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Abstract: Antiresonant hollow core fibers (ARHCFs) have gained some attention due to their no-
toriously attractive characteristics on managing optical properties. In this work, an inline optical
fiber sensor based on a hollow square core fiber (HSCF) is proposed. The sensor presents double
antiresonance (AR), namely an internal AR and an external AR. The sensor was designed in a
transmission configuration, where the sensing head was spliced between two single mode fibers
(SMFs). A simulation was carried out to predict the behaviors of both resonances, and revealed a
good agreement with the experimental observations and the theoretical model. The HSCF sensor
presented curvature sensitivities of −0.22 nm/m−1 and −0.90 nm/m−1, in a curvature range of
0 m−1 to 1.87 m−1, and temperature sensitivities of 21.7 pm/◦C and 16.6 pm/◦C, in a temperature
range of 50 ◦C to 500 ◦C, regarding the external resonance and internal resonance, respectively. The
proposed sensor is promising for the implementation of several applications where simultaneous
measurement of curvature and temperature are required.

Keywords: antiresonant optical fiber; hollow square core fiber; curvature sensing; temperature sensing

1. Introduction

The development of photonic crystal fibers (PCFs) has revolutionized the sensing
field. The unique capability that PCFs have on manipulating some of the optical properties,
such as birefringence, nonlinearities, and dispersion [1–3], have made them an exquisite
topic of interest in the scientific community. Among the category of the PCFs, hollow
core PCFs (HC-PCFs) can be highlighted, which have attracted great interest due to their
aptitude on guiding light with relatively low-loss [2,4]. The recent breakthrough of the
antiresonant hollow core fiber (ARHCF), a new category of HC-PCF, allowed not only to
overcome several difficulties in the telecommunication area, but also to fully exploit the
resonance behavior in new sensing applications, specifically in the optofluidics area [4–6]
and in the biomedical and biochemical fields [4,7,8]. The ARHCF, whose light guidance
relies on the principle of antiresonant reflecting optical waveguide (ARROW) [9,10], has
been subject of scrutiny due to the numerous advantages it holds, such as ultralow loss and
dispersion [4,11–14], reduced nonlinearities [13,15], ultrashort pulse delivery [13,16–18],
and a broad bandwidth [11,12,19]. With the perspective of a potential sensing implementa-
tion, the ARHCF has been used in the detection of chemical substances [20–22], and in the
measurement of physical and mechanical properties [23–28].

Curvature and temperature sensors find themselves crucial in many current applica-
tions, specifically in fields of mechanical and civil engineering [29,30], structural health
monitoring [29,31], astrophysics [31], industry [32], and medicine [33,34]. With the prospect
of a wide practicability, several temperature and curvature sensors based on ARHCF have
been designed and further developed in the past years. For instance, Liu et al. [35] pro-
posed a temperature ARHCF sensor based on a HCF spliced between two single mode
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fibers (SMF), in a transmission configuration, with a sensitivity of 33.4 pm/◦C. Addition-
ally, a curvature sensor has been reported by Herrera-Piad et al. [36] using a capillary
hollow core fiber assembled between two SMFs. The sensing structure exhibited a sensi-
tivity of 1.6 dB/m−1 within a curvature range up to 2.14 m−1. Moreover, a hybrid sensor
for the simultaneous measurement of temperature and curvature has been proposed by
Cheng et al. [37], with the ARHCF being spliced between two SMFs. The acquired sensitiv-
ities for the temperature and curvature were 25.76 pm/◦C and −4.28 dB/m−1, respectively.
Further sensors have already been developed to measure these parameters [38,39].

In this work, the use of a newly designed ARHCF is demonstrated to simultaneously
measure curvature and temperature. The fiber used in this study is hollow square core fiber
(HSCF), due to the particular square shape of the core, and incorporates two resonance
mechanisms, namely, an internal resonance (IR) and external resonance (ER). The sensing
structure was attained by resorting to a simple configuration SMF-HSCF-SMF. The purpose
of the work relies on using both resonance mechanisms, intrinsically inherent to the same
sensing head, to monitor the two physical parameters, a feature that, to the best of our
knowledge, has not been reported yet.

2. Fiber Geometry

Figure 1a presents a microscopic picture of the HSCF implemented in this work, and
Figure 1b shows a scheme of the cross-section model of the fiber structure. The fiber was
developed at the Leibniz Institute of Photonic Technology, in Germany. It is characterized
by having a hollow core of ∼ 11 µm size (2r) in a squared shape. Surrounding the core,
there are silica strands of ∼ 1.7 µm of thickness (w) conjugated with four capillaries
diametrically opposed. Furthermore, the HSCF presents four identical air petal shape
structures, intercalated with four interstices. The internal radius of the fiber, where all
the air structures are located, is of ∼ 26 µm (d), and the external radius is ∼ 62.5 µm. All
components of the HSCF were fabricated from synthetic high-purity silica tubes (F300,
Heraeus Quarzglas GmbH & Co. KG, Hanau, Germany). The fiber was coated with a
single UV acrylate layer during the fabrication. The manufacturing process as well as the
formation of the specific fiber microstructure are described elsewhere [40].
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Figure 1. (a) Microscopic (400×) picture of the HSCF cross-section. (b) Geometrical scheme of the HSCF.

3. Principle of Operation

The light guidance in the HSCF relies on the antiresonance reflection (AR), making
this fiber inherent to the ARHCF class. The AR principle can be described by the ARROW
model, which expresses the optical fiber as an array of high and low refractive index
layers, and where the former act as Fabry-Perot resonators [41,42]. The wavelengths
that do not obey the resonance condition are reflected within the resonator, and thus,
they propagate along the fiber core. As for the wavelengths that obey the resonance
condition, the high index layers become translucent to light, allowing it to escape from
the FP resonator, being posteriorly lost. The resonance wavelengths can be attained by the
following expression [43]:
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λR
m =

2w
√

n2
Si − n2

air sin2 α

m
, (1)

where nSi and nair are the refractive indices of the waveguide material (silica) and air,
respectively, m is the resonance order, and α is the incident angle. For the AR guidance, the
reflections present glancing angles; therefore, sin α can be approximated to the unit, leading
to a simplification in the expression. In the HSCF, there are two distinctive AR guidance
mechanisms, namely an internal AR, where light is trapped in the core and surroundings
of it, and the external AR, wherein light remains confined in the outer cladding region.
Figure 2 illustrates the light propagation in the fiber that originates these two ARs. The
light that propagates in the air core, when encountering the interface between the core and
the silica strands, will be both reflected, thus remaining in the air core, and refracted to the
silica strands. The silica strands will be acting as an FP resonator, which means that for the
AR wavelengths, light will be reflected within the resonator and refracted back to the core.
As for the resonance wavelengths (internal resonance, IR), light will escape the resonator
and will leak to the air structures, being further lost as it propagates [40]. The second AR
guidance occurs when light leaks from the core, and thus, it propagates in the petal and
interstitial air structures that surround the core. There, light will also be refracted to the
outer silica cladding section, which, in turn, will also act as an FP resonator, meaning that
the resonance wavelengths (external resonance, ER) will leak out of the fiber.
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Figure 2. Scheme of the optical paths of light in the internal AR guiding process, which occurs in the
core area, and the external AR, that occurs in the outer cladding section.

To further understand the AR principle, particularly the internal AR, it is necessary
to comprehend the propagation of the fundamental mode (HE11) as well as its intrinsic
properties. Considering the perturbation theory model, encountered in [44], the effective
refractive index of a propagating mode is described by the following expansion:

neff = nair

(
1− aσ2 − bσ3 − cσ4 + idσ4

)
, (2)

where σ is denoted as the perturbation parameter and is inversely proportional to the core
wavenumber, kair, and the core radius r. The core wavenumber is related with the vacuum
wavenumber, k0, through kair = k0nair. The coefficients a, b, c, and d are real numbers and
can be described by the real coefficients of the radial wavenumber, k1, k2, and the complex
coefficient, k3. With this, it is possible to establish the following correlations [44]:

a =
k2

1
2

=
j2m−1,n

2
, (3)

b = k1k2 =
j2m−1,n(ε + 1) cot(φ)

2
√

ε− 1
, (4)
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c =
k4

1
8
+

k2
2

2
+ k1<(k3) =

j4m−1,n

8
c0 +

j2m−1,n

2
c1, (5)

d = −k1=(k3) =
j3m−1,n

2
(ε2 + 1)

ε− 1

(
1 + cot(φ)2

)
, (6)

with:

c0 = 1− (ε− 1)
m

cot2(φ), (7)

c1 =
(4− 2m)(ε + 1)2

4(ε− 1)
cot2(φ)−m. (8)

The variable jm−1,n represents the nth root of the Bessel function m− 1, for the hybrid
mode HEm,n, φ is the accumulated phase between two consecutive reflections of a light
ray in the silica glass structure, and the parameter ε = (nSi/nair)

2. Developing the set of
equalities from Equations (2)–(8), one concludes that the effective refractive index can be
given by:

neff = nair −
j2m−1,n

2k2
onairr2

(
1− (ε− 1) cot(φ)√

ε− 1k0nairr

)
+ i
(

cot(φ)2 + 1
) j3m−1,n(ε

2 + 1)

2(ε− 1)k4
on3

airr
4

. (9)

Based on the analytical expression in Equation (9), a complex effective refractive index
is attained, where the real component describes the spectral tendency of the leaky mode
effective index, while the imaginary part is associated with the losses inherent to the mode
propagation. Figure 3 exhibits the imaginary and real part of the effective refractive index
of the HE11 mode, attained by using Equation (9). It is also presented the simulated profile
of the real part of the effective refractive index of the HSCF in the spectral range of the
visible and infrared, resorting to the COMSOL Multiphysics. The COMSOL Multiphysics
simulation (version 5.6) was carried out over a wavelength range between 600 nm and
1600 nm, in steps of 1 nm near the resonance wavelengths and steps of 10 nm in the regions
away from these. The Sellmeier equation was used to estimate the refractive index of silica
for each wavelength.
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(Numerical). (b) Real component of the effective refractive index with a wavelength attained by the
COMSOL Multiphysics (Simulation) and by Equation (9) (Numerical). The expected frequency of the
IR is represented by dash lines, according to Equation (1).
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Analysing the real part of the refractive index, a good agreement between the numeri-
cal curve and the simulated data is attained, validating, therefore, the use of Equation (9)
to describe the resonance within the HSCF. The asymptotic tendency of the refractive index
real component should also be highlighted. In fact, this behavior is highly characteristic in
ARHCFs, where the asymptotic curves tend to a specific wavelength, that is, the resonance
wavelength. This fact is also proved by the behavior of the imaginary component of the
refractive index, where high intensity peaks are notoriously located in the same frequencies
as the asymptotic wavelength. To further corroborate this explanation, the theoretical
values of the resonance wavelengths, calculated by Equation (1), were also represented
in Figure 3. A good match between the simulated and the theoretical resonance is per-
ceived, although there is a small shift between the theoretical and numerical resonance
wavelengths. This can be justified by the simplified geometrical approximation used in the
numerical model. However, in an overall perspective, the numerical equation describes
this fiber with a relatively good accuracy.

Moreover, the use of Equation (9) is not limited to the IR, with its usage being capable
of also predicting the ER. Notice that the IR is resultant of the core mode leakage, while
the ER is induced by the leakage of the cladding mode. Therefore, instead of analyzing
the HE11 mode, one has to analyze the first cladding mode, that is, the hybrid mode HE12.
Furthermore, the parameters r and w, which were considered to be the core radius and the
silica strands thickness, will change since in the external resonance the fiber is comparable
to a capillary with a core radius of d and thickness equal to the difference between the
fiber radius and the core radius. With the conjecture of a complex effective refractive index,
where the imaginary part is associated with the losses subjected to the mode propagation,
it is possible to attain the profile loss associated with the HSCF, by considering that the
major factor that induces losses in the HSCF and the significant diminishing of the optical
power is the confinement loss (CL) of the propagating mode. Since in the HC-PCFs, the
light is guided within air, loss factors such as absorption and the Rayleigh scattering are
too small [2,45]; therefore, they were disregarded. The confinement loss is as follows [46]:

CL =
40π=(neff)

ln(10)λ
, (10)

where =(neff) was retrieved from the imaginary component of Equation (9); thus, one
can estimate the transmission windows that are formed by both the external and internal
AR propagations, and consequently, the expected transmission spectrum of the HSCF,
considering the total modal losses inherent to the HSCF length (l). Notice that to attain the
expected transmission profile, a normalization was carried out to the numerical results to
better perform a comparison with the experimental results that will be described further
ahead. In Figure 4a,b, the transmission curves attained for each AR mechanism are
represented, as well as the combined signal (Figure 4c).
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4. Results and Discussion
4.1. Sensor Design and Experimental Setup

The layout of the sensor used in this work was based on a transmission configuration,
where the HSCF was spliced between two segments of SMF, as can be seen in Figure 5a.
The splicing process was executed using a Fujikura 40S splicer, which was operated in
manual mode, that is, the alignment between fibers was personalized by the user. Given
the geometry of the HSCF and the fragility of its microstructures, it was necessary to adjust
the parameters of the splicing program so that one could attain an equilibrium between
the splicing strength and the integrity of the HSCF structure. To keep the cohesion of
the microstructures intact, the arc was applied mainly on the SMF. In addition, to avoid
compromising the splicing resistance, it was necessary to adjust the arc discharge power
and duration. Figure 5b,c show the influence of the splicing parameters in the HSCF
structure. Longer arc discharge times give rise to a collapsing of the external cladding
as well as a damage in the internal structure. Therefore, values of 10 arbitrary units (arb.
units) and 500 ms were used for the arc power and duration, respectively (for comparison
purposes, in an automatic splice, these parameters are set to 20 arb. units and 2000 ms).
Several sensors were produced, and their lengths were measured using a caliper.
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Figure 5. (a) Schematic representation of the sensor fabrication, wherein the HSCF is spliced between
two SMFs and (b,c) longitudinal view of the splicing area for different arc discharge times.

The sensor was placed into a transmission configuration, where a supercontinuum
optical light source (LEUKOS SAMBA 450) and an optical spectrum analyzer (Anritsu
MS9740A), with a resolution of 0.2 nm, were used, as depicted in Figure 6.
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Figure 6. Scheme of the experimental setup used for the curvature measurements.

For the curvature measurements the sensor was glued in a fixed stage and in a translation
stage. The controlled movement of the last towards the direction of the fixed stage, induces a
bending on the sensor. The curvature can be determined by the following expression [29]:

C = R−1 =
2h

h2 + L2 , (11)

where 2L is the distance between the points where the sensor is fixed, h is the height of
the sensor center to the horizontal plane, and R is the radius of bending. Additionally,
temperature measurements were carried out by resorting to a similar configuration as in
Figure 6, although the temperature variations were accomplished by resorting to a custom
designed tubular furnace. The furnace temperature was controlled by a thermocouple with
a resolution of 1 ◦C.

4.2. Spectral Characteristics

To access an overall perspective of the sensor length influence on the measurements, it
was necessary to appraise the spectral response of sensors with distinct sizes. Therefore, two
sensors with lengths of 7.50 mm and 9.98 mm were monitored in a broadband ranging from
the visible to the infrared windows (600 nm–1600 nm). Figure 7 presents the transmission
spectra attained.
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dash lines represent the central wavelength of each transmission band.

From a first analysis, one can see that sensors’ spectra are characterized by large
transmission bands centered at 760 nm, 990 nm, and 1230 nm. In between there are large
depression bands, which originate from the IR and whose wavelengths satisfy the condition
established in Equation (1). Aside from the transmission bands, there is another band,
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which begins at∼1270 nm, where it is possible to identify several peaks, with a smaller free
spectral range, which result from the external AR guidance. The spectra of both 7.50 mm
and 9.98 mm sensors are quite identical, presenting the same transmission bands and the
intensity peaks in the exact frequencies, meaning that the length of the sensor does not
appear to influence on the transmission spectrum nor the resonance mechanisms that are
inherent to it. This was already expected by Equation (1).

The attained experimental and simulated spectra of a 7.5 mm long sensor are repre-
sented in Figure 8a. The similarity between the two is quite notorious. In fact, by observing
the zoom in of the transmission spectrum (Figure 8b), between 1200 nm and 1600 nm,
a good agreement between the ER peaks is perceptible. It was possible to determine
the resonances from the 48th order to the 61st order, by using Equation (1). The differ-
ences observed between the high frequency component attained experimentally and the
one obtained numerically can be due to different effects, such as losses due the splicing
procedures, surface imperfections or mode mismatch, which were not considered in the
numerical model. Figure 8c presents the resonance wavelengths retrieved from the experi-
mental spectrum, determined by Equation (1), and by the numerical solution. Although
the results are similar, for higher resonance orders, there is a slight deviation. This can be
partly justified by the impact of the internal AR guiding that attenuates this phenomenon,
therefore leading to a higher difficulty in distinguishing the ER. As for the IR, the HSCF
spectrum presents resonance bands and not dips, as one would expect. This could be
justified by the slight variations on the thickness of each strand that surround the core,
combined with possible fluctuations along the HSCF length, causing a significant deviation
on the resonance wavelength, and, therefore, the creation of bands [47]. For instance,
considering a variation of 0.1 µm in the strands thickness, according to Equation (1), a
shift of 70 nm in the transmission spectrum will be originated. Still, one must notice that
the expected resonance wavelengths are within the resonance bands. Furthermore, the
amplitude decrease of the AR bands is notorious for higher wavelengths. This can be an
indication that the core modes are not so well confined within the core region, and the
coupling of light to the cladding region will be favored. Thus, the external AR will be
further stimulated, leading to a notorious modulation on the transmission spectrum of the
phenomenon at higher wavelengths (1200 nm–1600 nm).
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Figure 8. (a) Representation of the simulated and experimental transmission spectrum of the 7.50 mm
HSCF. (b) Amplification of the transmission spectra in the range of 1200 nm−1600 nm, where the
external AR modulation is observable. (c) Values of the ER dips attained from the numerical and
experimental spectrum, and the theoretical values from Equation (1).
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Given all the mentioned characteristics that underlie the spectral response of the HSCF,
and due to the fact that the sensor’s length does not affect the resonance characteristics,
a 7.20 mm sensor was used to characterize the responses to curvature and temperature.
Since one intends to resort to both IR and ER to evaluate the stablished parameters, only a
broadband ranging from 900 nm to 1300 nm was monitored, where both are notoriously
present. In Figure 9 is depicted the sensor spectrum in the visible and infrared windows,
and in the frequency window of interest. Notice that to reduce the associated noise to the
spectrum, and to obtain a more perceptible view of the ER dips, a 0.11 nm−1 low pass filter
was applied. The experimental proceedings were performed by applying a Gaussian fit to
the entire depression band (IR dip) and by monitoring the ER dip (λ62).

Sensors 2021, 21, x FOR PEER REVIEW 9 of 13 
 

 

Given all the mentioned characteristics that underlie the spectral response of the 

HSCF, and due to the fact that the sensor’s length does not affect the resonance character-

istics, a 7.20 mm sensor was used to characterize the responses to curvature and temper-

ature. Since one intends to resort to both IR and ER to evaluate the stablished parameters, 

only a broadband ranging from 900 nm to 1300 nm was monitored, where both are noto-

riously present. In Figure 9 is depicted the sensor spectrum in the visible and infrared 

windows, and in the frequency window of interest. Notice that to reduce the associated 

noise to the spectrum, and to obtain a more perceptible view of the ER dips, a 0.11 nm−1 

low pass filter was applied. The experimental proceedings were performed by applying a 

Gaussian fit to the entire depression band (IR dip) and by monitoring the ER dip (λ62). 

900 950 1000 1050 1100 1150 1200 1250 1300
−40

−35

−30

−25

−20

−15

650 950 1250 1550

−40

−30

−20

−10

O
p

ti
c
a

l 
P

o
w

e
r 

(d
B

) 

Wavelength (nm)

 0.11 nm
-1
 low pass filter




O
p

ti
c
a

l 
P

o
w

e
r 

(d
B

)

Wavelength (nm)

 l = 7.20 mm

 

Figure 9. Transmission spectrum of the 7.20 mm long sensor and the respective curve attained by 

applying a 0.11 nm−1 low pass filter on the spectral range of interest. The ER wavelength (λ62) ana-

lyzed is also indicated in the figure. 

4.3. Sensor Characterization 

For the curvature measurements, the distance between the fixed stages (2L) was set 

to 27.5 cm, and the sensor was bent to a maximum height (h) of 20 mm, corresponding to 

a maximum curvature of approximately 1.87 m−1. The decrease of height was done in steps 

of 2 mm. In Figure 10, the experimental results attained for the IR and ER are presented. 

Both components presented a shift towards smaller wavelengths (blue shift). From the 

results, one can infere that both resonance responses presented a linear tendency, leading 

to curvature sensitivities of (−0.22 ± 0.02) nm/m−1 (r2 = 0.95064) and (-0.90 ± 0.02) nm/m−1 

(r2 = 0.99575), for the ER and IR, respectively. The difference between the correlation coef-

ficients can be attributed to the low pass filter applied in the data processing. Further 

studies, which are not within the scope of this work, should be performed regarding the 

best filter to be applied in the context of an application. 

Figure 9. Transmission spectrum of the 7.20 mm long sensor and the respective curve attained by
applying a 0.11 nm−1 low pass filter on the spectral range of interest. The ER wavelength (λ62)
analyzed is also indicated in the figure.

4.3. Sensor Characterization

For the curvature measurements, the distance between the fixed stages (2L) was set
to 27.5 cm, and the sensor was bent to a maximum height (h) of 20 mm, corresponding
to a maximum curvature of approximately 1.87 m−1. The decrease of height was done
in steps of 2 mm. In Figure 10, the experimental results attained for the IR and ER
are presented. Both components presented a shift towards smaller wavelengths (blue
shift). From the results, one can infere that both resonance responses presented a linear
tendency, leading to curvature sensitivities of (−0.22 ± 0.02) nm/m−1 (r2 = 0.95064) and
(−0.90 ± 0.02) nm/m−1 (r2 = 0.99575), for the ER and IR, respectively. The difference
between the correlation coefficients can be attributed to the low pass filter applied in the
data processing. Further studies, which are not within the scope of this work, should be
performed regarding the best filter to be applied in the context of an application.

When the fiber is bent, there are some phenomena that may occur. Firstly, bending
causes a variation in the incident angle (α) of light within the fiber, which for smaller
structures, such as the silica strands, will have a higher impact [48]. This can explain the
higher sensitivity of the IR over the ER. On the other hand, the change in the silica refractive
index due to the elasto-optic effect can also contribute to the behavior observed [49].
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For the temperature measurements, the sensor was heated from 50 ◦C up to 500 ◦C,
in steps of 50 ◦C. The obtained results, presented in Figure 11, show a wavelength shift
toward longer wavelengths (red shift). Linear responses were attained for both com-
ponents, presenting temperature sensitivities of (21.7 ± 0.3) pm/◦C (r2 = 0.99809) and
(16.6 ± 0.7) pm/◦C (r2 = 0.98517) for ER and IR, respectively. The magnitude of these
values is in agreement with what was established in the literature [50], where it is expected
to achieve a higher sensitivity for the thickest resonant structure, that is, for the ER.
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The presented results revealed that the sensor resonances had different responses for
both measurands. The ER response (∆λext) and IR response (∆λint) to variations on the
curvature (∆C) and temperature (∆T) can be described by the following expressions:

λext = Kext
C ·∆C + Kext

T ·∆T, (12)

λint = Kint
C ·∆C + Kint

T ·∆T, (13)

where Kext
C , Kext

T are the sensitivities of the ER to curvature and temperature, respectively,
and Kint

C and Kint
T are the respective sensitivities of the IR to curvature and temperature.
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Applying the definition of the matrix inversion to the Equations (12) and (13), one attains
the following: [

∆C
∆T

]
=

1
15.9× 10−3

[
0.0166 −0.0217

0.90 −0.22

][
∆λext

∆λint

]
. (14)

Notice that the units of ∆C, ∆T, and ∆λ are m−1, ◦C, and nm, respectively. This
outcome potentially enhances the use of this sensor in the simultaneous measurement of
these parameters, making it a good candidate for several applications.

5. Conclusions

In conclusion, a simple configuration sensor based on an ARHCF has been presented
in this work with the purpose of simultaneous measurement of curvature and temperature.
The simulation analysis executed to predict the resonances behavior, inherent to the HSCF,
was coherent with the experimental results and the theoretical model. Furthermore, the ex-
perimental results showed that resonance mechanisms exhibited different responses to both
measurands. Curvature sensitivities of −0.90 nm/m−1 and −0.22 nm/m−1, in a curvature
range of 0 nm/m−1 to 1.87 nm/m−1, were attained for the IR and ER, respectively. On the
other hand, temperature sensitivities of 21.7 pm/◦C and 16.6 pm/◦C were respectively
achieved for the ER and IR. The proposed inline sensor is innovative due to its reduced
dimensions, robustness, and capability on measuring more than one parameter without
needing a complex design configuration or using several sensing heads, but instead merely
resorting to the ARROW guidance properties.
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