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Luminescence thermometry is a spectroscopic technique for remote

temperature detection based on the thermal dependence of the

luminescence of phosphors, presenting numerous applications ranging from

biosciences to engineering. In this work, we use the Er3+ emission of the

NaGdF4/NaGdF4:Yb
3+,Er3+/NaGdF4 upconverting nanoparticles upon 980 nm

laser excitation to determine simultaneously the absolute temperature and the

excitation power density. The Er3+ 2H11/2→4I15/2 and
4S3/2→4I15/2 emission bands,

which are commonly used for thermometric purposes, overlap with the 2H9/2

→4I13/2 emission band, which can lead to erroneous temperature readout.

Applying the concept of luminescent primary thermometry to resolve the

overlapping Er3+ transitions, a dual nanosensor synchronously measuring the

temperature and the delivered laser pump power is successfully realized

holding promising applications in laser-supported thermal therapies.
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Introduction

Luminescent nanothermometry exploits the temperature-dependent emission

properties of luminescent nanoprobes, e.g., quantum dots, organic dyes, polymers,

DNA or protein conjugated systems, transition-metal-based materials, or trivalent

lanthanide ion (Ln3+)-doped materials (Brites et al., 2012; Jaque and Vetrone, 2012;

Brites et al., 2016). The latter systems feature unique characteristics, such as high

photostability, narrow bandwidth, and efficient room-temperature emission, which

make them suitable for different applications, particularly bioimaging-related ones

(Jaque et al., 2014; Zhou et al., 2015; Brites et al., 2016; Dramicanin, 2018; Brites

et al., 2019a). Ln3+ ions work in the spectral ranges where the biological tissue has

minimal absorption and negligible autofluorescence, designated as biological imaging
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windows. Therefore, luminescent thermometers based on Ln3+-

doped nanomaterials have been widely employed in intracellular

measurements (Debasu et al., 2020; Piñol et al., 2020; Dantelle

et al., 2021; Di et al., 2021; Kim et al., 2021; Dos Santos et al.,

2022) and tumor temperature mapping during thermal therapies

(Jaque et al., 2014; Carrasco et al., 2015; Zhu et al., 2016, 2018).

The most common approach to infer absolute temperature is

based on the intensity ratio of two distinct transitions -

ratiometric luminescence thermometry (Brites et al., 2016). In

the last few years, primary thermometers based on luminescent

nanoprobes have been studied which take advantage of the

temperature-dependent intensity ratio of the two thermally

coupled Er3+ levels, 2H11/2 and 4S3/2 (Balabhadra et al., 2017;

Bastos et al., 2019; Brites et al., 2019b; Martínez et al., 2019;

Borges et al., 2021; Martins et al., 2021; Dos Santos et al., 2022). A

primary thermometer is characterized by a well-established

emitting state population equation that follows Boltzmann

statistics. Recently, a few works have drawn attention to the

impact of the 2H9/2→4I13/2 emission band in temperature

determination using Er3+ emission (Martins et al., 2021; Rühl

et al., 2021; Van Swieten et al., 2021; Xia et al., 2021). Upon near-

infrared (NIR) excitation, the 2H9/2 manifold of Er3+ is

populated through a three-photon upconversion process

(Cho et al., 2017). Emission of the 2H9/2→4I13/2 transition

overlaps with the 4S3/2→4I15/2 one, which can lead to total

intensity overestimation when 2H9/2→4I13/2 contribution is

overlooked, and its contribution increases with the excitation

power density (PD) (Zhou et al., 2013; Berry and May, 2015;

Yuan et al., 2018, 2019; Rühl et al., 2021; Xia et al., 2021). This

complicates accurate temperature readout but provides an

opportunity to explore NIR PD optical readout, as

demonstrated herein. To the best of our knowledge, only

one luminescent excitation density ratiometric sensor for

the visible spectral range was reported by (Marciniak et al.

(2022)). There, the intensity ratio of 4T2(g)→4A2(g) and
2E(g)

→4A2(g) transitions of GdAl3(BO3)4:Cr
3+ nanoparticles was

used to measure the excitation power density at 445 nm and

532 nm. The authors designed the nanoparticles to enhance

the probability of nonradiative processes to achieve an

efficient radiation-to-heat conversion. The designed

material reached temperatures as high as 143°C, even at

low excitation power density. According to the excitation

power density, the heat generated in the system leads to the

thermalization of the 4T2(g) state inducing a change in the

intensity ratio (Marciniak et al., 2022), and thus, the working

principle of this Cr3+ ratiometric laser power meter is, in fact,

temperature related.

The simultaneous measurement of temperature and incident

PD is critical for optimizing photon-based therapies, such as

photothermal therapy (Jaque et al., 2014; Yang et al., 2017) and

photobiomodulation (PBM) (Freitas and Hamblin, 2016), and

preventing the surrounding tissue from overheating and

deleterious damage (Shen et al., 2020). Photothermal therapy

uses light to generate heat from plasmonic or dielectric

nanoparticles (Jaque et al., 2014), whereas PBM involves the

use of a low-powered light source (lasers and LEDs) within the

red and NIR wavelength range (~600–1,000 nm) to stimulate or

inhibit cellular and biological processes (Freitas and Hamblin,

2016). In PBM applications, where the low-powered excitation

source does not induce an evident temperature rise, the PD
quantization of the delivered light to the target could

contribute to standardization, improving the reliability and

reproducibility of the technique (Wang and Dong, 2020).

In this work, we study the thermometric features of NaGdF4/

NaGdF4:Yb
3+,Er3+/NaGdF4 upconverting nanoparticles upon

980 nm laser excitation and show how they work as a primary

luminescent thermometer once the decoupling procedure is

applied to resolve the overlapping 2H9/2→4I13/2 and
4S3/2→4I15/2

emission bands. The passive-core/active-shell/passive-shell

architecture of nanoparticles was chosen to promote Er3+

upconversion emission from the 2H9/2 excited state, through

reduced energy migration and enhanced energy transfer

upconversion (Chen et al., 2016; Wang, 2019). Taking

advantage of the PD-dependent
2H9/2→4I13/2 emission intensity,

we characterize a ratiometric NIR radiation sensor. Thus, we have

developed a versatile system capable of sensing both the local

absolute temperature and the PD delivered to the target using

luminescence with future potential applications in PBM

treatments or other laser-based thermal therapies.

Besides being a NIR radiation sensor, which is the radiation

commonly used in biological applications, the monodisperse in

size NaGdF4/NaGdF4:Yb
3+,Er3+/NaGdF4 nanoparticles can be

patterned on various substrates as well as dispersed in

different colloidal mixtures. Moreover, the intensity of the

selected transitions to sense the delivered laser pump power

are thermal independent, enabling the synchronous

measurement of the temperature and PD.

Materials and methods

Materials synthesis

NaGdF4/NaGdF4: 2 mol% Er3+, 20 mol% Yb3+/NaGdF4
lanthanide-doped nanoparticles (Figure 1), were prepared by

hot-injection thermal decomposition (Boyer et al., 2006; Skripka

et al., 2020).

To synthesize the core, an initial mixture of 12.5 mL each of

OA and ODE was prepared in a 100 mL three-neck round

bottom flask (Solution A). Aside, 2.5 mmol of Na-TFA were

added to the 2.5 mmol of dried Gd-TFA precursor together with

7.5 mL each of OA and ODE (Solution B). Both solutions A and

B were degassed at 150°C under vacuum with magnetic stirring

for 30 min. After degassing, solution A was placed under an Ar

atmosphere and the temperature was raised to 315°C. Solution B

was then injected into the reaction vessel containing solution A
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with a syringe and pump system at a 1.3 mL/min injection rate.

The mixture was left at 315°C under vigorous stirring for 60 min.

After cooling to room temperature, the as-synthesized cores

(11.3 nm) were stored in a Falcon centrifuge tube under Ar

for further synthesis steps. The core/shell NaGdF4/NaGdF4:Er
3+,

Yb3+ nanoparticles were prepared by a subsequent shelling of the

2.5 mmol of core nanoparticles (solution A). Separately, solution

B contained 3.5 mmol of Na-TFA precursors and 3.5 mmol of

Gd,Yb,Er-TFA (2.73 mmol + 0.7 mmol + 0.07 mmol) together

with 7.5 mL each of OA and ODE. Both solutions were degassed

at 150°C under vacuum with magnetic stirring for 30 min. After

degassing, solution A was placed under an Ar atmosphere and

the temperature was raised to 315°C. Solution B was then injected

at a 1 mL/min rate into solution A and left to react for 90 min.

After, 15 mL of the reaction mixture containing core/

shell1 nanoparticles (15.9 nm) was aliquoted for sampling.

The core/shell/shell NaGdF4/NaGdF4:Er
3+, Yb3+/NaGdF4 with

various thicknesses of the most-outer shell were prepared by

subsequent injection of shelling precursors into the reaction.

8 mmol each of Na-TFA and Gd-TFA were dissolved and

degassed in a mixture of 10 mL each of OA and ODE

(solution C). Half (10 mL) of solution C was injected at 1 ml/

min into the reaction flask and kept at a pre-set 315°C

temperature for 60 min, 10 mL of the reaction mixture was

aliquoted from the flask before injecting the rest of the

solution C. After 60 min, 10 mL were aliquoted from the

reaction flask, obtaining core/shell/shell RENPs with a 5.4 nm

thick outer shell. Another 8 mmol each of Na-TFA and Gd-TFA

were dissolved and degassed in a mixture of 10 mL each of OA

and ODE (solution D) and injected (10 mL) into the reaction

flask. After 60 min, 10 mL were aliquoted from the reaction

obtaining core/shell/shell RENPs with 7.0 nm thick outer shell.

FIGURE 1
Representative TEM images of Er3+-doped nanothermometers and their respective size distributions. The thickness of the outer NaGdF4 shell is
represented in the scheme. The nanoparticles used in this work, 1, 2, and 3, are represented in the lower panel. The solid lines are the best fits to the
experimental data using Gaussian distributions (r2 > 0.99). The scale bars correspond to 50 nm.
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The remaining 10 mL of the solution D were then injected into

the reaction mixture and allowed to react for 60 min, yielding

core/shell/shell RENPs with a 9.5 nm thick outer shell. The

mixture was cooled to room temperature, and core-only, core/

shell, and core/shell/shell RENPs were precipitated with ethanol

and washed three times with hexane/ethanol (1/4 v/v), followed

by centrifugation (5400 RCF). Samples containing NaGdF4/

NaGdF4:Er
3+,Yb3+/NaGdF4 RENPs with outer shell thicknesses

of 9.5, 7.0, and 5.4 nm dispersed in water (nanofluids) were

designated as 1, 2 and 3, respectively.

Structural characterization methods

The morphology and size distribution of the core-only and

core/shell UCNPs were investigated by transmission electron

microscopy (TEM, Philips Tecnai 12). The particle size was

determined from TEM images using ImageJ software with a

minimum set size of 200 individual UCNPs per sample. The

crystallinity and phase of all the UCNPs were determined via

X-ray powder diffraction (XRD) analysis with a Bruker

D8 Advance Diffractometer (USA) using Cu Kα radiation.

Power density and temperature-
dependent photoluminescence
measurements

The 1, 2, and 3 nanofluids were placed in a quartz cuvette

(114F−10–40, Hellma Analytics) and were excited with a pulsed

laser (BrixX 980–1000 HD, Omicron Laser) at a frequency of

1.5 MHz, to get an essentially continuous wave irradiation mode.

The laser was focused through an optical lens of 7.5 cm focal

distance (LA1145, Thorlabs) to enhance the power density (PD)

that ranges from 29.0 ± 0.1 to 138.8 ± 0.7W cm−2, estimated as

previously reported (Caixeta et al., 2020). The emission light was

guided through an optical fiber (P600-1-UV-VIS, Ocean Insight)

and the laser contribution was cut out with a short-pass optical filter

(FESH0750, Thorlabs). The emission spectra were recorded by a

portable spectrometer (MAYA Pro 2000; Ocean Insight) using an

acquisition window between 15–75 s (a total of 150 measurements

with integration time ranging from 0.1 to 0.5 s), adjusting the

acquisition conditions to obtain a similar signal-to-noise (SNR)

ratio at the different excitation PD. The spectrometer uses reference

and dark measurements to correct the instrument response.

The quartz cuvette was placed in thermal contact with a

homemade temperature controller containing a Peltier system

and a thermocouple (K-type, 0.1 K accuracy) that was immersed

near the laser spot, but away from the light path to monitor and

measure the temperature (T) of the nanofluid. We set the

temperature controller at a fixed temperature and turned on

the excitation laser at a fixed PD inducing an additional

temperature increment. After the nanofluid reaches thermal

equilibrium (t > 350 s) the emission spectra and thermocouple

reading are recorded. This process was repeated for PD ranging

from 19.0 to 138.8 W cm−2 and for different set temperatures

(297.6–315.3 K). At the lowest temperature used (room

temperature), the temperature controller was kept off.

Sensing parameters determination

Before the calculus of the thermometric parameter (Δ) and
NIR radiation sensing parameter (ΔNIR), a spectral deconvolution

procedure based on a previously reported work (Martins et al.,

2021) was applied to the emission spectra to decouple the

overlapping transitions, 2H9/2→4I13/2 and 4S3/2→4I15/2, using a

routine in MatLab© software. The routine starts with a baseline

subtraction to remove the remaining spectrometer electric noise,

followed by the conversion of the signal of each emission spectrum

from wavelength to energy units by applying the Jacobian

transformation (Mooney and Kambhampati, 2013). Then, the

[17,500, 19,500] cm−1 spectral region was fitted using a

multiparametric Gaussian function. Good fits to the

experimental data (R2 > 0.99) were obtained with a minimum

number of Gaussian functions equal to 10 (two, four, and four

Gaussian functions described the 2H9/2→4I13/2,
4S3/2→4I15/2, and

2H11/2→4I15/2 transitions, respectively). The intensities of the

transitions were estimated by the sum of the fitted areas of the

respectively assigned Gaussian functions. The parameters Δ and

ΔNIR are computed for the 150 recorded emission spectra for each

PD and T, where Δ, ΔNIR and the respective uncertainties (δΔ and

δΔNIR, respectively) are extracted from the corresponding

histograms (mean ± standard deviation). To evaluate the

performance of the luminescent thermometer, the relative

thermal sensitivity, Sr, and the minimum temperature

uncertainty, δT, are determined, as follows (Brites et al., 2016):

Sr � 1
Δ

∣∣∣∣∣∣∣
zΔ

zT

∣∣∣∣∣∣∣ �
ΔE
kBT

2 (1)

and

δT � 1
Sr

δΔ

Δ
(2)

where δΔ is the uncertainty in the determination of Δ. Sr, which
represents the relative Δ change per temperature degree, is an

intrinsic property of the nanothermometer material (Brites et al.,

2016).

Results and discussion

Primary thermometer

Figure 2 illustrates the emission spectra of 1 for selected PD
values exhibiting Er3+ transitions in the green, 2H11/2→4I15/2 and
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4S3/2→4I15/2, and red spectral regions, 4F9/2→4I15/2 (Auzel, 2004).

Evidence of the 2H9/2 level population can be found in the

transitions in the blue, 2H9/2 →4I15/2, and red spectral region,
2H9/2 →4I11/2. Additionally, the band overlapping with the 4S3/

2→4I15/2 emission corresponds to the 2H9/2→4I13/2 transition,

whose intensity shows similar power-dependence to the 2H9/2

→4I11/2,15/2 transitions (Berry and May, 2015; Cho et al., 2017).

Since the population of the 2H9/2 level is reached via a three-

photon upconversion process, the intensity of radiative

transitions from the 2H9/2 level shows a different behavior

with PD than the 2H11/2→4I15/2 and 4S3/2 →4I15/2 transitions

(Renero-Lecuna et al., 2011; Zhou et al., 2013; Cho et al.,

2017). A similar trend is observed for 4F9/2→4I15/2, where, at

higher PD, the upper levels, 2H11/2 and 4S3/2 become saturated

favoring the population of the 4F9/2 emitting level due to

nonradiative relaxations upon the local heating induced by the

laser excitation (Kraft et al., 2018; Maturi et al., 2021). The

emission spectra of 2 and 3 measured at the lowest measured

PD display analogous emission spectra of 1, except for the worse

SNR (Supplementary Figure S1). As the shell gets thicker, the

luminescence quenching effects are reduced (Pini et al., 2022; Shi

et al., 2022) leading to higher SNR and advantageously decreased

temperature uncertainty. As initially proposed by some of us

(Brites et al., 2016), and experimentally implemented by others

(Van Swieten et al., 2021), the temperature uncertainty increases

as the SNR degrades. The value of the relative thermal

uncertainty for 1 is about 78% and 49% smaller than those

obtained for 2 and 3, respectively, in similar excitation and

collection conditions (Supplementary Figure S2). For this

reason, 1 was the chosen nanofluid to perform the onward

photoluminescent measurements.

The Er3+ emission in the green spectral region, namely the
2H11/2→4I15/2 and 4S3/2→4I15/2 transitions, have been widely

explored for thermometric purposes in light upconverting

nanoparticles since its first report in 2010 (Vetrone et al.,

2010). The intensity ratio of these two transitions is

temperature-dependent according to Boltzmann statistics,

which governs the population distribution between the two

thermally coupled levels, 2H11/2 and 4S3/2. Recently, these

thermometers have been explored as primary luminescent

thermometers, in which the intensity ratio between
2H11/2→4I15/2 (IH) and 4S3/2→4I15/2 (IS) emissions bands are

directly related to the absolute temperature, T, through a well-

established equation of state population (Balabhadra et al., 2017;

Brites et al., 2019b; Martínez et al., 2019; Back et al., 2020):

1
T
� 1
T0

− kB
ΔE

ln
Δ

Δ0
(3)

where kB is the Boltzmann constant, ΔE is the energy gap between

the barycenters of the 2H11/2 and
4S3/2 levels, and Δ = IH/IS the

thermometric parameter with Δ0 being the value at the

temperature T0 (see Supporting Information for the calculus

of ΔE and Δ0).

Regarding temperature determination through the intensity

ratio between the 2H11/2→4I15/2 and 4S3/2→4I15/2, a few works

have been raising awareness of the impact of the 2H9/2→4I13/2
transition and how it can affect the temperature measurements,

especially when a laser PD variation is imposed (Martins et al.,

2021; Rühl et al., 2021; Van Swieten et al., 2021; Xia et al., 2021).

Figure 3A shows the temperature dependence of the emission

spectra of 1 excited at selected PD values and set temperatures

(297.6, 305.3, and 315.3 K). Since the 2H9/2→4I13/2 and
4S3/2→4I15/2 emission bands are overlapped, and Equation 3

accounts only for the emissions of the two thermally coupled

levels (2H11/2 and
4S3/2), the emission bands must be decoupled to

correctly estimate IS. Thus, a spectral deconvolution, consisting

of a multiparametric Gaussian fit, is applied and the 2H9/2→4I13/2
(IX),

4S3/2→4I15/2 (IS), and 2H11/2→4I15/2 (IH) transitions

FIGURE 2
Normalized upconversion emission spectra of 1 as a function of PD measured at room temperature. The spectra are normalized to the
4S3/2→4I15/2 transition.
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intensities are estimated by the sum of the fitted areas of the

assigned Gaussians to the respective transitions (Figure 3B) (see

further details in Materials and Methods).

We observe that the calculated Δ are within the theoretical

prediction by Equation 3, independently of the excitation PD
values (Figure 3C). Δ is converted to absolute temperature

substituting the corresponding parameters (Δ0, T0, and ΔE,

Supplementary Figures S3, S4 and Supporting Information for

further details) in Equation 3. The calculated temperatures are in

excellent agreement with the experimental ones, demonstrating

that 1 works as a primary luminescent thermometer. Besides

guaranteeing reliable temperature measurements, the primary

luminescent thermometer demonstrated the correct decoupling

of both transitions (2H9/2→4I13/2 and 4S3/2→4I15/2) in the PD
range of 29.0–138.8 W cm−2. Moreover, it is experimentally

verified, for the first time, the independence of the primary

luminescent thermometer on excitation PD (Figure 3D).

The Sr of 1 is within the commonly reported range for Er3+

based nanothermometers (~0.2–1 %K−1), since ΔE is not

considerably affected by its host matrix (Figure 4A). Besides

the material, δT also depends on the SNR of the measurement,

which means this figure of merit is strongly affected by the type

and performance of the detector and experimental conditions,

such as luminescent material quantity, acquisition time, and

background noise, thus precluding a fair comparison with

reported values in the literature (Brites et al., 2016; Van

Swieten et al., 2022). Nevertheless, in this work, the minimum

δT is 0.3 K at 297.5 K (Figure 4B), which is above 0.2 K, the

minimum possible value, as reported by (Van Swieten et al.

(2022)).

NIR radiation sensor

The high sensitivity of the 2H9/2→4I13/2 intensity to PD
values led us to further study these luminescent nanoparticles

as a potential NIR radiation sensor. Since emission intensities

depend on a multitude of parameters (e.g., temperature,

FIGURE 3
(A) Temperature-dependent upconversion emission spectra of 1 excited at 29.0, 88.4 and 138.8 W cm−2. (B) Spectral Gaussian deconvolution
of the emission spectrum measured at 302.2 K and 138.8 W cm−2. The black dots and the red line represent the experimental data and the fit
envelope of the spectrum, respectively. The shadowed areas correspond to the Gaussian functions assigned to the 2H9/2→4I13/2 (black),

4S3/2→4I15/2
(red), and 2H11/2→4I15/2 (green) transitions. (C) Temperature dependence of the experimental Δ values determined under laser excitation at
different PD values. The horizontal error bars represent the error in the measured thermometric parameters (Supplementary Equation S1 in
Supporting Information). The line is the theoretical prediction of the temperature (Equation 3) and the shadowed area is the corresponding
uncertainty (Supplementary Equation S2 in Supporting Information). (D) Measured temperature (thermocouple reading) versus calculated
temperature (Equation 3) under laser excitation at different PD values. The vertical error bars correspond to the shadowed area of the line represented
in C. The thermocouple accuracy is 0.1 K.
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FIGURE 4
(A) Relative thermal sensitivity and (B) temperature uncertainty of 1. The corresponding uncertainties (Supplementary Equations S3, S4 in
Supporting Information) are represented by the shadowed areas.

FIGURE 5
(A) Upconversion emission spectra of 1 for selected PD values (297.6 K set temperature) depicting the spectral Gaussian deconvolution (green
and red lines ascribed to 2H11/2→4I15/2 and 4S3/2→4I15/2 transitions) and the IX and IB areas for 29.0 W cm−2 (grey and blue shadowed regions).
Dependence on PD of (B) IX and IB and (C) ΔNIR, for the indicated set temperatures. The lines correspond to the best fits to the experimental data using
Equation 4 (r2 > 0.98). (D) Corresponding relative sensitivity to PD of the NIR sensor based on 1.
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power density, sensor concentration, material

inhomogeneities and optoelectronic drifts in detection)

(Brites et al., 2012), we define the NIR radiation sensing

parameter as an intensity ratio, ΔNIR = IX/IB, calculated

using the emission intensity of the 2H9/2→4I15/2 (IB) and
2H9/2→4I13/2 (IX) transitions (Figure 5A).

The power-dependence of IX and IB is different (Figure 5B)

resulting in a decreasing ΔNIR with PD values (Figure 5C).

Changing PD for the set temperatures 297.6 and 305.3 K, ΔNIR

is the same within the uncertainty, while at a higher set

temperature (315.3 K) an offset in ΔNIR values is observed.

Therefore, we characterize 1 as a NIR sensor with a specific

calibration according to the working temperature ranges

(298.5–308.7 K and 315.6–318.5 K, Figure 3D).

To determine a working calibration curve that describes ΔNIR

variation in the measured PD range, we assume a generic and

empirical equation that better fits the experimental data since we

lack a theoretical model. As the behavior observed for ΔNIR

variation is similar in both temperature ranges and only differs by

an offset, the following function:

ΔNIR � A exp(−PD

t
) + y0 (4)

was fitted to both experimental datasets with A and t

parameters shared between the two fits while y0 was kept

free (Figure 5C). The resulting fitting parameters are A =

1.74 ± 0.09, t = 37 ± 1 W cm−2, y01 = 2.41 ± 0.01 and y02 =

2.50 ± 0.01, corresponding to y0 in the 298.5–308.7 K and

315.6–318.5 K ranges, respectively. Inspired by the definition

of the relative thermal sensitivity of a thermometer (Equation

1), we define the relative sensitivity to PD, SPD, as a figure of

merit to characterize the NIR sensor:

SPD � 1
ΔNIR

∣∣∣∣∣∣∣
zΔNIR

zPD

∣∣∣∣∣∣∣ �
∣∣∣∣∣∣∣
−ΔNIR + y0

tΔNIR

∣∣∣∣∣∣∣ (5)

yielding a maximum value of 0.5% W−1·cm2 at 29.0 W cm−2

(Figure 5D), which is higher than the value reported for the

luminescent Cr3+−based ratiometric radiation sensor, 0.07%

W−1 cm2, (Marciniak et al., 2022).

Conclusion

The Er3+ emission of the NaGdF4/NaGdF4:Yb3+,Er3+/NaGdF4
upconverting nanoparticles upon 980 nm laser excitation was

used to develop a luminescent dual nanosensor synchronously

measuring the temperature and the delivered laser pump power.

Both sensing capabilities use the same simple instrumentation,

providing reliable temperature readout through the concept of

luminescent primary thermometry to resolve the overlapping of

the 2H9/2→4I13/2 and 4S3/2→4I15/2 emissions. Moreover, the

measurements are independent and there are no temperature-

PD crossover effects in the studied temperature. This dual-sensor

shows potential for laser-assisted biomedical applications,

such as in-vivo real-time temperature monitoring during

photothermal therapies, where human exposure to NIR

laser radiation must be strictly controlled to avoid healthy

tissue damage and, thus, ensuring a safe and efficient therapy

implementation. In context, under the International

Commission on Non-Ionizing Radiation Protection

(ICNIRP) guidelines, skin exposure to 980 nm laser

radiation is limited to 0.73 W cm-2 for exposures times of

10 s to 8 h (Ziegelberger, 2013). However, for deliberate

exposure as part of medical treatment, these radiation

limits vary according to the procedure and instrumentation

regulated by U.S. Food and Drug Administration (FDA)

(FDA, 2020), and thus demand for flexible in situ power

verification.
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