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Abstract: An optical fiber tip sensor based on a Fabry–Perot interferometer is proposed for the
detection of ethanol in the gas phase. The sensor is fabricated by fusion splicing one end of the
suspended core fiber to a single mode fiber, whereas the other end is kept open to enable the
interaction between the light propagating in the suspended core and the ethanol gas molecules. The
sensor was tested with different percentages of ethanol, exhibiting a linear response between 0 and
100 wt.%, with a sensitivity of 3.9 pm/wt.%. The proposed sensor, with a length of a few hundred
micrometers, can be an alternative solution for the detection of gaseous ethanol in foods or beverages,
such as wines and distilled drinks.
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1. Introduction

Volatile organic compounds (VOCs) are often associated with the quality of alcoholic
drinks. Among others, one of the most important and well-known VOCs in distilled
beverages is ethanol. In Europe, the quantity of ethanol in beverages depends on the
product category, which is categorized by EU regulations [1]. Besides fulfilling these
specific regulations, the drinking industry must have precise control of ethanol quantity in
beverages to refine and contribute to its aroma [2]. Therefore, the development of sensing
devices for ethanol detection in beverages is of utmost importance to allow reliable and
real-time monitoring, especially during the different stages of fermentation.

The most common techniques to detect and monitor VOCs in alcoholic beverages
are the semiconductor-based detectors, chemiresistors, colorimetric sensors, mass spec-
troscopy, and high-performance liquid chromatography [3]. However, most of them are
time consuming and do not allow for in situ analysis, which can compromise the correct
determination of the VOCs concentration [4–6]. Therefore, non-contact techniques to detect
the concentration of ethanol in beverages must be developed, namely based on the VOCs
vapor phase, since the risk of contaminating the beverage is much lower.

Recently, optical fiber sensors (OFSs) have been emerging as a powerful tool to detect
gases, namely VOCs in gaseous phase [3,7,8]. Despite not being as sensitive or selective as
analytical techniques, OFSs have several advantages, such as being lightweight, having a
small footprint, compactness, and fast-response. Different types of optical fiber gas sensors
have been reported based on different sensing structures, such as bare/coated fibers [9,10],
fiber Bragg gratings [11], tapered fibers [6], long period gratings [12], or microstructured
fibers [13,14]. It is very challenging to make a fair comparison between the works reported
in the literature for the detection of gases, as there is a myriad of configurations and
experimental setups, which lead to different types of analysis [3,15,16]. This also reveals
the interest of the scientific community in finding new solutions for the detection of VOCs
for different applications.
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In this work, an optical fiber tip sensor based on a suspended core fiber is presented
for the monitoring of gaseous ethanol. The sensor is silica-based and is produced by using
a standard fusion splicer and a cleaver. Given the easiness of fabrication, sub-millimeter
dimensions, and the fact that it operates in reflection without direct contact with the liquid
sample, this sensor is proposed for applications related to alcoholic beverages, such as
wines or distilled beverages.

2. Materials and Methods

The suspended core fiber (SCF) used in this work, whose cross-section is shown in
Figure 1, was fabricated at the Leibniz Institute of Photonic Technology. It consists of a
pure silica core with a diameter of ~2 µm, surrounded by three air holes with a dimension
of ~26 µm. Between the holes, there is a bridge with a thickness of ~360 nm, which acts as
a supporting structure for the suspended core. The silica cladding of this optical fiber has a
thickness of ~36.4 µm and an outer diameter of ~125 µm. The optical fiber was fabricated
via stack-and-draw technique, and coated with a standard acrylate.
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Figure 1. Microscope photograph of the SCF cross-section.

To fabricate the sensing head, the SCF was firstly stripped and spliced to a section of a
commercial single mode fiber (SMF28, from Corning, New York, USA) using the manual
mode of the fusion splicer. The splicing power and time were set to 10 arb. units and 500 ms,
respectively. For comparison purposes, the splicing parameters in the automatic mode are
20 arb. units and 2000 ms. The splicing was done with a lateral offset to minimize potential
damage produced by the arc discharge to the suspended core. Therefore, the arc discharge
was mainly applied in the SMF, as evidenced in Figure 2a. After the splicing procedure,
the SCF was cleaved under a magnifying lens, assuring a balanced compromise between
the sensor compactness and spectral readability (Figure 2b). Several sensing heads were
produced and characterized to achieve the optimal parameters (both splicing parameters
and cavity length). Figure 2c presents the micrograph of the sensing head, which has a
length (LFP) of 365 µm.
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Figure 2. Schematic representation of the sensor fabrication process: (a) SMF and SCF samples spliced
by electric arc discharges; (b) Cleaving of the SCF; (c) microscope photograph of the final sensor, with
a SCF length of 365 µm.
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The sensor was then connected in a typical reflection scheme, has shown in Figure 3.
The broadband optical source (Amonics LS—CL-17-B-FA, Hong Kong), centered at 1570
nm, with a bandwidth of 80 nm, was connected to the first port of an optical circulator.
The sensor was connected to the second port, whereas the optical spectrum analyzer
(OSA, Anritsu MS9740A, Kanagawa, Japan), operating with a resolution of 0.02 nm, was
connected to the third port.
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Figure 3. Schematic representation of the sensor characterization to different concentrations of
gaseous ethanol. The insets depict the sensor when in the presence of VOCs molecules.

The sensor reflection spectrum, shown in Figure 4, shows an interferometric pattern
typical of a Fabry–Perot interferometer. For simplicity purposes, the two-wave interferome-
ter was considered, which allows us to consider the wavelengths of two adjacent maxima,
and the expression:

neff = λ2/(2LFP∆λ), (1)

to calculate the effective refractive index of light propagating in the suspended core, obtain-
ing a value of 1.433, was used.

To attain atmospheres with different concentrations of ethanol molecules, a set of
11 ethanol-water mixtures was done, starting with pure ethanol (99.9% purity from Sigma-
Aldrich, St. Louis, MO, USA) up to 100% deionized water, in steps of 10 wt.% of ethanol.
The mixtures were prepared with a magnetic stirrer and let to stabilize during 24 h at room
temperature (~19 ◦C). The experiments were carried out at constant room temperature
(~19 ◦C) by placing the sensor head in the gas atmosphere of the closed beakers, each one
containing different ethanol concentrations. For each ethanol mixture, there was a waiting
time of 90 min to achieve stabilization, recording several spectra during this time. Between
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measurements, the sensor head was left in the ambient atmosphere for 10 min to eliminate
cumulative fluctuations between solutions, mainly due to possible condensation effects.
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Figure 4. Reflection spectrum of the developed sensor.

3. Results

As the sensor is subjected to atmospheres with different concentrations of ethanol, a
shift towards longer wavelengths (red shift) is observed in the spectral response. This is
due to an increase in the refractive index of the atmosphere with the increase in ethanol
concentration. The wavelength shift of one peak is shown in Figure 5. By applying a linear
fitting to the entire dynamic range, a sensitivity of (3.9 ± 0.2) pm/wt.% (R2 > 0.983) is
attained. As the refractive index in the hollow regions increases, there is also a change in
the effective refractive index of the mode propagating in the SCF, due to the evanescent
field [17]. This leads to the red shift observed in Figure 5.
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Figure 5. Sensor wavelength shift for different concentrations of ethanol. The blue circles represent
the experimental data, and the dashed blue line represents the applied linear fit.

Notice that, although the changes in the ethanol concentration resulted in a variation in
the atmosphere refractive index, with the current experimental setup, it was not possible to
estimate this variation. Further studies should be carried out with an adequate experimental
procedure to estimate the sensor sensitivity towards refractive index and to better compare
with other sensors presented in the literature. To assess the sensor reproducibility, the same
experiment was carried out using other sensing heads. The behavior was similar, although
the sensitivity attained was slightly affected by the sensor length. Therefore, in the context
of a real application, a previous calibration should be done to each sensing head produced.
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To determine the sensor’s resolution for the detection of gaseous ethanol, its spectral
response was monitored over a period of 90 min (intervals of 30 s) at room temperature, for
the steps of 20 wt.% and 30 wt.% of gaseous ethanol concentration, as depicted in Figure 6.
These two steps were chosen for the resolution analysis since they comprise the range of
alcoholic concentration present in most fortified wines and distilled drinks.
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Figure 6. Sensor’s wavelength stability over a period of 90 min, for the two gaseous ethanol concen-
trations of 20 wt.% (red) and 30 wt.% (blue). The red and blue shadowed zones represent the data
standard deviation for each ethanol concentration step, denoted by σλ.

The wavelength mean values of 1564.118 and 1564.175 nm were obtained for the 20
wt.% and 30 wt.% steps, respectively, and a resolution value (δ%m) of 0.7 wt.% was attained
through the following equation.

δ%m = 2σλ∆(wt.%)/∆λ, (2)

where σλ is the maximum wavelength standard deviation, and ∆(wt.%) and ∆λ are the
ethanol concentration and wavelength differences between each step, respectively.

To assess the sensor cross-sensitivity with temperature variations, a thermal character-
ization was conducted using a custom thermal chamber based on a Peltier module. A total
of 13 temperature steps were used in the thermal characterization, with the temperature
ranging between 25 and 87 ◦C and a stabilization time of 10 min. The experimental data,
and correspondent linear fit, are depicted in Figure 7.

A thermal sensitivity of (9.7 ± 0.4) pm/◦C was obtained from the linear fitting
(R2 = 0.981), which is a similar result to the ones attained with typical fiber sensors solely
based on silica’s thermal expansion coefficient and thermo-optic effect (e.g., fiber Bragg
gratings [18]). Therefore, a cross-sensitivity value of 2.49 wt.%/◦C was attained, verifying
the sensor’s suitability for the detection of gaseous ethanol concentration in controlled
environments (stable and constant temperature). This cross-sensitivity could be mitigated
by adding an extra sensing element that would only detect temperature variations. Still,
the sensor linear performance for such a wide range of ethanol concentration makes it
a suitable solution to monitor, for instance, the fortification stage of several wines (e.g.,
Madeira wine 18–20% (v/v) [19]), or to assess the distillation/aging stages of stronger
drinks, such as distilled beverages (e.g., whiskey 40–50% (v/v) [20]).
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4. Conclusions

In summary, a novel optical fiber tip sensor, based on a Fabry–Perot interferometer
comprised by a small section of SCF spliced to a standard SMF, was developed for the
detection and monitoring of volatile organic compounds in the gas phase. The device
experimental characterization to different concentrations of ethanol/water mixtures re-
vealed a linear response through the entire range, attaining a maximum sensitivity of
3.9 pm/wt.%. To assess the temperature influence on its response, a thermal characteriza-
tion was performed, revealing a sensitivity of 9.7 pm/◦C, thus achieving a cross-sensitivity
of 2.49 wt.%/◦C. Despite the existence of a small cross-sensitivity, any issues could be
addressed in the future by adding a temperature sensor (e.g., a fiber Bragg grating), or
by assuring thermal stabilization of the environment. Therefore, the reduced footprint,
electric passivity linear response, stability, and sensitivity to VOCs concentrations make
the developed sensor a strong candidate to monitor several applications comprising the
detection of VOCs molecules in the gas phase, such as the different stages of the production
of several wines and distilled beverages.
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