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Abstract: The focus of this paper is to explore the use of Fused Filament Fabrication technology, 
a material extrusion additive manufacturing technology, by depositing melted Polilactic Acid 
(PLA) over a substrate – fabric - instead of on an empty building tray. The textile’s composition, 
nozzle and building plate temperature, printed PLA thickness and printed geometry have been 
considered as variables that could influence the structural and adhesion properties on this study 
so, therefor, were took into consideration and tested throughout the printing process through 
specimens printed with different combined parameters. The aim of this exploration process was 
developing an experimental procedure to study the limitations and capabilities of this printing 
technology over textiles, and which different variables’ combination would contribute to a better 
overall result in the development of a self-supporting textile based structural model, that could 
be apply in different contexts without the need of any extra external support. Results showed 
that PLA adherence to the fabric is correlated with nozzle/building plate temperature and printing 
thickness: higher temperature and thickness provide higher adherence. The weave of the textile 
didn´t reflect on better results but the polyester felt fabric exhibit maximum adherence with 
printed PLA in all sets of temperatures. In addition, geometries with reinforcement lines along 
the fabric stress direction provided better structural results. These results enable new application 
possibilities for the FFF technology combined in fabrics such as in interior, fashion and shoe 
ware design. 

Keywords: 3D printing, Textile fabrics, Layer thickness, Structural structure, Adhesion. 

1.  Introduction 
Fused Filament Fabrication (FFF) also known under the Stratasys Inc trademark Fused Deposition 
Modelling (FDM) is a material extrusion additive manufacturing (AM) technology used to easily print 
three-dimensional models by depositing melted non-toxic thermoplastic material, layer by layer, through 
a stablished path created directly from a mathematically sliced digital Computer-Aided Design (CAD) 
file [1]. This AM technology can accurately manufacture items on a single step, without the need to use 
any additional moulds or tools and reducing the waste of unnecessary materials. Speed is also an 
important benefit of this printing process, models are rapidly produce using all extension of the building 
plate to efficiently prototype them [2]. FFF technology is adaptable to a variety of applications. While 
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the typical FFF process builds a part button-up on an empty building tray, the material deposition over 
a substrate, as demonstrated with this study, is possible as well [3].  

Nowadays there are several technologies available, which can be used to apply some sort of 
functionalization to textiles [4]. However, 3D printing offers integrated manufacturing opportunities to 
directly deposit supporting elements onto them at a cost-effective way, adding value as an add-on 
technology used to blend small reinforcing 3D printed elements with traditionally produced textile 
fabrics eliminating, this way, the need to preform additional joining processes like sewing or gluing [4-
7]. The use of this technology also minimizes the textile waste and the energy, water and chemical 
consumption, contributing to the improvement of the ecological footprint of this method [4]. In this 
regard, the exploration of FFF technology over fabrics and the mechanical properties of the resulting 
PLA + fabric specimens are relevant properties to study in order to achieve an optimization of all the 
different parameters that influence the development of a textile structural model. It has been proof that 
the PLA deposition creates a stiffer and more stable fabric [8], being the focus of this case study the 
development of a flexible structural model that could be applied in different contexts, without the need 
of any additional components. These self-supporting fabrics can be used in a wide variety of application 
such as ultra-lightweight furniture and lighting applications in interior design; structural parts in fashion 
and shoe ware; as well as a new tool for exploration in the makers community. 

The remaining paper is divided into 3 sections where the used methodology, achieved results and 
drawn conclusions are explained.  

2.  Methodology and experimental procedure   
This experimental study was developed using an Ultimaker 3 3D printer with a 230 mm by 250 mm 
rectangular building plate, using a 2,85 mm diameter rigid PLA filament over four white types of fabric: 
100% cotton, 100% polyester, 100% polyester felt and 65% polyester plus 35% cotton. Other parameters 
used were: nozzle and building plate temperature combinations of 200 ºC/60 ºC, 220 ºC/70 ºC and 240 
ºC/80 ºC and printing thickness of 0,25 mm, 0,50 mm and 0,75 mm. The slicing program used was 
Ultimaker Cura 4.7. The developed experimental procedure is presented thereafter in three steps.  

2.1.  First step 
The initial step consisted on designing 12 rectangular geometry with 150 mm length by different widths 
and thickness, where different variables could be tested at the same time (figure 1(a)). The first 9 
rectangles had 0,25 mm thickness and increased width 0,25 mm to the next, starting with 1 mm. The 
remaining three rectangles were 150 mm by 25 mm with 0,25 mm, 0,50 mm, 0,75 mm thickness 
respectively.  

 

  
(a) (b) 

Figure 1. (a) CAD of the designed geometry. (b) Designed 
geometry being printed on the cotton fabric. 

 
The selected fabrics were fixed, alternately, on the building plate glass and printed with different 

parameters each time (figure 1(b)). These prints will be used to determine the adherence performance 
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between the printed PLA and the fabric regarding the formed combinations of thickness, width, 
nozzle/building plate temperature and type of fabric variables and, further on, as samples of the 
structural performance of the different variables’ combinations. On this step the temperatures used to 
print the geometry on each set of four fabrics were 200 ºC/60 ºC, 22 ºC/70 ºC and 240 ºC/80 ºC nozzle 
and building plate temperatures respectively. The only element differing from test to test inside the same 
set was the type of fabric used. With all the printing tests completed, the adherence property was visually 
tested in all the specimens. A summary of those results is presented further on this document.   

2.2.  Second step 
On the second step, 25 mm by 50 mm specimens were created by cutting the three 150 mm by 25 mm 
(figure 2(a)) rectangles from the previous step’s prints. These smaller rectangles were the specimens 
used on a three-point bending test, with 30 mm distant supports (figure 2(b)), to evaluate which 
combination of variables tested before provided the highest flexural strength. Detailed results are 
presented further on this document.  

 

  
(a) (b) 

Figure 2. (a) 150 mm by 25 mm specimens. (b) Three-point 
Bending test. 

2.3.  Third step 
The results gathered on the three-point bending test and along the rest of this case study were the starting 
point for the development of the last step. Based on those results, new hexagonal geometries were 
designed and printed onto the fabrics, which demonstrate a better performance – polyester felt, and 65% 
polyester plus 35% cotton. Beside these two types of fabric, the nozzle and building plate temperature 
and printing thickness were other redefined parameters to proceed with the study. Regarding 
temperatures, the set performing the maximum flexion force of 220 ºC nozzle and 70 ºC building plate 
temperature was selected. Regarding printing thicknesses 0,25 mm showed no satisfactory results and 
was dismiss. A linear 1 mm diamond shape with a size of 50 mm by 175 mm characterized all designed 
geometries (figure 3). The resulted specimens were the base to determine which fabric and geometry 
combination would provide the best structural result. 

 

 

Figure 3. Printed geometries. 
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All the specimens were printed applying the same parameters besides the used fabric and printing 

thickness. Each geometry could be printed four times combining the 0,50 mm and 0,75 mm thickness 
with the selected fabrics however, for a improved efficiency, a numerical analysis using SolidWorks 
static simulation was performed. Additional results are presented further on this paper.  

3.  Results and Discussion 
On this section the conclusive results achieved during the experimental process are presented into three 
main subcategories. 

3.1.  Material adhesion and minimum width 
The 12 prints resulted from the first experiments were tested to establish which combination would 
provide better adherence and structural results. This was a visual and manual test consisting in cause the 
peel of PLA by hand. It was possible to observe that PLA adherence to the fabric is correlated with the 
nozzle/building plate temperature and printing thickness. Higher temperatures provide higher adherence 
(table 1). 

 
Table 1. Summary adherence results. 

Fabric 
Nozzle / building plate temperature 
200 ᴼC/ 60 ᴼC 220 ᴼC/ 70 ᴼC 240 ᴼC /80 ᴼC 

100% Cotton Bad Average Good 
100% Polyester Bad Average Good 

100% Polyester Felt Great Great Great 
65% Polyester + 35% Cotton Bad Average Good 

 
The same occurs with printing thickness. Higher thickness provide higher adherence. In another 

hand, the textile’s wave, predictively achieving higher impregnation of PLA on a more open weft, was 
not reflective of better results, once three of the four selected textiles (figure 4(a)) performed similar 
results. Nevertheless, the polyester felt fabric (figure 4(b)) exhibit maximum adherence with printed 
PLA in all sets of temperatures.  

 

  
(a) (b) 

Figure 4. (a) Lack of adherence on the 65% polyester plus 35% cotton 
fabric. (b) Adherence showed on polyester felt fabric. 

 
The lower temperature tests performed on the polyester fabric and on the cotton fabric resulted on 

some PLA detachment due to the use of the lowest nozzle/building plate temperature. The lower 
temperature test with 65% polyester plus 35% cotton fabric achieved more satisfactory results with an 
improvement of PLA and fabric adherence despite still remaining possible to unstick thinner parts of 
the material. The same temperature on the polyester felt fabric lead to an impossible peeling the material 
off. 
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On the mid-range temperature tests using the polyester, the cotton and the 65% polyester plus 35% 
cotton fabrics it was possible to observe an increase of the, in spite of still being possible to unstick some 
material. As observed previously the test performed on the polyester felt fabric achieved maximum 
adherence results and these nozzle/building plate temperatures led to an improved contour. 

The test with the same polyester felt fabric with the highest nozzle/building plate temperature 
provided equal maximum adherence with printed PLA. The remaining three high temperature tests 
performed on the 65% polyester plus 35% cotton, polyester and cotton fabrics showed an increase of 
the adherence, requiring more than a simple handling to peel off the printed PLA.   

3.2.  Three-point Bending Test 
This test made it possible to conclude the maximum flexion force of each specimen. With that 
information, it would be possible to select the temperatures/fabric/thickness combination with better 
performance to develop further on this case study. The visualization of this test results in a graphic with 
36 lines representing each 25 mm by 50 mm specimen tested. The main graphic was divided into three 
corresponding to the specimens with 0,25 mm (figure 5(c)), 0,50 mm (figure 5(b)), 0,75 mm (figure 
5(a)) thickness.  

 

(a) 

 

(b) 

 

(c) 

 
Figure 5. Three-point bending test graphic for (a) 0,75 mm thickness specimens (b) 0,50 mm 
thickness specimens (c) 0,25 mm thickness specimens. 
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With this visual representation is possible to observe that: 
 
• The 65% polyester plus 35% cotton fabric printed with 220 ºC nozzle and 70 ºC building plate 

temperature represents the specimen with the highest applied force of 24,96 N.  
• The polyester felt fabric printed with 240 ºC nozzle and 80 ºC building plate temperature 

represents the specimen with 0,75 mm thickness with the lowest flexural strength. 
• The polyester felt fabric printed with 200 ºC nozzle and 60 ºC building plate temperature 

represents the specimen with 0,50 mm thickness with the lowest flexural strength. 
• The 65% polyester plus 35% cotton fabric printed with 240 ºC nozzle and 80 ºC building plate 

temperature represents the specimen with 0,50 mm thickness with the higher flexural strength. 
• The polyester felt fabric printed with 240 ºC nozzle and 80 ºC building plate temperature 

represents the specimen with 0,25 mm with the higher flexural strength. 
• The polyester fabric printed with of 200 ºC nozzle and 60 ºC building plate temperature 

represents the specimen with 0,25 mm with the lowest flexural strength. 
 

By grouping all the results of the maximum applied forces on a table (table 2) it was possible to 
observe that, overall, that force increases from the temperature set of 200 ºC/60 ºC to the 220 ºC/70 ºC 
although it decreases to the 240 ºC/80 ºC and that the printing thickness of 0,25 mm does not provide to 
the fabric the structural support needed.    

 
Table 2. Maximum forces applied to each combination on the Three Point Bending Test. 

Fabric Thickness 
Nozzle / bed temperature 
200 ᴼC/ 60 ᴼC 220 ᴼC/ 70 ᴼC 240 ᴼC /80 ᴼC 

100% Cotton 
0,25 mm 1,18 N 1,36 N 1,16 N 
0,50 mm 5,38 N 8,53 N 7,36 N 
0,75 mm 19,93 N 21,49 N 19,53 N 

100% Polyester 
0,25 mm 1,00 N 1,19 N 1,13 N 
0,50 mm 5,19 N 8,16 N 7,55 N 
0,75 mm 20,22 N 20,88 N 23,60 N 

100% Polyester 
Felt 

0,25 mm 1,41 N 1,66 N 3,50 N 
0,50 mm 4,49 N 8,83 N 4,78 N 
0,75 mm 15,10 N 22,25 N 6,00 N 

65% Polyester 
+ 35% Cotton 

0,25 mm 1,11 N 1,34 N 1,53 N 
0,50 mm 5,55 N 9,37 N 10,07 N 
0,75 mm 21,47 N 24,96 N 24,44 N 

3.3.  Self standing structure proof-of-concept 
To create a self-standing structure that could respond as a proof of concept for the liability of the 
structural model, several prints were made with the designed geometries, and placed on a standing 
pedestal. The first tests consisted of printing the lowest density pattern geometry on the polyester felt 
fabric, with a printing thickness of 0,50 mm and 0,75 mm respectively. The 0,50 mm reinforced structure 
was weak and unstable, bending considerably when positioned vertically. The 0,75 mm reinforcement 
structure was more stable representing that the thickness increase led to a lower bending curve. The 
following tests consisted of printing the highest density pattern geometry on the same fabric, with a 
printing thickness of 0,50 mm and 0,75 mm. On these tests, increasing the printing thickness did not 
represent an enhancement on the structural effect but this material density provides higher structural 
support when compared with other geometries. Nevertheless, the existence of some horizontal lines 
confers some weak points to the piece. The next tests consisted of printing the middle-density pattern 
geometry on the same polyester felt fabric, with a printing thickness of 0,5 mm and 0,75 mm. The 
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diagonal lines that composed this geometry contribute to a minor rotation of the structure when 
positioned vertically. As observed previously increasing the printing thickness led to no significant 
change. The following tests consisted of printing the lowest material density geometry onto the 65% 
polyester plus 35% cotton fabric, with a printing thickness of 0,75 mm and 0,50 mm. This textile, as 
proved earlier, showed lower adherence to the PLA but when placed vertically, probably due to the fact 
that the PLA reinforcement was placed more superficially resulting in a higher thickness PLA + fabric 
sandwich, it demonstrates higher structural support when comparing to the same print onto the polyester 
felt. On the other hand, decreasing the geometry thickness led to the decrease of the structural effect. 
The consecutive tests printed the highest material density pattern on the same previous fabric, with a 
printing thickness of 0,75 mm and 0,50 mm. The results were similar to the previous ones despite the 
higher material density although decreasing the printing thickness did not affect the overall structural 
effect on this specimen. The final tests addressed a middle material density pattern on the same polyester 
plus cotton fabric, with a printing thickness of 0,75 mm and 0,50 mm. The results are correlated with 
the ones observed on the seventh and eighth tests.  

To test the real viability of each geometry its CAD was subject to a SolidWorks bending simulation. 
The first test was performed on a totally infield geometry to predict the lowest flexion curve possible to 
achieve, resulting to be 10,50 mm. Follow steps consisted of designing and testing new geometries until 
achieving a similar result. With the previous experience, horizontal shapes were avoided and the design 
along the stress direction prioritized. The designed geometry (figure 6(a)) that achieve the most 
approximated bending result – 16,28 mm - was formed by vertical linear shapes with 1 mm width. It 
was then printed onto both polyester felt fabric and 65% polyester plus 35% cotton fabric (figure 6(b)) 
with 0,75 mm thickness. Polyester felt fabric (figure 6(c)) showed a slightly worst result because it 
conferred a slight wave to the final shape.  

 

   
(a) (b) (c) 

Figure 6. (a) Better results geometry. (b) Better results geometry printed into the 
65% plus 35% fabric. (c) Better results geometry printed into the polyester felt 
fabric. 

4.  Conclusion 
Through the different experiences in this experimental study, it was possible to conclude that if the right 
geometry is developed it is possible to provide structural support to printed fabric. The main observation 
to have in account is to design the reinforcement geometry lines along with the part main influence on 
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the reinforcement adhesion and reinforced part strength. There are some additional characteristics that 
can lead to the increase of this support, not yet physically tested on the study, such as a fabric printed 
on both sides with the same geometry and the appliance of some curvature to the printed piece. Future 
work will further investigate these possibilities and explore applicability case studies. 

Acknowledgements 
This work was developed within the scope of the projects TEMA - Centre for Mechanical Technology 
and Automation, UID/EMS/00481/2019-FCT, CENTRO-01-0145-FEDER-022083, 
CEECIND/01192/2017 and  CICECO - Aveiro Institute of Materials, UIDB/50011/2020 & 
UIDP/50011/2020, financed by national funds through the Portuguese Foundation for Science and 
Technology/MCTES.  

References 
[1] American Society for Testing and Materials 2012 Standard Terminology for Additive 

Manufacturing Technologies ASTM International 
[2] Crump S S 1991 Fast, precise, safe prototypes with FDM American Society of Mechanical 

Engineers, Production Engineering Division (Publication) PED 50 pp 53–60  
[3] Pierson H A and Chivukula B 2018 Process–Property Relationships for Fused Filament 

Fabrication on Preexisting Polymer Substrates Journal of Manufacturing Science and 
Engineering 140 (8) 

[4] Hashemi Sanatgar R, Campagne C and Nierstrasz V 2017 Investigation of the adhesion properties 
of direct 3D printing of polymers and nanocomposites on textiles: Effect of FDM printing 
process parameters Applied Surface Science 403 pp 551–563  

[5] Korger M, Glogowsky A, Sanduloff S, Steinem C, Huysman S, Horn B, Ernst M and Rabe M 
2020 Testing thermoplastic elastomers selected as flexible three-dimensional printing 
materials for functional garment and technical textile applications 3D printed fabrics-new 
functionalities for garments and technical textiles-Original Article Journal of Engineered 
Fibers and Fabrics 15 pp 1–10 

[6] Uysal R and Stubbs J B 2019 A new method of printing multi-material textiles by fused deposition 
modelling (FDM) Tekstilec 62 (4) pp 248–257  

[7] Pei E, Shen J and Watling J 2015 Direct 3D Printing of Polymers onto Textiles: Experimental 
Studies and Applications Rapid Prototyping Journal 21 (5) pp 556–571  

[8] Eutionnat-Diffo P A, Chen Y, Guan J, Cayla A, Campagne C, Zeng X and Nierstrasz V 2019 
Stress, strain and deformation of poly-lactic acid filament deposited onto polyethylene 
terephthalate woven fabric through 3D printing process Scientific Reports 9 (1) p 14333  

 
 


