests has not yet been investigated. The
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Figure 4.5 An overview of mechanical states, for an isotropic material and plane stress state,
represented through the diagrams of (a) major and minor strains, (b) major and minor stresses, and
(c) stress triaxiality and Lode angle parameter.

stress triaxiality 7 represents the distribution of stress in the three orthotropic axes and can be
given by

Oh Oxx t O'yy

M 3\/ O%x + Oyy — OxxOyy + 303y

where oy, is the hydrostatic stress, and Gy is the von Mises equivalent stress. The range of stress
triaxiality values is —oco < 7 < 4+00. However, in the case of plane stress state, the range is reduced
to —2/3 < 7 < 2/3. Additionally, stress triaxiality values of 7 > 0 characterize tensile states, and
of 7 < 0 characterize compressive states.

The Lode angle 6, or the Lode parameter L, relates to the third invariant of the deviatoric stress
tensor J; normalized by the von Mises equivalent stress &y, through

3
L =—cos(36) = — <5J—3> , (4.6)
VM

where J; is given by
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1
k= _2_7(Uxx - 20'yy)(o'yy — 2035 )(0xx + ny)~ 4.7)

The range of the Lode angle is 0 < 6 < 7/3, and the Lode parameter’s range is —1 < L < 1.

Additionally, the Lode angle 6 can be normalized as

- 2 5\
6 =1 — —arccos <—3> . (4.8)
T ovM

where 0 is the Lode angle parameter of range —1 < 6 < 1.

A diagram is typically used to represent the stress triaxiality and Lode angle parameter, where
the latter is represented on the horizontal axis and the former on the vertical axis. Similarly to
the two previous metrics, reference values of 7 and 0 represent typical mechanical states, such
as uniaxial tension by 7 = 1/3 and 6 = 1, and shear by = 6 = 0 (see Figure 4.5c and Table 4.2).
Moreover, the relationship between 6 and 7 in a plane stress state (g,, = 0) is also represented in
Figure 4.5c by the plane stress curve defined by

6 =cos|5(1-8)] = —2—27;7(;;2 - %). (4.9)

Table 4.2 An overview of mechanical states represented through the reference values of major and
minor strains, major and minor stresses, and stress triaxiality and Lode angle parameter, considering
an isotropic material and a plane stress state.

Major and Major and Stress triaxiality and
Mechanical state minor strains minor stresses Lode angle parameter
Equibiaxial compression &lep =1 o,/lo; =1 n=-2/3
Ez < 0 0'2 < 0 6_ = 1
g <0 0, <0
Plane strain compression £ <0 o,/o, =V n= —\/3/3
El =0 0'2 < 0 6_ =0
0, <0
Uniaxial compression g,/e = =2 0,<0 n=-1/3
82 <0 o = 0 é =1
Shear &/e; = —1 o,/a, =-1 n=0
& < 0 g, < 0 6_ =0
e >0 o, >0
Uniaxial tension g/, = —0.5 o/, =0 n=1/3
Ez <0 O, = 0 6_ =1
e >0 o, >0
Plane strain tension &/e; =0 o,/o1 =V
27 €1 o 2 1 o 7’) — \/3/3
&= o -
2 2 6 =0
e >0 o, >0
Equibiaxial tension &le; =1 o,/o; =1
q 2/ &1 . 2/01 . n=2/3
&> o, > -
2 2 6 =1

e >0 o, >0
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4.5 Formulation of Rotation Angle

A metric able to evaluate the test’s sensitivity to anisotropy has not yet been fully explored to
evaluate heterogeneous mechanical tests. A possible representation for this behavior is based
on the principal angle between the principal stress base and the material orthotropic axes. The
formulation is derived from Mohr’s circle equations for a plane stress state and is given by

20xy
tan(2f) = ————, (4.10)
Oxx — ny

where £ is a principal angle measured in Mohr’s circle. Because the tangent function is z-periodic,
satisfying tan(2) = tan[2(B + 7/2)], there are two principal directions for which Equation 4.10
is fulfilled. These principal directions are 8 and g + 7/2, which are perpendicular. These two
principal directions, represented by 8; and f3,, are, respectively, the principal angles of the major
and minor principal stresses. Knowing the values of the stress tensor components, 8 corresponds
to the angle from the material coordinate system x’ axis to the closest principal stress axis. For
this reason, it is impossible to know from its value if the principal angle is associated with the
major or minor principal stress axis. Additionally, the values of 2 range between —90° to 90° in
Mohr’s circle, so that § varies between —45° to 45° in the material coordinate system.

MARTINS ET AL. (2019) applied this formulation presenting the principal angle related to the
major principal stress axis to show that a cruciform specimen exhibited a relatively broad distribu-
tion of the principal angle. However, this formulation ignores the case when the mechanical state
is predominantly compressive in Mohr’s circle by only considering the principal angle related
to the major principal stress axis. It also presents different values for f depending on the shear
loading direction. Moreover, the presented range of values (from —45° to 135°) is not readily
associated with the material orientation from the RD, typically evaluated between 0° to 90° for
sheet metals.

Therefore, a metric based on the principal angle’s formulation is suggested to evaluate the tests’
sensitivity to anisotropy. It considers the maximum principal stress in absolute value, and the
range of material orientations typically used to calibrate the material’s anisotropic behavior. This
metric is named rotation angle, represented by y, and refers to the principal direction associated
with the maximum principal stress in absolute value. Its values range between 0° to 90° and is
given by

45 if oyy = oyy and oxy # 0

= ) , (4.11)
45(1 —q) + q|B| otherwise

14

where § is the principal angle (in degrees) calculated from Equation 4.10, and q is an integer of
value —1 or 1, calculated as

Oxx — Oyy |oy| — |0y

q= = Sign(o-xx - Uyy) Sign(|01| = |oaD), (4.12)

|Uxx - ny' ||O'1| - |02||
where |.| = 4/(.)? represents the absolute value, and the stress tensor components are defined in
the material coordinate system. This formulation represents all possible states in Mohr’s circle, as
shown in Figure 4.6. Although each state represents different physical meanings, it is possible to
mathematically reduce them to three different conditions, where the rotation angle is:

1. equal to 45°, when oy = 0yy, and oy # 0;

2. equal to ||, when oy, < gy for a predominant compressive state (|o7| < |oy[), and when
Oxx > Oyy for a predominant tensile state (|oy| > |o,|), respectively, cases 1 and 2 of situa-
tions A and B (see Figure 4.6);
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3. equal to 90° — |B], when oy > oy for a predominant compressive state (|o;| < |o,]), and
when oy, < oy, for a predominant tensile state (|o;| > |o,|), respectively, cases 3 and 4 of
situations A and B (see Figure 4.6).

Conditions 1 and 2 are schematically illustrated in Figure 4.7. Additionally, a test that demonstrates
good sensitivity to material anisotropy should exhibit material points in the complete range of the
rotation angle. Ideally, the material points reach the plastic regime and are equally distributed in
the range of 0° to 90°.

Oxx < Oyy Oxx > Oyy 4 Oxx <Oyy Oxx > Oyy
lo1| < |oz| | lo1] > |o2]
(GXX)_GXy) (Uxx’_cxy) (Gxx’_cxy)
3
/
Oxy < 0
% N * (+) / =) * (+)
o /
=
7] o S S
] 02 O1 02
Qo - 7 )
o >0 / 2
Oxy
/
1
(GXX’_GXY) (cx)u_cxy) (cxxa_cxy) (cx)u_cxy)
lo1] < loz| | lo1] > |o2|
Oxx <Oyy Oxx > Oyy Oxx < Oyy Oxx > Oyy

normal stress

Figure 4.6 Schematic representation of possible states in the Mohr’s circle covered by the formula-
tion of the rotation angle. A predominant compressive state characterizes situation A, and situation B
by a predominant tensile state. Cases 1, 2, 3, and 4 represent the different possibilities of calculating
the principal angle.

4.6 Numerical Evaluation

This section evaluates the heterogeneous mechanical tests A, B, C, and D, considering the three
different materials, specifically Cu, DP600, and AA2090-T3. The evaluation is performed using
the metrics described above, namely: the equivalent plastic strain, major and minor strains, major
and minor stresses, stress triaxiality and Lode angle parameter, and rotation angle. The tests
present linear strain paths, without strain-path changes, thus the time instant just before necking
defines the maximum heterogeneity of the test. Moreover, this times instant is representative of
the heterogeneity observed throughout the test (SOUTO ET AL. 2015B). For that reason, the results
are exclusively evaluated for the time instant where the FLC is reached, in other words, when
Werc = 1 (see Equation 4.1). Table 4.3 summarizes the displacements obtained at the FLCs of
each material for every test.

Equivalent Plastic Strain

The equivalent plastic strain distribution is evaluated using the deformed shape, where the
equivalent plastic strain levels are represented through a color map (see Figure 4.8). The finite
element mesh is not represented in the shapes, as it would add significant visual noise due to a fine
mesh, and the color map would not be visible. Additionally, a distinction in the representations is
made between material points in elastic and plastic regimes, with the latter represented through the
color scale and the former in a single color. This distinction between regimes enables visualization
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Figure 4.7 Schematic representation of material points under all possible states in the Mohr’s circle,
covered by the formulation of the rotation angle, for conditions (a) y = |3] and (b) y = 90° — |B]. The x
and y axes represent the global coordinate system (x,y), and x" and y’ axes represent the material
coordinate system (x', ).
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Table 4.3 Displacements (in mm) corresponding to a material point reaching the forming limit curves
of Cu, DP600, and AA2090-T3 for tests A, B, C, and D.

Material

Test Cu AA2090-T3 DP600

A 0.195 0.583 0.571
B 0.514 2.041 2.223
C 0.848 1.924 2.587
D 0.852 2.345 3.266

to focus on material points in the plastic regime, preferable, rather than material points in the
elastic regime. Also, this representation provides a visual outline of the mechanical solicitation;
and, as will be shown ahead, it is used to connect the metrics.

The comparison of equivalent plastic strain levels between materials is not of huge interest,
as the observed differences are intrinsically related to the material itself. Instead, it is more
interesting to analyze differences between tests for the same material. Therefore, in this case,
the test presenting the highest equivalent plastic strain levels is, in general, test D, for the three
materials. Concerning the equivalent plastic strain contour, the variation in the amount of
material points under the plastic regime between materials is the lowest for Cu and the highest
for DP600. Therefore, more mechanical information is retrieved from the latter before the rupture,
which could be related to the strain hardening behavior. Indeed, DP600 exhibits the highest
strain hardening rate (see Figure 4.2), and Cu the lowest, leading rapidly to a high localization of
deformation.

An important aspect is also the homogeneity of deformation. The deformation in test A mainly
localizes between adjacent arms, while most of the specimen’s area is under low deformation
levels. For test B, the deformation is localized in the vertically centered region, particularly in
the central region, and close to the free edges. Although slight differences are observed between
materials, test B presents intermediate to high levels of deformation in this region, while the rest
of the specimen presents low equivalent plastic strain levels. In opposition, test C presents two
primary regions where deformation localizes: one at the left vertically centered region and another
at the right-hand side curvature. Low equivalent plastic strain levels are observed between these
two regions, while the rest of the specimen is in the elastic regime or close to it. The distinct regions
of localized deformation in tests B and C can perhaps be associated with different mechanical
states. Lastly, the deformation in test D appears to localize at the right-hand side curvature close
to the mechanical grips, and distinct regions present low to intermediate equivalent plastic strain
levels.

As the analysis of the equivalent plastic strain is more related to the amount and homogeneity
of strain, the following metrics will evaluate the diversity and richness of mechanical states.
Nevertheless, each metric is associated with the equivalent plastic strain through a color map.

Major and Minor Strains

The evaluation of the major and minor strains is performed through the strain-based diagram,
where a circular marker represents each material point colored by the corresponding level of
equivalent plastic strain (see Figure 4.9). In addition, the diagrams are presented with both axes
normalized by an arbitrary value, to reduce the visual noise of using different axes limits. This
value is specific for each material and is identified in each diagram’s bottom left corner.

The major and minor strains results show that the strain states are mainly located between
uniaxial and plane strain tension for tests A and B. In the former, for AA2090-T3, the strain states
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Figure 4.8 Equivalent plastic strain contours. Tests are represented in rows and materials in columns.
Material points in the elastic and plastic regimes are distinguished by a gray color and the color map.
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tend to uniaxial tension, while for DP600, it tends to plane strain tension. Although some material
points with low equivalent plastic strain levels are observed in the equibiaxial tension region,
it is disappointing and surprising that a biaxial test presents few material points in this region.
In test B, the two regions of high equivalent plastic strain levels are identified, particularly for
Cu and DP600, where two peaks of material points are formed, one in the specimen center and
another along the free edge. Tests C and D present similar strain states’ distributions, ranging from
plane strain compression to plane strain tension. However, material points distribution in shear is
denser for test C than D, while the opposite is observed in uniaxial compression, even though with
low, but not zero, levels of equivalent plastic strain. Concerning test C, the single peak with high
equivalent plastic strain levels can suggest that the two main regions previously identified present
similar uniaxial tension strain states, therefore not providing additional mechanical information.

Major and Minor Stresses

Similarly to the major and minor strains, the evaluation of the major and minor stresses diagram
is performed through the stress-based diagram (see Figure 4.10). The same visualization charac-
teristics are employed, with colored circular markers and normalized axes, which are valuable in
this representation, as the magnitude of stress values greatly vary between materials.

The first observation on the major and minor stresses diagram is that material points under
or close to the elastic regime are more easily identified than in the strain-based diagram. The
opposite is observed for material points under the plastic regime. This observation is certainly
explained by the natural shape of typical metallic sheets’ stress-strain curve. The curve typically
presents an accentuated slope in the elastic regime (proportional to Young’s modulus), enhancing
stress differences. On the contrary, the curve typically presents a low slope in the plastic regime,
enhancing strain differences. This observation is particularly evident for test A, and with less
expression for tests C and D. Concerning test B, most material points are close to the uniaxial
tension region, presenting the lowest range of stress states from all tests. Between tests C and D, the
major and minor stresses diagram is useful to accentuate differences from equibiaxial compression
to shear.

Stress Triaxiality and Lode Angle Parameter

The last metric evaluating the diversity of mechanical states is the stress triaxiality and Lode angle
parameter diagram, as presented in Figure 4.11. Overall, this representation appears to present
less information than the two previous ones, because only a fraction of the material points is
visible, though an equal amount of information is represented. Because of the plane stress state
formulation, it was expected that all material points fall on the plane stress state curve. Even with
a 3D analysis, the same would be expected on most material points, because the stress tensor
component g, is generally negligible up to necking, and maybe beyond for small thicknesses (see
Chapter 7). Therefore, the use of this metric can be more useful in studies of rupture or failure
of metallic sheets, because it gives greater importance to o,,. Nevertheless, it can also be a good
way to verify if the plane stress conditions are verified in 3D analysis. But because all the material
points are represented on top of the plane stress curve, this metric can be a great complement to
the two previous metrics, providing an instant understanding of stress states achieved.

The levels of test A stress triaxiality indicate that all material points are under a tensile state.
For DP600, the full range of states from uniaxial to equibiaxial tension is achieved with material
points in the plastic regime. On the other hand, for Cu and AA2090-T3, a higher range of stress
states with high equivalent plastic strain levels is observed. In relation to tests B, C, and D, it is
readily observed that these tests achieve tensile and compressive stress states. Test C lacks material
points in shear, under the plastic regime, and equibiaxial to uniaxial compression. Finally, it is
seen that test D is the test achieving the highest range of stress states, from equibiaxial compression
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Figure 4.9 Major and minor strains diagrams. Each row is associated with a test, and each column
with a material. Material points in the elastic and plastic regimes are distinguished by a single color
and the color map. An arbitrary value normalizes both axes, shown in each diagram’s bottom left
corner. The gray lines represent each material’s FLC and the red lines represent reference mechanical
states.
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to equibiaxial tension, with material points in both regimes. In general, this diagram replicates
the major and minor stresses diagram through a different stress tensor representation. While the
former represents the decomposition of the hydrostatic and deviatoric stress contributions, the
latter stands for the principal values. Nevertheless, this metric can complement the previous two,
providing an instant understanding of the stress states achieved.

Rotation Angle

Finally, the rotation angle results are presented in Figure 4.12 through a histogram of area densities.
The histogram divides the rotation angle entire range of values into 90 equal intervals, representing
the specimen’s area proportional amount. Using the area density minimizes the finite element
mesh influence on the results. Each interval is also discretized by the levels of equivalent plastic
strain, similar to the materials points of previous metrics.

Test A presents material points in the full range of rotation angle (both elastic and plastic
regimes), indicating a good sensitivity of the test to anisotropy. However, material points presenting
high equivalent plastic strain levels are only located between 30° to 60°. It can be noticed that the
rotation angle distribution is centered close to 0° for tests B, C and D, which can be related to the
material orientation. When changing the material orientation, mainly a shift of the distribution
is noticed, but also some spreading of the distribution, especially at 45°, as will be shown ahead.
Test B presents the smallest range of values for all materials, exclusively from 0° to 45°. Most
material points are also located between 0° and 15°, indicating low sensitivity to anisotropy for a
given loading direction. Specifically, for Cu, the density of material points presenting rotation
angle levels higher than 15° is low, and the present low levels of equivalent plastic strain. On
a positive note, for AA2090-T3 and DP600, the density of material points with rotation angle
values higher than 15° tends to increase. Both test C and D achieve the full range of rotation angle
values. However, from 45° to 90°, the material points are in the elastic regime or close to it. The
ability to cover a high range of values means the density of values will be more evenly distributed.
Particularly for test C, this remark reflects the good density of material points in the histogram
central region and the low density values (lower than 5 %).

Nevertheless, test C still exhibits the most amount of material points located close to 0°, but
material points with high levels of equivalent plastic strain are observed up to 30°. In test D,
the rotation angle values are not as equally distributed as in test C, because the histogram’s first
interval (0° to 1°) aggregates more than 10 % of the specimen’s total area. Even so, the density
and equivalent plastic strain levels of material points between 0° to 30° are in the same order as
for test C. Ultimately, test A is the one that presents the highest range of rotation angle levels for
material points in the plastic regime. Therefore, it can be considered the most sensitive test to
anisotropy. However, as test A is a biaxial loading test, it is naturally advantageous relative to the
other tests. Test C presents the most equal distribution of the four tests, while achieving values up
to 45° under the plastic regime.

To demonstrate how the histograms would change for a different material orientation, Fig-
ure 4.13 represents the rotation angle histograms of test C and AA2090-T3 for material orientations
of 0°, 45°, and 90° from RD. The first case is similar to the one found in Figure 4.12. Concerning
the other two cases, it can be observed that for a material orientation of 90° from RD, the histogram
is approximately mirrored relatively to the one of 0° from RD. It is not an exact copy, because
the material behavior changes with material orientation, but the general distribution is similar.
In the case of 45° from RD, it is observed that the region with a higher area density of material
points is between 45° and 60° of the rotation angle. Here, it is expected that most material points
present rotation angle values in the same order as the material orientation angle. Additionally,
the distribution of material points is more spread from 0° to 90° of rotation angle, rather than
concentrating near the material orientation angle. The transformation is rather complex than
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a simple shift in the distribution. However, it is possible to approximately anticipate how the
transformation will occur. These results reinforce the idea that at least two tests with different
material orientations are needed to fully characterize the anisotropic behavior of sheet metals.
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Figure 4.13 Rotation angle histograms of test C and AA2090-T3 for material orientations of 0°, 45°,
and 90° from RD, respectively, from left to right. The rotation angle’s range of values (0° to 90°) is
divided into 90 equal intervals. Material points in the elastic and plastic regimes are distinguished by
a single color and the color map. The maximum equivalent plastic strain value is shown above each
histogram.

From a global perspective, it appears that these tests individually cannot fully characterize the
material’s strain hardening and anisotropic behavior. Nevertheless, test D could better characterize
the strain hardening than the other tests due to higher equivalent plastic strain levels and diversity
of mechanical states. However, test B presents a more homogeneous distribution of deformation
and can also be considered a suitable choice for the strain hardening characterization, even if
the range of mechanical states is reduced. Regarding the anisotropic behavior of the materials,
the rotation angle suggests that test A can better characterize this behavior. However, this test
requires a nonstandard testing machine, unlike the other tests, which can be performed on a
universal testing machine. Given the possibility of performing two tests, the combination of
different material orientations, such as at 0° and 90°, of tests D or C, can increase the anisotropic
information observed in the rotation angle.

4.7 Conclusions

In this study, the richness of heterogeneous mechanical tests is evaluated using five metrics. The
analysis considers four heterogeneous mechanical tests and three virtual materials, providing
additional validation of each test’s potential and demonstrating the relevance of evaluating tests
for different materials.

The performed evaluation shows that the equivalent plastic strain is relevant to evaluate the
levels of strain achieved and the homogeneity of deformation. The diversity of the mechanical
states is evaluated using the major and minor strains, the major and minor stresses, and the
stress triaxiality and the Lode angle parameter. Although these metrics represent the strain
and stress tensors, each one presents characteristics that complement each other. However, the
simultaneous use of the three can be considered excessive. To avoid redundant representations, the
use of the major and minor strains should be a priority, because it can be experimentally measured.
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Additionally, the major and minor stresses are an excellent complement to the major and minor
strains and should be used whenever possible. In opposition, the use of the stress triaxiality and
Lode angle parameter can be considered optional, as the amount of visible information is lower
than in the other two. Lastly, the rotation angle is proposed to evaluate the tests’ sensitivity to
anisotropy. Through its use, it is possible to assess the range of material orientations achieved. It
is expected that this metric can be useful to evaluate the potential of heterogeneous mechanical
tests to calibrate the material’s anisotropic behavior.

A test achieving a high range of mechanical states, from equibiaxial compression to equibiaxial
tension, was identified. Moreover, the biaxial loading test leads to the lowest equivalent plastic
strain levels, but is also the most sensitive test to anisotropy. Nevertheless, two uniaxial loading
tests also show great potential to characterize the material’s anisotropic behavior, if two tests of
different material orientations are combined.

In summary, this study provides a basis to evaluate heterogeneous mechanical tests using
various metrics. Hopefully, it can contribute to the development of heterogeneous mechanical
tests by considering the materials’ anisotropic behavior and providing a basis to evaluate their
richness. Future studies should validate these findings by applying the suggested metrics to real
experiments, and calibrate constitutive models using the selected tests.
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Algorithms

5.1 Introduction

The mechanical behavior of sheet metals is usually sensitive to strain, strain rate and temperature
effects. Recently, due to the growth of heat-assisted manufacturing processes (KARBASIAN AND
TEKKAYA 2010), the effects of strain rate and temperature have gained more impact. Therefore,
being able to precisely forecast sheet metals’ mechanical response, under a broad variety of
strain rates and temperatures, is more and more essential for advanced manufacturing processes.
To predict such behavior, thermoelastoviscoplastic constitutive models, characterized by their
nonlinearity and many material parameters, can be used. However, the traditional calibration
of such models requires an extensive database, with tests performed for various strain rates and
temperatures (MARKIEWICZ ET AL. 2017).

The use of full-field measurement techniques, heterogeneous mechanical tests, and inverse
methods has reduced the number of required experimental tests (KAJBERG AND WIKMAN 2007).
Applying full-field measurements techniques, such as DIC, the entire displacement field on the
specimen’s surface can be recorded and directly used to calibrate a constitutive model. The
information obtained from these tests can be further enriched using temperature measurements.
The material parameters can be identified using inverse methods, such as the FEMU (KAVANAGH
AND CLOUGH 1971).

Solely using full-field measurements with inverse methodologies does not guarantee suitable
material parameters are found. An automatic strategy using optimization algorithms is required to
find these material parameters. However, most studies related to constitutive models’ calibration
tend to overlook the importance of optimization algorithms by resorting to familiar ones, such as
gradient-based least-squares algorithms (COOREMAN ET AL. 2008; COPPIETERS ET AL. 2011; SOUTO
ET AL. 2015B). These algorithms may perform well and be suitable for nonlinear least-squares
problems, such as the ones formulated using the mentioned inverse methodologies, but may also
present disadvantages. A few studies have explored the use of other optimization algorithms and
strategies, such as direct-search and stochastic methods (DE-CARVALHO ET AL. 2011; COELHO
ET AL. 2019; KOWALEWSKI AND GAJEWSKI 2019).

This study aims to implement different optimization algorithms in the calibration of a ther-
moelastoviscoplastic constitutive model. Three heterogeneous thermomechanical tests performed
at different average strain rates are used in this study. This application is selected because it is



70  Efficiency of Optimization Algorithms

considered a challenging application. The FEMU is the inverse methodology, and three optimiza-
tion algorithms are applied in the optimization procedure. The results obtained with different
optimization algorithms are compared in terms of efficiency and robustness.

5.2 Finite Element Model Updating Method

The finite element model updating (FEMU) is used to identify the material parameters of the
constitutive model (KAVANAGH AND CLOUGH 1971). This method is based on the simple idea
of iteratively adjusting the unknown material parameters, to minimize the difference between
reference and FEA numerical results. The FEMU has been largely adopted in many applications,
partly because of its ease of implementation and flexibility (POTTIER ET AL. 2011; PRATES ET AL.
2016). In fact, the FEMU mainly requires the finite element method, which is already widely
spread across the scientific community. However, the FEMU requires a finite element model that
accurately reproduces the real experiments and its boundary conditions (KACEM ET AL. 2021). In
addition, the high computational cost of the FEMU is a major disadvantage compared to more
computationally efficient methods, such as the VFM (MARTINS ET AL. 2018A).

The FEMU employs an objective function to be minimized, which can be composed of different
data, such as the strain tensor components, the displacement components, or load. This flexibility
has contributed to an increase in the number of formulations presented in the literature (LIN
ET AL. 2002; CAO AND LIN 2008; ANDRADE-CAMPOS ET AL. 2012). Recently, FEMU has been
mainly used in combination with full-field measurements (COOREMAN ET AL. 2008; SOUTO ET
AL. 2015B; HENRIQUES ET AL. 2022). In that regard, the adopted objective function ¢(£), with
& = (A, B,n,m, C), the vector of material parameters to be identified, includes the three tests with
equal weights and can be decomposed in two separate terms as

o) = Z[wa + %(5)] (5.1)

i=1

where the first term ¢, formed by the numerical and reference strain components e, £y, and
Exy» 18 given by

um num ref num _ ref
¢1(§) = Zn Z (EXX (i)f_g ) +(—‘€yy (i)f Eyy) +(—Exy (i)f EXY)] , (52)

P k=1 Emax Emax Emax .
jk

where n; and n,, are, respectively, the number of time instants and in-plane measurement points.
To distinguish between reference and numerical variables, the superscripts “ref” and “num”
are used, respectively. The variable e'¢{ represents the maximum strain value of all in-plane
components and time instants. Because the displacement field represents the raw data, the strain
field is computed from the displacement field using a total Lagrangian formulation. The reference
strain field is computed before the calibration procedure, and the updated strain field is computed
after every finite element simulation from the extracted numerical displacement field. The second
term ¢, consists of the reference and numerical load normalized by the maximum load value of
all time instants Fref as

num ref
@, (&) = 1 Z w

P]O

] . (5.3)

J
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5.3 Optimization Algorithms

The optimization algorithms are essential in the FEMU to minimize the objective function (see
Equation 5.1) through an iterative procedure. In this study, different algorithms are used to
evaluate their performance. The optimization procedure is implemented in Python programming
language, using the optimization algorithms from the SciPy library (VIRTANEN ET AL. 2020;
ScIPyY 2022B). This library has several optimization algorithms (e.g., gradient-based, stochastic),
providing the user with easy implementation in its programs. Three optimization algorithms
of different types were selected for the optimization procedure: the Levenberg-Marquardt, the
Nelder-Mead, and the Differential Evolution algorithms.

5.3.1 Levenberg-Marquardt Algorithm

The Levenberg-Marquardt (LM) is a gradient-based algorithm that uses the approximated Hessian
and Jacobian matrices (LEVENBERG 1944; MARQUARDT 1963). It is widely used to calibrate
constitutive models (GUNER ET AL. 2012; MAREK ET AL. 2019; MARTINS ET AL. 2019) because it
is well suited for solving nonlinear least-squares problems. The LM algorithm requires the user to
select an initial solution, and if not well chosen, it can lead to convergence difficulties or local
minima, instead of the global minimum. Nevertheless, if the problem is well-conditioned and a
suitable initial solution X, is selected, the algorithm can converge rapidly. For an iteration i, the
LM can be written as

[H(x") + Adiag (H')| h! = —[J(x)]Tr(x), (5.4)

where H(x') is the Hessian matrix, 1 is the damping factor, h’ is the increment of identification
parameters, and r(x!) is the corresponding residuals vector of the objective function ¢. Note that
r(xi) contains as many rows as number of tests, time instants, and measurement points, for each
strain component and load. This is one of the main advantages of the LM algorithm, because it
quantifies the influence of each row in the objective function. The damping factor is particularly
important in the LM algorithm, because it creates a trust region around the solution. For low
values of A, the algorithm results in a Gauss-Newton algorithm, while for high values it results in
the steepest descent algorithm. The Hessian matrix H(x') can be approximated by

H(x') = [JxD]TI(x) (5.5)

where J(x') is the Jacobian matrix representing the derivatives of ¢ with respect to x.. In the
scope of this study, J is calculated by forward finite-differences. Finally, the new solution x'*! is
obtained by

x*1 = x! + hi, (5.6)

More details on the LM algorithm implementation used in this study can be found at MORE (1978)
and SCIPY (2022D). However, it should be noted that this implementation within SciPy does not
provide enough flexibility, because it is essentially a wrapper of the MINPACK project in Fortran
(MORE ET AL. 1984).

5.3.2 Nelder-Mead Algorithm

The Nelder-Mead (NM) is one of the best known and simpler direct-search algorithms used in
unconstrained optimization (NELDER AND MEAD 1965). The NM algorithm employs a simplex that
begins with a set of vertices for every identification parameter plus one. In practice, each vertex
corresponds to a given solution. Based on a series of transformations of the simplex, the algorithm
iteratively reduces the simplex size. The algorithm is known to achieve satisfactory results in
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few iterations, but may also present convergence problems. Comparatively to gradient-based
algorithms, this algorithm stands out for not requiring derivatives.

At each iteration i, the simplex vertices x}, x}, ..., X!, ,;, with n the number of material parame-
ters, are ordered according to the objective function values as

p(x) < p(xb) < ... < p(xl41). (5.7)

where x! represents the best vertex, and consequently, x’,, ; the worst. Additionally, let us consider
that xg is the centroid of the n best vertices, given by

18 .
Xp = le;. (5.8)
}:

After the vertices are ordered and the centroid calculated, the algorithm uses four main transfor-
mations to improve the simplex: reflection, expansion, contraction and shrink. Each is associated
with four scalar parameters w,, we, W, and wy.

Reflection

The first and mandatory transformation, named reflection, is performed where a new vertex x. is
found by reflecting the x;,, ; through xg as

xL=xL + o (x} — X541)s (5.9)

Then, the objective function value of x! is calculated and if p(x}) < @(xI) < @(x}), a new
simplex is obtained where x}; = xL. However, if the latter condition is not observed, multiple

transformations can be additionally performed.

Expansion

If x. is better than x}, the expansion transformation is performed, where a new vertex x., is
generated by expanding x. as

xt = X} + we (X} — X}), (5.10)
If p(xi) < @(xL), a new simplex is obtained where xi{t}l = x.; otherwise, the new simplex is

obtained by x'} = xL.

Contraction

If p(x}) < p(xb) < p(x, +1)» an outside contraction is performed, where the reflected point is
contracted towards the centroid as

Xf)c = Xé + wc(Xi - Xf)), (5.11)
If the new vertex is better than the reflected vertex, then x5}, = x! . Instead, if p(xL) > @(x,.,),
an inside contraction is performed as

xi, = x5 — o (xt —xb), (5.12)
where the new simplex will have x5}, = x!_if the latter is better. However, if the contraction

transformation does not yield a better solution, a last transformation is required.
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Shrink

Finally, the shrink transformation is performed as a last resort in case contraction fails. Here, a
new simplex is obtained by replacing all the vertices, except x}, with new vertices closer to the
best solution as

x}“ =xi + ws(xj —xb). (5.13)
The operations and transformations of the NM algorithm are schematically illustrated in Figure 5.1
for a simplex of size n = 2, and considering w, = 1, w, = 2, w. = 0.5, and wg = 0.5. Nevertheless,
NM implementation used in this study adapts the scalar parameters w;, we, @., and wg to the
dimensionality of the problem at hand (GAO AND HAN 2012). More details of the implementation
used in this study can be found at SCIPY (2022A). Nevertheless, implementation-wise, the NM
algorithm allows more control over the identification procedure, as it allows the calling of a
subroutine at the end of every iteration.

WAV R ANt A

simplex centroid reflection expansion contraction shrink

Figure 5.1 Schematic illustration of operations and transformations of the NM algorithm.

5.3.3 Differential Evolution Algorithm

The Differential Evolution (DE) is a population-based stochastic algorithm that generates new
solutions from other solutions (STORN AND PRICE 1997). The DE algorithm can be characterized
by its ease of implementation, robustness, and finding the global minimum of a problem in most
attempts. However, a significant drawback of the DE algorithm is its high computational cost and
low convergence rate compared to other optimization algorithms. On the other hand, compared
to other population-based stochastic algorithms, the DE algorithm tends to outperform them. As
it is common in population-based algorithms, the number of solutions used as the population can
significantly impact the convergence and success of the optimization procedure (PIOTROWSKI
2017). Moreover, the DE algorithm requires the definition of bounds for the identification param-
eters, to generate the initial set of solutions, either manually, randomly or distributed over the
search space.

A population of NP solutions, each with a size of n material parameters, is initially randomly
generated and should try to cover the design space as much as possible. At each iteration i,
a solution x! is represented in the design space and limited by its upper and lower bounds,
respectively, X, and X,;n. The generation of the initial population is defined for a given initial
solution x° by

x0 = Xmin T r(Xmax - Xmin) s (5.14)

where r is a vector of random numbers uniformly distributed in the range [0, 1]. The optimization
process is then initialized, with the DE algorithm divided into three main operations: mutation,
crossover and selection.

Mutation

The mutation scheme allows for a more diversified and robust search in the design space. In this
step, for every target solution x’, a mutant solution v'*1 is generated by randomly choosing three
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mutually different solutions xirl, xir2 and X£3, h, K, and r are integer values from a sample in the
range of [1,2, ..., n]. The mutant solution v**! is then given by

vitl=xL + F(x}, —xL,), (5.15)

where Fis a positive integer that controls the ratio in which the population evolves. This parameter
is often referred to as the scale factor. The solutions X£2 and X£3 should also be different from
the target solution x'. Depending on the strategy used, x; can be randomly chosen from the
population or even the best solution from the previous generation.

Crossover

To complement the mutation strategy, the DE algorithm introduces crossover, controlled by a
parameter C, that defines the probability for crossover. In this step, the trial solution u‘*! is
generated from two different solutions, the mutant solution vi*! and the target solution x’. The
type of crossover can either be binomial or exponential. In the binomial crossover, the trial
solution u‘*! is generated as

i+l

i+1 _ Vi lferCr
W =i
Xj

s (5.16)
otherwise

where 1; is a vector of random numbers uniformly distributed in the range [0, 1]. Each material

parameter of the trial solution u'*! is determined independently. To determine which solution

contributes a given material parameter, C; is compared to ;. If r; is less than or equal to C,, the
i+1

material parameter u;"" is inherited from the mutant solution vi*1, otherwise is inherited from

x}'{. In the exponential crossover, a random material parameter is selected, and starting from that,
the trial solution u**! receives a material parameter from v**! until C, is less than r;. From that
point forward, u'*! inherits all the remaining material parameters from v**!.

Selection

Finally, the selection step decides if the trial solution u‘*! replaces the target solution x! in the
population. The objective function is evaluated at u'*!, and if its value is less than or equal to the
value at x!, u'*! replaces x' in the population as

. 5.17
x! otherwise ( )

i {ui+1 if g0(ui+1) < x! '
This procedure repeats until a termination criterion is satisfied. The operations of DE are schemat-
ically illustrated in Figure 5.2, and more details of the implementation used in this study can be
found at SCIPY (2022C).

i+1 i+1
° o o i o ; u X'eo
° X' o x! X X
e o° e o & .\. i+1 i+1
o . \ v v
[ ] °
[ ] [ ] ) [ ] i.
[ ° L] ° Xr3
population target mutation crossover selection

Figure 5.2 Schematic illustration of operations of the DE algorithm.
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5.4 Heterogeneous Thermomechanical Test

A numerical database from three heterogeneous thermomechanical tests is used as a reference
for the identification procedure, as no real experiments are considered in this study (MARTINS
ET AL. 2020B; MARTINS ET AL. 2021). Nevertheless, the reference data is based on real experiments
performed on a Gleeble 3500 thermomechanical simulator, using a hydraulic servo system able to
impose tension or compression forces, as well as a direct resistance heating system (COER ET AL.
2011). These tests present both heterogeneous temperature and strain fields, leading to richer
mechanical information.

The study considers a virtual material that presents characteristics of a DP980 dual-phase
steel with a 1.5 mm of thickness. The tests are uniaxial loading using the specimen geometry
as represented in Figure 5.3a. The ROI, defined by a width and length of, respectively, 28 and
60 mm, corresponds to the gauge length of the specimen. A uniaxial tensile load is imposed on the
specimens at constant displacement rates of 0.006, 0.06, and 0.6 mm s™!, respectively, for each test.
According to the length of the ROL, the displacement rates of each test correspond to, respectively,
average strain rates of 107, 1073, and 1072 s~!, which will be used to identify each test. In addition,
a heterogeneous temperature field is imposed on the specimens through the direct resistance
heating system, controlling and maintaining the temperature at the specimen’s center during
the test. The remaining part of the specimens present a temperature gradient due to the water-
cooling system of the machine’s grips. An example of the resulting temperature field is shown in
Figure 5.3b for a real experiment. Three thermocouples are used to monitor the temperature field
along the gauge length, and the red circles show their relative position in Figure 5.3b. The added
value of this procedure is that the temperature gradient triggers a heterogeneous deformation,
providing information on the material’s mechanical behavior at different temperatures and strain
rates.

grip RO grip -
e - -

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, . 60 |

@ (b)

Figure 5.3 Schematic representation of the specimen used in the heterogeneous thermomechanical
tests: (a) geometry of the specimens (dimensions in mm) and (b) example of temperature field recorded
during real experiments at the surface of the specimens.

The temperature field acquired with the Gleeble equipment usually presents a parabolic shape,
symmetrical about the specimen’s center (COELHO AND THUILLIER 2022). Measurements of three
thermocouples placed at —40, 0, and 40 mm along the x axis during real experiments confirm
the approximate symmetrical and parabolic shape of the profile along the specimen’s length.
Temperature variations along the width of the specimen can be neglected. It was also confirmed
that the temperature field remains constant throughout the deformation process (COER ET AL.
2011; COELHO AND THUILLIER 2022). Because of its parabolic shape, a second-order polynomial
can describe each test temperature field. For this study, a temperature field T(x) is numerically
generated between —30 and 30 mm along the x axis, and is defined for each test by
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—0.143x% — 0.251x + 506.404 for 10~ 4s~!
T(x) = {—0.149x% — 0.123x + 499.364 for 107 3s™!' . (5.18)
—0.139x% — 0.040x + 509.084 for 1072s7!
For the three tests, the temperature field is in range of [360 °C, 510 °C]. The maximum temperature

is reached at the specimen’s center, decreasing to its lowest at —30 and 30 mm along the x axis as
represented in Figure 5.4.
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Figure 5.4 Temperature field of the three heterogeneous thermomechanical tests imposed along
the x axis and described by second-order polynomials.

The reference data is numerically generated by a FEA simulation of each test. Only the ROI is
modeled due to lack of temperature measurements outside this region. The finite element model
is built in 2D, assuming a plane stress formulation. Abaqus/Standard (DASSAULT SYSTEMES
2019) software is used, and the four-node bilinear plane stress quadrilateral element (CPS4) is
used, with a large strain formulation. The finite element mesh is composed of 1680 elements.
Displacement-driven boundary conditions are imposed on the model extremities, respectively, at
—30 and 30 mm along the x axis. In addition, the temperature field is imposed on each node of
the finite element model through the second-order polynomial, and kept constant throughout the
test (see Figure 5.4).

The virtual material is considered isotropic and its elastic behavior described by the Hooke’s
law. The elastic properties of the material, namely Young’s modulus E = 210 GPa and Poisson’s
ratio v = 0.30, are known a priori and assumed to be constant in the temperature range of the
study. The von Mises yield criterion is assumed, thus anisotropy is not considered in this study.
In addition, the Johnson-Cook thermoelastoviscoplastic constitutive model (see Equation 2.23)
is used to describe the strain hardening behavior. The models available in Abaqus/Standard are
used in the FEA simulations.

The reference materials parameters are characteristic of a DP980 dual-phase steel (MARTINS
ET AL. 2020B), and are presented in Table 5.1. Although it is common to identify the material
parameters of the Johnson-Cook model, considering each term individually (describing the effects
of strain hardening, temperature, and strain rate), in this study the material parameters are
simultaneously identified. Nevertheless, some material parameters are considered known a priori

Table 5.1 Reference material parameters used in the Johnson-Cook thermoelastoviscoplastic
constitutive model to generate the reference data (Martins et al. 2020b).

A[MPa] B[MPa] n[-] Ty[’Cl Tyn[°C] m[-] C[] &Is™]

205.21 1124.0 0.092 25.0 1000.0 1.36 0.05 0.001
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and kept fixed throughout the identification procedure, such as the parameter ¢, = 0.001s7%,

the transition temperature T;, = 25°C, and the melting temperature T;;, = 1000 °C. The latter
is a value commonly used for the DP980 (ERICE ET AL. 2018). The transition temperature T;, is
set to a low value, as it can describe a wide range of temperatures. Additionally, the value of ¢,
is also low, to account for the early sensitivity of the material to strain rate effects. Moreover,
by reducing the number of material parameters to be identified, it might reduce the problem of
non-uniqueness of the solutions (NOTTA-CUVIER ET AL. 2013; ZHANG ET AL. 2022B). As such,
the material parameters A, B, n, m, and C are the only ones identified.

In Figure 5.5, the maps of equivalent plastic strain are presented for each test at the last time
instant, respectively, at 950, 106, and 11.75s. It is observed that the increase in average strain rate
results in lower levels of equivalent plastic strain achieved. As a result, the strain localization
is delayed. The reference database is composed of the displacement field and the evolution of
load at each time instant. The evolution of load for each test performed at three different average
strain rates is shown in Figure 5.6, where the markers represent the distribution of time instants
considered. It is observed that the evolution of the load is sensitive to the average strain rate, as an
increase leads to higher values of the maximum load. In addition, it should be noted that different
time instants compose the reference database, specifically 62, 58, and 47, respectively, for tests
with an average strain rate of 107, 1073, and 1072 s~1. Therefore, the objective function indirectly
assigns different weights to each test. Moreover, a lower weight is assigned to the early stages of
each test, as observed by the distribution of time instants considered in the objective function.
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Figure 5.5 Maps of equivalent plastic strain at the last time instant for the thermomechanical
heterogeneous tests (a) 102 s, (b) 10°3s™!, and (c) 104s7".

5.5 Numerical Implementation

One of the goals of this study was to develop a parameter identification software in Python
programming language, starting from a previously developed Fortran code (MARTINS ET AL.
2020B). Python was selected as the main programming language because it is a simple and modern
language that allows easy and fast development (MARCHAND 2022). Moreover, it is already one of
the most used languages, and any user can easily learn it and use this code in the future. However,
one drawback of Python compared to more advanced programming languages, such as C++ or
Java, is the higher computational cost (OLIVEIRA 2018).

To circumvent the computational limitation of Python, a hybrid code with Fortran is adopted,
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Figure 5.6 Evolution of the load throughout the deformation process of the heterogeneous thermo-
mechanical tests at an average strain rate of (a) 102s™", (b) 103s™!, and (c) 104s~".

where the latter is used to perform tasks that require more computational effort. There are multiple
reasons for selecting Fortran, such as: (i) the availability of previously developed codes, (ii) the
wide use in the scientific community, (iii) the low computational cost (ELTON 2015), and (iv) a
framework to easily connect with Python. This framework is particularly important in this study,
as it allows the use of code already developed and validated without additional development. The
framework is called F2PY, and provides a connection between Python and Fortran (PETERSON
2009). Simply, Fortran subroutines can be called from a Python script as if they were Python
functions, while only a few modifications are required in Fortran subroutines. It is part of the
NumPy package, and more details about its use can be found at (NUMPY 2022).

The flow of implementation is presented in Figure 5.7, where the main tasks are represented, as
well as the programming language or software in which they are executed. Initially, the reference
data (displacement field and evolution of the load) is read, and then the reference strain field is
calculated. The latter task is performed in Fortran because it is one of the most computationally
heavy tasks. Then, the optimization algorithm is selected from the ones presented above. It should
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Figure 5.7 Flowchart of FEMU implementation.
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be noted that additional algorithms could be made available, but only a few could be selected
for this study. The optimization procedure starts by invoking the SciPy functions, at which point
the control over the procedure is diminished. Then, all the other tasks are performed within
this framework. The FEA simulation is performed with Abaqus/Standard at every iteration, and
then an Abaqus-Python script is required to extract the numerical data. Both these tasks must
be externally executed to the main Python code. Again, the strain field is calculated from the
displacement field in Fortran, as well as the objective function. Although the latter is not of high
computational cost, the Fortran code was reused from a previous implementation.

5.6 Numerical Evaluation

Contrary to the DE, the LM and the NM algorithms are suitable for unconstrained problems.
However, to limit the search space of the three algorithms, lower and upper bounds are defined for
the material parameters (see Table 5.2). The defined bounds are based on the order of magnitude
of each parameter, and special attention was taken to not restrict the search space overly. For
the DE algorithm, the bounds are directly imposed, while for the LM and the NM algorithms,
a transformation of the material parameters is used. For all algorithms, the bounds normalize
the material parameters. Considering X = x/x, the vector of material parameters normalized
relative to its initial value x,, the lower and upper bounds x™™ and x™2* are normalized as

= Xmin -max Xmax
Xmin = —5 and XM = 0 (5.19)

where X i, and X, are the normalized bounds. Then, the transformed material parameters X
for X > 1 correspond to

X=14 Rpayx — 1) [1 — exp (1_—X>] , (5.20)
Xmax — 1
X < 1 corresponds to
X=1+&pn—1) [1 —exp (1;)‘1)] . (5.21)
min ~

The use of these transformations guarantees that the algorithms achieve feasible solutions, i.e.
solutions that lie within the search space.

To mimic image noise from actual full-field measurements, random noise from a normal
Gaussian distribution is added to the reference displacement field, while, for simplicity’s sake, the
load signals are kept noiseless. To evaluate the robustness of the methodology and performance of
algorithms, three data sets are used as reference data for the calibration: (i) without noise, (ii) with
noise of amplitude 10~ mm, and (iii) with noise of amplitude 10~> mm. The objective function
values using the reference material parameters are 0.0, 3.13 X 107%, and 3.017 X 107>, respectively,
for each data set.

Because the LM and the NM algorithms are sensitive to the initial solution, five different initial
sets are generated using the Latin hyperspace sampling method (MCKAY ET AL. 1979), generating
solutions evenly distributed over the search space (see Table 5.2). The number of initial sets was
arbitrarily selected as equal to the number of material parameters. This sampling method does not
consider the reference material parameters, avoiding an initial bias towards the global minimum.
The distribution of the material parameters of each generated initial set over the search space is
shown in Figure 5.8. These five initial sets are used for the LM and the NM algorithms, while for
the DE algorithm, a population of 50 solutions, ten times the number of material parameters, is
generated using the same sampling method. This number is considered sufficiently high to avoid
a significant impact on the performance of the DE algorithm (PIOTROWSKI 2017; OLIVEIRA 2018).
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Figure 5.8 Distribution in the search space of the material parameters, normalized by the bounds,
in each initial set for the LM and the NM algorithms. The reference material parameters are also
represented.

The three algorithms are, in general, used with the default settings defined in the SciPy library.
The exception is the step size for the finite difference approximation of the Jacobian in the LM
algorithm, set equal to 1073, The adaptive setting in the NM algorithm is also set, enabling the
algorithm to adapt its parameters to the problem’s dimensionality.

The final solutions and objective function values obtained in the optimization procedures are
summarized in Table 5.3 for the three algorithms. Additionally, in Figure 5.9, the evolution of the
objective function throughout the function evaluations is represented for the three algorithms.

Let us consider, for the purpose of analysis, that the final solutions with all material parameters
within 0.1 % of error from the reference ones achieve the global minimum. As such, it is observed
that the LM algorithm presents the worst performance of the three algorithms. Overall, the LM
algorithm achieves the global minimum only twice, whereas the NM algorithm achieves the
global minimum six times, and the DE algorithm can find the global minimum in two out of three
attempts. The fact that the LM algorithm cannot achieve the global minimum more often can be
related to the step size for the finite difference approximation of the Jacobian, which is probably
not small enough. The algorithm could benefit from starting a new optimization procedure, using
the obtained solution as the initial solution, and reducing the step size.

The results of the LM and the NM algorithms confirm their sensitivity to the initial solution,

Table 5.2 Reference set, upper and lower bounds for material parameters. The sets of material
parameters represent the initial solutions used for the LM and the NM algorithms.

Parameter

A [MPaq] B [MPa] nl-] mil-] Cl]

Reference  205.210 1124.000 0.092 1.360 0.050

Bounds
Lower 50.000 100.000 0.010 0.500 0.000
Upper 1200.000 2000.000 0.500 4.000 1.000
Sets
1 838.230  258.620 0.340 3.970 0.210

1158.140 1704.400 0.060 0.680 0.680
707.870 525,550 0.180 2.950 0.700
51.600 1368.290 0.440 2.110 0.010
397.470 1218.310 0.300 1.400 0.460

o WD
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Table 5.3 Final solutions and objective function values of the LM, the NM, and the DE algorithms.
The highlighted values indicate a relative error of 0.1% of the identified material parameters.

Parameter
Algorithm Set A [MPa] B [MPa] ni-l mil-] Cl-] @ [-]
LM without noise
1 205.779 1123.565 0.092 1.360 0.050 1.860x 107"
2 1200.000 2000.000 0.500 0.705 0.055 4.900x 107
3 269.893 1147.581 0.100 1.235 0.051 1.371x10°°
4 205.228 1123.986 0.092 1.360 0.050 1.134x 10712
5 356.294 1029.529 0.113 1.292 0.051 1.371x10°°
with noise of amplitude 1075 mm
1 205.860 1123.511 0.092 1.360 0.050 3.153x107°
2 1200.000 2000.000 0.500 0.705 0.053 4.900x 1074
3 205.202 1123.965 0.092 1.360 0.050 3.134x107°
4 205.530 1123.770 0.092 1.360 0.050 3.139x 10°°
5 375.108 1020.996 0.116 1.280 0.051 1.778x10°°
with noise of amplitude 10~ mm
1 210.709 1120.125 0.093 1.358 0.050 3.017x10°°
2 50.000 2000.000 0.082 0.729 0.053 8.433x107°
3 280.799 1074.003 0.102 1.328 0.050 3.046x 107°
4 200.753 1127.190 0.091 1.362 0.050 3.017x10°°
5 357.248 1029.400 0.113 1.291 0.051 3.155x107°
NM without noise
1 205.211 1123.999 0.092 1.360 0.050 3.781x107™
2 1200.000 1749.794 0.201 0.501 0.057 6.991x107°
3 205.211 1123.998 0.092 1.360 0.050 4.990 x 10~
4 50.000 1242.019 0.076 1.409 0.049 7.780x 1077
5 205.210 1124.000 0.092 1.360 0.050 1.069 x 107'°
with noise of amplitude 1075 mm
1 205.218 1123.991 0.092 1.360 0.050 3.131x107°
2 1200.000 1749.755 0.201 0.501 0.057 6.991x107°
3 205.210 1124.000 0.092 1.360 0.050 3.130x 10°°
4 124.777 1183.018 0.083 1.388 0.050 2.440x 1077
5 205.206 1124.002 0.092 1.360 0.050 3.131x10°°
with noise of amplitude 103 mm
1 206.206 1123.279 0.092 1.360 0.050 3.017x107°
2 1200.000 1751.275 0.200 0.500 0.057 9.888x107°
3 206.326 1123.261 0.092 1.360 0.050 3.017x10°°
4 50.000 1241.590 0.076 1.410 0.049 3.094x 107
5 257.939 1082.608 0.099 1.348 0.050 3.032x107°
DE without noise

205.210 1124.000 0.092 1.360 0.050 1.690x 10-1®
with noise of amplitude 10~ mm

308.679 1043.777 0.106 1.336 0.051 5.824x 1077
with noise of amplitude 103 mm

205.152 1123.997 0.092 1.360 0.050 3.017x10°°
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Figure 5.9 Evolution of objective function throughout function evaluations using the LM, the NM,
and the DE algorithms, represented from left to right. Results correspond to data sets without noise,
with noise of amplitude 10~ mm, and with noise of amplitude 103 mm, from top to bottom.

with different results depending on the initial set. This is particularly evident when the parameter
A of the initial set is close to its upper bound, as it is the case of set 2. In this situation, the
solution stagnates early, either in the upper and lower bound of parameter A. Based on these
results, it can be said that avoiding initial solutions close to the parameter’s bounds can potentially
decrease the chance of the algorithm converging there. In general, parameters n, m, and C present
higher success rates in achieving the reference solution. However, the results of set 5 with the
LM algorithm appear to have converged to local minima. In fact, one disadvantage of the LM
algorithm is the susceptibility to converge to local minima.

The effect of noise on the results is interesting, as it is observed that noise can benefit the
algorithm. In the case of the LM and NM algorithms, the final achieved solutions are, in general,
very similar between the data sets without noise and with noise of amplitude 10~> mm. However,
with the LM algorithm and set 3, it is observed that noise benefits the algorithm in achieving
a better solution than without noise. When the noise is increased to an amplitude of 10~ mm,
both the LM and the NM algorithms are not as efficient in achieving the reference solution,
but the NM algorithm appears less negatively affected by the presence of an additional noise.
The DE algorithm appears less affected by noise regarding the final solution, as each parameter
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solution of the data set with noise of amplitude 10~ mm is within 0.1 % of error from the reference
solution. However, the final solution for the data set with noise of amplitude 10~> mm is not close
to the reference one, but it can be related to a local minimum. To further investigate the effect of
noise in DE, more attempts should be performed, as the DE algorithm is not deterministic, and a
component of randomness always exists. Noise also affects the objective function convergence.
For example, for the LM algorithm with the initial set 1, where the final solutions are relatively
similar, the algorithm converges around 1000, 600, and 50 function evaluations, respectively, for
data sets without noise, with noise of amplitude 107> and 107> mm.

In summary, the differences between the LM and the NM algorithms are more evident in
terms of the convergence rate, where the first tends to converge rapidly, whereas the former
typically requires more function evaluations. Although only a single run was performed for
the DE algorithm with each data set, it appears more robust than the other two algorithms.
Nevertheless, it generally requires more function evaluations to converge to the global optimum.
Using the LM or the NM algorithms in a multiple starting approach can lead to similar results to
the DE algorithm.

5.7 Conclusions

A methodology to calibrate a thermoelastoviscoplastic constitutive model based on full-field
measurements, and the FEMU is considered to reduce the number of thermomechanical tests
involved. Three heterogeneous thermomechanical tests performed at different average strain rates
are used as reference data required by the calibration procedure. By using a modern programming
language library, three optimization algorithms are easily implemented in the calibration process,
namely the LM, the NM, and the DE algorithms.

The identification results of each algorithm were compared for three data sets, involving
different noise levels introduced in the reference displacement field. The DE algorithm has
demonstrated to be the most robust algorithm by reaching or being close to the global minimum
in two of the three data sets. However, it is also susceptible to local minima, even though it
appears less than the LM and the NM algorithms. Moreover, the number of function evaluations
required for convergence by the DE is higher than the other algorithms. The latter is particularly
relevant when dealing with the FEMU. Using a computationally efficient algorithm can potentially
compensate for the required effort of the FEMU. A multiple starting approach could be used to
circumvent the sensitivity of the LM and the NM algorithms to initial solutions. Additionally, it
would be interesting to explore the use of the DE algorithm early on to reduce the search space,
and then use the LM or the NM algorithms to fine-tune the solution. Nevertheless, this approach
could be susceptible to local minima in the vicinities of the global optimum.

In the scope of the present study, a parameter identification software was developed in Python
and Fortran programming languages, by combining the benefits of both. In addition, by using the
optimization library within Python, it will allow an easier implementation and combination of
optimization algorithms in the future. Later, the NM algorithm is used in the VFM, because it is
computationally more efficient than DE. Compared to the implementation of the LM algorithm,
it allows more flexibility to control the identification procedure.






6 Volume Reconstruction from 3D
Full-Field Measurements

6.1 Introduction

From a macroscopic point of view, it is essential to characterize and model the mechanical behavior
of metallic parts up to large deformations, enabling an accurate simulation of manufacturing
processes. However, the occurrence of plastic instabilities at large deformations, such as diffuse
and localized necking (BAYOUMI AND JOSHI 1992; HILL 2001), introduces additional challenges
to the experimental techniques and inverse methodologies. Necking makes the deformation
non-uniform and the stress state inside the specimen triaxial, eventually leading to fracture
(BRIDGMAN 1952; TVERGAARD 1993). Besides, plastic deformation becomes highly heterogeneous
and concentrates within the necking region. A classical method to characterize the mechanical
behavior is based on the information up to necking, but it can limit the strain range drastically.
Alternatively, by combining full-field measurements with inverse methods, it is possible to calibrate
a constitutive model beyond necking where deformation is no longer homogeneous, such as using
FEMU (PRADEAU ET AL. 2016). The VFM can potentially be used as an alternative to FEMU, but
it has been mainly used in the 2D space where plane stress conditions are assumed. However,
because the stress state is triaxial, using the VFM considering plane stress assumptions is no longer
valid, and a 3D analysis is required (ROSSI AND PIERRON 2012B; KIM ET AL. 2013; COPPIETERS ET
AL. 2017; MARTINS ET AL. 2019). Nevertheless, it would be interesting to know which thicknesses
can be applied to the VFM in a 2D framework, but no previous study has investigated it.

In the field of material testing and characterization, full-field measurement techniques are
being used more and more frequently as the standard procedure. PIERRON AND GREDIAC (2021)
give a comprehensive overview of this topic and introduce the concept of “Material Testing
2.0”. One advantage of these techniques is that they allow for the measurement of displacement
and strain fields on the entire surface of the specimen. It enables the transition from classical
mechanical tests to more complex ones, leading to more and richer data acquisition from a single
test. Consequently, it reduces the cost and effort of material testing and improves the accuracy of
calibrated constitutive models (COOREMAN ET AL. 2008).

Among full-field measurement techniques, the DIC is the most widespread and fast-growing
method in solid mechanics (SUTTON ET AL. 2009). The most common optical setup nowadays is a
two-camera setup that can acquire the surface displacement field in the 3D space (stereo-DIC).
However, using the DIC to obtain information in the bulk of the material is still a big challenge
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undeformed deformed

Figure 6.1 Schematic illustration of measurement points at the front and back surfaces of the
specimen, in the undeformed and deformed configurations.

(BULJAC ET AL. 2018), but something required to use the VFM in a 3D framework. In the absence
of bulk measurements, plane stress conditions have been commonly assumed to estimate the
deformation in the thickness direction for sheet metals. While technology is still limited to surface
displacements, efforts have been made to, at least, reconstruct the 3D displacement field over the
whole external surface of solids (BADEL ET AL. 2012; GENOVESE ET AL. 2016). For example, L1
ET AL. (2017) used a multiple camera DIC system, with two cameras in the front and another two
in the back of the specimen, to measure the whole-field thickness strain.

Starting from surface full-field measurements, a volume reconstruction method able to re-
construct the volume displacement field of a homogeneous solid was introduced with the aim of
using the VFM in a 3D framework ROSSI AND PIERRON (2012A). The potential benefits of this
proposed method is that it could eventually replace more advanced and costly techniques, such as
the DVC. However, an in-depth study of the uncertainties associated with this method is required.

The final aim of using the volume reconstruction method is to accurately reconstruct the
strain field, from real experiments, over the whole volume of the specimen. Then, it is intended to
identify the material parameters through the VFM in a 3D framework. To achieve that, this study
performs an in-depth analysis of the uncertainty associated with the internal mesh generation
(IMG). At first, the volume is directly reconstructed from FEA data, and afterwards, virtual
experiments mimicking real experiments are employed (LAVA ET AL. 2009). The interest in using
virtual experiments is to reduce the gap to experimentally acquired measurements without having
to perform the real experiment.

6.2 Internal Mesh Generation

The IMG method was proposed to reconstruct the volume displacement field inside a solid by
starting from surface measurements (ROSSI AND PIERRON 2012B; ROSSI ET AL. 2013; ROSSI ET AL.
2018B). It can be applied to flat or cylindrical specimens, but only the first one is considered here.
In the undeformed configuration, flat specimens are assumed to have a constant thickness and
two opposite parallel faces, one in the back and another in front of the specimen. A requirement
of IMG is that the displacement field is known a priori on both surfaces, named here surfaces A
and B. The coordinate system is chosen so that the z axis is perpendicular to the thickness in the
undeformed configuration.

Let us consider that Ny = (NAX,NAy,NAZ) and Ny = (NBX,NBy,NBZ) are points located in
surfaces A and B, respectively. In the undeformed configuration, N, and Ny share the same
coordinates along the x axis (Na, = Np,) and along the y axis (Na, = Ng, ), but different coordi-
nates along the z axis. A schematic illustration of points N, and Ny on surfaces A and B, both in
undeformed and deformed configurations, is shown in Figure 6.1.
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The IMG adopts quadratic Bézier curves to construct points inside the specimen. The Bézier
curve is defined by one point on each surface, N, and N, and an internal point P = (R, R, )
inside the volume and located in a plane between points N, and Ny. The Bézier curve is denoted
B and mathematically defined as

B(z) = (1 — 2)>°Ny +2(1 — z)P + z2Nj, (6.1)

with 0 < z < 1 defining the position of each internal point along the Bézier curve, so that
B(0) = N, and B(1) = Np. The distribution of internal points z along the Bézier curve is linearly
defined. Additionally, the curve is tangent to segment N, P at B(0) and to segment NP at B(1).

The methodology behind the IMG is schematically illustrated in Figure 6.2, for the undeformed
and deformed configurations. For clarity, the point of view is chosen perpendicular to the x axis.
However, points and vectors are considered in the 3D space. The internal point P is defined as the
intersection between the straight line perpendicular to surface A (or surface B) in N (or Ny) and
the middle plane perpendicular to segment N Ng. In the undeformed configuration, P is simply
defined as the average of the surface points N, and Ng:

_ Na+Ng

P )
2

(6.2)
yielding a straight line from N to Ng. However, in the deformed configuration, the specimen is
not flat anymore, and two different internal points N, and Ny are obtained by starting from N
and Ng, respectively. According to geometrical considerations, the internal points P, and Py are
defined as

INs — N/’
Py =N, — 6.3
AT AT (N, —Np) Ay A (63
Np — N, |°
Py = Ng — INg —Nal” 4 (6.4)

2(Ng—Nu)-hg >

where - is the scalar product, and fi, and fig are the surface normals of points N, and Ng,
respectively. The internal point P is then computed as

_ P+ P

P
2

(6.5)
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Figure 6.2 Schematic of the IMG for flat specimens in the undeformed and deformed configurations.
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It can be pointed out that if the deformation is symmetrical, then P, = Pg = P, as it theoretically
occurs in isotropic materials. However, due to measurement errors and possible anisotropy of
heterogeneous materials, the former is usually not true.

Finally, a 3D regular mesh is obtained with n,, Ny, and n, nodes along the x, y, and z axes,
respectively. Consequently, there will be my = ny — 1, my = ny — 1, and m, = n, — 1 elements
along the x, y, and z axes, respectively. Deciding the number of internal points is similar to
deciding the number of elements through the thickness in a 3D finite element model. The more
points through the thickness, the finer the mesh is, and more precision is obtained. However, the
computational time of future operations, such as strain calculation, will increase proportionally. It
is important to balance the required precision and computational time, and ideally a convergence
study can be used to determine the most suitable number of internal points. However, the number
of nodes of the surface mesh is more dependent on the number of measurement points coming
from experiments. In the end, the volume displacement and strain fields are calculated using the
shape functions of hexahedral elements, as illustrated in the last schematic of Figure 6.2. From
an implementation point of view, the steps of IMG can be defined as:

1. Read the experimental coordinates field of undeformed configuration Xg  and 3D displace-
ment field of deformed configuration ug,, for every considered time instant;

2. Define the coordinates field of regular grid over the specimen surfaces in the undeformed
configuration Xg . The regular grid coordinates field can be calculated based on the sparsity
and coordinates field of experimental points;

3. Interpolate the displacement field ug, over regular grid X/ to obtain the interpolated
displacement field ug, through an interpolation function J defined as

l:ls1 = ﬂ(uEl,XEO,XSO), (66)

and obtain the regular grid coordinates field in the deformed configuration Xg, as

Xsl = Xso + usl. (67)

4. Calculate the surface normals of the regular grid in the deformed configuration fig, through
a function 8 as

ﬁsl = S(Xsl) (68)
5. Then, calculate the middle plane between the front and back surfaces defined over the
regular grid in the undeformed configurations;

6. Reconstruct the internal points through the Bézier curve definition of Equation 6.1 to obtain
the reconstructed points coordinates field Xy;q. Then, the reconstructed displacement field
of the deformed configuration upyg, are obtained as

uivg, = Xivc, — XiMa,» (6.9)

where Xy, and Xpvg, represent, respectively, the reconstructed points coordinates field
in the undeformed and deformed configurations.

7. Finally, calculate the reconstructed strain field ey, using hexahedral shape functions 7 as

emvc, = FXgy» Uivg,)- (6.10)
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Lastly, the IMG is numerically implemented in Python programming language, using an array-
based approach.

6.3 Plane Strain Tensile Test

To evaluate the accuracy of the IMG when applied to real experiments, a FEA simulation is used
for which the whole volume deformation history is known. The finite element model reproduces
the necking evolution in specimens under severe plastic deformation. In this study, a 20 mm thick
flat specimen, as represented in Figure 6.3a, is considered under a plane strain tensile test and
an initial rectangular section. The finite element model is modeled in 3D, and the commercial
software Abaqus/Standard is used (DASSAULT SYSTEMES 2019). The bottom extremity of the test is
fixed, and a vertical displacement is imposed on the top extremity. Moreover, an eight-node brick
element with reduced integration is used, as well as a large strain formulation. The global element
size is 1 mm, and a structured mesh is used in the volume of interest (VOI) between 76 X 20 mm?
in the xy plane, resulting in 1520 elements and 1617 nodes in the VOI. The dimensions of the
latter were defined based on the equivalent plastic strain distribution, as it is observed that it
mainly localizes in the center region of the specimen (see Figure 6.3c).
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Figure 6.3 Finite element model of plane strain tensile test in the (a) undeformed configuration,
(b) deformed configuration, and (c) 3D view cut of the equivalent plastic strain distribution in the
deformed configuration. Dimensions in mm.

A virtual material is considered, where the constitutive models and material parameters are
selected to resemble the behavior of a metal with high anisotropy. The Hill 1948 yield criterion
is used to describe the yield surface, and Swift’s hardening law is selected to describe the strain
hardening curve (see Section 2.3). The material parameters, including Young’s modulus E and
Poisson’s ratio v, are provided in Table 6.1.

The FEA simulation is displacement-driven, with a maximum imposed vertical displacement

Table 6.1 Elastic properties of the material and parameters of the constitute models used for the
virtual material.

Elasticity Hill 1948 Swift

E[GPa] v»[-] F[] G[-] H[] N[ MI[] L[] oo[MPa] KI[MPa] n[]

70 0.3 0252 0.826 0.174 2242 1.500 1.500 226.7 310.5 0.08
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of 16 mm in the top extremity, and is composed of 100 time instants. At the last time instant,
the maximum values of equivalent plastic strain are approximately 0.8 which falls in the range
of the fracture strain observed for ductile metals, as observed in the deformed configuration of
Figure 6.3c. In this representation, it is possible to notice that a severe necking occurs at the center
of the specimen. The necking is associated with a complex 3D deformation field, as illustrated
over the cross-sections. The maximum strain is obtained at the inner part of the specimen and
therefore cannot be directly evaluated by surface measurements.

Analyzing the distribution of the components of the strain tensor, it is observed that the test is
largely dominated by the components ey, and ¢,, (see Figure 6.4). The latter components achieve
its highest values in the middle of the specimen, 0.542 and —0.422 for ¢y and ¢,,, respectively.
Also, both strain components present a considerable gradient increasing towards the middle of the
specimen. The other components present considerably smaller magnitudes, particularly e,, and
Eyzs for which the maximum achieved values are lower than 0.1. Although the strain component
Exx presents low values comparatively to eyy, its maximum values are close to the free edges of the
specimen, which might be difficult regions to reconstruct. The strain field obtained from the FEA
simulation is used in the following sections as the reference strain field eggr. The next step is to
use the IMG to reconstruct the internal displacement field, and compare the reconstructed strain
field to EREF-
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Figure 6.4 Maps of the 3D cross-sections for strain tensor components (a) ey, (0) &yy, (C) €4,
(d) exy, (€) exz, @nd (f) ey, at the last time instant and represented on the reference configuration. For
simplicity’s sake, the axes and coordinates are only represented in the top-left map.

6.4 Volume Reconstruction from Finite Element Analysis

The necking occurs in the central part of the specimen, where the stress state is triaxial and cannot
be inferred from surface measurements. The VOI used to verify the reconstruction algorithm is
the central zone where localized necking occurs. A regular grid of 77 X 21 nodes, respectively,
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along the specimen’s width (x axis), and length (y axis), is selected in the reconstruction algorithm
to coincide with the number of nodes of the finite element model. Therefore, it is not necessary to
interpolate the displacement fields to the regular grid, because these are coincident, i.e., ug, = ug,
(see Equation 6.6). Moreover, 21 nodes are used in the reconstruction of the internal points,
to have a direct correspondence between the reference and the reconstruction. In terms of
computational effort, the IMG is very fast at reconstructing the displacement field. In this study,
it takes approximately two minutes to reconstruct the displacement field of all 100 time instants.

The reconstructed volume is evaluated by comparing the reconstructed strain field &g to the
reference strain field eggp, for every time instant. The absolute error and the average absolute
error are used to express the difference between the two strain fields. Mathematically, for a given
time instant ¢ and material point i, the absolute error & is given by

8(t,1) = lepmg(t, 1) — egpr(t, D). (6.11)

while the average absolute error § of all material points is given by

5 = - 3 8(t.1). (6.12)
P i=1

where n,, is the total number of material points.

In Figure 6.5, the evolution of § is represented for each strain tensor component throughout
all time instants. All material points of the VOI are represented within the plotted area, while
the superior boundary represents the maximum observed error, and the intermediate white line
represents 8. A first observation can be made regarding the increase of error with deformation.
The higher the deformation, the more the IMG is susceptible to error. Nevertheless, a reasonable

Exx EYY Ezz
0.08
0.06
0.04
0.02
= 4
g 0.00 | AA
[0
% EXY Ex Eyz
S 0.08
(%]
QO
©
0.06
0.04
0.02 '
0.00 ~ — ‘A———- J
0 25 50 75 100 O 25 50 75 100 O 25 50 75 100

time instant

Figure 6.5 Evolution of the absolute error for each reconstructed strain tensor component throughout
all time instants. The superior bound represents the maximum absolute error, and the white line
represents the average absolute error.
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agreement is observed between the reference and reconstruction, with maximum errors of up
to 0.08 in the gy and ey, components. Even though the maximum errors are relatively high
compared to the observed strain values, the average values are much closer to the minimum
than the maximum. The error evolution of the thickness strain ¢,, is distinct from the other
components, as the error increases more gradually, rather than abruptly, towards the end of the
test. This is a sign that the source of error in ¢,, is not just related to the increase of deformation,
as discussed further ahead.

The 3D maps also present the spatial absolute error in Figure 6.6. Overall, e, and ey are well
reconstructed, as a large region presents low errors. However, ¢, presents large errors towards
the free edges of the specimen, and Eyy towards the middle of the specimen. Nevertheless, the
accentuated error on the free edges can also be related to the surface normals estimation close to
the free edges, as no data is available beyond the specimen’s boundaries. The use of additional
information from the specimen’s sides could potentially improve the accuracy of the IMG towards
the free edges. However, using the sides’ information would have added more complexity to
the methodology, both in terms of data acquisition and integration of the data within the IMG
methodology.

The absolute error spatial distribution of ¢,, is more complex (see Figure 6.6¢). It is observed
that the highest error is at the center of the specimen’s surface. Moreover, following a path towards
the middle of the specimen, the error decreases between the specimen’s surface and middle plane,
but then increases again towards the middle. This behavior indicates that the reconstructed strain
€,, is approximately homogeneous through the thickness, representing an average of the reference
gradient values. The source of this behavior is the linear distribution of internal points along the
Bézier curve. The combination of linear distribution with perpendicular surface normals to the
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Figure 6.6 Maps of the 3D cross-sections of absolute error for reconstructed strain tensor compo-
nents (a) exy, (0) eyy, (C) 44, (d) xy, (€) x5, and (f) &y, at the last time instant and represented on the
undeformed configuration. For simplicity’s sake, the axes and coordinates are only represented in
the top-left map.
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undeformed surfaces leads to Bézier curves with little or no curvature. Although the latter is less
observed at distances away from the specimen’s center, the most problematic is still the region of
higher deformations. However, this drawback of the IMG has not been previously described nor
identified.

An investigation of the specimen’s global volume evolution, calculated as the sum of all
elements volume, shows a discrepancy between the reconstruction and the reference, as shown
in Figure 6.7a. During the elastic regime, which corresponds to the initial rapid evolution, and
beginning of the plastic regime, the reconstruction shows a global volume approximately identical
to the reference. However, starting from the time instant of maximum load, the global volume
of reconstruction presents a rapid increase and deviation from the reference values, which are
approximately constant afterwards. Additionally, a local analysis of the volume of the elements
showed a high discrepancy. In the reference, the initial volume of the elements is approximately
preserved, with a residual increase coming from the elastic deformation. On the other hand, the
reconstruction shows that the elements’ volume starts deviating from the initial volume at values
of equivalent plastic strain of approximately 0.13, which are rather low relative to the maximum
values at the last time instant. This is shown in Figure 6.7b, where the volume’s evolution of
two elements, one located on the specimen’s surface and another on the middle of the surface
(between two opposite surfaces) is represented. These two deviations from reference, global and
local volume, are thought to be a source of error of the IMG, leading to incorrect reconstructed
strain fields. Therefore, the next section focuses on improving the IMG by integrating two types of
correction.
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Figure 6.7 Evolution throughout time instants of (a) global volume of reference and reconstruction,
with the reference load for comparison, and (b) volume of elements in the surface, and another in the
middle for reference and reconstruction.

6.5 Improvements to Internal Mesh Generation

The analysis of the reconstructed strain field relative to the reference identified two possible sources
of error of the IMG: the increase in the geometry’s global volume and the local element’s volume
deviation from its initial value. This section proposes two strategies to improve the accuracy of
the IMG in reconstructing the strain field.

6.5.1 Correction of Global Volume

As previously observed in Figure 6.7a, the reconstructed global volume deviates abruptly from
the reference after a certain amount of deformation. On the other hand, the reference global
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volume evolves approximately linearly after the onset of plastic deformation. The proposed
solution attempts to correct the global volume after it starts deviating from the reference. However,
to generalize the algorithm to applications where the reference is unknown, the threshold is
identified after the abrupt increase is detected in the global volume evolution.

The global volume is, mathematically, the sum of all elements volume, but in the IMG, it can
also be seen as the volume enclosed by the geometry’s external surfaces. This way, by adjusting
the enclosing surfaces, it is possible to correct the global volume. However, the front and back
surfaces are the only known information of the specimen (either from the FEA simulation or
experimental measurements), while all the other surfaces are reconstructed using the IMG. In
turn, the IMG is based on the normals of the front and back points surface, which govern the
unknown enclosing surfaces. Therefore, the proposed algorithm attempts to correct the global
volume by adjusting the front and back points normals to the surface (see Figure 6.8).

The first part of the algorithm identifies the threshold of abrupt increase and determines the
predicted global volume of subsequent time instants. Initially, the global volume evolution is only
due to elastic deformation. After the onset of plastic deformation, the evolution rate changes,
and is necessary to quantify it. Therefore, the global volume evolution is incrementally fitted
by a second order polynomial regression, and the coefficient of determination R? is calculated.
Whenever R? drops below 0.99, it is considered that the given time instant is the onset of plastic
deformation. From this time instant onward, the global volume evolution is incrementally fitted

| elastic + True |—>| ki1
n¢ increments

calculate linear regression of global no
- volume evolution after elastic regime
calculate predicted

global volume evolution | yes

calculate 2nd order polynomial

regression of global volume evolution

reconstruct calculate global volume
deformed configuration of deformed configuration

A

calculate coefficient R 2
of determination R? B <099 no k1 %‘Ifl t1
yes
| ko < k1 |<—| break loop |<—noyes elastic < False
A
loop over calculate predicted global initialize weight to
n¢ increments volume by linear regression correct surface normals

update surface normals
of deformed configuration

ko < ko +1 . l .
. update weight .
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' deformed configuration !

no l
predicted
global volume?

calculate global volume
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Figure 6.8 Flowchart of the algorithm to correct the global volume in the IMG.
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by a linear regression. Similarly, whenever R? drops below 0.99, it is considered an abrupt increase.
Then, the linear regression is used to predict the global volume of subsequent time instants and
correct it to a linear evolution. This first part of the algorithm is schematically represented in the
top section of Figure 6.8.

The second part of the algorithm is dedicated to correcting the global volume evolution by
adjusting the surfaces’ normals. Let us consider that fi represents the surface normal of any
given point. The corrected surface normal A, is obtained by multiplying fi by a given weight
w = (Wy, Wy, w,), for each component, as

ﬁc = (wxﬁx’ wyﬁ-ya wzﬂz)a (613)

which is then normalized by its magnitude to transform it into a unit normal vector.

The search for the optimal weight is performed using the Levenberg-Marquardt algorithm
from Python’s optimization library (see Section 5.3). The optimization algorithm starts from
the known solution, where w = (1,1, 1), and iteratively searches for the optimum weight by
comparing the corrected global volume with the one predicted using the linear regression. The
optimization procedure stops whenever the corrected global volume drops below the predicted
global volume. This second part of the algorithm is schematically presented at the bottom section
of Figure 6.8.

Different combinations of weights are implemented to investigate which one yields the best
results. These combinations are differentiated by the surfaces normal component or components
adjusted by a given weight, in particular by optimizing the individual weights associated with
the x component (IMG-Global-X), y component (IMG-Global-Y), z component (IMG-Global-Z),
and another combination where the three components are simultaneously adjusted by optimizing
three different weights (IMG-Global-XYZ). Mathematically, these combinations result in corrected
surface normals given by

(wyiy, Ay, A,) with IMG-Global-X
. ( Agwyhy, A,) with IMG-Global-Y
¢ Ay Ayw,A,) with IMG-Global-Z

(wy iy, wyhy, wyA,)  with IMG-Global-XYZ

(6.14)

The combination IMG-Global-XYZ is a bigger challenge than the three others in terms of optimiza-
tion, because three different weights are optimized instead of only one. In Figure 6.9, the corrected
global volume evolution by using the four combinations is represented. The only combination that
failed to correct was when only optimizing the weight given to 7i,, while the others successfully
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Figure 6.9 Comparison of the global volume evolution throughout time instants between the IMG
with different combinations of the corrected global volume.
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corrected to the linearly predicted values. The evolution of the latter is overlapped in Figure 6.9,
thus only the evolution of IMG-Global-XYZ is visible.

Although three combinations of the weights succeeded in correcting the global volume, it
does not mean it yielded three similar solutions. To decide which combination is best suited to
improve the IMG, the evolution of the strain tensor components average absolute error for each
combination is analyzed and presented in Figure 6.10. Comparatively to the average absolute error
obtained with the IMG without correction, it is observed that the only combinations that perform
worst for any component are IMG-Global-X and IMG-Global-XYZ, in particular, for ey, €4y, and
€4z The average absolute error of €,, has barely changed for any combination, but improvements
are observed in the other components when using the combinations IMG-Global-Y and IMG-
Global-Z. The differences are slight between these two combinations, but both decrease by 50 %,
or more, the average absolute error of &gy, €4y, and y,. In further analyses, the combination
IMG-Global-Z is adopted because it corrects the component through the thickness. Therefore, it
is a more general approach that can be applied in different tests. Computationally, the correction
of global volume takes approximately 15 minutes for all time instants. Comparatively to the
time required by the IMG without global correction, it is a substantial increase, but it can still be
considered computationally fast.
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Figure 6.10 Evolution of the average absolute error for each reconstructed strain tensor component
throughout time instants, between the IMG and different combinations of the corrected global volume.

6.5.2 Correction of Local Volume

Due to the global volume increase, it would be expected that the volume of the elements also
changes, as demonstrated in Figure 6.7b. However, the volume of the elements does not increase
proportionally, but instead some elements increase their volume while others decrease it. This
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behavior is a consequence of the linear distribution of nodes through the thickness along the
Bézier curves. By assuming ey, and ¢y are correctly reconstructed, then the ¢,, is either over-
or underestimated, resulting in an incorrect evolution of the elements volume. By adjusting the
distribution of nodes through the thickness along the Bézier curve, the proposed solution attempts
to correct the local volume of the reconstructed elements.

The algorithm adopts a node by node approach, where the distribution of nodes along the
Bézier curve is iteratively optimized to improve the elements volume in its neighborhood. Meaning
that the updated nodes will affect the volume of the element to which they belong. Therefore, an
individual cost function is used to guide the optimization towards the optimum distribution. This
individual cost function is given by the sum of the maximum absolute volume change (relative to
a given reference) along the z axis. Considering that the nodes distribution associated to a given
pair of surface nodes (one in the back and another in the front surface) is denoted by z, such
that, the distribution of the nodes between points N, and Ny illustrated in Figure 6.2 is given by
z;; = [0.0,0.25,0.5,0.75, 1.0]. Each pair of nodes ij is associated with ms number of elements on
each surface, corresponding to mg X m, elements through the thickness. Then, the individual
cost function ¢y, for a given distribution z;;, is given by

$1(zij) = Y, max|Vi(z;;, ) = Vi, ()] (6.15)
=1

where V; represents the optimized volume of each element affected by z;;, and V; | the correspond-
ing reference volume. As such, V;(!) stands for the set of the elements volume along a given surface
element . The optimization procedure is simplified by adopting symmetry conditions along the
thickness between the front and back surfaces. This way, the nodes distribution is optimized for
only half of the specimen’s thickness, while the other half distribution will be identical. Moreover,
the location of nodes on the front and back surfaces is unchanged, as well as the node in the
middle between the two outer surfaces.

Nevertheless, the optimization of individual nodes distribution could lead to global solutions
worse than the reference. Thus, after all nodes are individually optimized, a global cost function
¢ is calculated to evaluate if the global solution has improved. The global cost function is defined
as the sum of the maximum absolute volume change along the z axis for all elements (relative to
a given reference), and is mathematically expressed as

my My

$6(2) = 2. 2 max [Vo(Z, i, j) — Vi, (i, )| (6.16)
Jj

1

where Z represents the set of all nodes optimized distribution z;;, V represents the optimized
volume of each element in the VOI, and Vg, the corresponding reference volume. As such, Vg (i, j)
stands for the set of the elements volume along a given surface element ij. The optimization
procedure is repeated until the global solution no longer improves. The structure of the algorithm
to correct the elements volume is schematically presented in Figure 6.11.

Additionally, the methodology to find the optimal nodes distribution along the Bézier curve
could potentially be performed in different ways. Two strategies are here proposed, named, biased
and optimized.

Biased Strategy

The biased distribution uses a logarithmic function to distribute the nodes along the Bézier curve
with a certain bias in one direction, either towards the middle of the specimen or towards the
external surfaces. The position of node z;j(k) € [0, 0.5] along the biased distribution is given by
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logyo(lw|+1)
zi(k,w)==——110 ™ -1, with k=1,2,..,n, 6.17
lJ( ) 2|w| [ l b ( )
where n, = (n, + 1)/2 represents the number of nodes in the biased distribution, assuming
symmetry along the z axis, and w # 0 is the bias weight. The bias weight w can either take
negative or positive values, with its absolute value governing the bias magnitude and its sign
governing the bias direction. Nevertheless, Equation 6.17 is formulated to generate a bias towards
the outer surfaces of the specimen. Therefore, to also consider a bias towards the middle of the
specimen, z;; is inverted when w < 0. Mathematically, the two bias directions are given by

zij ifw>0

Z;; = 6.18
Y flip(|z;; —0.5]) ifw <0 (6.18)

where flip(-) stands for the reverse order of the vector components. The advantage of this strategy
is that there is only one optimization variable, independently of the number of nodes through the
linear

thickness. The initial solution of the optimization algorithm is a linear nodes distribution z;]

Optimized Strategy

The optimized distribution targets each node along the Bézier curve individually. In this approach,
the number of optimization variables is equal to the number of nodes through the thickness
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Figure 6.11 Flowchart of the algorithm to correct the elements volume in the IMG.
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(considering symmetry condition and excluding surface and middle nodes). Thus, the higher the
number of nodes, the more complex the optimization problem. Moreover, because this approach
optimizes the position of each node individually, there is a risk that it can lead to unfeasible
meshes. Therefore, there is the need to impose bounds constraints to the nodes distribution as

li li
zi}%ear -6, < Zijk < zi}%ear + 6, (6.19)
where §, represents an interval of accepted values given by

0.5

6, = .
2 n,—1

(6.20)

Similarly to the bias strategy, the initial solution of the optimization algorithm is a linear distri-
bution. Moreover, the Nelder-Mead algorithm is employed in the optimization procedure (see
Section 5.3).

The local volume correction was tested for both strategies, without considering the global
volume correction. Additionally, a total and an incremental approach are used on the reference
to guide the optimization procedure. The former uses the initial undeformed configuration as
reference, and the latter the last deformed configuration. Four different combinations are tested:
using the biased (IMG-Local-B) and optimized (IMG-Local-O) strategies, with total (-T) and
incremental (-I) approaches.

The evolution of the average absolute error for each strain tensor component is presented in
Figure 6.12, for all combinations. It is observed that the IMG-Local-B-I combination completely
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Figure 6.12 Evolution of the average absolute error for each reconstructed strain tensor component
throughout time instants, for the IMG, both standard and different combinations of local volume
correction.
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fails to correct the local volume, as the error vastly increases relative to the IMG combination. In
this particular combination, it happened that the bias distribution started to excessively converge
towards the middle surface. In this case, either the adopted cost function failed to penalize the
solutions, or bounds constraints should be adopted for the weights. Except for this combination,
all the others decrease or maintain the error. Specifically, the average absolute error associated
with the thickness strain substantially decreases when adopting the optimized approach, either
with a total or incremental approach. A drawback of the local volume correction is its high
computational cost, which could require a few hours to correct all time instants.

6.5.3 Correction to Global and Local Volume

Here, the combination of global and local volume corrections (IMG-Mixed) is analyzed. Again,
four different combinations are tested where the local volume strategy is changed. In Figure 6.13,
the evolution of the average absolute error for each reconstructed strain component is presented.
The combination using the bias strategy with an incremental approach should be discarded,
as it completely fails again. Using the other combinations, the results are encouraging for all
strain components, except for €,,, which is unchanged. It is interesting to observe that the bias
strategy with a total approach decreases the error, though it was not the case using both corrections
individually. Nevertheless, the optimized strategy with a total approach is the one that decreases
the error the most.

In Figure 6.14, the profile of the strain component ¢, is plotted along the thickness direction
for the center elements, corresponding to 20 elements. It is observed that the reference produces
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Figure 6.13 Evolution of the average absolute error for each reconstructed strain tensor component
throughout all time instants, for the IMG, both standard and different combinations of global and local
volume corrections.
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Figure 6.14 Profile of the strain component ¢,,, along the intersections of middle planes xz-yz, of
the reference and the IMG, both in standard and different combinations of global and local volume
corrections.

a curved profile, while using IMG an approximately linear profile is obtained. When applying
the volume corrections, the reconstructed profile is no longer linear and is more similar to the
reference. However, the reconstructed profile of combination IMG-Mixed-O-I is irregular along
the thickness, with a few peals observed. Although the error decreases, its reconstructed profile
is still far from the reference. Based on this result, the total approach appears to be the best,
for both bias and optimized strategies. Between these two combinations, both reconstructed
paths are similar to the reference. However, using the bias strategy, the maximum value of €,, is
overestimated, and the gradient evolves linearly towards the center. Consequently, combining the
global volume correction with the local volume correction using the optimized strategy with a
total approach is the best combination.

Figure 6.15 shows the element’s volume map and thickness strain map of the reconstructed
volume of interest at the last time instant, using the IMG-Mixed-O-T combination. Although
the corrected values are still far from the reference, the maximum and minimum values have
improved (see Figure 6.7b). Nevertheless, the existing improvements resulted in the thickness
strain map of Figure 6.15b, which is almost identical to the reference (see Figure 6.4c).
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0.975 1.042 -0.422 -0.114

Figure 6.15 Maps of the 3D cross-sections of the reconstruction using IMG-Mixed-O-T for the
(@) volume of the elements and the (b) strain component ¢,,, at the last time instant and represented
on the undeformed configuration.

Lastly, to show that the proposed global and local volume corrections improve the IMG,
Figure 6.16 presents the values of the normal strain components along different paths. It is
observed in all cases that the combination IMG-Mixed-O-T improves the strain reconstruction
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Figure 6.16 Profile of the strain tensor components (a) ey, (b) £yy, and (c) ¢,,, along the intersections
of middle planes xy-xz, xy-yz, and xz-yz, respectively, from left to right.

relative to the reference.

Up to this point, the error coming from the IMG itself has been established and improved.
Nevertheless, the previous studies only considered the displacement field from FEA simulations,
which does not contain any “imperfections”. However, the aim of the IMG is to be applied with
real experiments, where many sources of error exist, which could lead to increased errors in the
reconstructed fields. As such, it is important to also estimate the errors that would be obtained
when using real experiments. With that purpose, the following section estimates the uncertainty
of the IMG using virtual experiments that mimic real experiments.
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6.6 Uncertainty Quantification

The IMG was developed to be applied to real experiments, but many experimental conditions
can influence the measurements quality, and consequently influence the quality of reconstructed
displacement and strain fields (OLIVEIRA ET AL. 2022A). To include these conditions in the
volume reconstruction, virtual experiments are introduced to evaluate the uncertainty of IMG
under various experimental conditions. In particular, virtual experiments mimicking a stereo-
DIC setup are used to measure more accurately the out-of-plane displacements. These virtual
experiments are useful to study the influence of experimental conditions or DIC settings, without
ever performing the real experiments (LAVA ET AL. 2020; HENRIQUES ET AL. 2022). Consequently,
it leads to a decrease in time and cost relative to performing the same study with real experiments.

6.6.1 Generation of Stereo-DIC Virtual Experiments

To simulate the measurement chain associated with a virtual stereo-DIC setup, four virtual cameras
are used to measure the displacement field in the front and back surfaces of the specimen, two
for each. The virtual experiments are generated from displacement fields coming from FEA
simulation, and used to deform a reference speckle pattern image. This image can be numerically
generated. Further details on the procedure and mathematical formulation can be found in
BALCAEN ET AL. (2017B) AND BALCAEN ET AL. (2017A). Nevertheless, the necessary steps to
obtain virtual experiments for each surface of the specimen are as follows:

Export the FEA mesh and associated 3D displacement fields of outer surfaces;
Impose the FEA mesh onto a reference speckle pattern image;

Generate the synthetically deformed stereo-DIC images;

Perform the stereo-DIC measurements;

ok W

Export the stereo-DIC measurements to the IMG.

These steps are illustrated in Figure 6.17 for a large region of the plane strain tensile test. As
previously established, Abaqus/Standard was used to perform the FEA simulation. Then, all
the steps were performed using MatchID suite software (MATCHID 2022A). In particular, step 1
was performed through MatchID FEA Converter (MATCHID 2022B), which easily allows the
extraction of mesh coordinates and displacement fields from Abaqus output database files (see
Figure 6.17a). Using this software, the obtained output files are directly compatible with MatchID
software. In step 2, the FEA mesh is imposed onto the speckle pattern image from the point of
view of camera 0 (see Figure 6.17b). Then, in step 3, the FEA mesh and displacement fields are
interpolated to camera 1 using stereo-camera calibration parameters (see Figure 6.17c). Steps 2
and 3 are performed through the virtual images generation module from MatchID Stereo software
(MATCHID 2022c). Using this module, it is possible to use any speckle pattern image and easily
impose the FEA mesh on top of it. Finally, full-field measurements are obtained in step 4 through
MatchID Stereo (MATCHID 2022D) and exported in a convenient structure to be used in IMG (see
Figures 6.17d and 6.17e).

One key aspect of stereo-DIC virtual experiments is the definition of calibration parameters.
Without these parameters, it is impossible to generate virtual experiments, because they are
responsible for interpolating data from one camera to the other. In opposition, generating virtual
experiments for a 2D-DIC application is much simpler, because there is no need to define these
calibration parameters. These parameters can be obtained from a standard calibration procedure,
where more than 50 real images are captured for each camera. Then, through a calibration
software, intrinsic and extrinsic parameters are obtained. The intrinsic parameters of a camera
describe the way images are acquired, such as resolution or focal length. On the other hand,



104  Volume Reconstruction from 3D Full-Field Measurements
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undeformed deformed
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Figure 6.17 Schematic illustrations of the steps involved in the generation of virtual experiments for
each surface: (a) export of FEA mesh and displacement field of outer surface, (b) FEA mesh imposed
on the speckle pattern image from the point of view of camera 0, in undeformed and deformed
configurations, (c) generated synthetic images from the point of view of camera 0, in undeformed
and deformed configurations, (d) pre-processing of stereo-DIC measurements from the point of view
of camera 0, in the undeformed configuration, and (e) measured displacement field component from
the point of view of camera 0.

the extrinsic parameters describe the position and orientation of a camera relative to another.
Normally, the extrinsic parameters of camera 1 are defined relative to a reference camera, named
camera 0.

Calibration parameters can also be manually defined, even though they will not be a complete
representation of a real acquisition. Nevertheless, an image of a real speckle pattern is used as a
reference to generate all virtual experiments, as shown in Figure 6.18. This image was obtained
using a real camera with a resolution of 1040 x 1392 px?, respectively, the width r, and height ,
of the camera sensor in pixels. Therefore, some calibration parameters are inherited from this
camera, assuming perfect conditions exist, in particular ¢, and ¢, defining the coordinates of
the detector’s center are set to, respectively, half-width and half-height. Additionally, a camera
lens with a focal length f = 50 mm is here considered. From the camera resolution and focal
length, it is possible to obtain parameters f; and f;, governing the focal length along the x and

1392 pixels = 8.8 mm

1040 pixels = 6.4 mm

~ 4.5 pixels / speckle

Figure 6.18 Image of the real speckle pattern used as reference to generate the virtual experiments.
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y axes. Additionally, by considering perfect conditions, it is assumed that the cameras do not
present skewing of the axes and no lens distortions. Thus, the skewing factor f;, radial distortion
coefficients x4, x,, and x; of the camera lens, as well as tangential distortion coefficients of the
camera lens p; and p, are equal to zero.

Perfect conditions are also assumed in the definition of the extrinsic parameters, meaning that
camera 1 is perfectly aligned and oriented relative to camera 0. Therefore, the position of camera 1
is only governed by its relative orientation with respect to camera 0 around the x axis, and its
magnitude defined by 6, which will be referred to as stereo-angle. The other two orientations 6
and 6, represent, respectively, the relative orientation of camera 1 with respect to camera 0 around
y and z axes, and are set to zero. Consequently, distance Ty of camera 1 relative to camera 0 in the
x axis will be zero. Distances Ty and T, of camera 1 relative to camera 0, respectively, along the y
and z axes depend of 6, and are calculated as

Ty(So, 6x) = S, sin Oy (6.21)

and

T,(Sq, 6x) = So(1 — cos 6y), (6.22)

where S, is the distance from camera 0 to the specimen along the z axis given by

S, = fLFﬂ (6.23)
Lcs

where Loy is the dominant length of the field of view, and L¢g is the correspondent length of
the camera sensor in millimeters (JONES AND IADICOLA 2018). A schematic of the position and
orientation of cameras 0 and 1 is shown in Figure 6.19, for a generic situation of a stereo-vision
system. In addition, the intrinsic and extrinsic parameters used in the generation of the synthetic
images are presented in Table 6.2. It should be noted that the intrinsic parameters correspond to
all four cameras involved: cameras 0, 1, 2, and 3. Moreover, the extrinsic parameters correspond to
both stereo-vision systems, in front (cameras 0 and 1) and back (cameras 2 and 3) of the specimen.

6.6.2 Design of Experiments

When using stereo-vision systems in real experiments, many factors can influence the accuracy of
the final measurements (FORSSTROM ET AL. 2020). Evaluating the influence of all of them in the
volume reconstruction method would be a hard and long task. A design of experiments (DOE)
can be used to evaluate the variation of results under different conditions (MASON ET AL. 1979).

S, specimen S, spec.imen
camera 0 camera 0
D P [ N I (;""',?‘l
. -
. 6 //, , ey/ -

y - -
kd
y x
& \, camera 1

\, camera 1 L»z T—»z

T,

z

(@) (0)

Figure 6.19 Schematic illustration of the position and orientation of cameras in a generic stereo-
vision system, in the (a) yz plane and the (b) xz plane.
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Table 6.2 Calibration parameters for the stereo-vision system considered in this study.

Intrinsic Extrinsic
cx[PXl ey lpx]  fxlpx]  fylpx]  6x[1 6,1 6,01 Tx[mm] Ty [mm] T, [mm]
520 696 7909 7909 64 0 0 0 Ty(SO, 6x)  T,(Ss,6%)

Therefore, a DOE is performed by selecting five factors which can influence the final stereo-DIC
measurements and consequently the volume reconstruction: field of view, stereo-angle, noise,
subset size, and step size. All these factors are introduced at some step along the procedure chain
presented above. Moreover, three levels are evaluated for each factor to obtain a quadratic response
(MASON ET AL. 1979). Table 6.3 presents the different levels defined for each factor. In total, the
DOE is composed of 243 virtual experiments.

Table 6.3 Factors and levels for the design of experiments to evaluate the volume reconstruction
from virtual experiments.

Factors
Level Field of view [mm?] Stereo-angle [©] Noise [-] Subset size [px?] Step size [px]
1 76 X 112 15/16 0 17 x 17 3
2 76 X 148 20/21 5 21 x 21 5
3 76 x 160 25/26 10 25 x 25 7

The field of view of the cameras is usually determined by the specimen ROI and its relative
motion and deformation (JONES AND IADICOLA 2018). Ideally, the ROI should almost fill the field
of view to optimize the spatial resolution of measurements. The better the spatial resolution, the
more accurate the measurements will be. Thus, it is important to estimate the total motion of
the specimen to better define the field of view. Practically, the field of view will determine the
distance the cameras should be located from the specimen. In the virtual experiments, the field of
view effect is introduced when imposing the FEA mesh onto the speckle pattern image (step 2), by
increasing or decreasing the space by the FEA mesh, as shown in Figure 6.20. It should be noted
that the ROI in the generation of virtual experiments differs from the VOI defined previously and
considered for analysis. The ROI here corresponds to 76 X 76 mm? area centered on the specimen.

The stereo-angle between two cameras depends on the measurement quantities most important
in a given experiment (JONES AND IADICOLA 2018). Smaller stereo-angles will lead to more accurate
in-plane displacements, while larger stereo-angles are often associated with better out-of-plane
displacement accuracy (REU 2013; BALCAEN ET AL. 2017B). Thus, defining the stereo-angle results
from a compromise between in-plane and out-of-plane accuracy. In the present study, because
the out-of-plane accuracy is important to better reconstruct the out-of-plane deformation fields,
angles between 15° to 26° are considered. It should be noted that the stereo-angle values shown
in Table 6.3 correspond to the front and back stereo-vision systems, respectively. This difference
was considered to have different results between front and back measurements. A schematic
representation of the different levels is presented in Figure 6.20.

In real experiments, the presence of noise in the obtained measurements is always considered.
Noise can come from various sources, such as the quality of speckle pattern, lightning, cleanliness
of cameras and sensors, among others. In virtual experiments, most possible sources of noise are
avoided. Nevertheless, by using a real image of a speckle pattern, some noise is already present.
To go even further, artificial noise can be added to virtual experiments by changing the gray
level of pixels (ROSSI ET AL. 2015). Therefore, three levels of artificial noise are defined as the
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standard deviation of a Gaussian distribution for an 8-bit image (step 3). The first level does not
add artificial noise, while the noise distribution of second and third levels is, respectively, defined
with a standard deviation of 5 and 10 gray levels, approximately 2 % and 4 % of the gray level range.

While the first three factors are related to the setup of acquisition, the subset size and step
size are related to the post-processing settings of the stereo-DIC software (step 4). The subset
size is important for the software to correlate the motion of a subregion of ROI throughout
the test. In theory, the subset should be large enough that it contains sufficient information,
such that one subset can be distinguished from all other subsets in the ROI. Generally, it is
recommended that a subset contains at least three transitions between dark and light features
of the speckle pattern (LAVA ET AL. 2009; LAVA ET AL. 2010). The step size governs the density
of measurement points obtained by the stereo-DIC software, and directly affects the spatial
resolution of measurements. The smaller the step size, the more measurement points will be
obtained. However, many measurement points will also lead to higher computational costs, and

level 1 level 2 level 3
(@)
level 1 level 2 level 3
@3';1:533? =::36:oz @31503:::{:::5135 @315;,::,‘}:::2-6;]—
@ - ~ - So

233 L -
y specimen y @ specimen % y - specimen
L. i &

(b)

level 1 level 2 level 3
. . %
(©

level 1 level 2 level 3

level 3

(@ C)

Figure 6.20 Schematic illustrations of the factors and levels considered in the DOE: (a) field of view,
(b) stereo-angle, (c) noise, (d) subset size, and (e) step size.
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is not a guarantee of improving spatial resolution if subsets are largely overlapped. Nevertheless,
using a smaller step size allows obtaining measurement points closer to the free edges of the
specimen, which are important for better volume reconstruction as previously established. The
three different subset and step sizes considered in the DOE are shown in Figure 6.20.

As already established, MatchID software is used to generate virtual experiments and perform
stereo-DIC measurements. However, manually generating 243 virtual experiments can be a
long task. For that reason, a Python program was developed to automatically generate virtual
experiments for different conditions and also perform the stereo-DIC measurements. This was
only possible using MatchID in batch mode, which enables performing all necessary tasks through
the command line in the background. It was only necessary to build a template for a single case
and replicate it for the others.

6.6.3 Results

To isolate the influence of introducing virtual experiments in the IMG, the error is computed as the
absolute difference between the reconstruction from FEA and virtual experiments, mathematically
identical to Equation 6.11. Additionally, the relative error is also investigated with respect to the
maximum values observed in each component. The results of the displacement field are presented
in Figure 6.21a and of the strain field in Figure 6.21b. The presented results analyze the major
effects of each factor, allowing a comparison of its influence on the error. Therefore, each level
within each factor corresponds to the average result of 81 experiments. Moreover, for simplicity,
only the average of error of all the points or elements in the VOI is represented. It is considered
that the average absolute error can describe the influence of each factor on an average.

Itis observed that an increase in the field of view leads to an error increase in all the components
of displacement and strain. Moreover, it appears the field of view is the factor with the biggest
impact out of the five factors evaluated, as variations between levels are more pronounced. For
example, for u), the average error is approximately two times higher from the first to the third
level of the field of view. The increase of noise also leads to an increase in the average error,
even though its impact on the displacement components is low and more evident in the strain
components. On the other hand, the subset size appears to have a low impact on the error, at
least for the range of values considered. To further understand its impact, the range values could
have been enlarged to higher values. The impact of stereo-angle is not well understood, and some
conflicting results are observed. Perhaps the stereo-angle could be analyzed as a function of lenses
focal length, because the impact of stereo-angle on measurements accuracy is also affected by the
choice of lenses. Overall, the error is relatively low for all factors. However, these low variations
can also be explained by the range of values selected for each factor. Expanding the range of values
can potentially yield different results, but it is not expected that the error will increase drastically.

6.7 Conclusions

This study analyses the accuracy of a volume reconstruction method, named internal mesh
generation. This method reconstructs the volume of a solid starting from surface measurements,
and is purely based on geometrical considerations. A finite element model of a plane strain
tensile test with 20 mm of thickness was used as a reference. The ability of the IMG to reconstruct
the deformed volume is good, with reduced computational effort. However, the accuracy of the
reconstructed strain field is not perfect, particularly when a large strain gradient is observed
through the thickness. To improve the accuracy of the IMG, two strategies are proposed. The
first aims to correct the global volume evolution of the reconstructed geometry, and consequently,
has been shown to improve the accuracy of the reconstructed strain field. The second strategy
focuses on correcting the elements’ local volume by adjusting the position of nodes through the
thickness. Using the latter strategy, it has been shown that the strain tensor component ezz is well
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column corresponds to a different factor in the DOE.



110 Volume Reconstruction from 3D Full-Field Measurements

reconstructed. Future developments could attempt to improve the reconstructed displacement
field by including information of all surfaces, front, back and sides.

Using this method with real experiments is the final aim. However, real experiments are
susceptible to varying conditions that ultimately affect the final measurements and, consequently,
the reconstruction itself. Therefore, the uncertainty of the IMG under different experimental
conditions and stereo-DIC settings was successfully estimated using virtual experiments. In
particular, a DOE was performed with five factors, each with three levels. The study showed that
the field of view is the primary factor influencing the error, but that all factors considered have a
rather low influence.

Globally, a volume reconstruction method that is computationally efficient and able to estimate
the displacement field inside a solid and from the surfaces displacement field within a reasonable
error has been evaluated. However, applying the method to real experiments with different
materials of varying thicknesses is still lacking. Moreover, investigating the stress reconstruction
from the reconstructed strain field is of utmost importance to use this method in the context
of parameter identification. In the end, the interest of this method is to use the VFM in the
identification of material parameters, with improved accuracy.



7 Virtual Fields Method in a 3D
Framework

7.1 Introduction

Conventionally, the elastoplastic behavior of sheet metals is characterized through standard
uniaxial tensile tests. From these tests, it is possible to extract the true stress-strain curve essential
to characterize the strain hardening behavior. The former is important, because many sheet
metal forming processes achieve plastic strains beyond the point of maximum uniform elongation.
Moreover, to simulate these processes in FEA software, the key requirement is the definition of the
true stress-strain curve. Without an accurate characterization of this curve, numerical simulations
will not be representative of the real material behavior.

However, diffuse necking is observed after the point of maximum uniform elongation in
the standard uniaxial tensile tests (HILL 1952; HUTCHINSON AND MILES 1974; NICHOLS 1980).
The diffuse necking leads to a non-uniform deformation concentrated within the necking region
(TVERGAARD 1993; TONG AND ZHANG 2001), which does not allow measuring the deformation
through a conventional extensometer. Commonly, localized necking is also observed in sheet
metals after diffuse necking. While the former phenomenon is associated with a decrease in
the specimen width, in the latter, a rapid decrease of the thickness is observed. A triaxial stress
state also develops within this necking region, which eventually leads to fracture of the material
(DUNAND AND MOHR 2010; TARDIF AND KYRIAKIDES 2012).

By measuring deformation through an extensometer, it will underestimate the resulting
strain values after the onset of necking. Therefore, several studies have proposed solutions to
determine the true stress-strain curve beyond this point (TU ET AL. 2020). Usually, the hardening
behavior is extrapolated from the pre-necking stress-strain curve, but can lead to large errors.
BRIDGMAN (1952) was one of the first studies to tackle the problem of characterizing the post-
necking hardening behavior. In this pioneering study, the authors proposed an analytical method
based on geometrical parameters of the necking profile to correct and compensate for necking
in a round bar. Although this method has shown to perform well for round tensile specimens, it
requires significant experimental work and could not be applied to specimens of rectangular cross-
sections. However, rounded specimens are not practical for thin sheets applications. Later, ZHANG
ET AL. (1999) proposed a method that can be applied to specimens of rectangular cross-section
by determining a relationship between the area and thickness reduction of the cross-section. A
drawback of this method is the required use of small specimens with thin sheets. Also, MIRONE
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(2004) proposed a material-independent method that characterizes the necking behavior with
reduced errors and much less experimental effort compared to the method of Bridgman.

With the advance of full-field measurement techniques combined with inverse methodologies,
it has allowed the development of complete solutions that consider the stress and strain of all
measured material points in the identification procedure. Most proposed solutions use a finite
element based inverse method for the identification of the post-hardening behavior (KOoC AND
STOK 2004; TAO ET AL. 2009; DUNAND AND MOHR 2010; POTTIER ET AL. 2011; TARDIF AND
KYRIAKIDES 2012). Nevertheless, building a finite element model that accurately predicts the
occurrence of necking is a hard task, for which several aspects need to be considered. The finite
element models should be capable of predicting the location of diffuse necking, which is often also
a difficulty in real experiments. Special attention should also be paid to building a finite element
mesh to avoid highly distorted elements, due to the large strains involved in post-necking (KAJBERG
AND LINDKVIST 2004). Employing information about the test’s actual boundary conditions in the
finite element model can lead to more accurate results (DENYS ET AL. 2016; KACEM ET AL. 2021),
but getting this information is not straightforward. Another drawback of such methodologies,
which is often pointed out, is their high computational cost.

More recently, alternatives to finite element based methodologies are becoming more popular
by avoiding their shortcomings and directly using the measured strain fields. ROSSI ET AL. (2018A)
proposed an identification method, known as linear stress-strain curve identification method
(LSSCI), that uses a piecewise linear function to describe the stress-strain curve even beyond
necking. This method has been successfully applied, provided that good full-field measurements
are obtained up to the free edges of the specimen. Nevertheless, to fully characterize the elasto-
plastic behavior (strain hardening and anisotropy) of sheet metals, a decoupled identification
approach is required. In this approach, the LSSCI method is used to characterize the hardening
behavior, and the VFM is used to identify the parameters of a yield criterion (LATTANZI ET AL.
2020). COPPIETERS ET AL. (2011) proposed an energy method, based on the observation that under
quasi-static conditions, the internal work is equal to the external work, assuming the hardening
behavior is correctly described. Using real experiments, it has been shown that this method is
computationally efficient, without the need to perform any FEA simulations (COPPIETERS AND
KUWABARA 2014).

The latter method is not drastically different from the VFM, and can be seen as a special case of
the latter. The VFM is based on the PVW and employs virtual displacement fields instead of actual
displacement fields to balance the internal virtual work with the external virtual work (PIERRON
AND GREDIAC 2012). It is one of the most prominent inverse methodologies and has already
been applied to various applications (AVRIL ET AL. 2008A; NOTTA-CUVIER ET AL. 2015; JONES
ET AL. 2019; MARTINS ET AL. 2019; MAREK ET AL. 2020; FU ET AL. 2021; ROSSI ET AL. 2022A). In
particular, it has already been successfully applied in the characterization of the strain hardening
behavior of thin sheets up to large deformations (ROSSI ET AL. 2016B). However, some studies have
highlighted that after diffuse necking, a deviation between internal and external virtual works
is observed (COPPIETERS ET AL. 2017; MARTINS ET AL. 2021), violating the validity of the VFM,
leading to an inaccurate description of the hardening behavior. The triaxial stress state can explain
the observed deviation that develops in the necking region (KIM ET AL. 2013). This rich information
about the necking behavior is not used in the VFM because of the plane stress limitations imposed
by the lack of available 3D full-field measurements. In fact, in sheet metal characterization, the
VFM is limited to be used in combination with surface measurements, as techniques are not yet
available to capture the 3D behavior inside the material. To circumvent this limitation, the IMG
method investigated in Chapter 6 might provide the necessary 3D displacement fields for using
the VFM in a 3D framework. However, this topic has not been extensively investigated, and at the
best of the author’s knowledge, only one study is found that it extended the use of the VFM to a
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3D framework (ROSSI AND PIERRON 2012A), assuming no plane stress or plane strain conditions.

Considering the amount of studies already using the VFM in the identification of material
parameters, its interest and potential is undeniable. Yet, it lacks a better understanding of the
consequences of its limitations, particularly the use of a 2D instead of a 3D framework. Although
several problems might exist in the latter, such as the lack of volumetric full-field measurements,
it might encourage the scientific community to develop new methodologies. Therefore, this study
investigates the application of the VFM in 2D and 3D frameworks, respectively, 2D-VFM and
3D-VFM to the identification of a hardening law up to large deformations. Even though only
simulated experiments are considered, the application of the VFM is investigated in materials of
varying thicknesses to understand its influence.

The following section introduces the formulation of the VFM general to any 3D application,
as well as its numerical implementation. Then, the simulated tests and virtual materials used
in this study are presented and analyzed. A section dedicated to the definition of virtual fields
follows, and finally, the results of an analysis of predicted load and identifications of a hardening
law are presented.

7.2 Virtual Fields Method

Let us consider, in the Euclidean space, a body B subject to a general deformation process at a time
instant t. According to the finite deformation theory (DUNNE AND PETRINIC 2005), the position
of its particles in the undeformed or reference configuration B, (Lagrangian description) is given
by X, while in the deformed or current configuration B, (Eulerian description) by x. The motion
of each material point can be described as a function of x = y(X, t), mapping the position of each
particle in the undeformed to the deformed configuration. The displacement field u = (uy, uy, u,)
is defined as the difference between the deformed and undeformed configurations as

uX,t) = yX,t)-X=x-X. (7.1)
Spatial derivatives can be used to calculate the deformation gradient F as

ox OJu

=&:&+I, (7.2)

where I is the second order identity tensor. The deformation gradient F provides a complete de-
scription of deformation, including stretch and rigid body rotations. The latter does not contribute
to shape or size change, thus not contribute to the strain tensor. Therefore, it is necessary to
separate the stretch from the rigid body rotations in the deformation gradient. Using the theorem
of polar decomposition (DE SOUZA NETO ET AL. 2008), F can be decomposed as

F = RU = VR, (7.3)

where U is the right stretch tensor, V is the left stretch tensor, and R is the orthogonal rotation
tensor. A consequence of such mathematical description is that for every material point, a
local coordinate system (1, 2, 3), also known as corotational coordinate system, rotates during
deformation, as schematically represented in Figure 7.1.

The VFM is based on the PVW, which represents an integral form of mechanical equilibrium,
written either in the undeformed or deformed configurations. Using the deformed configuration,
neglecting body forces, and quasi-static conditions, the PVW can be given as

B X 3B,
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Figure 7.1 Description of the motion of a material body 3 in the Euclidean space defined by the
global coordinate system (x, y, z), its undeformed configuration, deformed configuration at a time
instant ¢, and definition of a material point coordinate systems: (i, j, k) is the global coordinate
system defined in the undeformed configuration, (1, 2, 3) is the local coordinate system defined in the
deformed configuration, (=, H,IT) and (£, 7,¢) are the material coordinate systems, respectively, in
the undeformed and deformed configurations. The angle 6 represents the material orientation.

where o is the Cauchy stress tensor, u* is the virtual displacements field, and n the outward vector
of 93B,. Alternatively, the PVW can be formulated in the undeformed configuration as

ouU* ,
B oX 0B
0 0

Wint Wext

where P is the first Piola-Kirchhoff stress tensor, the virtual displacements’ field is now represented
by U*, and N is the outward vector of dB,. The PVW written in the undeformed configuration
is more suitable for practical implementation, as U* does not need to be updated with virtual
boundary conditions (MAREK ET AL. 2019; LATTANZI ET AL. 2020).

The first Piola-Kirchhoff stress tensor P relates forces applied in the deformed configuration
to volumes in the undeformed configuration, and is defined as

P = det(F)oF T, (7.6)

where det(F) is the determinant of F and F~T the transpose of its inverse. The Cauchy stress
tensor o is calculated from the strain tensor ¢ by means of a constitutive model combined with a
given set of material parameters &.

According to Equation 7.5, the PVW states that, in equilibrium and for a continuous virtual
field, the internal virtual work W/, is equal to the external virtual work W, in absolute value,
which must be satisfied for any time instant. Let us now consider that the body B can be discretized
by a given number of material points (similarly to a finite element mesh), then W,,; can be
approximated by a discrete sum as

& aU;
Wi (6,0%0 = 33 (BucE0) + 250), (17)
i=1 i
where nj, represents the number of material points and V{ is the volume covered by i-th material
point. Due to the formulation of the PVW in the undeformed configuration, V] is constant for
every time instant. Additionally, the external virtual work W, can be simplified by selecting a
virtual field that is constant along the boundary 93 as
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Wexe (U™, 1) = (PN) - U*ddB,
3B,

—u* | (PN)daB, (7.8)

3B,
= U* - L(1),

where L is the resultant of the load acting on 33, recorded during the test. Because the load
distribution on 33, is usually unknown, this simplification is crucial for the VFM.

Finally, the VFM is used to identify the best set of material parameters by minimizing the
difference between the internal and external virtual work, through an objective function ¢ written
in a least-squares formulation as

ng n 2
PO = 2 [ Wint (:07.0) = o (U70) | (7.9)
t=1j=1
where n, is the number of virtual fields and n, the total number of time instants. Various time
instants and different virtual fields can be used to enrich the objective function. Usually, an
optimization algorithm is used to iteratively adjust the material parameters.

7.2.1 Stress Reconstruction from the Strain Fields

As previously established, the VFM requires, at each iteration, the calculation of P, which is
effectively dependent on the strain tensor. Therefore, it is convenient to use a measure of strain
that is independent of rigid body rotations and dependent on stretch alone, given by

e=1nV, (7.10)

where V is defined in the global coordinate system (i, j, k) in the undeformed configuration.
However, constitutive equations are generally defined in the material coordinate system (&, 7, {),
aligned with material texture. Thus, the calculated strain tensor £(-5) must be projected to the
material coordinate system (&, 7, {) according to

g(fﬂ’)yg) = R;at (RTE(I’J’k)R) Rmat’ (7.11)

where Ry, is the material rotation tensor given by

cos® —sinb® 0
Rpyat =|sin® cosfé 0], (7.12)
0 0 1

which is responsible for rotating the local coordinate system to the material one as a function of
the material orientation 6, constant throughout deformation.

The projected strain tensor £(67:¢) is used to reconstruct the stress tensor o7¢) via an implicit
integration algorithm, similarly to the ones found in FEA software. However, many time instants
should be used to guarantee the stability and convergence of the algorithm. Alternatively, other
algorithms could be used, such as the direct method proposed by ROSSI ET AL. (2020), that provide
a computationally faster reconstruction but cannot be incorporated in a FEA software.

Afterwards, the stress tensor o(67¢) defined in the material coordinate system (£, 7, ¢) should
be projected to the global coordinate system (i, j, k) as



116 Virtual Fields Method in a 3D Framework

o-(l,Jsk) = Rmat (Ro-(g’nyg)RT) R;at’ (7.13)

and used in Equation 7.5 to calculate the first Piola-Kirchhoff stress tensor P defined the global
coordinate system (i, j, k) in the undeformed configuration.

This formulation is general to any 3D application. However, the VFM is commonly used
with full-field measurements limited to the surface of the specimen. These measurements only
provide in-plane kinematic quantities, and often plane stress conditions are assumed, provided the
specimen’s thickness is small relative to its width and height. Thus, the application is considered
2D, and out-of-plane stress components are negligible (o,, = gy, = gy, = 0), but the deformation
gradient F is in reality fully 3D. It results that the calculation of P requires additional assumptions
(MAREK ET AL. 2019). Assuming a thin specimen, the out-of-plane shear components can be
neglected (Fy, = K, = Fx = F,; = 0), and the determinant of F is redefined as

det(F) = Fzz(E(xF;ry - E{ngrz)a (7.14)

where Fy, Fyy, Fyy, and Ky are the in-plane components of F, and F,,, is the out-of-plane component.
The in-plane components are obtained from the displacement field. However, F,, is unknown,

but it can be approximated by the out-of-plane strain component for each time instant ¢,,(t) as

t
E,(t)=14¢,(0)=1 +f €,z dL. (7.15)
0

Finally, assuming isotropic elastic behavior using Hooke’s law and the isochoric behavior of
plasticity, €,, can be determined as

. v . . .p .p
€2z = _m(‘fgx + &yy) — (€xx + yy), (7.16)
where 5, and &5, represent the components of elastic strain rate, and €xx and égy the components
of plastic strain rate.

7.2.2 Numerical Implementation

The VFM is numerically implemented in a code fully developed in Python programming language.
In terms of computational efficiency, the code is developed with array-based calculations, instead
of using loops over the material points, as was the case in the FEMU from Chapter 5. Using
arrays to directly perform the operations, such as calculating the logarithmic strain of all material
points, largely speeds up the computation and reduces differences into an implementation in
Fortran. Comparatively to the implementation of Chapter 5, the small loss in computational speed
is compensated in simplicity. Moreover, the array-based calculation easily allows the program to
perform the operations in either a 2D or 3D framework.

As schematically presented in Figure 7.2, the VFM requires the input of the geometry (co-
ordinates of undeformed configuration), displacement fields, evolution of load, and constitute
model. It should be noted that this implementation uses a finite element mesh and shape functions
similar to a FEA software (such as Abaqus/Standard). In the pre-processing stage, the deformation
gradient is calculated, and the logarithmic strain tensor is obtained from the polar decomposition
of the deformation gradient. The latter operation is performed using a function available in the
NumPy library (NUMPY 2022). The logarithmic strain tensor calculated in global coordinate system
is rotated to the material coordinate system in the undeformed configuration. Then, the manual
virtual fields are generated.

The identification procedure uses the gradient-free NM algorithm (see Section 5.3) included
in the SciPy library (SCIPy 2022A). This algorithm was chosen, in part, because it allows more
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Figure 7.2 Flowchart of the VFM implementation.

control over the optimization procedure compared to the implementation of the LM algorithm.
For example, using the NM it is possible to call a function at the end of each iteration, which
is not available for all algorithms of the SciPy library. This functionality is important to allow
updates during the optimization procedure. Inside the identification procedure, the first and main
operation is the calculation of the Cauchy stress tensor. Specifically, UMMDp is integrated in
the VFM to reconstruct the stress field through the backward-Euler scheme combined with an
elastic predictor and plastic corrector (see Section 2.4). The major advantages of using UMMDp
is to guarantee that the same constitutive model is used both in the identification procedure
and future FEA simulations, and easily identify different constitutive models. A driver code for
UMMDp is developed that allows the communication with the main program through the F2PY
framework (NUMPY 2022). This operation requires the most computational effort, because using
an array-based calculation is impossible. The stress tensor is history dependent, so the calculation
is performed iteratively for each material point and time instant. Afterwards, the Cauchy stress
tensor is rotated to the global coordinate system, and the first Piola-Kirchhoff stress tensor is
calculated. The internal and external virtual works are calculated, and finally, the objective
function. Finally, the stopping criteria are evaluated, and the program either ends or updates the
material parameters and continues the optimization procedure.

7.3 Simulated Tensile Tests

7.3.1 Specimen Geometry and Finite Element Model

This study only considers numerical simulations of a uniaxial tensile test. A specimen with varying
cross-section is selected (KIM ET AL. 2013; MARTINS ET AL. 2018B) and its geometry is presented
in Figure 7.3. Relatively to a classic uniaxial tensile specimen, this geometry has the advantage of
generating a heterogeneous strain field over a large area, providing richer mechanical information
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for the identification of material parameters (see Chapter 3). Moreover, the varying cross-section
will trigger necking in the center region of the specimen, facilitating the setup of acquisition
cameras during real experiments.

The test is simulated with Abaqus/Standard (DASSAULT SYSTEMES 2019), considering a fully
3D model of the test, without assuming symmetry conditions. The finite element mesh is built
using the 8-node brick elements with reduced integration (C3D8R), and considering three layers
through the thickness. Ideally, more layers could have been used to describe more accurately the
deformations along the thickness. However, it was found that increasing the number of layers also
largely increased the computational time of numerical simulations and post-processing procedures.
The finite element mesh was generated with an in-plane global element size of 0.2 mm, resulting
in a total of 197 955 elements. Nevertheless, the center region of the specimen is the richest part
of the specimen, thus a VOI (shaded region in Figure 7.3) is defined and constituted by 97 307
elements. The in-plane mesh size was defined after performing a convergence study evaluating
the maximum equivalent plastic strain, by considering only three layers of elements through the
thickness. The selected mesh size provided the best balance between an accurate description of
the equivalent plastic strain and the computational effort.

A Cartesian coordinate system is defined with the x axis along d,, the y axis along dy,, and
the z axis along d;. The constants d,, and dy, represent, respectively, half of the width and length
of the VOI, while d; is the material thickness. The origin of the coordinate system is located
in the front surface of the specimen (x = y = z = 0), while z = d; defined the back surface
(see Figure 7.3). The numerical simulations are displacement-driven, with an imposed constant
vertical displacement uy of 5 mm applied across the top edge, which was additionally fixed along
the x and z axess to simulate the effect of the grip of a testing machine. The bottom edge of the
model was fixed. The numerical simulations are performed at a constant time step, resulting in
200 time instants. Finally, a large strain formulation is adopted, and the constitutive model is
implemented using UMMDp (see Section 2.4).

I A O

7.6

40

Figure 7.3 Geometry and finite element model of the specimen used in the numerical simulations of
the simulated tensile test (dimensions in mm).

7.3.2 Virtual Materials

The materials considered in this study are based on the real characteristics of a DP780 dual-
phase steel with a nominal thickness of 1.5 mm. This material was experimentally tested using
quasi-static classical uniaxial tensile tests at different material orientations. The results showed
that the material exhibited anisotropy, and the recorded longitudinal strain just before rupture
was approximately 0.65. However, it should be emphasized that the goal of this study is not
to characterize this material, but only to use it as a basis for the virtual materials considered
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throughout. Many virtual materials of varying thicknesses are used in this study, but using the
same description of the elastoplastic behavior.

The elastic isotropic behavior of the materials is described by Hooke’s law, and the elastoplastic
behavior is described by the von Mises isotropic yield criterion and the Swift isotropic hardening
law (see Sections 2.2 and 2.3). The latter model was selected for its simplicity and wide use in
the scientific community. The elastic properties of the materials and the Swift’s law material
parameters are provided in Table 7.1. The parameters of Swift law were obtained by fitting the
experimental stress-strain curve of DP780. Additionally, in Figure 7.4, the hardening behavior
according to the Swift’s law is presented up to 0.75 of equivalent plastic strain.

Table 7.1 Elastic properties of the materials and reference parameters used in the Swift isotropic
hardening law.

Elasticity Swift hardening law

E[GPa] v[-] K[MPa] o,[MPa] nl[-]

200.0 0.3 1250.0 350.0 0.150

The materials are defined with thicknesses of 1.5, 2, 2.5, 3, 4, 6, 8, and 10 mm. The vertical
displacement of 5 mm is used in all numerical simulations to have a direct comparison between
the materials. As aresult, only the numerical model of the 1.5 mm thick material is, approximately,
modeled to reach rupture around the same magnitude of values of the real material. The equivalent
plastic strain map for this material, on the surface (z = 0) and on the middle plane (z = d), is
shown in Figure 7.5¢ at the last time instant corresponding to u, = 5mm. A large concentration
of deformation is observed in the central region, indicating a severe localization of necking just
before rupture. At a time instant of uy = 4 mm (see Figure 7.5a), it can be observed that the
material was already in diffuse necking, though the values of equivalent plastic strain are much
lower than at the last time instant. This difference shows that large deformations are developed in
the later stages of the test. On the other hand, the tests with materials of large thicknesses (such
as 8 mm or 10 mm) do not even reach localized necking. It is observed that the necking is delayed
as a function of the material’s thickness. This is observed in the equivalent plastic strain maps
for the 10 mm thick material presented in Figure 7.5b. The values of equivalent plastic strain
at the last time instant are only comparable to the ones observed at uy = 4 mm for the 1.5 mm
thick material. The evolution of load as a function of the vertical displacement is also shown in
Figure 7.6 for all materials. As expected, the load increase is proportional to the thickness of the
materials.

1400
1050

700

350

yield stress [MPa]

0.00 0.25 0.50 0.75
equivalent plastic strain [-]

Figure 7.4 Virtual representation of the materials strain-hardening behavior using the Swift isotropic
hardening law and reference parameters.
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Figure 7.5 Maps of equivalent plastic strain at time instants corresponding to vertical displacements
of 2, 4, and 5 mm for materials with (a) 1.5mm and (b) 10 mm of thickness. Maps on the surface
(z = 0) and middle plane (z = d,/2) are both represented.
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Figure 7.6 Evolution of the load as a function of the vertical displacement for the simulated tests
with materials of thickness (a) 1.5, 2, 2.5, and 3mm, and (b) 4, 6, 8, and 10 mm.

7.3.3 Extraction of the Displacement Fields

The simulated tests are modeled in 3D, but the 2D-VFM uses information from the surface of the
specimen, thus only in-plane kinematic fields are considered. For the 3D-VFM, the displacement
field is extracted from the nodes of the finite element mesh in the VOI of the simulated tests. This
mesh is already regularized, thus can be directly used as input to the 3D-VFM. For the 2D-VFM,
the in-plane displacement field is extracted from the nodes on the surface of the 3D test, and a 2D
finite element mesh is generated by rearranging the elements’ connectivity.
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7.4 Definition of the Virtual Fields

The main area of development and discussion around the VFM is probably the selection of virtual
fields. Because its definition assigns weights to material points, it directly affects the objective
function and can lead to different identification results. Nevertheless, one thing all methodologies
agree is that the virtual fields must be kinematically admissible, continuous and differentiable
over the entire domain (PIERRON AND GREDIAC 2012).

In the framework of plasticity, two strategies can be distinguished according to the way virtual
fields are generated. The most common strategy is based on manually defined virtual fields. This
strategy usually employs polynomial or harmonic functions defined by the user and adapted to
the geometry and boundary conditions of the application (ROSSI ET AL. 2016B; FU ET AL. 2020;
MARTINS ET AL. 2021). For this reason, this strategy depends highly on the user experience and
understanding of the application, even though it is simpler from an implementation point of view.
The other strategy is based on the automatic generation of virtual fields, and was developed to
overcome the problems of the first. A major advantage is that it reduces the user dependence
of the first strategy, making the method more automatic and suited for integration in parameter
identification software. A first implementation, named optimized virtual fields, relied on the
minimization of noise effects in the material parameters (PIERRON ET AL. 2010). Later, MAREK
ET AL. (2017) proposed the sensitivity-based virtual fields. This implementation relies on the
sensitivity of the stress field to each material parameter, and it has been shown to outperform the
manual virtual fields, particularly when dealing with experimental data (MAREK ET AL. 2020;
LATTANZI ET AL. 2020). Nevertheless, it has been shown that increasing the number of manual
virtual fields can lead to interesting results (MARTINS ET AL. 2020A).

Considering that 3D-VFM is still less explored than 2D-VFM, only the manual defined virtual
fields are employed in this study because of its simplicity and ease of implementation. The generic
form of the virtual displacement fields U, for the general case of 3D, is given by

Uy
U= Uy, (7.17)
U

where U, = 0 in the 2D-VFM, and the gradient of virtual displacement fields Z—;] by

FoU;  oUy  dUy
oX dY dZ
ou* Uy dUy oUy
0X X oy oz |
oU,; AU, oUy
L dX dY oz
where 3U; /8Z = dU,*/dX = 3Uy/dZ = 3U;/8Y = 8U,*/dZ = 0 in the 2D-VFM.

Three manual virtual fields are defined in this study, and their components are presented
in Table 7.2. The first virtual field Uj is commonly used in various applications of the VFM
because it includes the load’s contribution. The external virtual work is proportional to the load
and is balanced by the internal virtual work calculated from the stress component yy, aligned
with the loading direction. In theory, it is the only virtual field that gives a non-zero value in
the calculation of the internal virtual work. Moreover, the resulting gradient presents a constant
spatial distribution across all VOI.

The second and third virtual fields, respectively, denoted by U; and U3 present non-constant
spatial distributions, with different weights assigned to the stress components in the calculation of
the internal virtual work. These are null on the boundary of the applied load, which gives a zero

(7.18)
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Table 7.2 Components of the virtual displacements and gradient of the virtual displacements for
the three virtual fields.

Virtual field
Component 1 2 3
Virtual displacements
U; 0 % sin(lx) cos(iy) % sin(lx) cos(iy) cos(lz)
U na 1 sm( x) cos(=—— y) L sm( x) cos(=—— y) cos( z)
y dy T 2dy, T 2dy, 2d,
" 1
U; 0 0 p sm( x) cos(=— 2d; y) sm( )
Gradient of virtual displacements
oU; 1 T T 1 T T T
e 0 . cos(ax) cos(my) . cos(ax) cos(my) COS(Z_dtZ)
oUy 1 . .7 . T 1 . .7 . T T
3y 0 ~3d; s1n(£x) sm(my) ~3d; s1n(d—x) sm(ﬁy) cos(ﬁz)
oU; 1
3z 0 0 ~3d sm( x) cos(=— 2d, y) s1n( )
Uy 1 1
3% 0 . cos( x) cos( y) . cos( x) cos(=— >d; y) cos( )
oUy 1 ! sm( x) sm( y) ! sm( x) s1n( y) cos(—z)
oY dh Zdh Zdh 2dt
oU 1 T
y L T
37 0 0 ~3d, s1n( x) cos(=— >dr y) sin( >d; z)
U, 1 . T
X 0 0 . cos( x) cos(=— 2dr y) sm(z—dtz)
oU; 1 . T
37 0 0 ~3d sm(—x) sm( y) sm(ﬁz)
oU;
37 0 0 zdt s1n( x) cos(=— 2d, y) cos( )

value in the calculation of external virtual work. The second virtual field was adopted from other
studies using 2D-VFM, where its use has proven to be successful (ROSSI ET AL. 2016B; MAREK
ET AL. 2019; LATTANZI ET AL. 2020). It only considers the in-plane components of the stress tensor,
neglecting the out-of-plane components. Also, U; does not depend on z, leading to a constant
spatial distribution across the thickness.

Lastly, U3 assigns weight to all the stress tensor components and also generates a non-constant
spatial distribution across the thickness. The third virtual field can be considered an extension of
the second to 3D-VFM, because it simplifies to the latter when z = 0. However, it should be noted
that this virtual field would not be useful if the origin of the coordinate system was positioned in
the middle of the specimen, because the kinematic fields are symmetrical across the thickness.
Thus, leading to a combination of symmetrical stress fields with symmetrical virtual fields across
the thickness, resulting in a null value of the internal virtual work. The former is only true because
this study only considers simulated tests, while in real experiments unsymmetrical kinematic
fields across the thickness would be expected. A graphical representation of the three virtual fields
displacement maps is shown in Figure 7.7. The presented maps of Uj and U} are representative
of the whole VOI, while for U} are presented the maps at the front (z = 0) and back (z = dy)
surfaces.
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Figure 7.7 Maps of virtual displacement fields represented for three virtual fields (a) U7, (b) U3, and
(c) U3. The maps of U7 are represented on the front (z = 0) and back (z = d,) surfaces, while the
maps of Uj and Uj are representative of the whole VOI.

7.5 Results

7.5.1 Analysis of the Predicted Load

Because this study only considers numerical data, the reference parameters and reference test
data are known. By taking advantage of that, it is possible to analyze the predicted load using the
2D-VFM and the 3D-VFM, and compare with the reference load obtained from the numerical
simulations. In particular, the evolution of load can be extracted from numerical simulations and
used in the external virtual work term, as shown in Equation 7.8, provided a constant virtual field
over the boundary is used. Also, considering the test is uniaxially loaded along the y axis, the
evolution of load can be simplified to its y component, denoted by L'*{(¢). Using the first virtual
field U7, the external virtual work W,,(U7, t) can be simplified to

* y f
Wit (U7, t) = =— - L"4(¢)
ext\+1 dh (7.19)
— Lref(t),

where U*y = y/d;, = 1 on the boundary of applied load. Consequently, the evolution of predicted
load L(&,t) can be calculated from the internal virtual work W.,,;(¢, U7, t) as
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1

L(f, t) = Eulint(fi U*’ t)
1 . duy
=5 fB 0 P(& 1) : a_xl dB, (7.20)

1 / 1
= = P (g,t)‘_dB(),
2 2, yy dy,

where R,y represents the yy component of the Piola-Kirchhoff stress tensor. The constant 1/2 is
necessary to account for the reaction load on the fixed boundary.

The relative error 8,.(&, t) between evolution of predicted and reference load given by

L& 0 - L'(0)|
Lref(t) ’
is used as the indicator to compare the results using the 2D-VFM and the 3D-VFM.

In Figure 7.8, the evolution of the relative error is presented for all materials. It is observed
that using the 3D-VFM, the maximum relative error is lower than 0.5 % for all thicknesses, and

8re(£,1) = 100 X

(7.21)
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Figure 7.8 Evolution of the relative error for predicted load using the 2D-VFM and the 3D-VFM with
the reference material parameters, for tests with materials of thickness (a) 1.5, 2, 2.5, and 3mm, and
(b) 4, 6, 8, and 10 mm.
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tends to decrease with the increase in thickness. Thus, it can be considered that the relative error
of 3D-VFM is negligible, and that the evolution of load is successfully predicted. However, the
same is not observed using the 2D-VFM, where the relative error is not negligible. Overall, the
relative error increases with the increase in thickness. For 1.5 mm, the evolution of relative error
is close to zero, up to 4 mm of displacement, instant where the error rapidly increases up to 1 %. It
was shown before that the time instant corresponding to u, = 4 mm is when the equivalent plastic
strain values rapidly increase, leading to the rupture of the material. Increasing the material’s
thickness, an increase in the relative error is observed sooner in the test, even though the same
displacement corresponds to lower deformations in the thicker tests. For the thicker material of
10 mm, the relative error is as high as 6 % at the last time instant, though it can be expected that it
would be higher for later stages of the test leading to rupture. In general, the increase in relative
error appears proportional to the material’s thickness.

To better understand the origin of these deviations, the evolution of the stress components xx,
yy, and zz is investigated for two material points, one in the center of the front surface, denoted R,
and another in the center of the middle plane, denoted R,. The exact location of these two material
points in the finite element mesh of all tests is shown in Figure 7.9, for the 1.5 mm thick material
as an example.

y

L

z

Figure 7.9 Location of the material points B and Ry, represented on the finite element mesh of the
1.5 mm thick material test.

This analysis is only performed for the materials of thickness 1.5, 3, and 10 mm, as presented
in Figure 7.10. It can be seen that there is a dominant stress component oy, associated with the
loading direction, which is expected from an uniaxial tensile test. More interestingly, it can be seen
for the 1.5 mm thick material that the time instant where the error rapidly increases is consistent
with the appearance of the stress component o,, (see Figure 7.10a). In fact, this is also consistent
with the onset of localized necking, as previously observed in Figure 7.4. For larger thicknesses,
the development of o,, is not as sudden and intense, but more as a constant increase from the
initial time instant, in particular for the 10 mm thick material (see Figure 7.10c). Moreover, for
the three materials, there is a difference in the stress values between the two material points.

Additionally, an analysis of the evolution of the ratio of stress components is also performed
between the two material points. Its formulation is given by

- 9i(Ba)
Y ou(R)
This analysis shows that the magnitude of o,, in B, is two times higher than in R (see Figure 7.11).

The same behavior is observed for all materials, as shown in Table 7.3, where the maximum values
of the ratio of stress are presented. Interesting is also the observed tendency of Ry, to increase for

withi =x,y, z. (7.22)
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Figure 7.10 Evolution of the stress components oy, oyy, and o,, for the material points B and Ry,
respectively, located on the center of the surface and in the center of the middle plane, for materials
with thicknesses of (a) 1.5mm, (b) 3mm, and (c) 10 mm.

higher thicknesses. Since the 2D-VFM only considers the in-plane stress components and the
surface material points in the calculation of the internal virtual work, it is not able to capture these
behaviors, leading to the errors in the calculation of the internal virtual work, and consequently,
errors in the predicted load.
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Figure 7.11 Evolution of ratio of stress components oy, oyy, and o,, between material points K
and By, for materials with thicknesses of (a) 1.5mm, (b) 3mm, and (c) 10.0 mm.

Although errors will exist when using the 2D-VFM, it is important to understand if it’s an
acceptable error. For example, a relative error of 1% (1.5 mm) can be considered acceptable for an
application not requiring high accuracy. As such, it can also be considered that for thicknesses up
to 1.5 mm, using the 2D-VFM is acceptable. However, for larger thicknesses, a larger deviation in
the internal virtual work should be expected, leading to larger errors in the predicted load.

Table 7.3 Maximum values of the ratio of stress components oy, oy, and o,, between material
points R and Ry, for all materials.

Thickness [mm)]

Ratio of stress[-] 1.5 2 2.5 3 4 6 8 10
Ry 115 116 118 120 125 137 154 1.73
Ryy 1.07 1.04 1.04 1.03 1.03 1.04 1.05 1.06
R,, 214 2.04 202 202 201 201 200 2.00
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7.5.2 Ildentification of the Swift Hardening Law

The developed VFM code in Python programming language is applied to identify the material
parameters of the Swift’s law, with & = (K, gy, k). The adopted termination criteria of the op-
timization procedure are set to a maximum number of iterations of 500, or when the absolute
difference between parameters in consecutive iterations is lower than or equal to 1 x 1072, The
identification is carried out for only the three thicknesses 1.5, 3, and 10 mm.

In a first part, the identification is carried out using both the 2D-VFM and the 3D-VFM. Only
the first virtual field is used here. The three material parameters of Swift’s law are identified, and
the starting guess is equal to the reference parameters (see Table 7.1). This way, it will be easier to
verify if the reference parameters are the global minimum solution used by numerical simulations.
It is expected that the optimization is easily carried out, without taking many iterations or stopping
at local minima.

The results of this identification are summarized in Table 7.4, where it is observed that using
the 3D-VFM, the final material parameters are identical to the reference ones. In fact, considering
the objective function is not normalized, the initial and final values are of low magnitude. These
results reinforce the previous analysis, where very low errors were obtained for the predicted load
using the 3D-VFM.

Table 7.4 Results of the identification starting from the reference material parameters and using the
2D-VFM and the 3D-VFM, for tests with thicknesses of 1.5, 3, and 10 mm. Only the first virtual field
is employed in the identification.

Parameter Objective function

Thickness K [MPa] o,[MPa] nl[-] Initial [-] Final [-]

initial parameters  1250.000 350.000 0.150 — —

2D-VFM
1.5 mm 1240.609 340.502 0.148 3.00x 10° 2.10x 10°
3 mm 1217.838 318.345 0.143 9.10x 107 3.30x 107
10 mm 1137.783 5.049 0.128 1.58x10'" 2.40x10°
3D-VFM
1.5 mm 1250.591 350.365 0.150 3.31x10° 8.20x 102
3 mm 1250.463 350.255 0.150 7.76x10°  8.30x 102
10 mm 1249.936 349.863 0.150 7.11x10° 5.40x10°

However, the results using the 2D-VFM are completely different. By comparison, the initial
objective function values are higher than those observed using the 3D-VFM, which directly
indicates a worse prediction of the load using the reference material parameters. For the 1.5 mm
thick material, the identified material parameters are not that far from the reference ones, even
though it directly represents that these are suitable parameters. In fact, the objective function
values have not largely improved, and its values are still much higher than those observed using
the 3D-VFM. Moreover, the 2D-VFM uses a third of the material points considered in the 3D-VFM,
thus proportionally the objective function values using 2D-VFM would be even higher. For the 3
and 10 mm thick materials, the identified parameters are far from the reference parameters. In
particular, the identified value of oy, for the 10 mm thick material is not even physically acceptable.
Bounds could have been imposed to avoid the unfeasible solutions, though it would not change
the conclusions of the identification.

In Figure 7.12, the evolution of the relative error for predicted load (see Equation 7.21) is
represented using both the reference and identified material parameters from Table 7.4 using the
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2D-VFM. For the 1.5 mm thick material, it is observed that the predicted load with the identified
parameters has improved in the range of necking (from approximately 4 mm of displacement).
In spite of that, the relative error increases in early stages of the test, where the error was close
to zero using the reference parameters. The same phenomenon is observed for the 3 and 10 mm
thick materials with even more emphasis. It can be concluded that the identification using the
2D-VFM results in identified material parameters that are not representative of the materials’
hardening behavior when applied to materials with large thicknesses.
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Figure 7.12 Evolution of the relative error for predicted load using the reference and the identified
material parameters using the 2D-VFM, for tests with thicknesses of (a) 1.5mm, (b) 3mm, and
(c) 10.0mm.

To analyze the influence of each virtual field (see Table 7.2), more identifications are performed,
but only using the 3D-VFM. In the identifications, various combinations of virtual fields are used.
Three identifications evaluate the influence of each virtual field individually, and three more are
performed by combining the first with the second virtual field, the second with the third, and a
final identification combining the three of them. Again, the identifications are performed only for
the 1.5, 3, and 10 mm thick materials. However, the initial material parameters are different from
the reference ones to investigate the effect on the efficiency of convergence. The selected initial
material parameters correspond to 1.5 times the reference ones.

Overall, the identification results are good, as summarized in Table 7.5. A common result
between all identifications is the exact identification of the parameter n, while for the parameters
K and g, the exact values are not identified, but almost identical. The values of the identified
parameters are all within 1% of the reference ones, which is more than an acceptable result.
Nevertheless, for the sake of comparing the influence of different virtual fields, it can be said that
the best results are achieved using the first virtual field, either alone or in combination with others.
In fact, this virtual field is the only one that leads to a non-zero value in external virtual work,
including valuable information to the identification of hardening material parameters. When
using either the second or third virtual fields alone, the identified parameters K and o, tend to
not reach the exact solution. Nevertheless, it does not mean these virtual fields are not suitable,
but only reinforces the idea that using manual virtual fields, increasing its number leads to better
and more stable results (MARTINS ET AL. 2020A). Interestingly, for the 10 mm thick material,
the results using the second virtual field are slightly worst compared to the results of the 1.5
and 3 mm thick materials. This finding suggests that when out-of-plane stress components are
not negligible, using virtual fields similar to the second leaves out important information that
could be captured in the objective function. In terms of computational efficiency, the number of
iterations required for the convergence of the identification procedure does not suggest any major
differences between the combination of virtual fields.
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Table 7.5 Results of the identification using the 3D-VFM and combining different virtual fields, for
tests with thicknesses of 1.5, 3, and 10 mm.

Parameter Objective function

Thickness Virtual fields K[MPa] o,[MPa] n[-] Iterations Initial [-] Final [-]

initial parameters  1875.000 525.000 0.225 — — —

1.5 mm 1 1250.591 350.365 0.150 217 7.64x10°  8.21x10?
2 1247.688 348.374 0.150 226 1.97x 108 9.68 x 102
3 1247.355 348.439 0.150 217 8.25x10”7  8.72x10?
1+2 1250.454 350.240 0.150 218 7.89x10° 3.71x10°
1+3 1250.525 350.307 0.150 240 6.73x10° 2.70x10°
1+2+3 1250.394 350.187 0.150 232 6.93x10° 5.52x10°
3 mm 1 1250.463 350.255 0.150 234 3.06x10" 8.32x10?
2 1248.317 348.930 0.150 208 9.13x10%  7.28x10?
3 1248.670 349.627 0.150 217 3.80x10®  3.88x 10!
1+2 1250.357 350.160 0.150 216 3.15x 10"  6.45x10°
1+3 1250.423 350.223 0.150 221 3.10x 10" 2.56x10°
1+2+3 1250.321 350.132 0.150 220 3.19x 10" 8.04 x 10°
10 mm 1 1249.936  349.863 0.150 240 3.51x10" 539x10°
2 1246.999 347.853 0.150 210 9.40x10° 1.67 x10*
3 1249.914 349.843 0.150 275 3.09x10" 1.09 x10*
1+2 1249.792  349.726  0.150 248 3.62x10" 1.18x10°
1+3 1249.914 349.843 0.150 275 3.09x10" 1.09x10*
1+2+3 1249.773 349.710 0.150 260 3.19x 10" 1.22x10°

7.6 Conclusions

The purpose of this study is to better understand the limitations of using the VFM in a 2D frame-
work compared to a 3D framework. The study only considers data from numerical simulations,
and the methodology was applied to the identification of a hardening law, beyond necking and up
to rupture. The simulated tests are performed with a uniaxial tensile test of varying cross-sections,
generating a heterogeneous strain field over a large area. Moreover, various materials of different
thicknesses are considered to understand its influence on the use of the VFM. Although these
materials present different thicknesses, their hardening behavior is based on the real behavior of
a dual-phase steel with 1.5 mm of thickness.

Three manual virtual fields are implemented in this study, because of its simplicity and lack of
studies in a 3D framework. The first virtual field is commonly used in the VFM, because it’s the
only one that includes the external virtual work in the calculation of the objective function. The
second virtual field only assigns weight to in-plane stress components. It is also widely used in
the VFM in a 2D framework. The third, and last, virtual field is an extension of the second to a 3D
framework, and can be considered a novel contribution of this study. The advantage of the latter
is that it assigns non-zero weights to all stress components and is not constant along the thickness.

In a first part, the evolution of the predicted load was analyzed using the 2D-VFM and the
3D-VFM, for all materials. The relative error between predicted and reference load from numerical
simulations was used as an indicator. The results showed that the relative error was negligible
when using the 3D-VFM, successfully predicting the evolution of the load. On the contrary, using
the 2D-VFM, the relative error was no longer negligible, ranging from 1 % for the 1.5 mm thick
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material up to 6 % for the 10 mm thick material, at the last time instant. With this analysis, it has
been shown that the relative error increases proportionally to the increase of materials’ thickness.
Moreover, the source of the error can be related to the development of non-negligible out-of-plane
stress components not considered in the 2D-VFM, as well as considerable differences in the stress
values between the surface and middle of the specimen.

In a second part, the identification of the Swift hardening law material parameters was in-
vestigated. Initially, the identification was carried out using both VFM frameworks, only one
virtual field, and starting from the reference material parameters. The results have shown that the
reference material parameters correspond to the global optimum solution using the 3D-VFM, but
using the 2D-VFM led to solutions diverging from the reference, and one unfeasible solution was
also found. A verification of the predicted load using the identified parameters has shown that
these do not lead to better results, but rather improve the prediction at some stages at the expense
of others. Lastly, the three virtual fields were employed in the identification of the material pa-
rameters using the 3D-VFM. This time, a starting solution far away from the reference was chosen
to analyze the convergence efficiency using different combinations of virtual fields. Nevertheless,
few differences were observed between identifications, with all reaching solutions within 1 % of
the reference values or in some cases identical.

Finally, it can be said that this study performed a pioneering analysis of the limitations of the
VFM in a 2D framework compared to a 3D framework. However, this was only a preliminary
numerical study that can be enlarged and extended to materials developing pronounced out-of-
plane stress fields.
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8.1 Conclusions

The ultimate objective of this thesis was to develop and investigate efficient and accurate method-
ologies for the characterization of metallic sheets. Following the “Material Testing 2.0” paradigm,
the parameter identification of constitutive models of metallic sheets can be divided in three pillars:
(i) material testing, (ii) constitutive models, and (iii) inverse methodologies. It is considered that
this thematic follows a multiplicative system, meaning that if one of the pillars fails, the outcome
of the parameter identification will not be successful. Thus, this thesis aimed to contribute to
each of the three pillars, by investigating the use of heterogeneous mechanical tests, techniques
to reconstruct the kinematic fields, advanced constitutive models, and inverse methodologies.

The starting point for this thesis dealt with the use of advance constitutive models, because
scientific and industrial communities need accurate models to describe multiple phenomena of
the materials. However, implementing and validating a single model is an arduous task that can
take months of work. For that reason, studies generally tend to use well known models, which are,
in some cases, relatively simple and have already been implemented and tested. Nevertheless, with
the recent development of an open source user subroutine library of constitutive models, named
Unified Material Model Driver for Plasticity (UMMDp), an opportunity to easily access advanced
models opened up. This library contains various isotropic and kinematic hardening laws, more
than 10 advanced yield criteria, and it is compatible with five different FEA software. Moreover,
its programming structure is highly modular, allowing its expansion with an easy integration of
other models. However, at the start of this thesis, few validations of the library were reported.
Therefore, the validity and performance of the UMMDp was investigated by comparing it with an
already developed and validated user material subroutine and one of the most used FEA software,
Abaqus/Standard. In particular, the use of the advanced Y1d2004-18p anisotropic yield criterion
and a non-linear mixed hardening law was analyzed for single-element homogeneous tests and a
deep drawing cup test. Results showed that the UMMDp yields identical results compared to the
used references, validating its use, but with added computational effort. Nevertheless, the latter
disadvantage is compensated by its practicality and potential. These outcomes have led to the
adoption of the UMMDp throughout this thesis. Moreover, this investigation also led to the use of
the UMMDp by several other studies, other research teams, as well as its integration in the VFM
module of MatchID commercial software (MATCHID 2022E).

Afterwards, an extensive overview of heterogeneous mechanical tests, reported in the literature,
was performed, with its focus on the type and amount of information provided. This survey was
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justified by the large amount of heterogeneous tests designed in the last decade. However, as more
and more tests were proposed, it raised the question of which was best, i.e. which test provided the
widest range of mechanical states and a larger degree of deformation, leading to more accurate
parameter identification. The survey divided the tests between uniaxial, biaxial and out-of-plane
loading, showing that the first type corresponds to most developed tests, which may be related to
the fact that only a common uniaxial testing machine is required. These tests can achieve various
mechanical states, mainly in the shear and uniaxial tension regions. Moreover, having only two
edges of the specimen fixed leads to more flexibility in the design process, which in turn leads to
complex shapes obtained by different methodologies. On the other hand, biaxial and out-of-plane
loading tests require more complex experimental apparatus, thus are found in a less number.
Nevertheless, the biaxial tests have been largely investigated for a long time, but its interest has
recently dropped because it has been shown that the range of mechanical states is reduced and
low levels of deformation are achieved.

The previous survey also led to the conclusion that there is a lack of information on the
proposed tests, as only a few are analyzed by different studies and conditions. Comparing hetero-
geneous mechanical tests is not a trivial task, as there are no clear standards or metrics to evaluate
them. Therefore, a study was performed where the richness of four heterogeneous mechanical
tests is numerically evaluated through five different metrics. These metrics are the equivalent
plastic strain, the major and minor strains, the major and minor stresses, the stress triaxiality
and Lode angle parameter, and, lastly, the rotation angle. It has been shown that the first metric
is relevant to evaluate the levels of deformation achieved, as well as its homogeneity over the
specimen surface. The other three metrics evaluate the diversity of mechanical states achieved,
providing different representations. However, it is suggested that major and minor strains are
always used, because they can be directly calculated from experiments. The last metric is proposed
to evaluate the range of anisotropy that can be characterized from a single test. Also, the use of
three virtual materials is considered in the analysis. This has shown the importance of evaluating
the tests for different materials, as the results can vary. Finally, the study has shown that these
can be suitable metrics to qualitatively evaluate and compare heterogeneous mechanical tests,
without the complexity of quantitative indicators.

Concerning the inverse methodologies, optimization algorithms are transversal to most of
them, but studies often overlook its importance. Often, studies tend to use a gradient-based least
squares algorithm without exploring other possibilities. Thus, the following study evaluated the use
of different optimization algorithms within the finite element model updating (FEMU). The FEMU
was implemented using Python and Fortran programming languages, by combining the benefits of
both. Also, by using the optimization library within Python, three optimization algorithms were
employed in the calibration of a thermoelastoviscoplastic model, namely the Levenberg-Marquardt
(LM), the Nelder-Mead (NM), and the Differential Evolution (DE) algorithms. Artificial noise
was introduced in the numerical data to evaluate the robustness of the algorithms. The results
showed that the most robust algorithm is the DE algorithm. However, the latter requires many
function evaluations, leading to a high computational cost. The LM and NM algorithms are more
computationally efficient, but often are not able to achieve the best solution. Their robustness can
be improved by considering a multiple starting approach. Although it was not explored in this
study, the best methodology could be to combine the DE algorithm with either the LM or the NM
algorithms in a sequential approach.

Then, it was intended to investigate the use of the virtual fields method (VFM) up to rupture.
However, a few studies dealing with the VFM in a 2D framework have shown that after necking, the
validity of the VFM is compromised, leading to inaccurate descriptions of the material hardening
behavior. This study highlighted that the cause of deviations in the VFM was due to the appearance
of a triaxial stress state in the necking region. They have suggested to extend the VFM to a 3D



8.1 Conclusions 133

framework. However, the VFM requires the input of the experimental strain field, which is limited
to the specimen surface.

To circumvent the latter limitation, a numerical method, named internal mesh generation
(IMG), was proposed a few years ago to reconstruct the volume displacement field inside a solid
material. This method, which only uses surface measurements, is purely based on geometrical
considerations, and showed a great potential. However, only a few studies investigated it, and its
uncertainty was not yet fully quantified. For that reason, a study was performed with the intent to
estimate the error resulting from the application of the IMG. Initially, the reconstructed strain
field of a plane strain tensile test was compared with the reference from FEA simulations. The
results showed that there was a good agreement between the reference and the reconstructed
field. However, a limitation of the method to accurately reconstruct the strain field through
the thickness was identified when large strain gradients are observed. To solve this limitation
and further improve the method, two strategies were proposed. The first one corrects the global
volume, leading to, on average, more accurate strain values. The second one corrects the local
volume, which is the volume of each element, by adjusting the position of nodes through the
thickness. It has been shown that combining both strategies leads to the best results. The latter
improves the reconstruction of the normal strain components, particularly the through-thickness
gradient of the strain tensor component ¢,,. This study only deals with numerical data, but
the final aim is to apply the IMG to real experiments. Thus, it was attempted to estimate the
uncertainty of the method under different experimental conditions and varying DIC settings. A
design of experiments was carried out with five factors using virtual experiments from a dedicated
software. The results showed that the investigated factors have a relatively low influence, meaning
the error is mainly from the IMG itself.

Thanks to the IMG, it will be possible to use the VFM in a 3D framework with real experiments,
which is a great advance. A fully numerical study to investigate the limitations of the VFM in 2D
framework, and consequently, the advantages of a 3D framework, is performed. Particularly, the
influence of the materials thickness was analyzed regarding, at first, the evolution of the predicted
load, and afterward, the identification of the material parameters of the Swift hardening law. In
the first part, the evolution of the predicted load using the reference parameters was compared to
the one obtained from the FEA simulations. For the 3D-VFM, the relative error was negligible,
accurately predicting the evolution of the load. However, using the 2D-VFM resulted in non-
negligible relative errors after necking, showing that the error is proportional to the thickness. The
source of error was related to non-negligible out-of-plane stress components and the considerable
differences between the stress values at the surface and inside the material. In the second part,
the identification of the Swift law was carried out using different combinations of three manually
defined virtual fields. While two of them are commonly used in other 2D applications, a third one
specific to 3D was extended from the 2D one. Although the material parameters identified with
the 2D-VFM did not match the reference parameters, the 3D-VFM was able to correctly identify
them in every instance. The purpose of this study was to explore the potential benefits of using
the VFM in a 3D framework. It is expected that future studies will build on the findings of this
research.

Generically, this thesis has contributed to the three main pillars of parameter identification of
constitutive models for metallic sheets, and has demonstrated how important it is to consider all
of them as part of the entire process. Nevertheless, the field of parameter identification in the
paradigm of “Material Testing 2.0” is fairly wide and relatively recent, as proven by the variety of
studies here presented. Consequently, some topics lack clear standards or are still underdeveloped.
Thus, it is expected that further research leads to clear standards to convince more communities
of its advantages. Finally, even though the studies here presented only included numerical data, it
is hoped that these can be extended to real experiments in the future.
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8.2 Perspectives of Future Studies

Considering the studies developed in this thesis, it is expected that the field of parameter identifi-
cation of constitutive models will continue to receive more attention from scientific and industrial
communities. Therefore, some perspectives of future studies may be outlined. Additionally,
several computational tools developed within this thesis are available open source and can be
used as a basis for future studies. The following points represent ideas and suggestions for future
studies:

+ The investigation of the UMMDp has led to its validation and spread across the scientific
community. The large range of models it includes can be a great tool for various studies,
reducing the arduous task of model implementation. Nevertheless, it is expected that
the UMMDp will be enlarged with models from the community and continuously shared.
Particularly, it is expected to extend it with thermoelastoviscoplastic models. Moreover, the
UMMDp can be the starting point for research studies, leading to better model selection;

« Following the overview and evaluation of heterogeneous mechanical tests, it is suggested to
clearly define ways to compare and evaluate heterogeneous mechanical tests. In the future,
more tests will be designed with even more innovative methodologies. Therefore, it will be
important to dedicate time and effort to the definition of standard metrics, allowing them to
easily compare and even rank different tests. Additionally, if different research groups agree
to such metrics, it could lead to easier adoption, as well as cultivating a sense of healthy
competition. As a suggestion, this discussion could be initiated through informal sessions
organized within international conferences;

« Concerning the IMG, its potential to reconstruct the strain field inside the materials has been
shown. However, this study was purely numerical and must be extended for real experiments
to consolidate its potential. Although not included in this thesis, real experiments of the
DP780 dual-phase steel have already been performed and are expected to be included in
future studies. Nevertheless, the IMG should be applied to different materials of varying
thickness to understand its robustness. In addition, the method can be further improved
by integrating measurements of the four surfaces, which are the front, the back and the
sides. Moreover, it is expected to use the IMG in combination with inverse methodologies,
in particular with the VFM, to characterize the material behavior up to rupture. A starting
point could be the use of reconstructed fields from virtual experiments, and then continue
with real experiments;

« Some limitations of the 2D-VFM comparatively to the 3D-VFM have been identified when
dealing with large deformations up to rupture and larger material thicknesses. However,
this study can still be considered preliminary, creating the path for more research about this
topic. To avoid general assumptions and conclusions based on a single study, it is suggested
to investigate the 3D effects of different materials, particularly with a more predominant
out-of-plane stress field.

« Furthermore, the VFM code developed within this thesis can be the basis for future studies,
in particular extending the sensitivity-based virtual fields to a 3D framework.
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