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Multiscale Computational Approaches toward the
Understanding of Materials

Marta Bordonhos, Tiago L. P. Galvão, José R. B. Gomes,* José D. Gouveia, Miguel Jorge,
Mirtha A. O. Lourenço, José M. Pereira, Germán Pérez-Sánchez, Moisés L. Pinto,
Carlos M. Silva, João Tedim, and Bruno Zêzere

Herewith, an overview of the group’s collaborative research efforts on the
development and deployment of computational approaches to understand
materials and tools at different length and time scales is presented. The
techniques employed range from quantum mechanical approaches based on
the density functional theory to classical atomistic and coarse-grained force
field methods, targeting molecular systems composed of a few to several
million atoms at different levels of detail. These new tools and molecular
models are presented to the computational materials science community so
they can be used in more realistic molecular modelling studies of the
properties of materials and their dependence on subtle modifications of their
structures. The review concludes by presenting a selection of recent
computational case-studies oriented toward the understanding of the
synthesis of materials, the interpretation of unexpected experimental results,
the prediction of material properties, and the materials selection based on
their characteristics for applications in areas such as gas
adsorption/separation, corrosion protection, and catalysis.

1. Introduction

For several decades, synthetic chemists, material scientists, and
chemical engineers have pursued the goal of synthesizing mate-
rials by design to tailor their structural and interfacial properties
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for particular applications.[1] This is ex-
pected to yield tremendous benefits in areas
such as catalysis, separation processes, car-
bon capture, and pollution control, where
different families of materials are already
widely employed. For example, the North
Americanmarket for inorganic nanoporous
and microporous materials for gas adsorp-
tion and separation processes is set to rise to
2.9 billion US dollars by the end of 2023 at
a compound annual growth rate of 3.4% for
the period of 2018–2023.[2] There are sev-
eral different families of materials that have
been attracting researchers’ attention, par-
ticularly over the last 3 decades, from 1D
(one-dimensional, e.g., carbon nanotubes),
2D (two-dimensional, e.g., graphene), to 3D
(three-dimensional, e.g., zeolites) materi-
als. Despite their great potential, further de-
velopments in tailoredmaterials are limited
by our lack of fundamental understanding
and control over their synthesis processes,
with most discoveries arising from the

application of exhaustive searches or trial-and-error
approaches.[3] It is clearly necessary to change this paradigm to
enable the targeted design of new materials with tuned proper-
ties for a specific application, and computational methods are
ideally suited for this purpose.
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Figure 1. Families of computational materials sciencemethods and corre-
sponding time and length scales. The dashed red line highlights the den-
sity functional theory (DFT) and force field methods used and the scales
reached in the studies that are reviewed in this work.

The exponential growth in computing power and the develop-
ment of new theories and improved algorithms over the last 30
years has been making it possible to perform computer simu-
lations with realistic models that provide in-depth understand-
ing of the electronic and molecular structure of materials, which
is of utmost importance in the characterization and prediction
of their properties. In fact, while the first computational studies
aimed to approximate the experimental findings used as bench-
marks for model calibration, they were later used to confirm and
aid in the interpretation of experimental observations and, more
recently, they are being deployed to predict and anticipate proper-
ties under different operating conditions, including those of quite
complex, hence more realistic, systems.[4–9] In parallel, databases
with (calculated) data for an increasing number of materials are
being created,[10,11] which is enabling the consideration of artifi-
cial intelligence and machine learning algorithms for screening
the potential of existing and hypothetical materials for numer-
ous applications.[12,13] Thus, we reached the point where well-
calibrated computational studies can compete with experiments.
In this review article, we seek to provide an account of widely

used computer simulation methods that are being used in com-
putational materials science studies by providing an overview of
some of our recent work focusing on the application of porous
materials for gas adsorption and separation, corrosion protection,
and heterogeneous catalysis. The computational approaches and
the time/length scales that have been reached by the simulations
reviewed in this work are shown in Figure 1.
The field of computational materials science is quite vast. Sev-

eral computational strategies are not covered here (e.g., the ki-
netic Monte Carlo or the finite element method, Figure 1) for the
sake of space and the reader interested in obtaining a more pro-
found knowledge of the computer simulation approaches is di-
rected to excellent books available in the literature.[14–16] Some
simple application examples running on free highly-parallelized
codes are provided for those aiming to initiate with the tech-
niques of computational materials science.[15]

2. Computational Approaches

2.1. Density Functional Theory

Physicochemical phenomena at the electronic level are gov-
erned by the laws of quantum mechanics (QM), of which the
Schrödinger equation is a key result. Computational methods
that deal with phenomena at the electronic level are therefore
based on solving this equation in some approximate way. The
trust of the scientific community in computational methods in
quantum chemistry has been immensely enhanced at least since
1998, when the Nobel Prize in Chemistry was awarded to Walter
Kohn and John Pople for the development of density-functional
theory (DFT) and of computational methods in quantum chem-
istry, respectively.[17] DFT is used to investigate the electronic
properties of atoms, molecules, or solids, and is based on the two
Hohenberg-Kohn (HK) theorems.[18] These two theorems are ex-
act and, in short, establish that all the ground-state properties of
a many-electron system can be determined if we know the spa-
tial electronic density of the system. Every property of a quan-
tum system can therefore be reduced to a functional of the elec-
tronic density. To find the electronic density as a function of the
three spatial coordinates, one would in principle have to solve the
Schrödinger equation of the system, which translates into solv-
ing a many-body problem of interacting electrons, an impractical
(and often impossible) task. Kohn and Sham further built on the
HK theorems and arrived at the Kohn-Sham (KS) equations,[19]

which allow us to convert the problem of many interacting elec-
trons into another one of noninteracting electrons in an effec-
tive potential, whose electronic density is the same as the original
one.
Although the fundamentals of DFT are exact, the fact is that

no formally exact exchange-correlation functional is known and
approximations were constructed from first principles to sat-
isfy properties of the exact functional (e.g., the local density ap-
proximation, LDA, and the generalized gradient approximation,
GGA, among others that move the “Hartree World” closer to
the “Heaven of Chemical Accuracy”[20]). Shortcomings of the
DFT approaches in the lowest rungs of the Jacob’s ladder of
density functional approximations for the exchange-correlation
energy[20] will be, in principle, solved when using a more com-
plicated approach from upper rungs of the ladder. However, it is
not guaranteed that more complicated functionals always lead to
improvements in the answers obtained with a less complicated
functional, hence, the selection of a functional for a specific task
is not trivial. Also, functionals from upper rungs of the Jacob’s
ladder are computationally very expensive and, in practice, most
contemporary DFT studies employ GGA approaches (from the
second rung of the Jacob’s ladder) with an additional correction
scheme to account for the long-range electron correlation (Lon-
don dispersion interaction).[21,22] Additional approximations, for
example, the Born–Oppenheimer approximation or the frozen
core approximation are also important to make the calculations
feasible.
The Born–Oppenheimer approximation consists of assuming

that atomic nuclei are fixed in space and generate a static exter-
nal potential, which is a consequence of the much larger relative
mass of a nucleus compared to that of an electron. This means
that the electronic wave function (and density) can be calculated
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assuming stationary nuclei, but it does not mean that DFT can-
not predict the ground state position of atoms. In fact, having de-
termined the electronic density, one can calculate the forces act-
ing upon nuclei. With this knowledge, one can estimate in which
direction each atom should move to reach its ground-state posi-
tion, and predict, for instance, molecule conformations or stable
adsorption configurations.
The frozen core approximation replaces the electrons consid-

ered chemically inactive by an effective potential, the pseudopo-
tential. Within this approximation, one typically considers that
only the valence electrons (usually considered the most rele-
vant for chemical reactions) are correlated and treated explicitly
as waves, while the remaining electrons define the frozen core.
This has the advantage of making the number of electrons to be
treated explicitly considerably moremanageable, and enables the
inclusion of other effects, such as relativity. DFT codes often in-
clude their own pseudopotentials, which consist of large sets of
numbers that define the behavior of atoms of each element.
The exact differential equations involved in DFT calculations

can be turned into algebraic equations, more efficiently imple-
mented computationally. This is done by representing the wave
functions as linear combinations of basic functions. Often, peri-
odic models use plane wave bases, while non-periodic ones use
Gaussian-type orbitals.
DFT calculations are usually very computationally intensive

due to the matrix operations involved. The calculation time taken
by most DFT codes scales with the cubic power of the number of
electrons, and the bottleneck is the diagonalization of the ma-
trix corresponding to the KS equations. This means that codes
with different diagonalization algorithms (such as sparse ma-
trix algebra), or which avoid diagonalization completely, can scale
differently with system size. Ref. [23] provides a comprehensive
overview of some of these methods.
The explicit treatment of individual electrons allows one to

calculate properties such as ground-state atomic bond distances
and angles, bond and reaction energies, adsorption energies,
vibrational frequencies and optical properties, reaction energy
barriers, charge distributions and polarization, and many oth-
ers. However, the fact that these methods have electronic detail
severely limits the number of atoms that can be simulated in a
reasonable amount of time to a few hundreds. For this reason, the
simulation of processes that would require a very large number
of molecules, for example, reactions occurring in a solution, em-
ploy certain tricks to simulate the solution environment. Exam-
ples include implicit solvation and microsolvation. Implicit sol-
vation consists of assuming that the explicitly treated atoms are
inserted in a continuous fluid, which acts as a dielectric field and
thus adds a correction term to the calculations, while microsolva-
tion is the inclusion of a few molecules of the fluid surrounding
the reagents being studied, along with the assumption that the
few fluid molecules are enough to cause the atoms of interest
to behave as if they were immersed in a large volume of solvent.
Since DFT can be used to calculate forces acting upon atoms, one
can use it to simulate the dynamics of a quantum system given
the initial positions and velocities of the species, by numerically
integrating Newton’s equations of motion. This is called ab initio
molecular dynamics. Alternatively, physicochemical properties of
systems calculated using first-principles methods can instead be
fed into other kinds ofmodels which do not treat electrons explic-

itly, allowing for the simulation of larger systems, as described
below.

2.2. Classical Molecular Dynamics Simulations

Compared to DFT and other QMmethods, molecular mechanics
(MM) methods and classical molecular dynamics (MD) simula-
tions neglect electronic degrees of freedom and treat molecules
as a collection of atoms (or, more generally, interaction sites).
MM methods have been widely employed to optimize the struc-
tures of large molecular systems or to provide an adequate em-
bedding of the inner QM region in QM/MM calculations, while
MD methods have been used to understand the dynamic evolu-
tionwith time of complex systemswithmany degrees of freedom.
They describe interatomic interactions by means of a force field
and, in the case of MDmethods, they also integrate the Newton’s
equations of motion to provide the position and speed of each
species over time. The Hamiltonian is divided into non-bonded
and bonded interactions, where the former includes an empiri-
cal potential function, commonly Lennard-Jones or Buckingham
potentials, to describe the repulsion/dispersion forces between
all pairs of atoms, together with a Coulomb term, which tack-
les the electrostatic interactions between charged moieties. The
bonded terms describe the interactions between bonded atoms
which comprise the molecule. The most common bonded func-
tions for bond stretching, angle bending, and improper dihedrals
are harmonic, while the periodicity of the potential associated
with proper dihedrals is often represented by functions based on
cosine series. Thus, selecting an adequate force field, encompass-
ing the non-bonded and bonded parameters, is the cornerstone
of any MD study and depends on the level of detail required for
the analysis. At this point it is worth mentioning that polarizable
force fields can effectively respond to subtle changes in the sur-
rounding electric field. However, the computational burden for
the possible higher accuracy may increase up to 10 times when
compared with non-polarizable force fields, which are still the
most used in classical MD simulations. Generally, the force field
can involve a fully all-atom (AA) description, a united atom (UA)
model without explicit hydrogens, where, for example CH, CH2,
or CH3 groups are treated as a single unified center with masses
of ≈ 13, 14, and 15 a. u., respectively, or a coarse-grained (CG) ap-
proach, where several atoms with similar physico-chemical char-
acteristics are joined together into a larger interaction center, or
“bead.” The AA and UA levels are limited in size and time scale
since they are very computationally demanding due to the num-
ber of interactions to consider, but still provide an adequate level
of understanding at the nanoscopic scale. Generally, AA-MD and
UA-MD simulations are restricted to thousands of atoms and
hundreds of nanoseconds of simulation time, leaving out of the
game processes such as long-range ordering or phase transitions.
However, CG-MD models were developed to overcome AA-MD
and UA-MD limitations by allowing the study of systems com-
posed of millions of molecules and simulation times in the order
of tens of microseconds. Additionally, the time step in CG simu-
lations can be set to one order of magnitude higher than AA and
UA approaches, thus the CG approach speeds up the dynamics
by several orders of magnitude. This opens the door to fully ad-
dressing the synthesis of many soft materials, which requires a
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minimum size/length to reproduce the self-assembly and forma-
tion of ordered phases.
The first CG simulation was performed four decades ago

by Levitt et al.[24] reproducing the entire protein folding
process. Since then, many CG approaches were developed
from topology-based Gō models[25] to lattice Monte Carlo
(MC) simulations tackling relatively large systems such as
polymers[26] or nanoparticles.[27] Lattice MC studies also ad-
dressed the self-assembly of amphiphilic compounds[28–32] and
zeolite formation.[33] However, two decades ago, the advent of the
CG-MD MARTINI[34] (http://cgmartini.nl) force field brought
fresh air into the CG computational community, becoming one
of most popular CG approaches due to its reliability, simplicity,
and transferability.[35] This model was developed based on exper-
imental partitioning free energies of a wide number of chemi-
cal compounds.[35–40] MARTINI includes four pre-defined bead
types for non-bonded interactions: Q, P, N, and C for charged,
polar, non-polar, and apolar moieties, respectively. Five levels of
polar or apolar strength (from 1 to 5) were considered in P and
C bead types whereas acceptor(a), donor (d), donor-acceptor (da),
or no (0) hydrogen bond capabilities were implicitly included as
sublevels in N and Q bead types. The non-bonded parameters
are summarized in the MARTINI matrix of interaction energies,
making the parameter choice simpler. Additionally, “S” labelled
beads symbolize a 3:1 mapping of heavy atoms to beads, specif-
ically developed to mimic small organic rings upon reduction of
the size and interaction energy of each bead. This allows the close
packing of small ring moieties more closely without freezing, re-
producing experimental data whilst preserving the correct parti-
tioning behavior. Initially,MARTINIwas designed for simulating
lipids and some biomolecules,[34,41] but it was quickly extended to
a wide number of organic and inorganic compounds of relevance
in many areas.[38,40,42] Recently, a new, extended version of MAR-
TINI, labelled MARTINI 3,[43] was launched, significantly im-
proving the accuracy and breadth of application of this force field.
One of the main drawbacks of the classical approximation is

that chemical reactions, which involve transfer of electrons be-
tween reacting atoms, cannot be explicitly described. Therefore,
including chemical reactions in classical computer simulations
is far from straightforward and requires specific “reactive” force
fields or bespoke models. The first attempts were carried out in
the 1970s by Moebs[44] and Gillespie[45] by means of MC simu-
lations, later extended to reproduce real time-dependent reaction
rate constants.[46] Since then, a lot of work has been done using
MC,[47] kinetic Monte Carlo (KMC),[48] and MD simulations,[49]

for example using specific force fields such as ReaxFF.[50,51] How-
ever, most of those studies make use of rather complicated mod-
els and/or algorithms, and are therefore limited to rather small
system sizes, which poses problems when attempting to simul-
taneously describe mesoscale processes like self-assembly. Fur-
thermore, standard reactive force fields require the use of very
high temperatures or special sampling techniques in order to
progress the reaction on a feasible time scale.[52] One option that
has been pursued, mostly in simulations of polymer reactions, is
to dynamically change bond topologies on-the-fly during an MD
simulation.[53–57] However, this requires the development of spe-
cific scripts to stop the simulation, check for suitable chemical
reactions, update the topology accordingly and restart the simula-

tion, which significantly slows down the simulations and hinders
transferability.
One of the few studies to describe chemical reactions and self-

assembly in material design was that of Lin et al.,[58] who devel-
oped an MC lattice model to simulate surfactant self-assembly
and silica oligomerization at the same time, observing the forma-
tion of hexagonal and lamellar structures resembling the struc-
tures of mesoporous silica materials, albeit within the assump-
tions of their rather simplified model. Very recently, Carvalho
et al.[59] successfully developed a CGMARTINI-based framework
able to simultaneously describe chemical reactions and surfac-
tant self-assembly using large systems in a computationally ef-
ficient way. The key to this approach was to describe the reac-
tion using short-range continuous potentials that could be in-
corporated into highly-parallelized MD simulations. Despite the
model being developed specifically for polymerization of silica
in aqueous solutions with cetyl trimethyl ammonium bromide
(CTAB) surfactants, the approach is general enough to be ex-
tended to other systems in which chemical reactions and self-
assembly must be addressed together. Note that previous works
attempting the CG-MD simulation of bond formation and bond
breakage events in polymerization reactions considered the dis-
tance between pairs of particles evaluated at every N simulation
time steps to decide ad-hoc which particles are bonded or non-
bonded.[60]

2.3. Grand Canonical Monte Carlo

Like classical MD, the grand canonical Monte Carlo (GCMC)
approach[61] relies on statistical mechanics under the classical ap-
proximation. This technique is used to simulate the properties of
a system at thermodynamic equilibrium under constant temper-
ature, chemical potential and volume, thus enabling fluctuations
in both the energy and number of molecules of the system. In ad-
dition to the regular displacement movements used in standard
canonical MC (molecule translations and rotations), trial inser-
tions and deletions of molecules are attempted for allowing the
number of particles to vary. All the random trial moves are han-
dled by the normal Metropolis scheme[62] and are accepted or re-
jected according to criteria based on a Boltzmann-type weight-
ing of the energy. Note that, unlike MD, MC approaches like
GCMC do not rely on the dynamical method of time integration,
hence high energy barriers and rare events can be circumvented
through careful selection of the trial moves. The associated draw-
back is that the method does not follow the realistic dynamics of
the system, and hence can only yield information about equilib-
rium properties.
Because the number of molecules in the simulation box is al-

lowed to change, the GCMC approach is ideally suited to cal-
culate the adsorption isotherms of gases by porous solid adsor-
bents, in contrast with MC simulations based on other ensem-
bles. This is because we can directly calculate the average load-
ing in the simulation cell at equilibrium under constant temper-
ature and varying chemical potential, which can then be related
to the pressure of the bulk gas in equilibrium with the adsorbed
phase (most often through a thermodynamic equation of state).
As such, a GCMC simulation is able to replicate experimental
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measurements of adsorption isotherms, yielding the amount ad-
sorbed as a function of bulk gas pressure. A particular advan-
tage of GCMC for this purpose is that it can easily be extended to
mixtures of any number of components. The computational pro-
cedure is the same as for pure components, except that identity
changemoves, where onemolecule chosen randomly is switched
to another component type in themixture, are often introduced to
increase computational efficiency (although they are not strictly
required). It is common practice inGCMC simulations of adsorp-
tion to consider the structure of the adsorbent material as rigid,
and hence the interactions between the gas and the solid are dic-
tated by non-bonded interactions, that is, repulsion/dispersion
forces and, when the adsorbates are polar molecules, also elec-
trostatic interactions. The assumption of a rigid adsorbent struc-
ture will lead to inaccurate predictions of gas adsorption in ma-
terials with framework flexibility, like metal organic frameworks
(MOFs) with breathing behavior. Noticeably, recent work showed
that proper consideration of framework flexibility may be also
important for simulation of the adsorption of aromatics in tra-
ditionally rigid materials like MFI-type zeolites.[63] Also, some
MOFs may have unsaturated metal centers, the so-called open
metal sites or coordinatively unsaturated sites, which can coordi-
nate chemically to adsorbates like unsaturated hydrocarbons or
water. In such cases, standard force fields will fail and force fields
specific for tackling such interactions must be used.[64–67] When
dealing with small adsorbate molecules (e.g., methane, nitrogen,
carbon dioxide), it is also usual to treat them as rigid models for
computational simplicity. However, for largermolecules like long
alkanes, bonded interactions (stretching, bending, and torsion)
play an important role and special techniques like configurational
bias[68] can be used to speed up the sampling. Due to the use
of periodic boundary conditions (which are standard in classical
molecular simulations), GCMC is particularly suited to describe
crystalline materials like MOFs or zeolites, which are inherently
periodic. However, this method can also be used to study semi-
crystalline or even completely amorphous materials, although in
these cases, particular care must be taken to sample multiple re-
alizations of each material structure so as to adequately sample
the degree of structural variability observed in the real materials
(see next Section).

2.4. CarbGen Tool for Activated Carbon Model Generation

Optimization of activated carbons is an open topic of scientific in-
terest, with most efforts geared toward surface functional group
content optimization and/or microporous structure tuning,[69]

because they are potential materials for application in, for exam-
ple, water treatment, heavy metal recovery, air purification, and
catalysis.[70] In recent years, computational modelling of such
materials has experienced a boom in development.[71,72] Given
the amorphous nature and highly irregular structural organiza-
tion of activated carbons, modeling real-world examples in sil-
ico is not trivial. An interesting approach is the usage of vir-
tual porous carbon models. In such a model, activated carbons
are represented as a set of micro crystallites grouped together to
form a microporous structure.[73,74] The employed library of mi-
cro crystallites can be fine-tuned to reflect surface area, elemental
composition, and even surface functional group content of differ-

ent activated carbon samples, reproducing experimental results
with high-enough accuracy for computational optimization.
As a way to speed up and standardize the generation of such

micro crystallite libraries (with different chemical and physical
properties), the CarbGen tool was developed.[75] This tool is freely
available on a web server,[76] and as an open-source Python stan-
dalone version.[77] As shown in Figure 2, the online tool allows
for easy generation of multiple replicas of functionalized carbon
models in an extremely simplified way. More recently, as part
of the ProtoSyn.jl package,[78] the same approach was improved
with the addition of 4 new nitrogen-containing functional groups
and a multitude of tools for more accurate generation of mod-
els (for example, introducing the option to quickly minimize the
structure and solve atomic clash conflicts). The full code can be
accessed in the Materials module of ProtoSyn.jl.[78]

2.5. Machine Learning

The application of machine learning (ML) for the study of ma-
terials aims primarily to screen or design new applied materi-
als by developing systematic and high-throughput algorithmic
frameworks.[79,80] Python or R programming languages are the
main tools for machine learning in general, but KNIME and
MATLAB are also widely used when dealing withmaterials, and a
myriad of low- and no-code solutions are becoming increasingly
available.
A machine learning workflow usually involves 5 steps, as de-

scribed in the following sub-sections:

2.5.1. Data Preparation

To produce amachine learningmodel, it is necessary to have data
to calibrate and evaluate it. Therefore, it requires the availability
or collection of a database, which can range from a few dozen
to millions of data entries. Then, the data need to be loaded, ex-
amined, processed, and cleaned. Cleaning involves dealing with
missing data, different sources of errors and unit standardiza-
tion. It is usually followed by exploratory data analysis, to discover
correlations, spot anomalies, and test hypotheses, using comple-
mentary summary statistics and graphical visualization, in or-
der to subsequently choose the appropriate machine learning
approach. Often, when the term machine learning is heard, an
alluring image of futuristic artificial intelligence applications is
evoked. In reality, most of the time in a machine learning project
is spent preparing data for the machine learning model.

2.5.2. Splitting Data into Train/Validation/Test Data Sets

The data should be divided into three data sets (training, valida-
tion, and test) in order to properly evaluate the performance of
the model. The training set is used to fit a certain algorithm to
find the model parameters, which are internal values that allow a
model tomake predictions. The validation set is then used to eval-
uate the choice of the algorithm and respective hyperparameters.
The hyperparameters are external values to the model, related
to the training process, which can be chosen and tuned. In or-
der to reduce the bias to the validation set, n-fold cross-validation
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Figure 2. CarbGen Online tool. a) A percentage of functionalized carbon atoms can be set for the various types of commonly found functional groups.
These settings reflect the surface chemistry of the final model. b) The physical characteristics of a micro crystallite include its size, number of layers,
and porosity level. These settings modulate the micro porosity of the final model. c) Examples and templates allow for a quick copy of commonly found
micro crystallite types in the literature. The downloadable output includes a description of the generated model (elemental composition, functional
group content, etc.), a .mol2 file with the default atomic charges and an .itp file with force field parameters for molecular dynamics simulation using the
GROMACS software.

should be employed, with n recommended to be 5 or 10.[81] Both
result in similar low bias toward the validation sample and equal
mean square error for different methods and test sets.[81] In ten-
fold cross-validation, for example, a model is evaluated 10-times
against ten independent samples corresponding to 10% of the
dataset after it is trained 10 different times with the remaining
90% of the validation data.
The test set should be held out from the feature selection, train-

ing, optimization, and validation stages, being stored for a final
independent test of the most accurate model according to cross-
validation. The amount of data reserved for the test set is usually
between 10% and 30% of the whole dataset, depending on the
amount of data available and the nature of the problem. If the
performance of the model toward the test set is not satisfactory

and the model needs to be further refined, new pristine data (not
present in the initial training, validation, or test sets) should be
used for further testing.

2.5.3. Feature Engineering

Features are independent variables that are used as an input
for the model to predict an intended output. For materials de-
sign, they are also referred as descriptors; it can be any relevant
characteristic of the material, such as measured experimental
properties, tabulated properties, and/or calculated properties ob-
tained byDFT,MD, or cheminformatics. For numerical problems
involving materials, finding the features with higher predictive

Adv. Theory Simul. 2022, 2200628 2200628 (6 of 24) © 2022 The Authors. Advanced Theory and Simulations published by Wiley-VCH GmbH
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power is often more important than the choice of algorithm,[8]

and expert knowledge is usually key. In the case ofmaterials prop-
erties, the number of possible features is generally very broad, so
statistical techniques for feature selection are employed.[82] There
are filter methods, based on filtering according to a certain score
fromdifferent statistical tests for the correlation between features
and outcome variables, there are the so-called wrapper meth-
ods, such as backward elimination and forward selection, and
algorithms that have their own built-in feature selection meth-
ods, such as the least absolute shrinkage and selection operator
(LASSO) regression. Nomethod can be considered the best for all
problems, and this step can be repeated several times considering
different strategies.[82] It is common in problems involving ma-
terials to have initially hundreds or even thousands of features,
fromwhich only one or two dozen are typically selected formodel
optimization. During the model optimization step, the selected
features can be further refined using ML models with optimized
hyperparameters.

2.5.4. Model Optimization

There are many different algorithms that can be used to develop
machine learning models. First, it is necessary to identify the
rightmachine learning task: unsupervised learning versus super-
vised learning. Unsupervised learning can be used on unlabeled
raw data and is used to unveil relationships and patterns within
this data, whereas supervised learning requires labeled data and
is used to make predictions on new data.
Unsupervised learning relies on clustering, which groups to-

gether similar data points, or association techniques, which al-
low to understand how different features are related with each
other. On the other hand, supervised learning usually addresses
two different problems: Regression, which aims to predict nu-
merical outcomes (i.e., the value of a property), and classification,
which aims to identify discrete classes of data (i.e., efficient vs
non-efficientmaterial according to a certain criteria or threshold).
Most well-known supervised learning algorithms can be used
for both regression and classification. These can be, for exam-
ple, regression (simple linear, multiple, LASSO, Ridge), k-nearest
neighbors, simple decision trees, or with ensemble methods
(random forests, bagging, XGBoost), support vector machines
and deep learning. The majority of these algorithms were de-
scribed in previous work.[83] For standard tabular data, XGboost
is usually the best performing algorithm,[84] although it can be
cumbersome to find the optimal hyperparameters and simpler
algorithms generally offer higher explanatory power.[85] On the
other hand, deep learning really shines when dealing with im-
ages, audio, and text.[84]

The objective of model optimization is to find the ideal
combination of algorithm, model parameters, and training hy-
perparameters, according to the performance metrics obtained
from cross-validation. There are two main problems with ma-
chine learning models: Underfitting and overfitting. Underfit-
ting means that a model does not fit well enough the training
data and thus generalizes poorly to the validation and testing data.
Overfitting means that a model fits so well to the training data
that it becomes too specific to this data and has difficulty general-
izing for the validation and training sets. Underfitting is relatively

easy to spot, while cross-validation helps minimize overfitting.
However, cross-validation does not completely prevent overfit-
ting, withmaterials science being quite prone to this problem. Ex-
perimentalmaterials science, especially for high performance ap-
plications, has relatively small datasets, sometimes even smaller
than the number of features that are possible to consider, which
together with many algorithms to choose from and numerous
hyperparameters to tune, can result in a chosen final model that
is actually specific to the cross-validation itself, not generalizing
well to the test set.

2.5.5. Testing

The final test set allows the assessment of the real performance of
the model. Moreover, since new data are always being published
or it is relatively easy to collaborate with other labs to obtain new
data, an additional blank test set with external data can also be
considered to evaluate the model.

3. Computational Studies of Materials

3.1. Metal Organic Frameworks

MOFs are hybrid porous materials composed of inorganic metal
ions or ion clusters linked together by organic moieties (usu-
ally named ligands or linkers), typically in a 3D crystalline
structure.[86] The coordination of themetal controls howmany or-
ganic linkers can be bound to themetal and their orientation, and
organic linkers shape the skeleton of the material.[87] MOFs can
havemany different geometries, with surface areas ranging from
1000 to 10 000 m2 g−1 and porosities going above 50% of the vol-
ume of the structure, and some exhibit high thermal and chemi-
cal stability.[86] Another main feature of MOFs is their tunability:
On a first level, there are infinite possible combinations of differ-
ent metals and organic linkers; on a second level, post-synthetic
functionalization or structural phenomena such as interpenetra-
tion (i.e., the merging of more than one independent framework
in the same structure) add more numbers to the exponentially
growing list of reportedMOFs, which to date counts over 100 000
structures in the Cambridge Structural Database (CSD).[88] All
of these characteristics turn MOFs into one of the most versatile
types of porousmaterials; as they can be tailored for specific uses,
applications spread over many different fields including adsorp-
tive gas separation,[89] carbon capture,[90] catalysis,[91] sensing,[92]

energy storage and conversion,[93] pollutant removal,[94] and drug
delivery.[95]

Because there are countless possible MOFs, it is not feasible to
synthesize and test all of them experimentally for specific applica-
tions.Hence, computer simulations provide excellent tools to fur-
ther study and screen these materials.[96] Computer simulations
allow the achievement of a deepmolecular-level understanding of
themechanisms governing host-guest interactions, the testing of
possible structural and/or chemical changes in the frameworks
and the development of models based on experimental data, that
will enable studies under conditions not possible experimentally.
However, there may also be some drawbacks: computational ap-
proaches and models may not be accurate enough to represent
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Figure 3. Structures of the linkers in the MOFs discussed in the
text which were obtained from 1,4-benzenedicarboxylic acid (top
left), 2,6-naphthalenedicarboxylic acid (top right), and 1,3,5-tris(4-
phosphonophenyl)benzene (bottom) parent compounds.

the system being studied; some experimental samples may be
difficult to properly describe computationally, namely due to de-
fects or impurities, not always obvious to implement on the per-
fect structures of MOFs.[87] Nevertheless, computational simula-
tions are a fundamental step in the research process in materials
science and engineering.
Our group has been studying MOFs for more than a decade,

with our computational research focusing on modelling the ad-
sorption of small gas molecules in MOFs with different struc-
tural and chemical properties.[100–102,65–67,97–99] Recently, we par-
ticipated in the investigation of the multifunctionality of an ion-
exchanged rare-earth-phosphonate MOF.[102] The MOF, built of
phosphonate-based tripodal organic linkers (H3pptd, Figure 3)
and rare-earth/lanthanide cations (95% Yttrium, 5% Europium),
labelled 1_Eu, was modified by post-synthetic ion-exchange to
replace the protons (H+) of the free ─POH groups with extra-
framework potassium cations (K+), 1K_Eu. Computer simula-
tions of the adsorption of several small gas molecules, including
carbon dioxide (CO2), acetylene (C2H2), propylene (C3H6) and
propane (C3H8), in 1_Eu and 1K_Eu, helped to further under-
stand the structure of the materials and their interactions with
the gases. Starting from the experimental crystallographic cell ob-
tained for 1_Eu, with H+ replaced by K+ for 1K_Eu, both MOF
structures were optimized by DFT, with GCMC simulations hav-
ing been run to calculate CO2 adsorption isotherms at 298.15 K.
The calculated adsorption isotherms for both materials have cor-
roborated experimental findings, i.e. that there is a significant
increase in CO2 uptake in 1K_Eu in comparison with 1_Eu, due
to the stronger interactions of the gas in the former’s chemical
environment. The calculated results consistently overestimated
the adsorbed amounts, a fact that has been attributed to the dif-

ferences between the simulated (i.e., perfect) structure and the
experimental defective material. These quantitative differences
notwithstanding, this was seen as a good indicator that 1K_Eu
and 1_Eu had very similar structures, a fact that could not be fully
clarified experimentally. CO2 density plots obtained from GCMC
calculations for 1_Eu and 1K_Eu have also helped to identify the
preferential CO2 adsorption regions for both materials: near the
organic linkers for the former and near the exchanged K+ for the
latter. Additional DFT calculations were also performed to deter-
mine the adsorption energies of CO2, C2H2, C3H6, and C3H8
and the most favorable adsorption arrangements of the guest
molecules.
The separation of gas mixtures is a common industrial prac-

tice. However, some gas mixtures are inherently difficult to sepa-
rate because their components have very similar properties. One
such example is the separation of ethane/ethylene (C2H6/C2H4)
mixtures, one of the most important and challenging industrial
separations due to the significance of C2H4 as a primary feed-
stock in the petrochemical industry. Because of the close boil-
ing point of both compounds in cryogenic conditions, traditional
distillation-based methods are highly energy intensive processes
and, consequently, very costly. Adsorption-based processes, in
which a porousmaterial preferentially adsorbs one of the compo-
nents in the gas mixture over the other(s), can be a viable alterna-
tive, especially if thematerial is selective toward C2H6.

[103,99] Over
the past years, our group has studied several types of MOFs that
have interesting characteristics for C2H6/C2H4 separation.

[100,99]

In one of these works, we studied zirconium (Zr) MOFs based
on UiO-66 and MIL-140, with different structures and chemical
functionalities.[100] All structures considered for these computa-
tional studies were optimized by DFT, while GCMC was used
to obtain adsorption isotherms. UiO-based materials are built
from discrete Zr6 oxoclusters resulting in a 3D pore system with
smaller tetrahedral and larger octahedral cages; MIL-140-based
MOFs consist of infinite Zr oxide rods, originating structures
with 1D triangular-shaped straight channels.
The first aspects to be investigated were the effect of the pore

structure and linker aromaticity. For this, four MOFs were stud-
ied: two UiO-based and two MIL-140-based MOFs, with 1,4-
benzenedicarboxylate (BDC, Figure 3, yielding UiO-66 and MIL-
140A, respectively), or 2,6-naphthalenedicarboxylate (NDC, Fig-
ure 3, yielding UiO-NDC and MIL-140B, respectively) organic
linkers. BDC-containing structures have smaller pore dimen-
sions (and consequently, lower pore volumes and surface areas)
and lower aromaticity than NDC-containing MOFs. The calcu-
lated adsorption isotherms, which were in general agreement
with the experimental ones, and the analysis of the preferential
adsorption locations supported the following findings: i) Regard-
ing the topology of the structures, UiO-based MOFs adsorb more
gas and have a higher affinity for C2H6 over C2H4 than MIL-140-
based materials, with UiO-NDC showing the highest uptakes for
both gases. This was attributed to the 3D tetrahedral and octahe-
dral cages of the UiO-basedmaterials, as opposed to the 1D chan-
nels of the MIL-140 based MOFs; ii) Considering the aromaticity
of the organic linker, it was observed that a higher aromaticity
seems to lead to enhanced interactions with C2H6, as MOFs with
NDCwere shown to adsorb (to different extents) more C2H6 than
C2H4. However, in the case of UiO-based MOFs, the C2H6/C2H4
selectivity estimated from both experimental and simulated
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Figure 4. Schematic (top) and ball-and-stick|polyhedra (bottom) representations of IRMOF-8 without (left) and with (right) interpenetrated structure.
In the top images, spheres and lines represent the zinc-oxide clusters of the inorganic nodes and the NDC organic linkers, respectively. In the bottom
images, drawn with VESTA,[104] gray is Zn, red is O, brown is C, and white is H. In the top-right image, two different coloring schemes are used to
highlight the two cages.

results for UiO-NDC was lower than for UiO-66. This suggested
that the aromaticity in these structuresmay not have had a signif-
icant effect on the separation of the gases (under the conditions
tested), and that the observed high gas uptakes inUiO-NDC could
in fact be due to the bigger pores of this MOF, and consequent
higher pore volume and surface area, than UiO-66.
Density plots for C2H6 and C2H4 adsorption taken from

GCMC simulations were important in identifying preferential
adsorption sites and better understanding the effect of the topol-
ogy and aromaticity: For UiO-66 and UiO-NDC the preferential
adsorption sites were found to be in tetrahedral cages where the
organic linkers face the interior of the pores; for MIL-140A and
MIL-140B the adsorption inside the 1D channels is made diffi-
cult not only by the narrow pore size but also by directional con-
straints and the misalignment of the linkers facing the inside
of the channels. Linker functionality was also investigated. Af-
ter promising experimental adsorption results showed UiO-66-
2CF3 (identical to UiO-66 but in which BDC linkers have a CF3
group in positions 2 and 5) to be highly selective toward C2H6,
a more detailed computational study of this material was con-
ducted to better understand the adsorption process and evalu-

ate the influence of linker dihedral rotation (relative to the metal
clusters) on the selectivity of the material. Different configura-
tions were tested and results clearly showed that linker rotation,
which affects pore size and configuration, has a significant influ-
ence on C2H6 and C2H4 adsorption. By comparison with experi-
mental results, these simulated adsorption isotherms revealed a
complex adsorptionmechanism: The adsorption of the two gases
is accompanied by changes in linker rotation with increasing gas
pressures, that ultimately favors C2H6 adsorption over C2H4.
In another study, we investigated the adsorption behaviors of

C2H6, C2H4, and alsomethane (CH4) and CO2 in zinc (Zn) based
isoreticular (IR) MOFs.[99] The focus of this study was IRMOF-8,
which was shown to bemore selective toward C2H6 than C2H4 in
experimental studies,[105] and thus a good candidate for this sep-
aration. IRMOF-8 may present non-interpenetrated (IRMOF-8-
NOINT) or interpenetrated (IRMOF-8-INT) structures (Figure 4).
Because of the structural interpenetration, the latter form has a
smaller pore volume than the former. For all gases, simulated
adsorption isotherms for IRMOF-8-INT showed a closer fit to ex-
perimental isotherms, indicating that the synthesized material
had a high degree of interpenetration. It should be noted that for
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Figure 5. Ball-and-stick representation of the periodic phenylene-PMO model drawn with VESTA.[104] Color code: blue is Si, red is O, brown is C, and
white is H. The black rectangle defines the unit cell, with its size in the perpendicular direction reduced for clarity of representation.

C2H6 and C2H4 adsorption, non-polar and point charge models
were tested for both gases and that the simulated isotherms for
both models overlapped, suggesting that Coulombic interactions
were not influencing gas uptake. Consequently, we concluded
that the selective adsorption of C2H6 over C2H4 in IRMOF-8-INT
was associated with van derWaals interactions, which are slightly
stronger for C2H6 than for C2H4.
Occupancy maps taken from simulation results shed further

light into the adsorption mechanism of these gases: For pres-
sures below 100 kPa, C2H6 and C2H4 adsorption occurs in the
vicinity of the inorganic nodes of IRMOF-8-INT, and as pres-
sure increases occupancy progressively builds around the or-
ganic linkers. Additional simulations in a canonical ensemble
(NVT) with just one C2H6 or C2H4 molecule allowed us to locate
the preferential adsorption sites in IRMOF-8-INT to be within
the aromatic linkers of the two different cages. The simulations
run for IRMOF-8-INT showed that C2H6 and C2H4 uptakes are
much higher and lower at low and high pressures, respectively,
than in IRMOF-8-NOINT. This is also due to interpenetration.
IRMOF-8-INT has lower pore volume and surface area but a
higher density of organic linkers per volume than IRMOF-8-
NOINT. Thus, at low pressures, where adsorption is governed by
framework-adsorbate interactions, van derWaals interactions are
much stronger in the former than in the latter. At high pressures,
where adsorbate–adsorbate interactions are more significant, the
larger pores of IRMOF-8-NOINT lead to much higher gas up-
takes. For CH4 and CO2, simulated results were also in agree-
ment with experimental data, although slightly overestimated in
the latter.

3.2. Periodic Mesoporous Organosilicas

Periodic mesoporous organosilicas (PMO), discovered in
1999,[106–108] are mesoporous 2D structures formed by bissi-
lylated organic bridges (((R’O)3Si-R-Si(OR’)3, R’ = methyl or

ethyl, R = bridged organic group) linked to each other by silica
moieties.[109,110] In this class of materials, the organic moieties
are homogeneously distributed and directly integrated in the
wall of the PMO, keeping the pore channel free for potential
applications,[106–108,110,111] such as electronics, adsorption, stor-
age and separation, and catalysis.[110] The most advantageous
properties of this family of hybrid materials are related to its
hydrophilic-hydrophobic character, narrow pore size distribu-
tion, highly ordered pore nature, large specific surface areas and
pore volumes, tunable pore sizes, and free silanols that can be
easily modified to incorporate extra functional groups.[110,111] De-
spite the high concentration of organic groups, PMO materials
usually present higher thermal stability and moisture tolerance
than MOFs and post-functionalized periodic mesoporous silicas
(PMS) sorbents. It is the intercalation of organic/inorganic
groups in the pore walls that enhances the stability of the ma-
terial, and it is the combination of all these features that make
PMO materials attractive as adsorbents.
DFT was used to understand and predict the performance of a

variety of PMOmaterials displaying different chemical function-
alities, mainly for CO2 and CH4 adsorption/separation[112–115]

but also for separation of CO2 from other gases.[116] Both
periodic[112–114] and cluster models[115,116] of the PMO walls were
considered to perform those studies, which were based on the se-
quence of six- and four-member rings of organosilica with T3 to
T2 silicon environments, that is, Tn = RSi(OH)(3-n)(OSi)n, where
R represents the organic bridge, in a ratio of 2:1, as used for the
first time byMartinez and Pacchioni[112] to construct the periodic
model of the phenylene (Ph-) PMO (Figure 5) based on informa-
tion from solid-state NMR obtained by Comotti et al.[117]

The CO2 and CH4 adsorption performances, calculated us-
ing periodic models of the functionalized and pristine Ph-PMO
sorbents,[113,114] showed a good agreement with the obtained ex-
perimental adsorption data, as discussed below. However, PMO-
based cluster models[116] are very convenient because they are
computationally affordable when compared with the periodic
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Table 1. Energies, selected geometrical parameters and CO2/CH4 selectivity for CO2 and CH4 adsorption in the periodic and cluster models of Ph-PMO
calculated using different methods.

Gas Modela) DFT method Eads (kJ·mol−1) Dist(X···HO)b) (Å) Dist(C···Phcenter)
c (Å) Eads

CO
2/Eads

CH
4
d) ratio

CO2 Periodic
PW/PAW

PBE −10.9 2.28 6.60 2.15

PBE-D2 −21.7 2.26 6.34 2.24

Cluster
GTO

PBE −10.5 2.22 5.41 2.69

PBE-D2 −25.8 2.21 5.18 1.79

M06-2X −25.1 2.21 5.17 2.46

Experimentale)f) −19 3.2g)

ΔHi ) (kJ·mol−1) −20.4

ΔSi ) (kJ·mol−1·K) −126.5

CH4 Periodic
PW/PAW

PBE −5.7 5.39 5.79

PBE-D2 −13.1 5.36 5.78

−10.1h) 2.11h) 8.16h

Cluster
GTO

PBE −3.9 2.24 6.42

PBE-D2 −14.4 2.56 4.88

M06-2X −10.2 2.62 4.84

Experimentale) i) −12.6 ± 0.8

ΔHj ) (kJ·mol−1) −4.5

ΔSj ) (kJ·mol−1·K) −100.7

a)
PW/PAW and GTO stand for plane-wave/projected-augmented wave and Gaussian type orbitals, respectively;

b)
Nearest-neighbor distance between the adsorbate (X =

O or H for CO2 and CH4, respectively) and the hydrogen atom of the isolated T2 silanol group (compare Figure 1 in ref. [116]);
c)
Distance from the carbon atom of the

adsorbate to the center of the aromatic ring of the PMO (compare Figure 1 in ref. [116]);
d)
Ratio between the calculated adsorption energies of CO2 and CH4;

e)
Experimental

isosteric heat of adsorption;
f)
From adsorption isotherms (temperatures, pressure range, and uncertainty not specified) in ref. [117];

g)
Ratio of Henry’s constant for CO2 to

that for CH4 determined in ref. [114];
h)
Second most stable structure for PBE-D2 method;

i)
From adsorption isotherms at T = 285, 298, and 314 K and pressures of 0.01 to

0.1 MPa determined in ref. [118];
j)
Enthalpies and entropies associated with the reaction Gas + Ph-PMO → Gas···Ph-PMO with thermal corrections to the energy obtained

from M06-2X/6-31G** (unscaled) frequency calculations at T = 298.15 K.

Figure 6. Schematic representation of a) R- and R’- post-functionalized Ph–PMOs studied in ref. [114] and b) PMOs with different organic bridges (Ph,
Py, Bph, and Bpy denotes phenylene, pyridine, biphenylene, and bipyridine moieties, respectively) considered in ref. [115]. Eads

CO2 , Eads
CH4 , KH

CO2 and
KH

CH4 are the calculated CO2 adsorption energy, the CH4 adsorption energy, the Henry constant for CO2 and the Henry constant for CH4, respectively.
Eads and kH are presented in kJ mol−1 and mmol⋅g−1⋅kPa−1 × 10−2, respectively. The ratio of the Henry constant for CO2 and CH4 (KH

CO2 /KH
CH4 ) is

equivalent to the selectivity in the limit of zero coverage.

models and can deliver accurate energetic data for the interac-
tion of these two adsorbates with the walls of the Ph-PMO ma-
terial, as observed in Table 1, independently of the chosen DFT
exchange-correlation functional.
The validation of cluster models allowed the extension of this

kind of studies to the adsorption of other gaseousmolecules (e.g.,
diatomic CO, H2, N2, O2, and NO, the triatomic CO2, H2O, H2S,

and SO2, and the tetratomic SO3 and NH3 species) onto the Ph-
PMOpore wall surface,[116] as well as to study PMO sorbents with
biphenylene (Bph-), pyridine (Py-), and bipyridine (Bpy-) bridges
or mixtures of Ph/Py- and Bph/Bpy- moieties[115] as bridges (Fig-
ure 6).
Independently of the type of chemical functionalities intro-

duced, DFT studies demonstrated that CO2 is preferentially ad-
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sorbed over CH4 on Ph-PMOs, making this family of materials
interesting to separate CO2 from CH4 (Table 1 and Figure 6).
Also, it was found that both gases are physisorbed on the PMO
walls, which is advantageous for the adsorbent regeneration. In
the case of Ph-PMO[112–116] and Bph-PMO[115] sorbents, the fa-
vored adsorption sites are the isolated T2 type silanol species.
Moreover, for the Ph-PMO a clear correlation was observed be-
tween the calculated adsorption energies (Eads) and the adsor-
bate to adsorbent distances (Dist(X···HO) and Dist(C···Phcenter))
or the experimental proton affinities (Epa) of CO2, CH4, and of
the diatomic, triatomic and tetratomic molecules. The latter rela-
tionship is convenient to quickly evaluate the adsorption of other
gases on the walls of the Ph-PMO sorbent.[116]

When amines are introduced into the Ph−PMOmaterial (Fig-
ure 6a), DFT calculations employing periodic models and ex-
perimental gas adsorption measurements predict an increase
of the CO2 adsorption energy, Henry constant for CO2 and
CO2/CH4 selectivity (KH

CO2/KH
CH4 ), with a good correlation be-

tween calculated and experimental data.[114] Moreover, it was
demonstrated that the PMO functionalized with alkyl amines
(APTMS@Ph−PMO) interactsmore favorably with CO2 than the
PMO modified with aromatic amines (NH2−Ph−PMO). In fact,
it was concluded that the CO2 sorption affinity is more controlled
by the type of amine than by the nitrogen content in the PMO
channels. As both DFT calculations and experimental studies
showed the same adsorption-separation trend, theoretical stud-
ies were also used to predict if other chemical modifications of
the PMO (─NO2, ─NH-i-Pr, ─CH2NH2, and ─SO3H) can en-
hance the selectivity of CO2 over CH4. The Ph−PMO modified
with CH2NH2 appeared to improve the CO2 adsorption and the
CO2/CH4 selectivity.

[114]

The effects of the organic bridge on the selectivity for CO2 over
CH4 were also studied by DFT (Figure 6b).

[115] Cluster models of
the walls of the PMO materials with the organic Ph- bridge re-
placed by Py-, Bpy-, or Bph- moieties, or by mixtures of Ph/Py-
and Bph/Bpy- fragments, were considered. Notably, improved
CO2 adsorption was observed when Bpy-bridges weremixed with
Bph- moieties, while the Bph- bridge led to a similar behavior as
the parent Ph-PMO. Curiously, the Bpy/Bph-PMO is predicted
to be the least interesting material for CO2/CH4 separation since
the selectivity toward CO2 decreased slightly, while it increased
in all the other cases analyzed. The CO2 adsorption performance
was directly correlated to the SiOH···OCO distance, namely, the
adsorption strength was enhanced with the shrinkage of this dis-
tance. Py- and Ph/Py- PMO sorbents showed the lowest CH4 ad-
sorption energies.[115]

3.3. Periodic Mesoporous Silicas

PMS materials have gathered attention in many areas of inves-
tigation, e.g., in materials science or in the chemical and phar-
maceutical industry,[119] due to their tunable properties, since
the pore size, shape, or chemical speciation can be modelled
by adjusting the synthesis conditions. The archetypal PMS ma-
terial is the honeycomb-structured MCM-41 mesoporous silica,
firstly synthesized by the Mobil oil company in 1992.[120] The
mechanism behind the synthesis of MCM-41 has baffled re-
searchers for several decades, since some stages are not com-

pletely understood. This stems from the complexity of the syn-
thesis, where surfactant self-assembly, solvation, silica polymer-
ization and phase equilibrium take place simultaneously, making
their characterization a very challenging task for experimental-
ists and theoreticians alike. Based on indirect experimental ev-
idence, two alternative mechanisms were proposed for the syn-
thesis starting from an aqueous solution of CTAB surfactant and
tetra ethyl orthosilicates (monomeric silica source): i) A liquid-
crystal templating route, where silica plays a passive role by con-
densing around an already formed CTAB liquid crystal phase; ii)
a cooperative templating mechanism, where, by contrast, silica
plays a very active role in the templating mechanism by interact-
ing closely with surfactant micelles and promoting the formation
of the liquid crystal mesophase.[120,121] Despite extensive exper-
imental work, several questions remained unanswered, mainly
due to the difficulties in probing all stages of the synthesis mech-
anism in a systematic and consistent way.
Computational multiscale approaches, from quantum calcula-

tions to classical MC, MD, or dissipative particle dynamics simu-
lations, provided remarkable insights into this mechanism at the
nanoscopic scale.We implemented amultiscale strategy whereby
an atomistic model of silicates was first developed[122,123] based
on DFT calculations on a wide range of silicate species,[124] fol-
lowed by parameterization of a coarse-grained MARTINI-based
model for monomeric silica[37] in order to reach the time and
length scales required to understand the early stages of the
MCM-41 synthesis. The latter was benchmarked against experi-
mental data, where possible, and against results obtained from
previous AA-MD simulations.[122,123] Later, this CG model for
monomeric silica was extended to cyclic and branched silica
oligomers, with the goal of studying the mechanisms behind the
synthesis of MCM-41 under realistic experimental conditions.[38]

Diluted CTAB aqueous solutions comprising a wide range of con-
centrations of silica were used to analyze the impact of silica in
the CTAB phase behavior. Chien et al.[125] characterized the phase
behavior of CTAB aqueous solutions and the impact that silica
monomers and dimers have on it. The picture emerging from
these multiscale simulation studies is that monomeric silicate
species interact very strongly with small surfactantmicelles, lead-
ing to a sphere-to-rod transition.[37] However, on their own, silica
monomers are unable to promote sufficient aggregation of mi-
celles, requiring the presence of a minimum concentration of
dimers (or larger oligomers) to act as a “glue” connecting dif-
ferent micelles together. This process quickly leads to the for-
mation of a phase-separated hexagonal mesophase, under con-
ditions that mimic the experimental MCM-41 synthesis carried
out by Firouzi et al.[126] Crucially, the formation of the hexagonal
MCM-41 mesophase only took place under the presence of silica
oligomers, unequivocally supporting the cooperative templating
mechanism (CTM) hypothesis. Furthermore, our CG model was
able to reproduce other ordered structures at high CTAB concen-
tration, such as the bicontinuous phase MCM-48 and the layered
MCM-50, in agreement with experiments.[125]

In more recent work, this multiscale strategy has been ex-
tended to describe the synthesis of hexagonal mesoporous silica
(HMS) materials, a close relative of MCM-41 but whose synthe-
sis had been postulated to proceed through a neutral templat-
ing mechanism.[127] However, results from both simulations and
experiments have disproved this mechanism,[128,129] demonstrat-
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Figure 7. Scheme illustrating diverse literature computer simulations approaches to tackle chemical reactions and self-assembly of amphiphilic com-
pounds. The Sticky MARTINI model with the novel RSi reactive silica surpassed most of the limitations of literature approaches.

ing instead that the formation of the hexagonal mesophase struc-
ture is driven by charge-matching interactions of similar nature
to those present in the MCM-41 synthesis, even when the pH is
lowered. A consequence of the lower pH in the HMS synthesis,
however, is that thematerial becomes less ordered, partly explain-
ing why it has not yet been possible to synthesize ordered PMS
materials at neutral pH conditions.
Despite yielding unprecedented insight over the synthesis of

PMS materials, the simulations described above suffer from an
important drawback—the silica speciation had to be fixed at the
beginning of each simulation, since silica polymerization reac-
tions were not explicitly described in this model. More recently,
we developed a new model that can not only model the surfac-
tant self-assembly but also the simultaneous silica condensation
reactions, preserving the essential advantages of the MARTINI
framework, viz. simplicity, speed, computational efficiency, and
transferability. Carvalho et al.[59] tackled this complicated task by
incorporating virtual sites (VS) and “sticky” particles (SP) in the
MARTINI beads in order to emulate the tetrahedral alignment
of silica condensation and the geometry of the Si─O bonds and
Si─O─Si angles.[59] Inmore detail, the reactive CG silicatemodel
comprises a new SSi bead surrounded by four VS and four SP
establishing two tetrahedra in a stellated octahedron configura-
tion —the so-called RSi (Reactive Silica)— for both neutral and
deprotonated species (Figure 7). The Si─O─Si chemical bond
formation and breakage was captured throughout a careful bal-
ance between attractive SP–SP interactions (mimicking the reac-
tion itself) and repulsive VS–SP interactions (preventing over-
coordination). Those two parameters were carefully calibrated
by comparing the fraction of RSi that are bonded to “n” other
RSi moieties as a function of time,[130] to analogous results ob-
tained experimentally,[131] and from previous implicit solventMC
simulations.[132]

The calibrated model was then employed to evaluate the im-
pact of silica oligomerization on the phase behavior of CTAB
aqueous solutions. It was found that anionic silicate monomers
are initially driven unreacted to the CTABmicelle by electrostatic

interactions. However, the high local silica concentration at the
micelle surface then acts as a pseudo-catalyst to speed up the
condensation reaction, a key step that further supports the CTM
pathway.[120,121] The simulation then proceeded to yield a highly
condensed silica shell surrounding the surfactant micelle, in a
process reminiscent of silica hollow nanosphere formation. This
initial study served as a proof-of-concept to demonstrate that the
Sticky MARTINI model is able to simultaneously explore chemi-
cal reactions and self-assembly processes under realistic exper-
imental conditions, which represents a major step forward in
comparison with prior approaches (see Figure 7). Nevertheless,
themodel still suffers from some limitations, such as the inability
to explicitly describe the formation of water during the conden-
sation reaction, as well as leading to silica structures that are less
dense than their experimental counterparts.[59] Work to address
those limitations, as well as to extend the model to other systems
where both chemical reactions and self-assembly are important,
is currently ongoing.

3.4. Layered Double Hydroxides

Layered double hydroxides (LDHs) are clay-like nanostructured
materials composed of stacked cationic layers with interlayers
containing charge-compensating anions.[133] Their stacked struc-
ture is held together through a relatively weakly bound network
of hydrogen bonds, electrostatic effects and dispersive forces, giv-
ing these materials an anion-exchange capacity that can be tai-
lored for different host-guest applications. They can be synthe-
sized in a relatively inexpensive and potentially recyclable man-
ner, with the most common compositions having the general for-
mula [M2+

1−xM
3+
x (OH)2]

x+(An−)x∕n ×mH2O, where M
2+ and M3+

are di- and trivalent cations, respectively, An− is an anion, and x is
equal to the molar ratio M3+/(M2+ +M3+). Functional molecules
in the anionic form can be loaded into LDHs and released by an
external trigger, which can be the change of pH or the presence of
a targeted species also in the anionic form.[134] At high pH, func-
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Figure 8. Typical LDH structure and features exemplified for a zinc–
aluminum LDH with the nitrate anion intercalated. Color code: light blue
is Al; pink is Zn; red is O; white is H; blue is N.

tional anions in the interlayer are exchanged by external hydroxyl
anions, whereas at low pH the cationic layers dissolve, thus re-
leasing the functional molecules from the interlayer. This mech-
anism also makes these materials well-known pH buffers, which
can also be an important property for some applications, such
as corrosion protection.[135] Moreover, the anionic exchange is
not restricted to the hydroxyl anions from the pH changes, being
also able to absorb targeted species, such as hazardousmolecules
from the environment.[136] This functionality makes them versa-
tile functional materials for drug release, catalysis, photochem-
istry, electrochemistry, and functional polymers.[137,138]

Molecular modelling computational approaches, such as DFT
and classical MD, are especially important to understand the
structure and molecular processes involving these materials,
since for most synthetic LDHs the crystal structure is very dif-
ficult to obtain due to their reduced crystallinity.[139] In order
to lower the computational cost of the calculations, the first
DFT models for the simulation of LDHs relied on anhydrous
supercells[140] or cluster models.[141] The first realistic periodic
models of LDHs suitable for DFT calculations were reported by
Costa, Leitão, and their team.[142–144] Their models were adapted
by Galvão et al. to obtain the [Zn2Al(OH)6](NO3)·2H2O supercell
shown in Figure 8 for utilization with plane-wave DFT codes that
consider the periodic cell approach.[145] At the time, there was still
some uncertainty regarding the parallel[146,147] versus tilted[144,148]

orientation of the nitrate anions inside LDH galleries, with DFT
results supporting the tilted orientation.[145]

The models, together with periodic DFT calculations, were
used to understand at the molecular and energetic level the mor-
phological (SEM andAFM) and structural (XRD) results obtained
for different forms of LDHs: i) Particles; ii) exfoliated single layer
nanosheets, and iii) protective conversion films grown on top of
aluminum alloys.[149] Fully formed LDH particles have a plate-
like shape, whose lateral size is larger than the particle height.

Computed surface energies show that particles grow larger in
length than in height to minimize their surface energy, since the
lateral side of the particles is less stable than the top and bot-
tom of the plates. Another conclusion drawn from the DFT cal-
culations was that interaction energies are more favorable when
LDHs interact side-by-side than when cationic layers and inter-
layers are stacked alternately, thus explaining why LDHs have
larger widths than heights.[149] These results have subsequently
been used to interpret the morphology of LDH particles by other
authors.[150–154]

DFT calculations employing periodic models were also used
to understand why formamide is the solvent of choice to pro-
mote the exfoliation of LDH particles to form single layer
nanosheets.[155–159] It was revealed that, as formamide molecules
substitute water molecules in the interlayer during the exfoli-
ation treatment, the distance between cationic layers increases
while the layer separation energy decreases.[149] As for LDH con-
version films grown on top of aluminum alloys, there is a pref-
erence for LDH plates to grow perpendicularly to the surface,
rather than lying flat on top of the aluminumsurface and growing
by stacking cationic layers separated by interlayers.[160–162] The
conversion films were approximated in the DFT calculation as
LDH clusters with different orientations and sizes on top of the
surface. For both aluminum surfaces considered (Al(111) and 𝛼-
Al2O3(0001)), it was found that themost favorable interactionwas
with the cationic layers perpendicular to the aluminum surfaces,
thus allowing to understand the SEM and AFM results obtained
for these systems and explain the crystallization mechanism of
LDH conversion films.[149]

DFT can be used to explore the relation between structure and
energetics with high accuracy for relatively small LDH models
(typically, less than 100 atoms). However, the time-dependent dy-
namics of larger and more realistic LDH systems with several
thousands of atoms are better explored by classical MD, since
it is less computationally expensive than DFT. For this reason,
classical MD has been the traditional approach for the simula-
tion of LDHs and other clay based materials,[163–165] with sev-
eral reports in literature on the LDH structure.[166–170] Conversely,
to successfully simulate the LDH stacked structure while main-
taining the integrity of the cationic layers throughout the sim-
ulation, it is necessary to find the most appropriate MD proce-
dure in terms of supercell model, force field parametrization and
number of MD steps. Since there was a lack in literature of a
straightforward recipe to perform MD simulations for these sys-
tems, Pérez-Sánchez et al.[171] developed an easy to follow MD
framework using the GROMACS open source software, which
can be tailored for a wide range of inorganic and organic anions
intercalated inMg(2)Al andZn(2)Al LDHs. Thewell-defined sim-
ulation procedure can cope with long timescales (>100 ns) with
all atomic positions allowed to move freely, while maintaining
the integrity of the LDH structure intact. It was tested for differ-
ent metals in the cationic layer (e.g., Mg(2)Al or Zn(2)Al com-
binations) and different intercalated anions (chloride, nitrate,
and carbonate). It was also successfully tested for LDH parti-
cles in a sodium chloride water solution in terms of the stabil-
ity of the cationic layers, and is now being extended for long-
term anion exchange studies,[172] which, to the best of our knowl-
edge, none of the previous computational models was able to
do.[173,174] All the necessary parameters and inputs to carry out
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the MD simulations are available online.[175] This MD proce-
dure has already been employed by other researchers to under-
stand the structure and processes involving LDHs for different
applications,[136,176–178] and was employed in our research group,
together with in-house tools,[179] to unveil the acid-base equilib-
rium, conformation and degree of solvation inside the interlayer
galleries of an LDH material intercalating a well-known corro-
sion inhibitor, 2-mercaptobenzothiazole (MBT).[180] LDH-MBT is
a nanostructured coating additive[181] and it was demonstrated
thatMD simulations can provide insights into the structural char-
acterization performed by powder X-ray diffraction and the pro-
cesses behind the weight loss indicated by thermogravimetric
analysis.[182]

3.5. Metallic Surfaces

Corrosion inhibitors suppress or at least mitigate the corro-
sion degradation of metals, thus finding application in a wide
range of industries and sectors. MBT is one of the most efficient
and versatile organic corrosion inhibitors and was examined in
depth by DFT calculations concerning its conformational, tau-
tomeric, acid-base, non-covalent association, and ion-pair forma-
tion equilibrium,[180] as well as its adsorption mechanism onto
periodic slab models of bare aluminum and aluminum oxide
surfaces.[181] DFTwas also employed to understand the trends ob-
served in electrochemical studies for two triazole isomers tested
for the protection of copper upon the calculation of structural and
energetic details of the formation of protective films of both iso-
mers onto a Cu(111) surface.[183]

Our research group is currently developing two complemen-
tary technological approaches to help corrosion scientists and en-
gineers working in academia and across different industries to
choose the optimal inhibitor for each specific corrosion problem:
an interactive exploratory data tool and amachine learning-based
application to design potential corrosion inhibitors.[184] Recently,
an open data management web application to select corrosion
inhibitors was developed.[185] The large and growing amount of
corrosion inhibition efficiencies in literature required an efficient
way to organize, access and compare the data. Nearly five thou-
sand corrosion inhibition efficiencies and almost four hundred
compounds have already been added to the database. The data
originate from more than one hundred and twenty publications,
for aluminum, copper, magnesium, iron, and their main alloys.
The CORDATA application[186] can help corrosion scientists se-
lect appropriate corrosion inhibitors for applications with specific
requirements.
The development of high throughput corrosion tests to evalu-

ate the performance of corrosion inhibitors led to the availabil-
ity of larger datasets, ideal for the application of ML and data-
driven approaches.[8,83,187–193] The first works considered a few
dozen inhibitors for aluminum alloys,[190–193] using a combina-
tion of ML algorithms and different types of molecular features,
with promising results. One notable example was the use of ML
to model one hundred corrosion inhibitors,[188] which produced
the first robust models and concluded that more computation-
ally expensive quantum chemistry descriptors are not required to
obtain higher predictive performance from the models.[83,188,190]

In other studies, it was also concluded that individual molecu-

Figure 9. Data-driven technological approach used to select and design
corrosion inhibitors for the protection of metallic surfaces.

lar features alone do not correlate with corrosion inhibition ef-
ficiencies, but that the use of ML is able to consider the inter-
dependence of different features to predict corrosion inhibition
efficiencies.[8,194,195] These works also motivated the use of ML to
predict the controlled dissolution of magnesium alloys using or-
ganic compounds for the application in automotive, biomedical
and energetic applications.[196–200]

The ML developments mentioned above considered data from
a single or a restricted number of literature references. However,
to increase the amount of data and diversify the chemical space
available for ML, it is necessary to include data from different
authors, laboratories and measured under different conditions,
leading to so-called composite models. In a previous work, we
tested the composite model approach considering inhibitor ef-
ficiencies for different types of aluminum alloys and pH values
within the same model.[83] This increased the size of the dataset
fourfold, thus resulting in an improved predictive performance
due to an information gain. As a result, it has served as the ba-
sis of DATACORTECH,[201] an artificial intelligence application
currently being developed for the virtual screening of potential
corrosion inhibitors for the protection of aluminum alloys under
different conditions.
The CORDATA and DATACORTECH applications represent

an effort to digitalize and expedite the search for inhibitors, using
the approach presented in Figure 9, to produce more robust and
condition-specific corrosion-protective technologies.

3.6. MXenes

MXenes are two-dimensional materials which were first synthe-
sized just over 10 years ago.[202,203] At the atomic level, their struc-
ture consists of very few layers of atoms of transition metal el-
ements (M), intercalated with layers of carbon, nitrogen, or a
mixture of the two (X). Traditionally, all MXene atomic layers
have the same number of atoms, the outer layers being of the
M element. The simplest MXenes have stoichiometry M2X, with
two M outer layers enclosing an X layer, and the atomic layers
are stacked in a face-centered cubic (ABC) fashion. However,
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Figure 10. Illustration of several processes that have been studied on MXenes, namely molecule adsorption and dissociation, sliding of atomic layers,
and creation of vacancies.

MXenes have been synthesized with more atomic layers, such as
Ti3C2,

[203] with incomplete metallic layers, such as Mo1.33C,
[204]

with X layers made up of different elements, such as Ti3CN,
[205]

with M layers made up of different metals, such as Mo2TiC2,
[206]

with a mixture of more than one metallic element on each M
layer, such as Ti2-yVyC,

[207] or with their atomic layers stacked
in a hexagonal close packed (ABA) manner, such as Mo2N.

[208]

Furthermore, depending on the method for their synthesis and
the surrounding environment,MXenes often present themselves
covered by an external surface termination layer, usually com-
posed of O, OH, H, F, or Cl groups.
The endless possible combinations of MXene stoichiometry,

intra and interlayer atomic arrangement, and surface termina-
tion, theoretically allow one to tune their properties at will and
confer MXenes a huge variety of applications. Generally, MXenes
have high electrical conductivities, are hydrophilic, display very
large surface areas, and can survive harsh conditions and highly
corrosive environments, such as temperatures of nearly 1000 °C
and pressures of tens of GPa.[209–211] This allows them to be ap-
plied in areas such as eco-friendly energy, water purification or
catalysis.[212–214] We began studying these materials, mainly us-
ing DFT-based methods, in 2019, in very close collaboration with
the group of Prof. Francesc Illas of the University of Barcelona,
Spain, as a continuation of previous studies devoted to catalysis
by metallic surfaces.[215–220] These works began with a theoreti-
cal analysis of the potential of MXenes to sense the presence of
amino acids, and then quickly expanded to include the applica-
tion of MXenes as catalysts, as well as to unveil more fundamen-
tal properties of MXenes, such as the way their atomic layers are
stacked, or the energy required to create point defects on these
surfaces (Figure 10).
MXenes with oxygen surface termination are excellent as sen-

sors, since the termination layer acts as a shield that prevents
molecules from adsorbing too strongly by bonding directly to
the metallic layers of the material. One such example is the
Ti2CO2 MXene, which is made of titanium, the most biocompat-
ible metal, and is therefore expected to be a suitable biosensor.
By employing DFT-based calculations, we showed that this MX-

ene does indeed adsorb amino acids[221] and nucleobases[222] with
moderate strength, as desired for sensing applications. While
all nucleobases adsorb horizontally, that is, with their aromatic
rings parallel to the MXene surface, some amino acids can form
a chemical bond with a Ti atom, through the oxygen layer. We
additionally found that the adsorption energies of the studied
molecules correlate well with their van derWaals volumes, which
allowed us to predict the strength of the interaction between the
Ti2CO2 MXene with other molecules, without performing addi-
tional calculations.
In the absence of surface termination, MXenes are substan-

tially more reactive. They adsorb molecules much more strongly,
activating them, and effectively work as catalysts. We used
this fact to computationally study the adsorption and dissocia-
tion of water,[223] nitrogen,[224] and carbon dioxide[225] molecules
on MXene surfaces, the latter having received experimental
evidence.[226] We found that, in many cases, the reaction occurs
almost spontaneously, that is, with no activation energy required.
These results, obtained by a combination of DFT and microki-
netic calculations, have gathered considerable interest from the
scientific community because of their relevance to the industrial
production of ammonia, for the hydrogen economy, and for large-
scale carbon conversion, respectively, thus addressing key envi-
ronmental issues and boosting the rapidly growing field of using
MXenes in catalysis. During these studies, we noticed that some
surfaces would undergo considerable distortion upon nitrogen
adsorption, as if the atomic structure was attempting to change
to another configuration. This motivated our fruitful search for
alternative MXene structures. Indeed, we showed that manyMX-
enes prefer to display a hexagonal close packed (ABA) stacking of
their atomic layers, rather than the traditional face-centered cubic
(ABC) one. This included not only the experimentally observed
Mo2N,

[208] andMo2C,
[212] but also many others, such asW2N, the

most efficientMXene to catalyze nitrogen dissociation,[224] which
reduces the amount of energy required to break the molecule by
around 98%.
MXenes have been used as catalysts, for instance for realiz-

ing the water-gas shift (WGS) reaction, which is crucial for the
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industrial production of hydrogen.[212] MXenes completely de-
void of surface termination cannot be used as catalysts on their
own, since they are extremely reactive, and it is difficult to de-
tach the products of reactions from the surface without dam-
aging the MXene. On the other hand, MXenes with their sur-
face completely terminated, for instance by oxygen, are too in-
active and do not activate adsorbates. Therefore, for their suc-
cessful application as catalysts, there must be a balance between
patches of surface with and without surface termination,[227] or
even between different surface terminations.[212] Our most re-
cent studies have been oriented toward more realistic MXene
models, starting by considering the formation of vacancy defects
in MXenes.[228] These defects have been observed experimen-
tally, an example being Mo─O double vacancies in the Mo2TiC2
MXene,[227] and can contribute to the presence of neighboring
surface patches with different surface termination. We addition-
ally found that the latter is crucial for conducting the WGS reac-
tion on the Mo2CTx MXene.[229] We considered different possi-
bilities for the MXene surface termination, (Tx = none, O, F, or
a mixture of O and F) all plausible to be found upon synthesis,
and concluded that its ideal composition should contain both F
and O adatoms, which is precisely the experimentally observed
composition.[212] In fact, Mo2CO2 is too inert toward water ad-
sorption and dissociation, while the Mo2CF2 surface is damaged
(removal of F terminations) after the reaction occurs, hence un-
desired for catalytic applications. In contrast, the bare Mo2CMX-
ene would be a good candidate, but easily becomes irreversibly
covered by O, because of the well-known oxophilicity of bare MX-
enes. The regions near one or two O adatoms among the F sur-
face termination should provide all the advantages of each afore-
mentioned surface termination, while avoiding their drawbacks.
In fact, a combination of all three surface terminations allows
exothermic water adsorption and its easy dissociation, compara-
ble to those on bare MXenes, while the surface termination con-
trols the exothermicity of the reaction and keeps theMXene from
becoming saturated with O.[229]

Recently, we studied the possibility of epitaxially synthesizing
MXenes, by taking advantage of the easy nitrogen dissociation
that occurs on the surface of thesematerials.[230] The calculations
show that the formation of fully N-covered M2XN2 is kinetically
possible for some M2X surfaces. Also, additional early transition
metal adlayers are thermodynamically attainable, which can lead
to M′2M2XN2 MXenes.

4. Final Remarks

At the Aveiro Institute of Materials, CICECO, we have been using
several computational strategies, from quantum to classical me-
chanics approaches, from atomistic to coarse-grained models, to
analyze the structures and properties of different classes of ma-
terials with potential applications in water remediation, gas ad-
sorption/separation or catalysis. Additionally, we have been de-
veloping new tools to predict metal corrosion and to select the
materials and conditions that can be used to prevent corrosion,
to aid in the analysis of calculated data, and to facilitate the con-
struction of molecular models and sets of parameters to run the
simulations.
The studies we have been involved in over the past years have

contributed with fundamental knowledge, on a molecular level,

on the mechanisms driving the adsorption of small gases in
porous materials, such as MOFs, PMOs or titanosilicates. Cur-
rently, we are using computational tools to design MOFs with
different structures and functionalizations in order to predict
their potential for gas adsorption/separation, so the laborious and
expensive experimental studies (synthesis, characterization, and
testing) are performed only for the most promising materials,
and will continue to contribute and promote discussion in this
ever-growing research community.
Computer simulations of the adsorption of organic com-

pounds on metal surfaces provided important information for
the understanding of the formation of metal corrosion protec-
tive layers. The large library of adsorption energies is now be-
ing used to develop improved versions of machine learning algo-
rithms that are promising for selecting the most appropriate cor-
rosion inhibitor for a particular metal surface under specific con-
ditions. Concurrently, ab initio and classical molecular dynamics
are being used to understand the release of functional molecules
from nanocontainers like LDHs when triggered by external stim-
uli such as pH change.
Despite having joined the large worldwide community of MX-

ene research only three years ago, our group has covered different
applications of MXenes, conducted several studies on their fun-
damental properties, motivated some experimental results and
aided in explaining others. Presently, we are analyzing the effect
of having transition metal atoms adsorbed on MXene surfaces
on their catalytic activity and the mechanisms of important cat-
alytic reactions, for example, WGS, on the surface of MXenes
with patches of bare surface amid the usual terminations in this
class of materials.
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