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Abstract: This paper describes, for the first time to our knowledge, a lipidome and exometabolome
characterization of osteogenic differentiation for human adipose tissue stem cells (hAMSCs) using
nuclear magnetic resonance (NMR) spectroscopy. The holistic nature of NMR enabled the time-
course evolution of cholesterol, mono- and polyunsaturated fatty acids (includingω-6 andω-3 fatty
acids), several phospholipids (phosphatidylcholine, phosphatidylethanolamine, sphingomyelins,
and plasmalogens), and mono- and triglycerides to be followed. Lipid changes occurred almost
exclusively between days 1 and 7, followed by a tendency for lipidome stabilization after day 7.
On average, phospholipids and longer and more unsaturated fatty acids increased up to day 7,
probably related to plasma membrane fluidity. Articulation of lipidome changes with previously
reported polar endometabolome profiling and with exometabolome changes reported here in the
same cells, enabled important correlations to be established during hAMSC osteogenic differentiation.
Our results supported hypotheses related to the dynamics of membrane remodelling, anti-oxidative
mechanisms, protein synthesis, and energy metabolism. Importantly, the observation of specific
up-taken or excreted metabolites paves the way for the identification of potential osteoinductive
metabolites useful for optimized osteogenic protocols.

Keywords: mesenchymal stem cells; osteogenic differentiation; osteogenesis; NMR spectroscopy;
metabolomics; lipidomics; endometabolome; exometabolome

1. Introduction

Mesenchymal stem cells (MSCs) are undifferentiated non-hematopoietic cells that
possess the ability of self-renewal and the potential to differentiate into multiple lineages
(e.g., osteogenic, adipogenic, and chondrogenic). They represent a promising tool in
tissue engineering for biomedical applications [1,2]. Metabolomics has been increasingly
recognized as an important approach to study stem cells (SCs) [3], having the ability to
profile intracellular polar and lipidic metabolites (endometabolome), as well as extracellular
media (exometabolome). This can contribute to the understanding of the dynamic crosstalk
between intra- and extracellular metabolic pathways in several cellular processes, including
differentiation [4–6]. Most reports to date have addressed the polar metabolites of the
endometabolome in differentiating cells [3]; however, increasing evidence suggests that
lipids also play a major role in MSCs stemness and lineage commitment [7,8].

Although metabolomics of lipids (or lipidomics) is often associated with mass spec-
trometry (MS)-based approaches, nuclear magnetic resonance (NMR) spectroscopy is also
a valuable tool, particularly in the context of untargeted analysis, as it can detect different
lipid families simultaneously, albeit with lesser specificity and sensitivity compared to
gas chromatography (GC)-MS or liquid chromatography (LC)-MS [9–11]. In fact, NMR
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and MS strategies have been consistently recognized as complementary for use in one
context [12]. The increasing interest in SC lipidomics [8] has resulted in the majority of
studies addressing MSCs (mostly using MS [3], along with one report using 1H NMR [11]),
followed by pluripotent SCs [13–15] and other SCs [16–18]. The main topics studied have
comprised MSC differentiation (into adipogenic [19–23], osteogenic [19,24–27], or chon-
drogenic lineages [24,28,29]) and senescence/aging [30–32], with most reports employing
bone marrow MSCs (BMMSCs) [22,23,25–30,32], followed by adipose tissue-derived MSCs
(AMSCs) [19,20,24,33–37] and other MSCs [11,31]. Initial differentiation studies using
GC-MS found that rat BMMSCs exposed to adipogenic media experienced decreases in
saturated/unsaturated fatty acid (FAs) ratios over time, while maintaining a free fatty
acid (FFA) profile similar to that of undifferentiated cells [22,23]. Interestingly, differences
between differentiated and primary adipocytes could be partially explained by the lack of
essential polyunsaturated fatty acids (PUFAs) in culture media [22]. It was also suggested
that the presence of the differentiation-inductor dexamethasone (Dexa) in the medium
could lead to autophagy and consequent lipid accumulation, without adipogenesis occur-
ring [23]. In addition, a shotgun tandem MS study found that the lipidome is significantly
influenced by adipose tissue type and anatomical location. This suggested that different
in vitro models of adipogenic differentiation may better represent distinct adipose tissue
characteristics [21]. For instance, the profiles of hexosylceramides and sphingomyelins
(SMs) were found to be important distinguishers of different end adipose tissue types.
More recently, hydrophilic interaction LC, in parallel with reversed-phase (HILIC-RP) chro-
matography, allowed the simultaneous analysis of polar and lipidic extracts of hAMSCs
during adipogenic differentiation [20]. In addition, MS imaging techniques have investi-
gated lipid content and spatial distribution in hBMMSCs aggregates (micromasses) in a
three-dimensional model of chondrogenesis; this revealed that the distribution of phos-
phocholine (PC) and diacylglycerols (DGs) seemed to depend on the degree of oxygen
availability [29].

The use of metabolites to activate or guide SC differentiation has been outlined in a LC-
MS report of the metabolome of adipose perivascular SCs upon hydrogel stiffness-directed
chondrogenesis and osteogenesis [24]. Based on the specific depletion of lysophosphatidic
acid and cholesterol sulfate (CS), these metabolites were suggested to be inductors of
chondrogenesis and osteogenesis, respectively. In subsequent LC-MS studies of hBMMSCs
exposed to nanovibrational osteogenic stimulation [26,27], CS was confirmed as a potential
osteoinductor, and basal media supplementation with CS did induce the expression of
osteogenic markers (although to a lesser extent than traditional osteogenic media) [27]. The
osteoinducing properties of other metabolites have also been explored, with fludrocortisone
acetate highlighted as a potent and specific osteoinductor (i.e., inducing neither simulta-
neous adipogenesis nor chondrogenesis). MS studies of differentiating hBMMSCs also
showed unique plasma membrane phenotypes for osteogenic and adipogenic lineages [25],
with the former leading to plasma membranes enriched in plasmalogens and in longer and
more unsaturated FAs (namely, PUFAs), at the expense of monounsaturated FAs (MUFAs).
Indeed, media supplementation with docosahexaenoic acid (DHA, an ω-3 PUFA) led to its
incorporation into membrane lipids (promoting an osteoblast-like lipidic profile) and more
stable membrane microdomains, while increases in cholesterol, MUFAs, and saturated
FAs were also reported [25]. These lipid studies have provided an extraordinary amount
of intracellular information on SC differentiation, and may be improved by articulation
with data from polar endometabolome and exometabolome adaptations, although not yet
common, in the same cells [26].

Although less explored than the endometabolome, the study of the SC exometabolome
throughout differentiation may provide important information on the cell interactions
with their niche, while allowing non-invasive monitoring of SC behaviour [6,38–40]. For
osteogenesis, initial LC-MS studies addressed extracellular metabolic adaptations of mouse
BMMSCs during osteogenic differentiation [38], identifying increases in compounds related
to proliferation alone (such as deoxyuridine and orotidine) as well as apparent specific
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osteogenic markers (e.g., citrate, cis-aconitate, succinate, and glycerol). The combination of
the endo- and exometabolome during osteogenic differentiation of hBMMSCs further iden-
tified lysine degradation and proline metabolism as important ongoing events [6]. The same
type of cells, studied by LC-MS in 2D and 3D cultures (the latter involving topographically
textured microparticles), revealed that varying levels of osteogenesis were accompanied by
distinct metabolic variations in the media [39]. Furthermore, exometabolome changes upon
adipogenic and osteogenic differentiations of MSCs demonstrated the strong dependence of
media metabolite profiles on the specific lineage commitment [40]. For instance, depletion
of several amino acids (e.g., aspartate, histidine, proline, and threonine), palmitate, and
pantothenate seemed to be indicative of osteogenic media. These results were integrated
with transcriptomic data to develop in silico models describing the expansion, osteogenesis,
and adipogenesis of MSCs, potentially revealing the most suitable in vitro experimental
conditions to optimize lineage commitment.

This work reports, for the first time to our knowledge, an untargeted NMR assessment
of intracellular lipidic changes accompanying SC differentiation, that focusses on the os-
teogenic differentiation of hAMSCs. The results have also been articulated with previously
reported changes in the polar endometabolome in the same cells [41], and compared with
the compositional changes in the exometabolome during the same time period. This work
allows further understanding of the metabolic mechanisms through which osteogenic
differentiation occurs, and may allow the identification of osteoinductive metabolites to
help regulate cell behaviour towards more efficient outcomes.

2. Materials and Methods
2.1. Expansion of Human Adipose-Derived Mesenchymal Stem Cells (hAMSCs)

In a humidified incubator (5% CO2, 37 ◦C), hAMSCs (American Type Culture Col-
lection, ATCC PCS-500-011, Manassas, VA, USA) from a single donor were expanded
in minimum essential alpha medium (α-MEM, Gibco™ 12000063, Waltham, MA, USA),
supplemented with 10% v/v heat-inactivated fetal bovine serum (FBS, Gibco™ 10270106)
and 1% v/v antibiotics (penicillin-streptomycin, Gibco™ 15240062). After reaching ~100%
confluence, cells were carefully rinsed with Dulbecco’s Phosphate-Buffered Saline (dPBS,
Corning® 55-031-PC, Corning, NY, USA), and passaged using a 0.25% (v/v) trypsin-EDTA
solution (Gibco™ 27250018), at 37 ◦C for 5 min. The detachment reaction was stopped by
adding α-MEM.

2.2. Osteogenic Differentiation and Sampling

hAMSCs were detached, at passage 7, from the flasks by trypsinization (as mentioned
above), counted in a Neubauer chamber and seeded at a density of 0.5 × 106 cells/flask.
Cells were maintained under the above-mentioned basal conditions until reaching ~100%
confluence, then the culture medium was exchanged and supplemented with osteoinduc-
tive factors, specifically 10 mM β-glycerophosphate (β-GP, Sigma-Aldrich G9422, St. Louis,
MO, USA), 50 µg/mL L-ascorbic acid (Sigma A0278), and 10 nM Dexa (ACROS Organics™
230300010, Ho Chi Minh City, Vietnam). The osteogenic media were exchanged twice a
week, until day 21 (Figure 1). Quantification of secreted osteocalcin (OCN) and calcium
(as described elsewhere [41]) confirmed the occurrence of osteogenic differentiation. hAM-
SCs conditioned media samples were collected in triplicate at days 1, 6, 9, 12, 14, 16, and 21
after filtration through 40 µm pore strainers. Both fresh (blank) and conditioned osteogenic
media samples were processed as described in 2.4. At days 0, 1, 7, 14, and 21 cells were
trypsinized, filtered through 100 µm pore strainers, and rinsed twice with PBS, and at least
1 × 106 (range 1–4.5 × 106) cells per pellet were collected for lipidomics. Cell suspensions
were centrifuged (300× g, 4 ◦C, 5 min) between each rinsing step.

2.3. Lipidic Extraction

Metabolites were extracted using the methanol-chloroform-water method [42]. Briefly,
cell pellets were resuspended in 800 µL of a cold solution of methanol (Honeywell Riedel-
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de-Haën™ 14262) and Milli-Q water (4:1), allocated to Eppendorf tubes with 150 mg of
glass beads (ø = 0.5 mm), and vortexed (2 min, 2500 rpm). Subsequently, 320 µL of cold
chloroform (Honeywell Riedel-de-Haën™ 650471) were added, samples were vortexed,
followed by the addition of 320 µL of cold chloroform and 288 µL of cold Milli-Q water.
After 10 min at −20 ◦C, samples were centrifuged (10,000× g, 15 min, 4 ◦C). Then, lipophilic
and hydrophilic extracts were dried under a nitrogen flow and under vacuum, respectively,
and stored at −80 ◦C. In the present work, the results on lipidic extracts were compared
with those reported recently for the corresponding polar extracts [41].
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Figure 1. Experimental workflow displaying the osteogenic differentiation timeline (from day 0 to 21).
For exometabolome analysis, media samples were collected in triplicate at days 0, 1, 6, 9, 12, 14, 16,
and 21 (pink arrows), subjected to a protein-precipitation procedure, and the resulting supernatants
were analysed by untargeted 1H NMR. Cell samples were collected in triplicate at days 0, 1, 7, 14, and
21 (purple arrows), followed by metabolite extraction and subsequent untargeted 1H NMR analysis
of the lipidic phase. The corresponding polar endometabolome (†) has already been investigated
in [41]. Osteogenic medium was exchanged at days 0, 6, 9, 12, 16, and 19 (black boxes). Some elements
were adapted from Servier Medical Art and licensed under a Creative Commons Attribution 3.0
Unported (CC BY 3.0) license.

2.4. Protein Precipitation in Media Samples

Prior to exometabolome analysis, both blank and conditioned media samples were
subjected to a protein-precipitation procedure as previously described [43]. Briefly, 600 µL
of 100% methanol at −80 ◦C were added to microcentrifuge tubes containing 300 µL of each
medium sample. After 30 min at −20 ◦C, samples were centrifuged (13,000× g, 20 min), the
supernatant was collected, dried under vacuum and stored at −80 ◦C until NMR analysis.
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2.5. NMR Spectroscopy

Dried lipidic extracts were re-suspended in 650 µL of deuterated chloroform (99.8%
deuterium, Eurisotop D307F) containing 0.03% tetramethylsilane (TMS) for chemical shift
referencing. After vortex homogenisation, 550 µL of solution were transferred to 5 mm NMR
tubes. For exometabolome analysis, dried media samples were resuspended in 700 µL of
100 mM phosphate buffer at pH 7.4, previously prepared in D2O (99.9% deuterium, Eurisotop
D216) and 0.1 mM 3-(trimethylsilyl)-propionic-2,2,3,3-d4 acid (TSP in D2O, Sigma-Aldrich
293040), for chemical shift referencing. After a 5 min centrifugation (13,000× g) to remove
additional proteins that precipitated during storage at −80 ◦C, 550 µL of the supernatant
were transferred to 5 mm NMR tubes. Standard 1D 1H NMR spectra were acquired with a
standard 90◦ pulse sequence (zg pulse sequence for lipidic extracts) or with water presaturation
(noesypr1d pulse sequence for media samples) on a Bruker Avance III spectrometer operating
at 500.13 MHz (at 298 K). A total of 512 scans (lipidome) or 256 scans (exometabolome) were
collected into 32,768 data points using a spectral width of 7002.801 Hz, an acquisition time
of 2.3 s and a relaxation delay (d1) of 4 s. Prior to Fourier transformation, each FID (free
induction decay) was zero-filled to 65,536 points (lipidome) or 131,072 points (exometabolome)
and multiplied by a 0.3 Hz exponential line-broadening function. Subsequently, spectra were
manually phased, baseline corrected, and chemical shifts referenced internally to TMS (lipidic
extracts) and TSP (media samples) at δ = 0.00 ppm. Peak assignments were based on 2D
1H−1H total correlation (TOCSY) and 2D 1H−13C heteronuclear single quantum correlation
(HSQC) spectra analysis, the literature [44–48], spiking experiments, and spectral databases,
such as the human metabolome database (HMDB) [49] and Chenomx NMR Suite (Chenomx,
Edmonton, AB, Canada).

2.6. Data Analysis and Statistics

Prior to multivariate analysis (MVA) of the lipidomic data, 1H NMR spectra were
aligned using the recursive segment-wise peak alignment method [50] (Matlab R2014a, The
MathWorks Inc., Natick, MA, USA) and normalised to total spectral area in order to min-
imise chemical shift variations and sample concentration differences, respectively. Multi-
variate analysis [51] was applied to the full resolution 1H NMR spectra using SIMCA-P 11.5
(Umetrics, Umeå, Sweden), excluding the regions of residual water (δ 1.8–1.4), a broad
unassigned signal present in only one sample (δ 4.8–4.6) and chloroform (δ 7.5–7.0). Princi-
pal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA)
were performed after pareto and unit variance (UV) scalings of the spectra, respectively.
The loadings plot (Matlab R2014a) corresponding to the best performing PLS-DA model
(days 0 and 1 vs. 7, 14, and 21) was obtained by multiplying loading weights by the stan-
dard deviation of each variable, and the colour scale reflected variable importance to the
projection (VIP). For univariate analysis, all peaks from the original spectra were inte-
grated using Amix 3.9.15 (Bruker BioSpin, Rheinstetten, Germany) and normalised to
total spectral area. Using Python 3.9, Wilcoxon rank-sum nonparametric tests [52] were
applied to the original normalized integrals to determine statistically significant differ-
ences (p-values < 0.05). For the most relevant lipidic variations (i.e., statistically significant
differences confirmed by visual inspection), the effect size (ES) values and correspond-
ing errors were calculated [53]. For multiple testing, these changes were also considered
for the Benjamini–Hochberg false discovery rate (FDR) [54] correction, and the resulting
FDR adjusted p-values < 0.05 were considered significant. In addition, average FA chain
length, unsaturation index, and polyunsaturation index were carried out as described
previously [55].

As described above for the lipidome, media 1H NMR spectra were aligned and
normalised. Importantly, prior to MVA and to create the trajectory line graphs for the most
relevant exometabolome variations related only to the osteogenic process, a correction was
needed to compensate for the effect of media exchanges (at days 0, 6, 9, 12, 16, and 19,
Figure 1). Therefore, after the first media renovation (at day 6) the following equations
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were applied to each of the three samples from day i, allowing for the continuous process
of osteogenesis to be more easily analysed and interpreted.

Di = Di−1 +
(
ODi − B

)
(1)

Di = Di−1+
(
ODi − ODi−1

)
(2)

where Di is the corrected normalized integral of day i; Di−1 is the mean of the normalized
integrals of the previous collection day (when the previous collection day was also corrected,
Di−1 should consider the corrected normalized integrals); ODi is the original normalized
integral of day i; B is the mean of the normalized integrals of blank media samples; and
ODi−1 is the mean of the original normalized integrals of the previous day. Importantly,
Equation (1) should be applied when media exchange occurs between consecutive timepoints
(or collection days), and Equation (2) should be used when there was no media exchange
between consecutive timepoints (in our case, this only applies in relation to day 16). Pareto
scaling was applied before PCA analysis. Wilcoxon rank-sum nonparametric tests [52] were
applied to the original normalized integrals (not corrected), and all statistically significant
differences (p-values < 0.05) were also confirmed by visual inspection.

3. Results
3.1. hAMSC Lipophilic Endometabolome Changes

Figure 2a shows a representative 1H NMR spectrum of lipophilic extracts of undiffer-
entiated hAMSCs (day 0) and Table S1 lists all peak assignments achieved, corresponding
to several lipid families (Figure 2b). Specific resonances could be identified for free and es-
terified cholesterol, MUFAs, PUFAs (bothω-3 andω-6 PUFAs, including linoleic acid (LA)),
several phospholipids (namely, phosphatidylcholine (PtdCho), phosphatidylethanolamine
(PtdEtn), plasmalogens and sphingomyelins (SMs)), 1-monoacylglicerides (1-MGs), and
triacylglycerides (TGs).

The PCA scores plot of the 1H NMR spectra of all samples collected throughout osteogenic
differentiation (Figure 3a) indicated a progression from day 0 to day 7, which overlaps with
day 14 samples, and finally to day 21. Notably, days 7 and 14 of osteogenic differentiation
show larger sample dispersion, suggesting that the high eventful nature of such stages leads
to possible small experimental variations (between replica) impacting importantly on lipidic
profiles. Interestingly, the first and last days of differentiation seem positioned close together,
which suggests that some features return to initial levels (this was also seen for the polar
metabolome in the same cells [41]). Pairwise PLS-DA models obtained for the lipophilic extracts
performed weakly (Q2 = 0.29) when day 7 was grouped with day 0 and day 1 (Figure 3b),
whereas a robust model was obtained (Q2 = 0.77) when day 7 was included in the same class
as days 14 and 21 (Figure 3c). This indicates that the profile of day 7 samples is closer to those
of days 14 and 21, suggesting that the main biochemical changes in lipophilic metabolites
take place before day 7. Indeed, PLS-DA loading analysis (Figure 3d) showed that the main
changes occurring up to day 7 affected total cholesterol, unsaturated FAs (UFAs), MUFAs,
PUFAs (specifically includingω-6 PUFAs), several phospholipids, TGs, 1-MGs, and unassigned
resonances at δ 0.83, δ 2.38, and δ 7.76. Spectral integration confirmed that the larger number
and magnitude of spectral changes (as viewed through effect size) indeed took place from day 1
to day 7 (Figure 4 and Table 1 and Table S2): increases in total cholesterol, MUFAs, PUFAs, and
phospholipids (PtdCho, PtdEtn, SMs, and plasmalogens) and decreased 1-MGs. However, a
few changes also occurred from day 0 to day 1 (decrease in MUFAs, FAs in TGs + GPLs, and
PtdCho, and increase in 1-MGs), and after day 7 (increased PtdEtn in day 14, and decreased
free cholesterol and increased TGs in day 21). Comparison of earlier (days 0 and 1) and later
(days 7, 14, and 21) stages showed persistently high total cholesterol, PUFAs, plasmalogens,
and TGs, and lower 1-MGs (Figure 4), while MUFAs and phospholipids (PLs) levels (except for
plasmalogens) tend to recover initial values. All significant changes were confirmed by visual
inspection of the NMR spectra as illustrated by examples in Figure S1.
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Figure 2. Lipidic profile of human adipose-derived mesenchymal stem cells (hAMSC). (a) Typical
1H NMR spectra (500 MHz) of lipidic extracts from undifferentiated hAMSC prior to osteogenic
medium exposure. *: exclusion of a broad unassigned signal (δ 4.8–4.6) and chloroform (δ 7.5–7.0)
resonances; †: due to overlapping with residual water, the peak assigned to -CH2-CH2-CO- of FAs
(δ 1.8–1.4) was not considered for any statistical analysis. (b) Chemical structures of representative
lipid species from the main families here identified, namely glycerophospholipids (including plas-
malogens), sphingomyelins, cholesterol (free and esterified), and glycerolipids (TGs and 1-MGs).
Protons in bold correspond to those assigned in the NMR spectra. Supplemental Table S1 shows the
complete list of assigned signals. 1-MGs, 1-monoacylglicerides; EChol, esterified cholesterol; FAs,
fatty acids; FChol, free cholesterol; FFAs, free fatty acids; GPLs, glycerophospholipids; MUFAs, mo-
nounsaturated fatty acids; PtdCho, phosphatidylcholine; PtdEtn, phosphatidylethanolamine; PUFAs,
polyunsaturated fatty acids; SMs, sphingomyelins; TChol, total cholesterol; TGs, triacylglycerides;
and UFAs, unsaturated fatty acids.
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Figure 3. Multivariate statistical analysis considering full resolution 1H NMR spectra of lipidic extracts
from hAMSC throughout 21 days of osteogenic differentiation. (a) Scores scatter plots for principal
component analysis (PCA) containing days 0 (pink), 1 (green), 7 (grey), 14 (blue), and 21 (orange), all in
triplicate. (b,c) Scores scatter plots for partial least-squares discriminant analysis (PLS-DA) comparing
the initial days of osteoinduction (blue) with the later days (black), considering day 7 as an (b) initial or
(c) later day. (d) LV1 loadings plot (coloured according to variable importance to the projection, VIP)
related to the PLS-DA model present in (c). Abbreviations as defined in Figure 2. Di: day i; LV: latent
variables; Q2: predictive power; and Uδ: unassigned signal at chemical shift δ.

In addition, average FA chain length and degree of polyunsaturation increased up
to day 7 (Figure 5a). The average degree of polyunsaturation is indeed correlated with
a gradual increase in PUFAs (including ω-6 PUFAs) from day 0 to day 7, with MUFAs
increasing between days 1 and 7 (Figure 5b). After day 7, no significant changes were
observed in FA moieties (Figure 5a,b). The newly synthesized FAs may be incorporated
into PLs (Figure 5c) and glycerolipids (Figure 5d), all PLs detected showing significant
increases from day 1 to day 7, with PtdEtn increasing further up to day 14. Increasing
TG levels seemed to mirror decreasing MGs, suggesting a conversion of MGs into TGs
(Figure 5d). Finally, total cholesterol levels were confirmed to increase significantly from
day 1 to day 7 (Figure 5e), reflecting a small increasing tendency in predominating free
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cholesterol, and suggesting that esterified cholesterol may be increasing too (although only
a qualitative increase was observed in the weak resonance at δ 1.02).
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Figure 4. Heatmap showing statistically significant lipidic variations observed during osteogenic
differentiation of hAMSCs, selected by spectra visual assessment and coloured according to the effect
size (ES) values, from minimum (dark blue) to maximum (dark red). Rows correspond to lipidic
species/classes and columns allow for comparisons between consecutive analysed timepoints be-
tween extreme days (days 0 vs. 21) and between classes (days 0 and 1 vs. 7, 14, and 21). Abbreviations
as defined in Figure 2. Di: day i; Uδ: unassigned signal at chemical shift δ; *: Wilcoxon Rank-sum
p-value < 0.05; and **: Wilcoxon Rank-sum p-value < 0.01.

3.2. hAMSC Exometabolome Changes

The detailed peak assignment of the 1H NMR spectra for cell media across osteogenesis
(see example in Figure S2) enabled the identification of 38 metabolites (Table S3), along with
the osteogenic supplements ascorbate and β-GP (Dexa was not detected, most probably
due to its low concentration, ca. 10 nM in osteogenic blank media), and DMA (found
present in the dexamethasone supplement). All compounds are listed in Table S3, including
several amino acids (19 in total) and derivatives (creatine, cystine, and pyroglutamate),
organic acids (3-hydroxybutyrate (3-HBA), 3-hydroxyisobutyrate (3-HIBA), and 3-methyl-
2-oxovalerate (3M2OV), acetate, citrate, formate, lactate, pyruvate, and succinate), and
other compounds (acetone, choline, fructose, glucose, glycerol, methylguanidine, and myo-
inositol). Upon correction for media exchanges after day 6 (as described in the experimental
section), which led to metabolite variations illustrated such as in Figure 6a), the PCA of the
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resulting corrected media spectra (Figure 6b) showed a clear trajectory up to day 14 (with
a similar profile to day 16 media) and then to day 21. As illustrated in Figure 6a, media
exchange correction leads to negative integral values, reflecting lower amounts compared
to those in the original blank solution (due to cellular uptake).

Table 1. Main lipidic variation between the initial days (0 and 1) and later days (7, 14, and 21) of
osteogenic differentiation of hAMSCs. All differences presented were confirmed by visual inspection
of the spectra and are statistically significant (Wilcoxon Rank-sum test p-values < 0.05) [52]. Effect size
(ES) values and corresponding errors were calculated as described in reference [53] (level increases
and decreases in the later days are represented by positive and negative ES values, respectively).
Benjamini-Hochberg false discovery rate (FDR) [54] correction was applied for multiple testing, and
all differences showed FDR adjusted p-values < 0.05. Abbreviations as defined in Table S1. Di: day i;
Uδ: unassigned signal at chemical shift δ. a peak used for integration (part of the spin system).

Metabolite δ 1H
(Multiplicity) a

D0 + D1 vs. D7 + D14 + D21

Effect Size
(ES Error %) p-Values FDR Adjusted

p-Values

Cholesterol
Total cholesterol 0.68 (s) 3.8 (44.8%) 0.001 0.004

Fatty acids
All UFAs 5.35 (m) 4.0 (44.0%) 0.001 0.004

All PUFAs 2.82 (m) 4.6 (42.3%) 0.001 0.004
ω-6 PUFAs 2.06 (m) 2.5 (55.1%) 0.003 0.008

FFAs + FAs in 1-MGs 2.35 (t) −1.2 (90.9%) 0.045 0.048
Glycerophospholipids

Plasmalogens 5.90 (d) 5.6 (40.3%) 0.001 0.004
Glycerolipids

1-MGs 4.18 (ddd) −1.3 (84%) 0.025 0.033
TGs 4.29 (dd) 11.9 (58.2%) 0.001 0.004

Unassigned compounds
U0.83 0.83 (br) −3.0 (78.3%) 0.001 0.004
U2.38 2.38 (m) 1.8 (66.8%) 0.013 0.023
U7.76 7.76 (s) −2.3 (89.1%) 0.013 0.023

Many of the amino acids or derivatives observed to vary (the three branched chain
amino acids (BCAAs), aspartate, glutamine, and cysteine dimer (cystine)) showed marked
decreases from day 0, although only becoming statistically significant from day 1 to day 6
(Figure 6c,e). On the other hand, alanine, glutamate, and proline were excreted, with
pyroglutamate maintaining higher values from day 6 to day 12 (Figure 6d). All the varying
acids (3-HBA, 3-HIBA, 3M2OV, acetate, citrate, formate, and lactate) steadily increased in
cell media throughout osteogenic differentiation, with acetate tending to level out more,
compared to other acids (Figure 6f,g). Media glucose was heavily consumed (Figure 6e),
whereas fructose was clearly excreted, along with an increase in extra cellular free choline
(Figure 6h). The osteogenic inductor β-GP rapidly decreased in cell media, whereas glycerol
levels increased (Figure 6i). In addition, many still unassigned resonances (Figure 6j,k)
showed clear trajectories too, and work is underway to determine these assignments.
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Figure 5. Average lipid characteristics (a) and level fluctuations (b–e) of lipid species/classes selected
in Figure 4. (a) Average fatty acid chain length, unsaturation index and polyunsaturation index
were calculated according to [55]. Normalized integrals of lipids during the 21 days of osteogenic
differentiation, including (b) fatty acids, (c) glycerophospholipids and sphingomyelins, (d) cholesterol,
and (e) glycerolipids. Abbreviations as defined in Figure 2. Di: day i; *: Wilcoxon Rank-sum
p-value < 0.05 (specifically in (b–e) graphs, each day was compared to the previous timepoint).
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Figure 6. Main exometabolome variations throughout osteogenic differentiation. (a) Representative
NMR spectral region corrected to compensate for the effect of media exchanges; (b) Scores scatter
plots for principal component analysis (PCA) comparing osteogenic medium blank samples (n = 4)
and samples collected throughout differentiation (at days 1, 6, 9, 12, 14, 16, and 21, each in triplicate);
(c–k) line graphs display the corrected normalized integrals over time for (c,d) some amino acids
and derivatives. (e) glutamine and glucose, (f,g) organic acids, (h,i) other identified metabolites and
(j,k) unassigned resonances. Three-letter code used for amino acids. 3-HBA, 3-hydroxybutyrate; 3-HIBA,
3-hydroxyisobutyrate; 3M2OV, 3-methyl-2-oxovalerate; and β-GP, β-glycerophosphate. B: blank (fresh)
osteogenic medium samples; Di: day i; Uδ: unassigned signal at chemical shift δ; and *: Wilcoxon
Rank-sum test p-value < 0.05 compared to the previous timepoint and represented in the same colour as
the corresponding line (shown only in cases where spectral confirmation was observed).
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4. Discussion
4.1. The Dynamics of hAMSC Endometabolome during Osteogenic Differentiation

The results and possible explanations for both endometabolome and exometabolome
dynamic adaptations are shown in Figure 7. Similarly to that reported for the polar en-
dometabolome for the same hAMSCs [41], lipid metabolism adaptations seem to subdivide
osteogenic differentiation into different stages in which distinct events seem to occur. Be-
tween days 0 and 1 (Figures 4 and 5b–d), 1-MGs increase, possibly at the expense of FAs
present in TGs and/or GPLs, also accompanied by a decrease in PtdCho and MUFAs. As
these variations are subsequently inverted between days 1 and 7, these early variations
seem to consist of preparation steps for the more eventful stage that follows.

Interestingly, a similar behaviour was seen for intracellular amino acids [41], with
a slight increase at days 0–1, only to markedly decrease thereafter, probably to support
early protein synthesis. At the same time, polar extracts indicated a significant investment
of ATP and phosphocreatine (PCr) for energy and inorganic phosphate (Pi) production
(the latter destined to incorporate in extracellular hydroxyapatite) [41]. Later, between
days 1 and 7, 1-MGs are used up, probably to support TG increases (Figure 5d), for energy
storage in lipid droplets which have been demonstrated to accumulate throughout MSC
osteogenic differentiation [56]. Although high levels of TG accumulation are usually related
to adipogenic differentiation, we believe that parallel adipogenesis should be residual, given
the standard osteogenic conditions employed (although specific biomarkers, not measured
here, would be useful to ascertain this). Concomitantly to the 1-MGs and TGs variations,
the significant increase in the levels of unsaturated FAs (particularly MUFAs and PUFAs,
includingω-6 PUFAs) up to day 7 (Figures 4 and 5a,b) may reflect a protective mechanism
through which saturated FAs (that can induce cytotoxicity in MSCs and osteoblasts [57]) are,
at least partially, replaced by UFAs. It is important to note that, in addition to intracellular
lipidic synthesis, FBS is the main external source of lipids [58] (although containing low lipid
content, especially regarding PUFAs), also claimed to alter in vitro FA composition of MSCs,
compared to in vivo [31]. Furthermore,ω-6 PUFAs are clearly seen to increase, whereasω-3
PUFAs do not change significantly; it seems, therefore, that the former are aiding osteogenic
differentiation, in apparent contradiction of previous reports of their inhibitory effect when
used as media supplements (whileω-3 have a promoting role) [25,59,60]. However, such
reports may be dose-dependent and/or even reflect different mechanisms depending on the
original location of the FA (i.e., in endo- or exometabolomes). Several PLs (PtdCho, PtdEtn,
plasmalogens, and SMs) also increase between days 1 and 7 (Figures 4 and 5c), and this is
accompanied by increases in PL precursors GPC and choline in polar extracts [41], probably
to support PL synthesis (Figure 7). This increase is most likely related to membrane
remodelling, possibly through the incorporation of higher content of unsaturated FAs, thus
increasing membrane fluidity. Indeed, membrane fluidity has been shown to be higher
in cells undergoing osteogenic differentiation than in proliferating cells [61], particularly
after day 7. The average FA chain length (Figure 5a) also increased significantly at this
point (between days 1 and 7), although it remains unclear if this reflects FAs incorporating
newly synthesized TGs, and/or the new membrane PLs. The latter explanation would
be expected to counteract the effect of increasing unsaturated/polyunsaturated FAs on
membrane fluidity. However, a study focused on hBMMSC membranes alone, during
osteogenic differentiation, did report enhanced levels of longer and more unsaturated
FAs [25]. The increase in total cholesterol confirmed previous observations [62,63], but
the direct interpretation of this is rather complex as cholesterol has multiple possible
roles, from impacting on cell fluidity [61], to having an osteogenic-promoter role (e.g., as
demonstrated for the CS form [24,27]), with its esterified forms (here seen to qualitatively
increase slightly) specifically known to stimulate MSC osteogenic differentiation [64]. In
addition, an interesting recent report [65] has demonstrated distinct roles for cholesterol
depending on its endogenous or exogeneous origin, resulting in osteogenesis stimulation
and inhibition, respectively. Cholesterol is also an important component of lipid rafts
(Figure 7), along with SMs and plasmalogens [66], with the exact nature of these formations
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known to play an important role in the equilibrium between stimulus and inhibition of
osteogenesis [67]. Furthermore, cholesterol synthesis is related to vitamin D metabolism,
known for its important role in osteogenesis [68]. During the same period (days 1–7),
amino acids are being extensively used for protein synthesis [41], along with protein O-
glycosylation reactions and the activation of anti-oxidative mechanisms (through increased
intracellular glutathione, GSH). The latter mechanisms may also relate to the plasmalogen
increase, as these species act through the vinyl ether bonds (Figure 2b) to reduce the levels
of reactive oxygen species (ROS) [69]. After day 7, UFA synthesis seems to stabilize (Figures
4 and 5b), while PLs tend to return to initial levels, except for plasmalogens that (together
with GSH [41]) remain elevated (Figure 4), probably to sustain anti-oxidative mechanisms.
The decrease in PLs may indicate a slowing down of cell proliferation rates after day 7
as suggested previously [41], although high glycolytic and glutaminolytic activities were
evident until day 14 (Figure 7), as were ROS scavenging mechanisms. However, such high
metabolic activity does not seem to impact significantly on lipid metabolism, as only small
changes are noted after day 7, namely in PtdEtn (reported to promote osteogenesis [70] and
consistent with decreasing ethanolamine in polar extracts [41]), free cholesterol, and TGs.

Overall, the lipidic endometabolome of differentiated hAMSCs seems to be character-
ized by MUFAs and PL levels approaching initial values (except for plasmalogens), while
differences remain regarding increased total cholesterol, PUFAs, TGs, and plasmalogens,
and decreased 1-MGs. Some polar metabolites have also been seen to return to initial levels
in the same cells [41], suggesting that parts of cellular adaptations are temporarily in place
to ensure osteogenic commitment.

4.2. Articulation between the Endo- and Exometabolomes of hAMSCs during Osteogenic Differentiation

Media levels of amino acids and derivatives are expected to change significantly
during differentiation [6]. This work shows the preferential use of the three BCAAs
(leucine, isoleucine, and valine), aspartate, and glutamine, together with the cysteine dimer
(cystine), throughout the whole osteogenic process (Figure 6c,e). These amino acids may
be playing a specific role in intracellular protein synthesis, including that of osteogenic
markers osteocalcin and osteopontin [71], which contain aspartate and glutamate (the latter
also provided through active glutaminolysis [41]). Except for cystine, all the imported
amino acids are anaplerotic [72], hence probably feeding the TCA cycle (Figure 7) for
energy production and formation of citrate, subsequently excreted into the media for
extracellular mediation of hydroxyapatite formation [73]. The decrease in extracellular
cystine may be explained by its known role to penetrate cells, in exchange for glutamate
(mediated by cystine-glutamate antiporters), in order to provide enough cysteine for GSH
maintenance/modulation for oxidative stress protection [74]. In turn, excreted glutamate
plays a powerful role as a mineralization mediator [75,76], similar to citrate.

In addition to amino acids, glucose is consumed promptly (Figure 6e) for sustaining
the increased glycolytic activity based on the polar endometabolome [41], whereas the
increase in lactate observed in media suggests that cell glycolysis may, at least partially,
lead to active fermentation (Figure 7), similar to the Warburg effect in tumour cells as
reported before for proliferating MSCs [77]. To our knowledge, the equilibrium between
oxidative phosphorylation (OxPhos) and lactate formation in the present context is yet
to be clarified and would benefit from further investigation [77–79]. Similarly, no clear
explanation may be advanced, at this stage, for the export of fructose, although it is
known that fructose plays an adipogenic induction role [80,81]. We hypothethise that the
fact that cells undergoing osteogenic differentiation are significantly exporting this sugar
may mean that co-adipogenesis may be limited. In addition, the role of fructose in bone
tissue formation and characteristics has been discussed [82], suggesting that it can act as a
modulator of the adipo-osteogenic commitment of MSCs.
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Figure 7. Schematic illustration of the main intracellular and extracellular metabolic variations
detected during the osteoinduction of hAMSCs. Metabolites indicated in bold correspond to those
detected by NMR. Metabolites that fluctuate over time show a schematic scale underneath (in
white background for lipid and polar extracts (LE and PE, respectively), and in black background
for media samples (M), where unchanged, increased, and decreased levels are shown in yellow,
red, and blue circles, respectively. It should be noted that information on polar extracts refers
to previously reported data [41]. Arrows crossing the cell membrane represent metabolites ex-
changed between intra- and extracellular environments. Abbreviations: 3-letter code used for amino
acids; 1-MG, 1-monoacylgliceride; 3-HBA, 3-hydroxybutyrate; 3-HIBA, 3-hydroxyisobutyrate; β-GP,
β-glycerophosphate; AA, arachidonic acid; ALA, linolenic acid; BCAA, branched chain amino acids;
CDPCho, Cytidine diphosphocholine; CDPEtn, cytidine diphosphoethanolamine; Cer, ceramide;
CoA, coenzyme A; DGs, diacylglicerides; DHA, docosahexaenoic acid; DHAP, dihydroxyacetone
phosphate; EChol, esterified cholesterol; EPA, eicosapentaenoic acid; FA-CoA, fatty acyl coenzyme A;
FAs, fatty acids; FChol, free cholesterol; FFAs, free fatty acids; Glycerol-3-P, glycerol-3-phosphate;
GPC, glycerophosphocholine; GSH, glutathione (reduced); LA, linoleic acid; LysoPA, lysophospha-
tidic acid; MUFAs, monounsaturated fatty acids; PA, phosphatidic acid; PC, phosphocholine; PEtn,
phosphoethanolamine; PPP, pentose phosphate pathway; PtdCho, phosphatidylcholine; PtdEtn,
phosphatidylethanolamine; PUFAs, polyunsaturated fatty acids; SFA, saturated fatty acis; SM, sphin-
gomyelin; TCA, tricarboxylic acid; TGs, triacylglyceride; and UFA, unsaturated fatty acids. Some
elements were adapted from Servier Medical Art and licensed under a Creative Commons Attribution
3.0 Unported (CC BY 3.0) license.
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Besides lactate and citrate, 3-HBA, 3-HIBA, 3M2OV, acetate, and formate also showed
a steady increase in cell media (Figure 6f,g). The accumulation of the ketone body 3-HBA
in media may be indicative of ongoing intracellular FA β-oxidation (an essential energy
source for the osteogenic process [83–85]). However, 3-HBA was not detected in the en-
dometabolome [41], which may mean that it is rapidly excreted (Figure 7), perhaps to
act as a signalling metabolite via extracellular receptors [86]. Notably, it has been shown
that in vitro and in vivo 3-HBA supplementation results in enhanced osteogenic differen-
tiation [87]. In addition, both 3-HIBA and 3M2OV are products of isoleucine and valine
breakdown [88], which are taken up by the cells at the start of osteogenesis. This may indi-
cate incomplete use of the BCAAs isoleucine and valine as anaplerotic substrates (Figure 7),
perhaps to help modulate TCA activity, and hence OxPhos extension. Acetate production
is important in maintaining acetyl-CoA pools (Figure 7) and could, at least partially, re-
sult from ROS-mediated pyruvate decarboxylation (especially during activated glucose
metabolism) [89], also supporting the already discussed antioxidant capacity throughout
osteogenic differentiation. Although formate accumulation has not, to the best of our
knowledge, been linked to MSCs differentiation, studies on other mammalian cells have
revealed that mitochondrial energy generation from serine one-carbon catabolism is a major
source of formate [90], with alternative sources also being suggested (such as cholesterol
synthesis) [91]. β-GP is a standard extracellular source of inorganic phosphate in osteogenic
media (Figure 7) [92], mainly through the action of several upregulated phosphatases; thus,
the mirroring trajectory of β-GP and glycerol was expected, and extracellular accumulation
of glycerol during osteogenesis of MSCs has indeed been previously reported [6,38]. As an
interesting note, the use of β-GP as a phosphate source, instead of the direct addition of
inorganic phosphate, has been recognized as a debatable issue [93].

In addition, extra- and intracellular choline levels are seen to increase (Figure 6f) until
day 14 [41]. We first hypothesized that, as intracellular GPC and PC did not decrease, the
source of excess choline inside the cell might be PtdCho and SM hydrolysis from day 0
to day 1 of osteogenic differentiation (Figure 5c). However, an additional explanation for
high choline levels, both outside and inside the cell, may reside in the expected upregula-
tion of phosphoethanolamine/phosphocholine phosphatase (PHOSPHO1) during bone
mineralization [94,95]. The PHOSPHO1 enzyme is believed to be released from cells into
matrix vesicles, where it generates Pi from PC (for hydroxyapatite deposition). We suggest
that vesicle rupture will contribute to extracellular choline accumulation, possibly also
leading to higher intracellular choline levels to sustain PLs increase/stabilization later in
the osteogenic process (this is expressed by a double arrow in Figure 7).

5. Conclusions

This paper describes, for the first time to our knowledge, a lipidomic and exometabolome
characterization of the osteogenic differentiation of hAMSCs in 2D cultures, through NMR
metabolomics. Our results describe the dynamic time-course evolution of cholesterol, MUFAs,
and PUFAs (including ω-6 and ω-3 fatty acids), several PLs (PtdCho, PtdEtn, SMs, and
plasmalogens), 1-MGs, and TGs. Most intracellular lipid changes occur between days 1 and
7 of the osteogenic process, although some preparation steps occur beforehand (apparently
concerted with specific initial changes in the polar endometabolome of the same cells). Longer
and more unsaturated fatty acids increase before day 7, along with PLs, probably for nec-
essary plasma membrane fluidity adaptations. On the other hand, a tendency for lipidome
stabilization is observed after day 7, whereas concomitant high metabolic activity affecting
polar metabolites was previously reported, with enhanced energetic metabolism in tandem
with a Warburg-like effect. The overall (lipidic and polar) dynamic endometabolome changes
have been articulated with simultaneous changes observed in media metabolites, enabling
important correlations to be established and supporting hypotheses related to the dynamics of
membrane remodelling, anti-oxidative mechanisms, phosphate production, protein synthesis,
and energy metabolism in hAMSC osteogenic differentiation. Furthermore, in spite of the
limitations of this work (namely in relation to addressing a single donor, not accounting for
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cell ageing adaptations and not including potential co-adipogenesis markers), we believe that
the reported articulation between in vitro endo- and exometabolome adaptations paves the
way for the identification of potential inductive metabolites for optimized osteogenic protocols.
This may be of use, not only to approach aspects of 3D cultures and in vivo osteogenesis, but
also to identify key metabolic traits that may enable in vitro osteogenic differentiation of hAM-
SCs to be optimized, for example for the production of high numbers of pure hAMSCs-derived
osteoblasts to be used in tissue engineering constructs.
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.3390/cells11081257/s1, Figure S1. Spectral comparison of the most evident differences between the
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from hAMSC after 1 day of osteoinduction; Table S1. 1H NMR assignment of intracellular lipidic
metabolites identified in hAMSCs during osteogenic differentiation; Table S2. Statistically significant
lipidic changes throughout osteogenic differentiation of hAMSCs comparing consecutive timepoints
analysed and extreme days; Table S3. 1H NMR assignment of metabolites identified in blank and
hAMSCs conditioned osteogenic media samples throughout osteogenic differentiation.
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