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Abstract
Herewith, an overview is provided on the recent developments in the utilization of multimetallic
catalysts to produce large amounts of molecular hydrogen, especially via the steam reforming of
hydrocarbons and the water–gas shift reaction. Emphasis is given on the explanation of the
problems affecting the currently used catalysts and how the addition/incorporation of other metals
in available or new catalysts may lead to improved catalyst activity, selectivity and stability. We
compare results from selected key examples taken from the literature where multimetallic catalysts
are used for the aforementioned reactions. The methanol and ammonia decompositions are also
critically analyzed, with focus on Earth-abundant metal elements.

1. Introduction

The potential of molecular hydrogen (H2) as an energy carrier is expected to play a crucial role in future
energy systems. Hydrogen can be obtained from renewable and nonrenewable sources, with different colors
unofficially assigned by the North American Council for Freight Efficiency (NACFE [1]) to denote hydrogen
origin. Renewable (green) hydrogen can be obtained, e.g. from water splitting into hydrogen and oxygen in
an electrolyzer that is fed with renewable electricity from wind or solar farms, or from the steam reforming of
inedible or waste biomass. Red/yellow hydrogen is produced by the electrolysis of water with nuclear
power/grid electricity and turquoise hydrogen is produced from methane pyrolysis. Nevertheless, at present,
the major fractions of the World’s hydrogen arise from the steam methane reforming of natural gas or
oil/naphta (78%, gray hydrogen) and from coal gasification (18%, brown hydrogen), figure 1.

As can be seen in figure 1, a successful combination of steam reforming of natural gas and water gas shift
reactions will lead mostly to hydrogen gas and carbon dioxide, with the former being then used as a fuel and
with the latter being (a) released to the atmosphere (eventually recycled through the natural plant respiration
cycle to generate biomass), (b) used in alternative chemical processes (e.g. as an oxidant weaker than O2 or
C1-building block to obtain high-value chemicals), (c) sequestered by suitable underground geologic
formations, or (d) repurposed for CO2 enhanced oil recovery processes [2, 3]. According to the NACFE
coloring code, hydrogen from gray/brown sources but with CO2 effectively repurposed/sequestered takes the
blue color. The importance of the reforming of biomass is expected to increase significantly in forested areas
since it may allow for nearly carbon neutral processes, which is of utmost importance to counter the global
warming.

For hydrogen to become a viable fuel option, greater quantities must be produced cleanly and efficiently,
and production costs must be lowered. The implementation of the infrastructure to distribute hydrogen is
greatly dependent on a steady and cost-effective hydrogen supply and several different hydrogen carriers
(e.g. ammonia, methanol, toluene/methylcyclohexane pair, etc [4]) have been considered for bulk storage
and transport of hydrogen. The current annual global dedicated hydrogen production is about 70 megatons
but it was recently estimated that this amount will be doubled in the next 5 years [5]. To ensure these
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Figure 1. Schematic view of the process of steam reforming of methane (SRM) to produce H2 and CO (on the left), with the latter
being combined with steam to produce additional H2 through the water–gas shift reaction (WGSR, on the right). The WGSR is
also important to convert CO from coal gasification (3 C+ O2 +H2O→H2 + 3CO) to additional hydrogen.
The conversion and selectivity are governed by the appropriateness of the catalysts used in each reaction.

demands can be met, catalysts that can increase the activities of the reactions used for H2 production must be
found. Such catalysts must solve the problems found with conventional metal/metal oxide support catalysts,
e.g. low conversion during startup/shutdown, high energy demands, and deactivation by sintering or by
poisoning species like sulfur. For compact applications, pyrophoric problems inherent to some of the
available catalysts also must be solved.

Recent strategies rely on the addition of other metals to existing or to newly designed metal-based
catalysts to form metallic alloys, in which synergic interactions can solve at least some of the problems
referred above that are associated to current commercial catalysts. However, this is not an easy task since the
nature of the metallic elements, their exact proportion in the alloy, the nature of the support, the size and
shape of the metal or metal alloy particles, among many others, are all important variables that may
significantly affect the catalyst activity and selectivity.

In this review, we seek to examine recent scientific advances on the application of multimetallic catalysts
in the production of H2 through the water gas shift reaction (WGSR) and the steam reforming of
hydrocarbons which are the current workhorses in industry for producing large quantities of this gas. We
briefly discuss why the CO2 dry reforming of methane (DRM) is less interesting for producing H2 than the
steam reforming of methane (SRM), despite the former consuming CO2, thus contributing to effective
carbon capture. Finally, we review the importance of multimetallic catalysts in the reactions of the
decomposition of methanol and ammonia to produce H2 in more compact applications. Methanol and
ammonia [6], which may be produced during periods of excess sustainable energy, are easily liquefied and,
consequently, can be stored and handled more easily than liquid H2. Given the vast literature on the field, we
could not address all the works published in the literature devoted entirely to each of the individual reactions
considered and we refer the reader to other excellent reviews of steam reforming of hydrocarbons [5, 7],
WGSR [8], and methanol [9, 10] or ammonia decompositions [11].

2. Reactions for H2 production

2.1. Steam reforming of hydrocarbons
2.1.1. Introduction
Steam reforming of hydrocarbons is the standard production method of hydrogen at an industrial scale
[12, 13]. It follows the general reaction:

CnHm + nH2O→nCO+
(m
2
+ n

)
H2, (1)

yielding syngas as its reaction product. The reaction always produces more H2 than CO, with light
hydrocarbons giving higher H2 yields. For this reason, and due to lower investment costs, production of
hydrogen is preferentially performed with light hydrocarbons [12, 13]. The reaction is usually realized at
700 ◦C–925 ◦C, in the presence of a catalyst [13]. A posterior stage can be employed, at somewhat lower
temperatures, where the WGSR equation (2),

CO+H2O→CO2+H2 ,∆H=−41 kJ mol−1 (2)

is used. The WGSR further increases H2 yield, which is highly positive if the purpose of the process is to
obtain pure H2, and not syngas. This reaction is exothermic, which allows it to be promoted at lower
temperatures than the steam reforming reaction. The steam reforming reaction proceeds entirely through the
action of the catalyst; both the organic compound and water are decomposed on its surface, followed by
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Figure 2. Decomposition sequences and formation pathways for the different products involved in H2 production from methane.
The reactions generating the oxidant species in the DRM, SRM and POM processes are also shown.

product formation and desorption. Overwhelmingly, methane (in the form of natural gas) is the
hydrocarbon of choice for the production of hydrogen through steam reforming [14, 15].

Dry reforming is a potential alternative to steam reforming, for generating syngas from hydrocarbons,
which uses carbon dioxide, instead of water, as a reforming reagent. Just like steam reforming, dry reforming
yields syngas:

CnHm + nCO2→2nCO+
m

2
H2. (3)

Unlike steam reforming, dry reforming typically yields more CO than H2. It is thus more adequate for
applications where the purpose is production of synthesis gas, and not pure H2. DRM yields syngas in a 1:1
ratio. This ratio can be adjusted at a posterior stage, if necessary, although this incurs a cost [16]. Heavier
hydrocarbons carry the problem of increased coke formation [17], which is a common occurrence with
natural gas and biogas feeds [12]. Methane is thus the preferential hydrocarbon used in dry reforming
processes. With two carbon sources instead of one, the tendency for carbon deposition is much higher in
DRM than in steam reforming [18]. Furthermore, unlike with steam reforming, a high CO2/CH4 ratio does
not help in this situation. In fact, steam may be used as an additive in dry reforming, so as to prevent coking
[19]. Since the dry reforming of hydrocarbons is less appropriate for H2 production than the steam
reforming, this process will not be reviewed here. Yet, recent accounts about multimetallic catalyst design for
the DRM can be found in the literature [20–23].

2.1.2. Monometallic catalysts
Methane steam reforming is usually conducted using a nickel catalyst supported on Al2O3 or SiO2 [12, 14,
15, 24, 25]. Even though nickel is known to not be the most active element for this reaction [26], it has the
advantage of being a relatively cheap transition metal (TM), giving a good compromise between stability,
activity and cost [25, 27]. Nickel has also been shown to be excellent at decomposing carbonated species,
while being immune to oxidation [25, 26]. Nickel-based catalysts are, however, greatly affected by coking,
which has prompted much research on new, coking-resistant catalysts. This can be done either by doping
well-known nickel catalysts or by using completely different metals.

Methane steam reforming proceeds by decomposition of methane and water on the surface of the metal,
with CH4 decomposing into CH3∗, CH2∗, CH∗, C∗ and H∗ adatom compounds, and H2O into H∗, OH∗ and
O∗, where ∗ denotes a free site on the catalyst surface [25, 28–30]. These decomposition products can then
recombine to form a plethora of adsorbed compounds, such as COH∗, COOH∗, CH2O∗, etc. A diagram
detailing this process for steam reforming (SRM), dry reforming (DRM) and partial oxidation (POM) of
methane is shown in figure 2.
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Figure 3. Energy along the reaction path of CH4 dissociation over a Ni atom in the Ni(111) surface. Black, red and green curves
present results for models of the Ni(111) surface when bare, with one and with two Au atoms, respectively. Adapted from [35],
with the permission of AIP Publishing.

The presence of C∗ on the catalyst promotes the formation of coke. The most common strategy
employed to prevent coking is to use high H2O (steam)/CH4 ratios [12, 31], but this generates increased
costs in post-reaction separations. Thus, a lot of research has been devoted to finding catalysts that easily
oxidize C∗ into CO [25]. Most approaches seek to compensate nickel’s affinity for carbon species with
oxidant elements [24, 25, 30]. Alternatively, a catalyst where C∗ is not prone to form, but CO is formed by
dehydrogenation of COH∗ [29], would also be useful.

2.1.3. Multimetallic catalysts
Alloying of Ni with another metal has been considered for increasing catalyst resistance. Most nickel-based
multimetallics involve alloying nickel with a noble metal, such as gold, platinum, or silver. Related TMs like
copper and cobalt are also common. For the most part, the work with these multimetallics focuses on coking
inhibition, while retaining or increasing activity.

Noble metals have very well-established anti-coking properties, as both monometallic [32] and
multimetallic catalysts. Nearly all the work developed in this area has focused on Ni–Au catalysts, due to their
high activity and strong resistance to carbon deposition. We will focus most of the rest of the section
discussing Ni–Au catalysts, how research on them has evolved, and what the mechanisms underlying their
properties are. As will be shown, it is not entirely clear what lies at the root of the anti-coking properties of
Ni–Au catalysts.

The study of Ni–Au bimetallic catalysts for CH4 steam reforming was kickstarted by Nørskov et al
[33–40]. In a series of pioneering studies, feasibility and attractive anti-coking properties were established. In
1993 [33], they observed that Au atoms deposited on a Ni(110) surface, at room temperature (at which the
two metals are nominally immiscible), tended to merge onto the surface layer of Ni atoms, forming a surface
alloy. A later study showed that this surface alloy is only stable up to 850 K–900 K, the temperature after
which the Au atoms start diffusing into the bulk [34]. A density functional theory (DFT) study [35] showed
that CH4 decomposition on the Ni(111) surface had its dissociation barrier increased by 16 kJ mol−1 when
next to an Au atom (figure 3), which would indicate that activity is greatly diminished by the previously
identified surface alloying. The authors attribute this to an energetic lowering of the local density of d-states
on the Ni atoms in contact with Au atoms. Another study [36] determined that the presence of Au atoms on
a Ni(111) surface also influences the probability of ‘sticking’ upon impact of a CH4 molecule with the
surface. Sticking probability decreases by∼95% with an Au coverage as low as 0.2 monolayer (ML). This is in
agreement with the results of a previous study [34], where decreased interaction with the surface upon
increase in Au coverage was observed not only for CH4, but also for CO and D2. At Au coverages above
0.5 ML, CO and D2 were barely adsorbed by the surface.

In a 1998 letter [37], an explicit case is made for Ni–Au industrial catalysts for steam reforming. The
authors build on their previous work with a DFT study, whereby it was observed that chemisorption of
carbon, C∗, was much more favorable in pure Ni(111) than in Ni–Au alloys, with energy differences of up to
190 kJ mol−1. It was thus possible to predict that a Ni–Au catalyst should be much less prone to graphite
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formation than a pure Ni one. Experimental testing of this hypothesis was performed with a 16.5 weight %
(wt%) Ni/MgAl2O4 catalyst, doped with 0.3 wt% Au. Analysis with extended x-ray absorption fine structure
spectroscopy (EXAFS) showed that the Au atoms formed a surface alloy with Ni. Testing with n-butane
steam reforming confirmed that, unlike pure Ni catalysts, the Ni–Au catalyst did not suffer from deactivation
due to graphite formation. The same authors were granted a patent the next year [38], where a Ni–Au
catalyst with 0.01/30% Au/Ni weight ratio, prepared by sequential impregnation, was proposed for the steam
reforming of hydrocarbons ‘without any carbon formation’. Once again, EXAFS showed that Au is deposited
on the surface of Ni nanoparticles inside the catalyst.

In 2001, the same group [39] applied the sequential impregnation technique to create Ni–Au bimetallic
catalysts, using SiO2 and MgAl2O4 as supports. Transmission electron microscopy (TEM) and energy
dispersive spectrometry (EDS) allowed the observation of bimetallic nanoparticles in both supports.
However, with SiO2, pure Au nanoparticles are also formed, separate from the bimetallic nanoparticles.
Comparison of calculated x-ray absorption fine structure (XAFS) spectra and experimental EXAFS spectra
for Ni–Au/SiO2 samples shows that only∼1/4 of the Au atoms participate in a surface alloy, with the rest
forming separate pure Au phases. Monte Carlo simulations indicate that Au atoms accumulate on the edge
and kink sites between low-index surface planes of the Ni nanoparticles. Thermogravimetric analysis (TGA)
of MgAl2O4-supported catalysts used in the steam reforming of n-butane revealed that, under conditions
where heavy carbon deposition occurs for the Ni catalysts, Ni–Au catalysts do not show carbon deposits.

In a highly influential theoretical study from 2002, Nørskov et al [40] used DFT and Monte Carlo
simulations to show that carbon deposition and graphite formation tend to occur at step edges of Ni
nanoparticles, and not at flat faces. They also determined that atoms from additives such as gold are more
stable at precisely the same step sites, confirming the results from Monte Carlo simulations, from this and
from their previous study [39]. The main function of these additives is thus blocking access to the highly
reactive step sites, not in promoting oxidation of deposited carbon. This effect replicates that of H2S, which
poisons Ni catalysts in a way that prevents carbon deposition, and may be used as an additive in steam
reforming processes [41, 42]. However, this also impacts catalyst activity, as step sites are also the most
reactive towards CO and H2 formation. A posterior study [43] also showed that Ni nanoparticle steps are
much more active than terraces for CH4 sticking and decomposition. Ni–Au catalysts would thus offer a
compromise between improved resilience to carbon deposition and decreased activity for CH4
decomposition. In the 2002 study [40], the authors reach the conclusion that an incomplete additive
coverage would prevent graphite formation, while keeping the catalyst’s activity. It is also observed that the
Au atoms tend to be evenly spread on the surface of the Ni nanoparticles, not forming clusters. Similarly to
what happened in their previous study [39], an EXAFS analysis of a Ni–Au/MgAl2O4 catalyst showed that Au
nanoparticles are formed apart from the Ni nanoparticles. This time, 44% of Au atoms are involved in the
surface alloy with Ni. These proportions seem to be related to the relative amounts of Au and Ni used during
catalyst synthesis.

In 2006, in one of the first studies on Ni–Au catalyst performed by other groups, Chin et al [44]
performed an extensive characterization of nanoparticle surface in an Au-doped Ni/MgAl2O4 catalyst.
Through H2 volumetric chemisorption, the authors were able to confirm the strong reducing effect of Au
atoms on the surface of Ni nanoparticles. The presence of alloyed Au leads to decreasing chemisorption of H2
by several times the amount of Au atoms, thus showing that their effect goes beyond site blockage.
Temperature-programmed desorption (TPD) experiments with N2O confirmed this, by showing that the
presence of Au on the surface prevented the decomposition of N2O and the formation of NiO. EXAFS tests
confirmed that alloyed Au atoms have a very low coordination number, in agreement with the hypothesis
that they tend to stay at the surface, away from the bulk. This work agrees with the results of previous
experimental and theoretical studies performed by the Nørskov group [33, 37, 40].

Triantafyllopoulos and Neophytides [45] synthesized a Ni–Au/YSZ catalyst, with a Ni:Au ratio of 50:1,
which was used to study CH4 dissociative adsorption. The authors observed a strong inhibition of graphitic
carbon formation on the surface of the catalyst, together with an increase in the activation energy for CH4
dehydrogenation/CHx rehydrogenation, making CHx species more stable and easier to oxidize to CHxO.
Decreased formation of graphitic carbon is thus attributed to a decrease in C∗ formation, non-inhibition of
graphite formation or increased C∗ oxidation.

A study by Keane et al [46], used the reductive deposition technique to generate an Au-doped Ni/Al2O3
catalyst. Energy dispersive x-ray analysis of metal nanoparticles showed that, in a catalyst with an 8.2 Ni/Au
atomic ratio, surface composition was close to 1:1. This supports the observations of Nørskov et al, regarding
the formation of surface alloys of the nominally immiscible nickel and gold.

Using Au-doped Ni/CeO2(Gd2O3) as anode material in a solid oxide fuel cell, Niakolas et al [47] showed
conclusively that the addition of Au inhibits coke formation. When performing a TGA of materials with
different levels of Au, the results clearly show that the presence of Au greatly diminishes the rate of carbon
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Figure 4. Thermograms for Ni/CeO2(Gd2O3) and Ni–Au/CeO2(Gd2O3) samples. Experiments performed at 600 ◦C, under
10 vol.% CH4/Ar, with a total feed of 100 cc min−1. The symbols represent: (∗, brown) commercial Ni/CeO2(Gd2O3), as
prepared; (×, yellow) commercial Ni/CeO2(Gd2O3), pre-calcined at 850 ◦C; (⃝, blue) 1 at% Au–Ni/CeO2(Gd2O3), calcined at
850 ◦C; (□, green) 2 at% Au–Ni/CeO2(Gd2O3), calcined at 850 ◦C; (△, red) 4 at% Au–Ni/CeO2(Gd2O3), calcined at 850 ◦C;
(—, black) 4 at% Au–Ni/CeO2(Gd2O3), calcined at 1100 ◦C. Adapted from [47]. Copyright (2010), with permission from
Elsevier.

deposition, and increased Au content enhances this effect (figure 4). The Au was added by the
deposition–precipitation method, with the presence of Au nanoparticles with tens of nanometers in diameter
being confirmed by scanning electron microscopy (SEM). The existence of metallic Au in the material was
confirmed by x-ray diffraction (XRD) analysis. However, it is interesting to notice that the XRD results show
that metallic Au, while certainly present before the reduction step of the synthesis procedure, seems to
disappear afterwards. SEM analysis also fails to find the gold nanoparticles after the reduction step,
performed with 80% H2/Ar at 800 ◦C, indicating that some major structural shift occurs in the material
during the reduction step, making it unclear exactly what is behind the anti-coking properties of the catalyst.

Lazar et al [48] tested the activity of a Ni/γ-Al2O3 catalyst, synthesized with the co-impregnation
method, by measuring CH4 conversion in non-repeatable single runs. The authors observed a marked effect
in the catalyst’s performance upon the addition of noble metals. A 1%-Au/8%-Ni catalyst led to an increased
activity from 40% to 60% CH4 conversion, at 450 ◦C. At higher temperatures, the improvement in
performance starts to disappear, and above 600 ◦C it shifts, with the Au-doped catalyst performing slightly
worse than the original. The authors speculate that this effect may be due to alloying of the two metals,
originally existing in separate nanoparticles. This hypothesis is in agreement with previous work [39, 40]
suggesting Au atoms would tend to occupy the more reactive sites on the surface of Ni nanoparticles. The
original catalyst was also doped with Ag, with very different results from Au doping; the Ag/Ni catalysts were
almost inert, and only at 700 ◦C did their activity start to approach that of the other two catalysts. The
authors also tested catalyst stability, by testing performance after 48 h of continuous run, at 500 ◦C and
700 ◦C. At 500 ◦C, Au doping strongly stabilized catalyst performance, while the original catalyst started
showing signs of degradation. At 700 ◦C, the opposite happened, with the original catalyst having nearly
identical performance, while the Au-doped one showed a slight decrease. If Au nanoparticles do exist at
500 ◦C, but tend to disappear at 700 ◦C, these results seem to indicate that coke inhibition stems from the
activity of segregated nanoparticles, and not deposition on the surface of the Ni nanoparticles, with the latter
actually being detrimental.

A follow-up study by the same group provided similar results [49], with some notable additional
information. Exhaust gases were analyzed with a gas chromatograph, allowing them to determine the
proportion of CO2 and CO. Ni–Au catalysts strongly favor CO2 formation, so they do not just have higher
CH4 conversion, but also higher H2 production, through the WGSR. The authors were also able to
determine, through TGA of used catalysts, that Ni–Au and Ni–Ag catalysts are not only far less susceptible to
carbon deposition, but the kind of carbon that is deposited is different. Standard deactivation from carbon
deposition involves the formation of graphitic crystallites, which the presence of Au and Ag hinders, with the
small amount of carbon deposited being amorphous. However, these catalysts were still subject to
degradation, at high temperatures, which the authors attributed to site blockage on the surface of Ni
nanoparticles, induced by the formation of a surface alloy from initially segregated nanoparticles.
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Figure 5. Alloying effect of temperature on Ni–Au catalysts. Adapted from [18]. CC BY 4.0.

The idea that Ni–Au alloys are only formed in solid-supported catalysts at high temperatures is
reinforced by a characterization study conducted by Maniecki et al [50], where x-ray photoelectron
spectroscopy (XPS) and XRD spectra indicate that Au and Ni co-exist as an alloy on the surface of the
catalyst only after it is exposed to high temperatures.

In their review of 2013, Wu et al [18], taking a lead from the work of Maniecki [50] and Lazar [48, 49],
conceived of a mechanism for the formation of Ni–Au alloys in bimetallic catalysts prepared by the
co-impregnation method, whereby effective reduction of NiO and temperature are the decisive factors
determining the extent and kind of alloying that takes place, where, originally, the two metals were segregated
in separated nanoparticles. This view is well represented in the scheme in figure 5. This alloying effect,
induced by reduction and high temperatures, would neatly explain the ‘disappearance’ of gold nanoparticles
in the work of Niakolas et al [47], occurring precisely after a reduction step at high temperatures.
Interestingly, the suggested cut-off temperature for the formation of the alloy, 1153 K, is remarkably close to
the critical point of the miscibility gap of 1089.5 K reported by Wang et al [51]. However, this temperature is
also similar to those used in post impregnation calcination and reduction [39, 44–46, 48], so studies
suggesting both the surface alloy and the segregated Au nanoparticles perspective employ the kind of
temperatures Wu et al suggest give rise to the alloying effect.

Focusing again on the supposed activity of step sites, Arevalo et al [29] investigated the reasons behind
the strong binding of C∗ on Ni nanoparticle step sites, by using dispersion-corrected DFT-based first
principles calculations. Comparing the interaction energy of the several decomposition fragments of CH4 on
Ni and Ru steps, the authors determined that C∗ + 4H∗ is the most favored species for Ni, but not for Ru,
which rather favors CH∗ + 3H∗. Their explanation for this is that C∗ at Ni steps can interact with five Ni
atoms, four at the surface and one beneath the surface, while with Ru it interacts only with four surface
atoms. In the case of Ni, when the subsurface atom is replaced for an Au atom, the C∗ interaction is greatly
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Figure 6. Adsorption energy of CHx (left) and reaction energies for CH4 dissociation into CHy + zH (y + z = 4) species (right)
on stepped Ni and Ni–Au systems. Adapted with permission from Springer Nature Customer Service Centre GmbH: Springer
Nature, Scientific Reports [29] © 2017.

decreased, and CH∗ + 3H∗ is once again the most stable state (figure 6). However, it is unclear how this
could explain the anti-coking effect of Au, as the authors do not present any mechanism for the formation
of the 4Ni+ 1Au configuration on the step sites of Ni nanoparticles. Indeed, many other authors
[33, 37, 40, 44] have shown that the Ni–Au alloy formed tends to be concentrated on the surface, with only
high temperatures allowing Au diffusion into the bulk [44].

Following the Ni nanoparticle modification perspective, de Oliveira Rocha et al [52] performed an
in-depth study of surface modification of a Ni/Al2O3 catalyst through sequential impregnation with Au. By
using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) of adsorbed CO, the authors
were able to study the changes that Au impregnation induced on the surface of Ni nanoparticles in the
catalyst. Among many subtle changes, it was possible to ascertain the preferential alloying of Au atoms on Ni
atoms with low coordination (i.e. steps, corners, and surface irregularities). However, there would still occur
some Au deposition on Ni(111) atoms, which increases local electron density, thus promoting a preferential
adsorption of CO in the linear form (with faster kinetics), instead of bridge form. Testing of the catalyst in a
fixed bed reactor showed that the apparent activation energy of the steam reforming reaction was greatly
affected by Au impregnation, which is attributed to a decrease in available low coordination Ni atoms. The
authors thus point to two factors underlying the decreased carbon deposition in Au-doped Ni catalysts;
deposition in low coordination sites hinders CH4 decomposition, and deposition in high coordination sites
promotes faster CO desorption. At low temperatures, CO formation is typically the rate determining step
(rds) [26], so Au deposition has the effect of ‘the steps of methane activation and carbon oxidation becoming
equilibrated.’

While it is entirely certain that Au atoms are sometimes deposited on top of Ni nanoparticles forming a
surface alloy [39, 40, 44, 52], and that on other occasions segregated Au nanoparticles have been detected
[47–49], it is frequently impossible to ascertain whether both forms co-exist in the same material. The study
by Molenbroek et al [39] is perhaps the only one that, by employing TEM/EDS, comes close to excluding the
formation of independent nanoparticles. Still, it seems to us that the mechanisms and conditions behind the
formation of segregated Au and Ni nanoparticles, a surface alloy, or both, has yet to be unveiled.
Furthermore, the way segregated Au nanoparticles are able to condition the formation of graphitic carbon
remains a mystery. It is possible that the studies where formation of segregated nanoparticles was detected
failed to detect the additional formation of Ni nanoparticles with a Ni–Au surface alloy, which would
function in the way Nørskov et al have discovered. Without further studies on this issue, we believe this
should be the default hypothesis.

Xu et al [53] developed a computational approach to screen the potential of a large number of TM alloys
for the reaction of SRM by separately performing microkinetic modeling of all the elementary reactions
involved, employing energies of reaction intermediates and transition states from scaling relations using the
binding energies of carbon and oxygen as descriptors. After having established a volcano-shaped relationship
for the reaction as a function of the two descriptors above, they were able to predict the rates under operando
conditions of binary alloys based on the A3B or AB (A and B are TMs) stoichiometries, with stability close to
the stabilities of the bulk pure A and Bmetals and stability against oxidation. They found that A3B-like alloys
derived from the cheap Ni, Fe and Co elements were very active and stable. Importantly, Ni3Fe and Co3Ni
alloys displayed activity either with AA or AB terminations. Encouragingly, NiFe and NiCo alloys were

8



J. Phys. Energy 3 (2021) 032016 R V Afonso et al

experimentally found to display interesting activities for the reaction. However, it seems that the exact
composition of the catalyst has a decisive role, and alloying, by itself, is not a solution. In fact, the effect of Fe
on NiFe catalysts has been found to have both positive and negative influence in the catalytic activity in the
reforming of hydrocarbons [54]. On the one hand, the activation and dissociation of C–H and C–C bonds
occur mostly on surface Ni atoms. Thus, the alloying with Fe will lead to a decrease in the number of the
most active sites. On the other hand, Fe is oxidized more easily than Ni and the iron oxide formation was
associated to suppressing of carbon deposition and assistance in reactions between carbonaceous with oxide
species. Therefore, while computational studies are certainly relevant for fast screening of materials, further
experimental optimization of catalysts under operando conditions is needed.

2.2. Water–gas shift reaction
2.2.1. Introduction
The term water gas stands for an equimolar mixture of carbon monoxide and hydrogen that is produced by
passing steam over heated coke, following the general reaction:

C+H2O→CO+H2 ,∆H= 131 kJ mol−1 (4)

In the 19th century, the reaction described by equation (4) was employed, for example, to enrich the gas
generated for residential and commercial use in heating and lighting. More recently, as pointed out above,
the production of steam gas is based on the SRM:

CH4+H2O→CO+ 3H2 ,∆H= 206 kJ mol−1 (5)

providing a high molar ratio of H2 over CO. In both cases, the aim is to obtain hydrogen-rich streams for
numerous applications, namely, as a reactant in fuel cells or in the ammonia synthesis (see below). The
WGSR, equation (2), discovered by Felice Fontana in 1780 [55], is a reversible chemical reaction between
carbon monoxide and steam to produce carbon dioxide and hydrogen.

The WGSR has been carried out in industry in two steps using two different temperatures. This is
because the reaction is exothermic, hence favoring formation of products at low temperatures, but its
kinetics is very slow. Hence, a step at high temperature (high-temperature shift, HTS) is employed to reach
the equilibrium faster, and then a step at a lower temperature (low-temperature shift, LTS) is used to achieve
almost full conversion of CO. The HTS uses a catalyst based on iron oxide (chromium oxide has been also
employed for catalyst stabilization and copper or other supported metals may be present) that works at
temperatures well above 300 ◦C (the catalyst is inactive below this temperature). The reaction mixture from
the HTS is then cooled to∼200 ◦C in the LTS reactor, which employs catalysts based on copper
(conventionally, Cu/ZnO/Al2O3) which become inactive above 250 ◦C. In the HTS step, the content of CO in
the feed stream is usually reduced to 2% and in the LTS step it is reduced to <0.5%. In fact, from the
equilibrium constant as a function of the temperature [55],

K= e(
4577.8

T −4.33). (6)

It is clear that the equilibrium CO content is 20 times lower at 200 ◦C than at 400 ◦C. Because the total
number of moles is the same in the reactants and in the products, pressure cannot be employed to force the
conversion towards the desired products but is often employed to increase the reaction rate, hence allowing
the equilibrium to be attained faster. Cryogenic, membrane, separation with solvents or sorbents are
common strategies used for separating CO2 from gas mixtures. Due to its high energy efficiency and because
CO2 interacts much stronger with most adsorbents than H2, pressure swing adsorption is the method of
choice for separating carbon dioxide from hydrogen, leading to hydrogen purities over 99.9%.

While the catalysts above have been used for several decades, they suffer from several shortcomings. For
example, although catalysts based on Fe/Cr oxides are stable against sulfur poisoning, that is only the case if
the amounts of sulfur are small. Also, if metallic iron species are present in the Fe/Cr catalyst, methanation of
carbon monoxide via:

CO+ 3H2→CH4+H2O , ∆H=−206 kJ mol−1 (7)

takes place, leading to hydrogen consumption. The presence of Cr(VI) in the HTS catalysts is also a problem
because this ion is carcinogenic to humans. Similarly, Cu-based catalysts are sulfur-sensitive and Cu
crystallites are prone to thermal sintering. Thus, strong effort is being made to find catalysts with improved
characteristics for the WGSR. Apart from being active for the WGSR, the required catalyst must have thermal
and air stability for long term activity, and has to be cheap. Therefore, obvious choices are catalysts mainly
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Figure 7. Schematic representation of the three accepted mechanisms for the WGSR. Red and green arrows are used for
adsorption of reactants and desorption of the reaction products, respectively. Blue lines approximate the barrier heights of the
different elementary reactions. Adapted from [57], Copyright (2018), with permission from Elsevier.

constituted by cheap metals or metal oxides incorporating highly dispersed/diluted (expensive) metals.
Potential elements for catalytic applications are the abundant Cu, Fe, Zn, Al or Cr, which are already found in
the industrial WGSR catalysts, and Co or Ni. While metallic copper is the most active pure metal catalyst
[56], it might be possible to obtain improved catalysts by mixing elements (or more complex materials) that
display distinct characteristics, i.e. stronger or weaker adsorptions of WGSR reactants, intermediates and
products than those found for metallic copper, until reaching an optimal balance, i.e. the top of the volcano.

It is generally accepted that the WGSR proceeds through one of the following reaction routes, viz. the
(a) redox, (b) formate or (c) carboxyl mechanisms (figure 7). The redox pathway is characterized by the
complete dehydrogenation of water on the catalyst surface, while the associative formate and carboxylic
routes are named so because they lead to the formation of these intermediate species upon the reaction of
carbon monoxide with surface hydroxyl species.

Importantly, the first step of the WGSR, i.e. the dissociation of water into H and OH adsorbed species
(figure 7), was found to be the rate determining one on Cu and on Au surfaces or nanoparticles [58–60]. It
was predicted from DFT calculations for the WGSR on planar and stepped copper surfaces that the
associative mechanism through the carboxyl intermediate, where carboxyl dehydrogenation is assisted by
co-adsorbed hydroxyl species, is energetically more favorable.

2.2.2. Monometallic catalysts
The role of the different components of the industrial WGSR catalyst is not clear but the availability of
metallic Cu species seems to be important, both in the LTS and in the HTS catalysts. For example, Yahiro et al
[61] used the conventional impregnation method to prepare several catalysts based on Cu–ZnO supported
on oxides with high surface area, namely, Al2O3, MgO, SiO2–Al2O3, SiO2–MgO, β-zeolite and CeO2, and
found that the reducibility of CuO is an important factor controlling the activity of the catalyst with the best
activities found when JRC-ALO-8 alumina was employed as the support, followed by JRC-ALO-5 alumina
and CeO2. Interestingly, the addition of CuO to the HTS Fe3O4/Cr2O3 catalyst promotes the reaction but
with contradictory views. Rhodes and Hutchings [62] proposed that metallic Cu is not present and that the
catalytic improvements are caused by Cu2+ species acting in solid solution, which modify the electronic
properties of the Fe3O4/Cr2O3 catalyst and lead to a significant decrease in the activation energy from 118 to
75–80 kJ mol−1. However, Puig-Molina et al [63] performed in-situ XAFS studies of a Cu-promoted
Cr-stabilized iron oxide catalyst at 380 ◦C and elevated pressures and concluded that metallic Cu forms at
250 ◦C, promoting the WGSR activity that is due to the magnetite surface incorporating Cr3+ species. The
formation of metallic Cu species at temperatures above 250 ◦C was confirmed by Estrella et al [64] from
in-situ time-resolved XRD, XAFS, and atomic pair distribution function analysis of the behavior of CuFe2O4
and Cu/Fe2O3 catalysts under WGSR conditions. More recently, Zhang et al [65] carried out a
comprehensive experimental and computational study with the aim of identifying the WGSR active sites on
copper-based catalysts. These authors developed an experimental strategy to synthesize uniform cubes,
octahedra and rhombic dodecahedra Cu nanocrystals, with well-defined {100}, {111}, and {110} surfaces and
size distributions of 1000± 150, 1056± 207, and 595± 113 nm, respectively, from the corresponding Cu2O
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Figure 8. Arrhenius plots of the WGSR rates for 2.7% Pt/Al2O3, 5% Pt/CeO2, 2% Pt/TiO2, and 4% Pt/Mo2C catalysts. Adapted
with permission from [67]. Copyright (2011) American Chemical Society.

nanocrystals. They then found the cube/octahedron to be the most/least active which was attributed to a
higher {100}/{111} facets ratio in the former than in the latter. Moreover, the experimental findings suggest
that all the elementary surface reactions occur at the Cu–Cu suboxide interface of the Cu(100) surface.
Separate DFT calculations employing Cu(100) and Cu(111) surfaces, bare or with Cu2O islands to model the
Cu/Cu oxide interface, confirmed that the reactions were in general more facile on the Cu(100) model with
Cu2O islands, with reactants, intermediates and products of the WGSR adsorbing on the metallic atoms in
the vicinity of Cu2O [65]. The oxygens of the oxide assume an important role in interacting with and then
adsorbing the hydrogen atom originating from the water dissociation, the rds on metal surfaces [58–60]. In
fact, when the reaction takes place at the Cu/Cu oxide interface, the energy barrier is 0.4 eV, significantly
smaller than the value (1.2 eV) calculated on Cu(100) and on several other surfaces [66].

Schweitzer et al [67] compared the role of different supports, namely, non-reducible Al2O3, reducible
CeO2 and TiO2, and Mo2C, in the catalysis of the WGSR by platinum. Notably, as can be seen in figure 8, the
Pt/Al2O3 catalyst is clearly less active than those using cerium or titanium oxides supports, and the three
oxides are less interesting than the molybdenum carbide support.

The increased activity of platinum catalysts when supported on reducible oxides than on non-reducible
ones was observed in other studies. For example, Phatak et al [68] compared the WGSR on Pt catalysts
supported on ceria and alumina, at p= 1 atm, T = 180 ◦C–345 ◦C, and found that the turnover frequency
(TOF) was 30 times higher on ceria-supported Pt than on the corresponding alumina-supported catalysts.
Results in the same direction were obtained by Panagiotopoulou and Kondarides [69] upon comparison of
several reducible, namely, TiO2, CeO2, La2O3, and YSZ, and non-reducible, namely, Al2O3, MgO, and SiO2,
metal oxides. In particular, the latter authors found that the TOF of CO conversion did not depend on metal
loading, dispersion or crystallite size, but depended strongly on the nature of the metal oxide carrier, with the
catalytic activity being 1–2 orders of magnitude higher when the active metal (e.g. Pt or Ru) is supported on
reducible oxides [69]. In brief, the easier extraction of oxygen from reducible oxides increases the activity of
the reaction since this facilitates the oxidation of CO molecules adsorbed on the supported metal. The
support is then oxidized by oxygen originating from water. Therefore, in such situations, not only the
supported metal but also the partially reduced metal from the oxide actively participated in the reaction, thus
resembling a multimetallic catalyst as those reviewed below.

2.2.3. Multimetallic catalysts based on copper
As stated in the previous sub-section, subtle changes in the nature of the different species in the catalyst may
lead to important improvements in the catalysis of the WGSR. Therefore, significant efforts were made to
analyze the influence of a second metal in the catalysis of this reaction.

WGSR catalysts based on monometallic (Ni and Cu) and bimetallic (Ni–Cu, 1:1 alloy confirmed by x-ray
absorption spectroscopy, XAS) particles anchored on SiO2 were synthesized via an in-situ self-assembly
core–shell precursor route by Ang et al [70]. The CO conversion measured at 400 ◦C for catalysts with a total
of 10% metal loading, prepared with a small amount of oleic acid (OA) to aid metal dispersion, was 97% in
the case of the bimetallic 5Ni5Cu/SiO2 catalyst, 92% in the case of 10Ni/SiO2 and 84% in the case of
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Figure 9. CO conversion to CO2 for 75 h reaction with 5Ni5Cu/SiO2 catalysts prepared with (cyan) or without (red) the oleic acid
(OA) dispersant. Adapted from [70] with permission of The Royal Society of Chemistry.

10Cu/SiO2, but at lower temperatures, e.g. 250 ◦C, only monometallic copper catalysts could convert CO.
Lower conversions were obtained for catalysts prepared without the addition of the dispersant, suggesting
that smaller particle sizes enhance WGSR activity. Moreover, as can be seen in figure 9 for the bimetallic
5Ni5Cu/SiO2 catalyst, while the CO conversion of the sample prepared with OA remained stable for a
runtime of 75 h, the CO conversion is halved in the case of the catalyst prepared without the dispersant,
which suggests less stable metal-support interactions with subsequent metal sintering in the latter.

Catalysts prepared with/without the dispersant displayed H2 yields of 50%/45% but the monometallic
nickel catalysts were not selective and led to formation of small amounts of methane. The observations were
then rationalized by Ang et al upon analysis of in-situ DRIFTS results collected at different temperatures and
CO-temperature-programmed-reduction-mass spectroscopy data. In the catalysts containing Cu, CO
adsorption occurs at Cu sites which are known to be less active than Ni sites for CO cleavage, hence avoiding
the formation of carbon precursors that are eventually hydrogenated to methane. Also, Ni segregation is
suppressed in the bimetallic catalysts, otherwise, methane would form as in the 10Ni/SiO2. The formation of
smaller metal clusters when OA is employed in the catalyst preparation enhances metal-support interactions,
hence increasing the catalyst stability. Also, XAS results suggest that NiO species occurring at the bimetallic
particle-support interface remain unreduced even at 450 ◦C, conferring increased stability because of the
formation of stronger particle-support interactions. Concomitantly, the CO adsorption is stronger than in
the case of large particles and the CO surface species become closer to hydroxyl groups on the SiO2 support,
clearly suggesting a synergic behavior in the multimetallic catalyst.

Qualitatively similar results were found by Saw et al [71] for Ni/Cu catalysts supported on ceria, upon
variation of the molar ratio of copper and nickel from 0 to 1 with 10 wt% loadings of their metal nitrates; the
catalysts obtained were denoted 10Ni, 9Ni1Cu, 5Ni5Cu, 1Ni9Cu and 10Cu. The 5Ni5Cu/CeO2 catalyst was
found to exhibit the highest reaction rate with the least methane formation, which was attributed to the
formation of a Ni–Cu alloy phase and the stabilization of the CO adsorbed species. Kinetic studies revealed
that one-site carboxyl mechanism could be the main reaction pathway with formate acting as spectator.
However, other possibilities, e.g. combination of both carboxyl/redox and formate/redox routes could not be
ruled out.

Arbeláez et al [72] investigated the WGSR over structured Cu, Ni, and bimetallic Cu–Ni supported on
activated carbon catalysts. Two bimetallic catalysts with fixed Cu:Ni molar ratios of 2:1 and 1:2 were
prepared. Again, the results pointed out to the formation of a Cu/Ni alloy with Cu having the important role
of mitigating the methanation activity of Ni by controlling the CO adsorption behavior and dissociation
ability as suggested by Saw et al [71], consequently favoring the shift process. Interestingly, CO conversion
was found to be the highest in the case of the Cu-rich bimetallic catalyst with activity comparable to those
demonstrated by catalysts based on noble metals deposited on ceria. The higher activity of Cu-rich bimetallic
catalysts towards the WGSR was also reported by Jha et al [73] who studied mesoporous NiCu/CeO2 catalysts
with weight percentage ratios of Ni/Cu from (1:1) to (1:4). Importantly, while metallic phases of Cu and Ni
were observed in the XRD patterns of Cu/CeO2 and Ni/CeO2, respectively, after being tested in the WGSR at
temperatures up to 550 ◦C, in the case of the reduced NiCu(1:4)/CeO2 catalyst only the metallic phase of
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copper was found, which was interpreted as a result of Cu segregation to the surface layer, a point of view
that is supported by the results of Lin et al [74].

More recently, Pastor-Pérez et al [75] revealed that bimetallic NiCu formulations are not always
advantageous for the WGSR. In fact, for catalysts prepared on a CeO2/Al2O3 support, the monometallic Cu
catalyst was more active in both model and post-reforming WGSR mixtures at low-medium temperatures
than the bimetallic CuNi systems. Only for medium–high temperatures does the bimetallic CuNi(1:1)
outperform the stability levels reached with the monometallic formulation, becoming an interesting choice
even when start-up/shutdowns operations are considered during the catalytic experiments. These
observations agree with those of Ang et al [70] presented above but using a SiO2 substrate. Computational
studies were also performed to obtain a detailed structural and energetical understanding of the WGSR. Liu
et al [76] performed DFT calculations, with the Perdew–Burke–Ernzerhof (PBE) functional and
Gaussian-type orbitals, for the WGSR occurring on TM1@Cu12 particles, with TM= Co, Rh, Ir, Ni, Pd, Pt,
Cu, Ag, and Au, i.e. with the TM atom at the center of the particle, surrounded by 12 copper atoms. They
found that the reactions proceed through the carboxyl mechanism, while the redox and formate routes arise
as minor channels in the WGSR on the Cu-based particles, a finding that agrees with calculated data on
extended pure-Cu surfaces [59]. On the TM1@Cu12 particles, the formation of carboxyl species (COOH)
from co-adsorbed CO and OH was found to be the rds when TM= Ag, while the dissociation of the carboxyl
species into co-adsorbed CO2 and H species is the rds for TM= Co, Ni, Rh, Pd, Ir, and Au, and the
formation of co-adsorbed CO2 and H2 from CO2 and H species is the rds for TM= Cu and Pt. These
authors combined the energetic span model of Kozuch and Shaik [77] with the calculated free energy profiles
to find the turnover-determining transition state (TDTS) and the turnover-determining intermediate (TDI)
which govern TOF and selectivity. Interestingly, upon the consideration of the energetic span model, the
TDTS and the TDI are the same for all systems, respectively, the transition state corresponding to the
formation of carboxyl species (COOH) from co-adsorbed CO and OH and the state for co-adsorbed CO, H
and OH species. The highest TOF was calculated for the Co1@Cu12 cluster, with the group 9 elements, Co,
Rh, and Ir, having TOFs that are higher than those for TM from groups 10 or 11, hence, more promising
catalyst candidates for the WGSR.

Luo et al [78] investigated the WGSR on PdCu/CeO2 also by means of DFT calculations, employing the
PBE approach with D3 dispersion corrections and plane-wave basis sets. The calculations considered an
unsupported PdCu3(111) slab and a PdCu particle, with eight Pd and 12 Cu atoms per unit cell, that was
deposited on a slab of CeO2. In the case of the unsupported PdCu3(111) slab, water was found to adsorb very
weakly (Eads =−0.05 eV, the negative value meaning favorable adsorption) while the barrier for its
dissociation was quite large (Eact = 1.42 eV), which suggests that water dissociation is difficult, as confirmed
by microkinetic simulations to be the rds. The water dissociation barrier on the PdCu/CeO2 interface is
significantly reduced to Eact = 0.24 eV, suggesting a more active catalyst for dissociating water, but where the
dissociation of the hydroxyl species is slow. The calculations also show that CO adsorption is stronger on Pd
than on Cu, which suggests that Pd plays a key role in the WGSR by capturing CO molecules from the
gas-phase.

Saqlain et al [79] studied the WGSR on metallic Cu(100) and bimetallic Cu–Au(100) surfaces with a DFT
approach (Perdew–Wang 91 (PW91) functional) and plane-wave basis sets. The results of their calculations
predicted that the bimetallic surface is superior to the Cu(100) surface for the catalysis of the WGSR, since
the decomposition of water, which is difficult on the metallic surface, becomes energetically more favorable
on the bimetallic surface. The charge transfer from the exposed Cu layer to the underneath Au layer was
suggested to be the main reason for the enhanced activity, with CO oxidation following the redox path on
both the surfaces. On the bimetallic surface, the rds was linked to the O–H disproportionation reaction
leading to O and H2O.

The computational studies above clearly suggest that active WGSR catalysts must be able to easily
dissociate the water molecule. Therefore, several researchers focused their attention on the reaction of water
dissociation on targeted catalyst models instead of calculating the full WGSR mechanism. Ghosh et al [80]
used the PBE functional and plane-wave basis sets to study the water adsorption and dissociation on Cu/Ni
bimetallic surfaces with varying concentration of the two metals. Overall, their calculations show that the
presence of Ni in Cu(111) surfaces decreases the activation energy barriers for water dissociation, with values
decreasing from 1.14 eV on Cu(111) to 0.61 eV in the case of a Ni monolayer on top of Cu(111), but the
adsorption energies are almost constant with values between−0.12 and−0.18 eV. In absolute value, the
activation energies are larger than the adsorption energies, suggesting that water molecules will desorb intact
without dissociating upon temperature increase.

Bimetallic catalyst models based on Cu(110) and Cu(111) surfaces, with one outermost Cu atom
replaced by Ni, Rh, Ir or Ag, were considered in another DFT study by Fajín et al [81] performed with the
PW91 functional and plane-waves. The selection of the dopant elements was based on previous studies by
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Table 1. CO uptake, CO2 production rate and TOF of WGSR catalysts working with a 10% CO and 20% H2O stream at 543 K.
Reprinted from [98]. Copyright (2018), with permission from Elsevier.

Catalyst CO uptake/µmol g−1 CO2 rate/µmol min
−1 gPt

−1 TOF/10−3 s−1

Fe/SiO2 — 0 0
Pt/SiO2 49 659 10.4
Physical mixture (Fe/SiO2 + Pt/SiO2) — 511 7.2
Pt1Fe0.06/SiO2 32 590 15.3
Pt1Fe0.1/SiO2 30 839 25.8
Pt1Fe0.16/SiO2 29 1503 48.9
Pt1Fe0.2/SiO2 27 1525 47.5
Pt/C 95 0 0
Pt1Fe0.2/C 76 89 1.5

the same authors [82] that suggested surfaces of Ni, Rh, Ir and Ag to be quite interesting for dissociating a
water molecule. Upon comparison of the adsorption energies and of the activation energy barriers on the
bimetallic surfaces with those calculated on parent metallic surfaces, these authors found a cooperative effect
(i.e. more pronounced effect in the bimetallic surfaces than in the corresponding parent pure metallic
surfaces) that stabilizes the reactants and products of the water dissociation reaction and leads to a decrease
of the energy barriers associated to the cleavage of the O–H bond in the water molecule. Importantly, the
absolute values of the adsorption energies for the water molecule become larger than the activation energy
barriers on the bimetallic surfaces, suggesting that the water molecule will effectively dissociate into
co-adsorbed H and OH species, with Rh@Cu(110) and Ir@Cu(110) being very interesting cases with
adsorption energies/activation energy barriers of−0.51/0.31 eV and−0.55/0.21 eV, respectively. Fajín et al
[83] extended their computational studies to trimetallic catalyst models and found that the replacement of
two outermost atoms by one Al and one Zn atom in extended copper surfaces dramatically improves the
activity of the copper surface towards the dissociation of the water molecule. Among the 25 trimetallic
catalyst models considered in their work [83], the calculations predict a facile dissociation of the water
molecule onto the (AlZn)@Cu(111) surface, which is aligned with the experimental results by Boumaza et al
[84] where the potential of a Cu0.5Zn0.5Al2O4 spinel oxide catalyst for the WGSR was demonstrated. The
high activity of the ternary Cu/Zn/Al catalyst suggests that the active phase of the Cu/ZnO/Al2O3 commercial
catalyst might embody localized patches of a trimetallic alloy containing these metal atoms [85]. A spinel
phase but with Fe instead of Al (Cu0.15ZnFe2) was also found to be quite active for the WGSR [86]. In fact,
the trimetallic catalyst was found to be more active than bimetallic Cu–Zn and Cu–Fe oxide catalysts which
was suggested to be a consequence of the lower temperature required for reducing CuO in the spinel catalyst
than in the bimetallic oxides [86], which is well aligned with the suggestions by Yahiro et al [61] discussed
above. However, in the works by Khan et al [87] and Natesakhawat et al [88], where several different
Fe2.73M0.27O4 (M = Al, Ce, Co, Cr, Cu, Ga, Mn, Ni and Zn)-type spinels were studied, the complexity of the
process became evident, since different aspects, e.g. improved covalency of the FeIII ↔ FeII redox couple,
sintering restriction, decrease of the temperature for Fe2O3 → Fe3O4 reduction, or mobility of lattice oxygen,
may be differently influenced by the added metal.

2.2.4. Multimetallic catalysts based on platinum
Platinum particles dispersed over metal oxide supports such as Al2O3, CeO2, ZrO2, CeO2–ZrO2, or TiO2
display interesting activity for the WGSR at low temperatures [68, 89–97]. Therefore, it is not surprising to
find studies where the effect of the addition of a second metal in the catalytic activity towards the WGSR was
analyzed. For example, Aragao et al [98] used the method of controlled surface reactions (CSRs) to
incorporate Fe into Pt/SiO2 with 5 wt% Pt loading, with Pt to Fe molar ratios between 1:0.05 and 1:0.2. The
deposition of Fe was suggested to occur near uncoordinated atoms at the edges and corners of the Pt
nanoparticles and/or activated hydroxyl groups at the interface with the support. Notably, no Fe deposition
could be detected on the bare SiO2 support, clearly suggesting that OH groups on the bare support were not
having the same characteristics as those in Pt/SiO2. The catalytic activities of the bimetallic FePt/SiO2
catalysts are compared with those of the monometallic catalysts, bare and physically mixed, in table 1. The
influence of the support was also analyzed upon additional comparison with carbon supported Pt/C and
Pt1Fe0.2/C catalysts.

As can be seen, when Fe is added to the Pt-based catalysts, the CO uptake decreases but the CO2
production rates increase, clearly showing the synergic influence of iron in the WGSR catalysis. Also, the
comparison of results for similar catalysts but with silica or carbon supports clearly suggests the participation
of the hydroxyl groups on the silica surface in the catalysis of the WGSR. Aragao et al suggested that in the
case of the monometallic Pt/SiO2 and Pt/C catalysts, the reaction follows the associative mechanism, i.e. a
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Langmuir–Hinshelwood type process where the adsorbed CO reacts with surface OH, generated by H2O
activation, and progressing through carbonate/carboxyl or formate intermediates. In the case of the iron
containing catalysts, the Fe promoting role was explained in terms of the redox properties of Fe, where
coordinatively unsaturated ferrous sites confined near the Pt–SiO2 interface decrease the energy barriers for
O2 activation and reaction with CO adsorbed on a nearby Pt site. Nevertheless, an associative mechanism in
which the coordinatively unsaturated ferrous sites are highly active for H2O activation and dissociation could
not be disregarded.

The CSR method was also used by Sener et al [99] to prepare MoPt bimetallic catalysts on carbon and
silica supports. As in the case of the FePt bimetallic catalysts, the catalytic activities of silica-supported
catalysts are higher than the ones displayed by the carbon-supported samples. Interestingly, they found that
the deposition of Mo onto Pt/C reaches saturation for a composition of Mo:Pt= 0.32 and, beyond this point,
the additional Mo species are deposited on the carbon support. Moreover, the TOFs on the PtMo/C catalysts
were found to scale linearly with the estimates of surface Mo mole fraction, which suggests that surface
Pt–Mo interfaces are the active sites for the WGSR.

Rhenium was found to enhance the activity and stability of Pt-based catalysts, even at very low
temperatures [100–102]. The experimental study of Duke et al [103] aimed to understand the origins of the
activity enhancement when compared with monometallic Pt-supported catalyst, by controlling the effects of
Re oxidation and bimetallic composition, and confirming the absence of cluster sintering during reaction.
Bimetallic catalysts having a large fraction of surface Pt atoms were found to be more active than bimetallic
catalysts having a large fraction of surface Re atoms, which was suggested to be a consequence of the lower
activity of Re towards the WGSR. However, the lower activity of Re does not explain why bimetallic catalysts
with large fractions of surface Pt atoms are also more active than pure Pt catalysts. Duke et al [103]
confirmed that only metallic Re is present in the case of the more active catalysts with large fractions of
surface Pt atoms and that when ReOx species were present the catalytic activity was reduced. From infrared
absorption reflection spectroscopy experiments on pure Pt and Pt–Re surfaces, they found that the CO
coverage is greater on Pt. This information was used to propose that Re species avoid catalyst poisoning by
CO, as found by others [104–106], thus enhancing the catalytic activity. DFT calculations also demonstrate
that CO binds more strongly to Pt than to Pt–Re. In particular, the study by Detwiler et al [107] confirmed
previous evidence that Re is inserted within the Pt layers, leading to the formation of a Pt skin instead of the
formation of a ReOx layer. The presence of subsurface Re species lowers the d-band center of the exposed Pt
atoms which results in weaker adsorbate binding.

2.3. Methanol decomposition
2.3.1. Introduction
Methanol (CH3OH) contains 13 wt% of hydrogen [108] and is a potential hydrogen carrier (from the
capture of CO2 and from water splitting H2) as comprehensively documented by Frei et al [109]. Its
decomposition for hydrogen production can be represented as follows,

CH3OH→ CO+ 2H2 (8)

i.e. each mole of methanol decomposes into two moles of hydrogen. This reaction is endothermic, with
∆H=+91.7 kJ mol−1 (around 1 eV) at 298 K [12]. The resulting CO may be combined with steam to
produce additional H2 via the WGSR equation (2). One of the difficulties of using methanol to produce
hydrogen to fuel the engine of a vehicle are the high temperatures required, a problem which affects
especially Northern countries. In fact, while the methanol synthesis requires low temperatures and high
pressures, its decomposition is performed at ambient pressure and higher temperatures [110].

2.3.2. Monometallic catalysts
The most studied catalysts for methanol decomposition are metallic: Cu, Ni, Pt and Pd [111–118]. In
particular, Pt has been the subject of much scrutiny and controversy, namely due to the debate regarding the
dissociation reaction pathway (figure 10). Using high-resolution electron loss spectroscopy and thermal
desorption spectroscopy, the clean Pt(111) surface was reported to allow methanol decomposition into CO
and H2 at 140 K, while the same surface covered by oxygen instead forms water and methoxy (CH3O), which
then require a higher temperature to decompose into the final products (CO and H2) [119]. This has been
confirmed by several theoretical and experimental works [111–113, 120, 121]. Using different experimental
techniques (secondary ion mass spectrometry and thermal programmed desorption), it has also been shown
that methanol can decompose on Pt(111) by first breaking the C–O bond, forming a methyl group [122], a
similar mechanism as the one reported at high temperatures on the (1× 1)Pt(110) surface [123]. Regardless
of the mechanism leading to the complete methanol decomposition, the greatest concern lies in the fact that
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Figure 10. Representation of several reaction pathways for methanol decomposition. The two main pathways begin by breaking
the O–H bond (blue) or the C–H bonds (green). Adapted from [131]. Copyright (2014), with permission from Elsevier.

CO adsorbs very strongly on the Pt surface, quickly reducing its catalytic capability [124–127]. This CO
poisoning can be mitigated by mixing platinum with another metal, by surface coverage, alloying, doping,
etc. The quest for a suitable combination served as motivation for most of the works on methanol
decomposition on Pt, for at least the last decade [128–130].

2.3.3. Multimetallic catalysts
One of the most popular bimetallic catalysts for methanol decomposition is Au/Pt. One reason for this is
that, on these bimetallic surfaces, the energy (and, consequently, the temperature) required for CO
desorption reduces to less than a half of that on pure Pt. In fact, on Pt(111) and Pt(100), the CO desorption
temperatures are 400 K and 525 K, corresponding to desorption energies of around 1.12 and 1.41 eV,
respectively [132]. If, instead, one considers surfaces with the same Miller indexes, but with approximately
one half of the surface Pt atoms substituted by Au atoms, the CO desorption temperatures are considerably
lower (174 K and 237 K, respectively), and so are the desorption energies (0.46 and 0.62 eV, respectively)
[133]. This result, predicted by DFT calculations and confirmed by TPD experiments, implies that Au/Pt
bimetallic surfaces are not as easily poisoned by CO as pure Pt surfaces. The same study also showed that the
Au/Pt surface is stable in the conditions required for CO desorption.

Yuan et al [117] employed DFT calculations to study methanol decomposition on the Au(111) surface,
with some Au surface atoms replaced by Pt in an hexagonal fashion, and predict an alternative reaction
mechanism, which ultimately may not lead to the production of CO. By comparing two general
decomposition reaction paths—(a) breaking the O–H bond first vs (b) breaking it last—they found that the
former contains one sizeable barrier to overcome, while the latter contains three (see figure 11 and table 2).
In the same study, it was also shown that the two paths are very unlikely to cross each other in one of the
intermediate reactions. The highest energy barrier for reaction path (a) is of 0.98 eV and corresponds to the
O–H bond scission, while the ensuing C–H scissions require less energy. From the data in table 2, we can
conclude that on PtAu(111), after CH3OH becomes CH3O, the latter should easily decompose to CH2O,
which is then harder to break. This contrasts with the clean Pt(111) surface where, after O–H scission, the
decomposition reaction easily continues to form CO, due to the extremely lower energy barriers. The values
in table 2 corresponding to methanol decomposition path (b) show that the alloying effect has quite a weak
impact. Here it should be noted that the calculated adsorption energies of methanol on the Pt(111) and
PtAu(111) surfaces are very low, 0.33 and 0.29 eV, respectively [112]. Both these values are lower than the
energy barriers of the first reaction steps shown in table 2 and, therefore, methanol is more likely to desorb
from the surface and lose its first H atom through some other mechanism, such as a collision, than when
adsorbed. The reactions can then proceed on the catalytic surface because the absolute binding energies of
both CH3O and CH2OH on either surface are all higher than 1.50 eV, favoring dehydrogenation rather than
desorption, especially through path (a). One crucial difference between Pt(111) and PtAu(111) is the barrier
for CH2O dehydrogenation, which is much higher in the bimetallic surface. This difference, added to the
moderate adsorption energy of CH2O on PtAu(111) (0.54 eV), suggests that CH2O could be directly
oxidized by atmospheric oxygen into formic acid, instead of forming CO.

Pure Pt and Pt/Au clusters have also been theoretically studied in terms of methanol dehydrogenation
and CO desorption [134]. Qualitatively, the results coincide with those of previous calculations and
experiments [117, 129, 132]; it was found that, although on Pt/Au the energy of the dissociation rate-limiting
step is harder to overcome, the final CO desorption is much easier on Pt/Au. On the Pt3 cluster, the
dissociation was predicted to begin with a C–H bond scission with an energy barrier of 0.56 eV, while on
PtAu2 the reaction begins by breaking the O–H bond, with an energetic cost of 0.93 eV. The latter is
compensated by a CO desorption energy of 0.19 eV, much lower than the 1.31 eV calculated for Pt3.

The alloying effect of Pt/Au on TiO2 for methanol decomposition was finally studied in detail, both
theoretically and experimentally, by Tenney et al [135]. There is indeed very strong synergy between all the
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Figure 11. Visual representation of the methanol dehydrogenation process along two pathways, each beginning (left) or ending
(right) with the O–H bond breaking. Color code for blue and green pathways as in figure 10. From top to bottom, hydrogen bonds
in the adsorbed methanol molecule are sequentially broken until only CO is left. The numbers represent energies of adsorption,
migration, or energy barriers. Gray and yellow spheres represent atoms of platinum or gold, respectively. Labels in red indicate the
positions of the carbon, oxygen, or hydrogen atoms above the surface. Adapted from [117], with the permission of AIP Publishing.

Table 2. Energy barriers as calculated in [117], in eV, for methanol decomposition, following two paths: O–H bond breaking (a) as the
first step vs (b) as the last step.

Reaction Pt(111) PtAu(111)

(a) Starting with O–H scission
CH3OH→ CH3O+H 0.81 0.98
CH3O→ CH2O+H 0.25 0.28
CH2O→ CHO+H <0.10 0.53
CHO→ CO+H 0.23 0.63
(b) Ending with O–H scission
CH3OH→ CH2OH+H 0.67 0.81
CH2OH→ CHOH+H 0.63 0.66
CHOH→ COH+H 0.80 0.91
COH→ CO+H 0.97 0.81

materials involved. It was shown that Pt/Au clusters with more than 50% Au contain only Au atoms on the
surface. As previous studies had found, the first bond to be broken in the process is O–H, a scission
facilitated by the presence of TiO2. However, if only TiO2 was present, the resulting methoxy (CH3O) would
likely recombine with the hydrogen and desorb without reaction. The role of Au is to promote H2 desorption
at low temperature (<300 K) to prevent the reaction from stopping at this stage. The reaction on pure Au
clusters yields CH2O rather than CO as its main product. Nevertheless, on Pt/Au, CH3O connects to the
surface via its O atom, which induces the migration of Pt from under Au to the surface and allows the
dehydrogenation to complete. The dehydrogenation activity of this cluster is very similar to that of pure Pt
clusters. The advantage of the alloy is that the CO desorption temperature decreases with increasing Au
fraction (in particular, it decreases by about 25 K at an Au fraction of 25%) [136]. Therefore, a delicate
balance between the amount of Pt and Au needs to be found: if there is too much Au, the dehydrogenation
will not be completed, but too much Pt yields too strong a binding energy for CO, poisoning the catalyst.

Let us now turn our attention to bimetallic catalysts with Pt and metals other than Au. Guo et al studied
the substitutional doping of Ni on Pt [131]. This doping was found to shift the dehydrogenation path from
first breaking one C–H bond to begin with an O–H bond scission. Charge transfer from Ni to Pt was found
to weaken the CO poisoning. Removing CO from the PtNi cluster was predicted to require 0.85 eV, while the
same operation on Pt was calculated at between 0.89 and 1.51 eV. More recently, a theoretical study on the
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PtRu(111) surface over boron-doped graphene found that adding Ru to Pt weakens the CO adsorption, and
that the graphene sheet improves the catalytic activity by lowering the methanol dehydrogenation energy
barriers [137, 138]. The CO adsorption energy on PtRu(111) on boron-graphene was calculated at−1.81 eV,
which is considerably lower than on Ru(0001) (−2.30 eV [139]) or PtRu(111) (−2.10 eV [140]). Also,
recently, Pt/Ir was demonstrated as an alternative catalyst for methanol decomposition with reduced CO
poisoning with respect to pure Pt, with two advantages: weaker CO binding energy (by 0.26 eV) and more
favorable CO oxidation by OH−.

It should be noted that catalysts involving noble metals, such as Ru, Ir, Pt, or Au, may not realistically be
employed at a significant scale. However, they can be regarded as benchmarks, whose performance as
catalysts may be achieved or surpassed by research on mono or multimetallic catalysts. Therefore, it is not
surprising to see that other researchers devoted their attention to alloying of noble metals with abundant
ones as Cu, Ni or Co. Upon a combination of DFT calculations and thermochemical scaling relationships,
Mehmood et al [141] estimated the thermochemistry and kinetics of the methanol decomposition on pure
metallic or bimetallic clusters with fourM atoms (M = Ag, Au, Co, Cu, Rh, Pd and Pt). From a volcano plot
of the methanol decomposition using the adsorption energies of O and C as descriptors, they found that the
Pd1Cu3 and Pd2Co2 subnanometer metal clusters were close to the predicted maximum of the volcano, with
predicted rates higher than those predicted for Rh4, Pd4 or Pt4 clusters. Further research is certainly needed
to analyze whether it is possible to develop improved catalysts based on abundant metals for the methanol
decomposition reaction.

2.4. Ammonia decomposition
2.4.1. Introduction
Around 150 million tons of ammonia (NH3) are produced every year around the world [11]. This
compound has long been known as an excellent choice for hydrogen production, storage and transport.
Indeed, liquid ammonia contains 17.8 wt% hydrogen, amounting to 50% more hydrogen per volume than
liquid hydrogen itself [142]. The fact that a pressure of around 10 atm is enough to liquefy ammonia at 298 K
makes its liquid-phase storage relatively cheap, decreases the size and weight of containers, and allows for a
simple way to store hydrogen at a higher volumetric density than liquid H2.

The global reaction of ammonia (NH3) decomposition to form hydrogen (H2),

2NH3 →N2+ 3H2 (9)

is endothermic, and the corresponding enthalpy of reaction at 298 K is 91.86 kJ mol−1, or nearly 1 eV. High
temperatures and low pressures facilitate this process, and in practice this reaction is normally performed at
around 850 ◦C [12]. Alternatives include burning a fraction of the resulting hydrogen in order to help
maintain the high temperature. The trade-off is the reduction of the reaction yield, as some of the hydrogen
is replaced by the product(s) of combustion and water vapor, even if the combustion is done in a carbon-free
atmosphere to prevent the formation of side products such as carbon monoxide or dioxide [12].

2.4.2. Monometallic catalysts
In reality, ammonia decomposition reaction occurs in steps, where NH3 is successively dehydrogenated,
forming N and H, which recombine as N2 and H2, respectively [143],

NH3+ ∗→ NH∗
3 (10)

NH∗
3 + ∗→ NH∗

2 +H
∗ (11)

NH∗
2 + ∗→ NH∗ +H∗ (12)

NH∗ + ∗→ N∗ +H∗ (13)

N∗ +N∗ →N2+ 2∗ (14)

H∗ +H∗ →H2+ 2∗. (15)
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Figure 12. Representation of the general mechanism of ammonia adsorption, decomposition, and product desorption on a
catalyst surface. The blue and white spheres represent nitrogen and hydrogen atoms, respectively, while the remaining spheres are
surface atoms. Adapted with permission from [144]. Copyright (2019) American Chemical Society.

These reactions represent, respectively, the adsorption of ammonia, the first, second and third
dehydrogenations of adsorbed ammonia, and the recombination and desorption of two nitrogen or
hydrogen adatoms (as shown in figure 12). A suitable catalyst must therefore be such that the binding of the
nitrogen atom of NHx is strong enough for the dehydrogenation to occur, but weak enough to allow the
resulting nitrogen adatoms to recombine as N2 and desorb from the surface. This trade-off is crucial in
finding the ideal catalyst for ammonia decomposition.

In this review, we focus on metallic catalysts (which, in fact, are currently the default choice) but, in the
case of ammonia decomposition for hydrogen production, other choices, such as nitrides and carbides of Co,
Cr, Fe, Mn, Ni, Ti and V, or alkali metal amides are available. The former have been found to show catalytic
activity similar to that of metals [145, 146], while the latter seem promising to promote ammonia
decomposition at temperatures lower than 450 ◦C, contrasting with the temperatures above 600 ◦C required
to achieve 100% conversion efficiency on metal catalysts. For further details on ammonia decomposition on
non-metallic catalysts, please refer to the very recent reviews of Lamb et al [11] and Mukherjee et al [147].

Ammonia decomposition using metallic catalysts has been investigated for so long that the activity trend
for different metals has been known since 1823, before the word ‘catalysis’ was applied to these processes
[148, 149]. Metallic catalysts for ammonia decomposition are so well established that some works do not
even mention other types of catalysts. According to Häussinger et al [12], the typical catalysts are nickel- or
iron-based. However, other metals present higher catalytic activity. The list of studied monometallic catalysts
increased over time and, in 2004, Ganley et al experimentally probed the activity of 13 metals supported over
alumina (Al2O3) at T = 580 ◦C [150], measured as TOFs, and with results summarized in table 3. In all
theoretical and experimental works, the consensus is that ruthenium yields the highest catalytic activity
among all monometallic catalysts, as shown in figure 13. Other studies give slightly different orders,
depending on the support, but Ru retains its merit [151, 152]. Nevertheless, research did not end here, as it
was found that the activity of Ru at lower temperatures decreases considerably. For instance, at 450 ◦C, the
TOF of Ru supported on carbon nanotubes becomes less than 50% [153].

While in ammonia synthesis via the Haber–Bosch process, the rds is known to be the dissociation of the
N2 triple bond, the limiting step in ammonia decomposition depends on the metallic catalyst. On precious
metals, such as Ru, Rh, Ir or Pd, the rds is the breaking of N–H bonds, while for nonprecious metals, like Ni,
Co or Fe, the limiting step is N2 desorption, one of the last steps of the process [155]. This is the reason
behind the famous ‘volcano plot’ obtained in [154], which correlates the catalytic activity of several metals
with the energy barrier for N–H bond scission. This plot shows that such a correlation exists separately for
precious and nonprecious metals: the TOF increases with the N–H bond scission activation energy on the
latter and decreases on the former [147, 151, 154]. The adsorption energy of nitrogen on each metal
correlates as a volcano with both the TOF for ammonia synthesis and ammonia decomposition (with shifted
maxima), and shows that Ru is the best catalyst for both processes among pure metals [151]. The volcano
shape implies that there is an ideal value for nitrogen binding energy which leads to the highest ammonia
synthesis activity. With this in mind, in 2005, Boisen et al [152] predicted that a combination of two metals
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Figure 13. Calculated TOF for ammonia synthesis as a function of the nitrogen adsorption energy, catalyzed by monometallic
or bimetallic CoMo surfaces. Adapted with permission from [154]. Copyright (2001) American Chemical Society.

Table 3.Measured ammonia decomposition TOF over several metal catalysts [150]. Reprinted with permission from Springer Nature
Customer Service Centre GmbH: Springer Nature, Catalysis Letters [150] © 2004.

Catalyst TOF (s−1)

Ru 6.85
Ni 4.21
Rh 2.26
Co 1.33
Ir 0.786
Fe 0.327
Pt 0.0226
Cr 0.0220
Pd 0.0194
Cu 0.0130
Te <0.0056
Se <0.0044
Pb <0.0024

(one where the N adsorption energy is too high and another where it is too low), such as CoMo, should
display an activity close to the optimal one (see figure 13). Their experiments confirmed that, at low NH3
concentrations, CoMo displays a better catalytic activity for ammonia synthesis than Co or Mo individually,
and better than Ru. This bimetallic mixture, supported on MCM-41 (Mobil composition of matter No. 41
type silica), was later also used for ammonia decomposition and, in this case, an ideal Co/Mo ratio of 7/3 was
found [156]. This process of combining two elements hoping to obtain properties intermediate between the
original ones was called ‘periodic table interpolation’ and suggested to be a general phenomenon in the field
of catalysis, in reactions where the catalytic activity does not change monotonically with the interaction
energy, such as the case of volcano-like relationships. In addition, the interpolation will only produce the
desired effect if the resulting surface contains both chemical elements. If, as usually happens, one of the
elements becomes too dominant on the surface, either due to the intrinsic properties of the mixture or due to
interacting too strongly with the adsorbate, the interpolated properties might not be observed [157]. This
ground-breaking work motivated the prediction of the ammonia decomposition activity of bimetallic
catalysts, based on periodic table interpolation.

2.4.3. Multimetallic catalysts
Encouraged by the success of Boisen et al in producing a bimetallic catalyst for ammonia decomposition with
better activity than Ru via periodic table interpolation of the volcano plot, scientists began studying other
combinations of metals using both computational and experimental techniques.

In 2010, Hansgen et al studied theoretically and experimentally several configurations of Ti, V, Cr, Mn, Fe,
Co, and Ni [143]. The catalytic activity for ammonia decomposition was compared on surfaces containing
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Table 4. Calculated nitrogen binding energies of some TMs on platinum [143, 158]. The second and third columns show the values for a
single layer of the metal (M) on the subsurface and on the surface of platinum (Pt), respectively, in kcal/mol. The last column shows
values for monometallic systems.

Metal Pt–M–Pt M–Pt–Pt M

Pt — — 102.1
Ti 70.7 176.1 —
V 81.0 188.1 —
Cr 76.3 188.3 —
Mn 77.6 207.2 —
Fe 78.4 134.1 155.3
Co 83.4 126.5 119.3
Ni 87.5 130.7 113.8
Cu 93.1 86.6 74.5

only these metals, or made up of one layer of one of the metals over Pt, both on the surface (denoted
M–Pt–Pt, whereM denotes a TM) and on the subsurface, under a single layer of Pt (denoted Pt–M–Pt).
Several crucial conclusions were taken after this study. Interpolation of the points of the volcano plot
indicates that its peak (where the maximum TOF is achieved) is located at an N adsorption energy of around
134 kcal mol−1; this is slightly lower than the 141.6 kcal mol−1 attributed to Ru. The bimetallic surfaces were
found to fit well into the volcano relationship; therefore, the study proceeds to finding a TM which, when
over Pt, displays an N binding energy close to 134 kcal mol−1. The results are summarized in table 4.

On the one hand, all of the subsurface configurations showed nitrogen binding energies below
90 kcal mol−1, so they were discarded as catalysts for ammonia decomposition. On the other hand, a single
layer of some of the metals over Pt showed very promising results. While one layer of Ti, V, Cr or Mn on Pt
gives too high a binding energy (above 175 kcal mol−1), the surfaces of Ni–Pt–Pt, Co–Pt–Pt and Fe–Pt–Pt
have binding energies remarkably close to the ideal value of 134 kcal mol−1. These authors synthesized the
Ni/Pt bimetallic system by depositing Ni at room temperature or at 600 K, which led to the Ni–Pt–Pt or to
the Pt–Ni–Pt configurations, respectively. These systems were then studied using TPD and high-resolution
electron energy loss spectroscopy. The Ni–Pt–Pt surface was shown computationally (and later
experimentally) to be more stable than the subsurface one (e.g. Pt–Ni–Pt). Furthermore, upon exposure to
oxygen, the subsurface configuration rearranged itself into the surface one, both at low pressures (around
10−10 bar) and at atmospheric pressure [159–161]. The experiments also confirmed other theoretical
predictions: the Ni–Pt–Pt surface was found to be very active for ammonia decomposition, as both its
nitrogen desorption temperature and ammonia dehydrogenation barrier (the two rate-determining steps in
ammonia decomposition) are lower than those of Ru. This surface was predicted to display activity for
steady-state decomposition below 600 K.

Similarly to Ni–Pt–Pt, the N binding energies on Co–Pt–Pt and Fe–Pt–Pt surfaces are very close to the
desired value of 134 kcal mol−1. In table 4, Cu/Pt is the only bimetallic combination for which both Pt–M–Pt
andM–Pt–Pt configurations represent an improvement towards reaching the desired N adsorption value of
134 kcal mol−1, when compared to the corresponding monometallic catalyst. In contrast, for Fe, Co and Ni,
only theM–Pt–Pt configuration shows an advance towards 134 kcal mol−1, while the Pt–M–Pt
configuration displays a value farther from 134 kcal mol−1 than the monometallic catalyst. For this reason,
Co–Pt–Pt, Fe–Pt–Pt, and both Cu multimetallic surfaces were analyzed by the same group in another work
[158]. In that study, it was confirmed that the N binding energy correlates well with the catalytic activity of
bimetallic systems, and it was found that Cu bimetallic surfaces are inadequate for ammonia decomposition.
In contrast, the Co/Pt and Fe/Pt were predicted to be more active catalysts for ammonia decomposition than
the corresponding monometallic materials. Unlike the case of Ni–Pt–Pt, the surface configurations of Cu/Pt,
Co/Pt and Fe/Pt are not always the most stable ones when compared to the subsurface structures. In fact, the
Pt–Cu–Pt stacking is the most stable one regardless of the surface nitrogen coverage, while, according to the
calculations, the Co–Pt–Pt and Fe–Pt–Pt configurations are only the ground state for nitrogen coverages of
over 0.35 ML. Since the subsurface configurations are ineffective at decomposing ammonia, the reaction
needs to occur at nitrogen coverages above this value in order to stabilize theM–Pt–Pt configuration. As
stated by the authors, the experiments were carried out under ultrahigh vacuum, where the nitrogen
coverage saturation is around 0.3 ML, hampering the stabilization of the desired surface configuration. There
is, however, hope in the form of material edges and defects, which were not taken into account in the
calculations, as these likely affect the thermodynamic and kinetic relative stability of the surface and
subsurface configurations [162, 163].
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Table 5. Energy barriers, in kcal/mol, for the scission of NHx–H bonds, when adsorbed on different surfaces.

Surface NH∗
3 → NH∗

2 +H
∗ NH∗

2 → NH∗ +H∗ NH∗ → N∗ +H∗

Pt 21.6 19.9 5.7
Fe 12.2 17.2 2.7
Co 18.9 19.1 4.6
Cu 34.2 21.0 7.8
Pt–Fe–Pt 32.2 20.9 7.5
Fe–Pt–Pt 16.2 18.3 3.8
Pt–Co–Pt 29.6 20.7 7.1
Co–Pt–Pt 17.6 18.7 4.2
Pt–Cu–Pt 24.5 20.3 6.3
Cu–Pt–Pt 27.9 20.6 6.8

The energy barriers for N–H bond scissions, despite not being the rate-determining step for ammonia
decomposition on nonprecious metals, also play a relevant role in the process and as a matter of fact correlate
approximately linearly with the corresponding TOF. The dehydrogenation energy barriers on selected
surfaces [159], calculated using the method described in [164], are shown in table 5. These barriers are
significantly lower than, for instance, the ones calculated for Pd–Cu, or for Pd-doped Cu(100) [165, 166],
but similar to the calculations of Novell-Leruth et al for Pt, Pd and Rh [167]. If one excludes the
monometallic Cu surface, all linear correlation coefficients between the values in tables 4 and 5 are above
0.95 implying that, on surfaces with higher N adsorption energies, the NH3 dehydrogenation energy barriers
are lower. This also hints that, like the N binding energies, these barriers can be used to predict the TOF of
ammonia decomposition on bimetallic surfaces.

All kinds of combinations of metals under different conditions are still being tested, as ammonia
decomposition on multimetallic catalysts is an extremely hot topic. In the following paragraphs, we examine
some works that were published very recently.

Huang et al compared the performance of Ni, Co and Ni/Co metallic catalysts supported on
Ce0.6Zr0.3Y0.1O2 (CZY) [168]. It was found that the TOF is maximized at a Ni/Co mass ratio of 1/9. The
resulting TOF of around 0.67 s−1 is higher than the ones measured for Ni or Co on CZY (0.52 and 0.54 s−1,
respectively), but still much lower than the TOF on some monometallic catalysts (see table 3). This higher
catalytic activity was attributed to an increase in surface area.

An experimental comparison between the catalytic activity of Ni, Ru and Ni/Ru supported on Al2O3 and
CeO2 showed that the initial activity of Ru/CeO2 is the highest among all the analyzed combinations but, as
happens with all studied Ru-containing catalysts, it deactivates too early due to metal sintering in the case of
Ru/Al2O3 or Ru volatilization on Ru/CeO2 [169]. Additionally, CeO2 was demonstrated to be a better
support for ammonia decomposition catalysts than Al2O3. The Ni/CeO2 catalyst (with a TOF of 0.03 s−1 at
400 ◦C, lower than the 0.4 s−1 measured on Ni/SiO2 at the same temperature [170]) ended up being the
recommended one, due to its higher activity and catalytic stability, along with its lower cost, and because the
bimetallic Ni/Ru/CeO2 showed no improvement over Ru/CeO2. Around the same time, Vacharapong et al
tried a similar approach: a Ni catalyst over an Al2O3 support doped with Ce, including magnetic inducement
(to aid in controlling the composition and uniformity of Ce) [171]. Both the doping and the magnetic field
were found to increase the ammonia conversion percentage and TOF. When both changes are taken into
account, the ammonia conversion percentages measured on magnetically induced Ni on Ce-doped Al2O3
were almost twice as high as on Ni/Al2O3, with the largest effect coming from the doping rather than from
the magnetic inducement.

The plasma-assisted ammonia decomposition catalytic activities of monometallic Fe, Co, Ni and Mo
catalysts were compared with those of some of their bimetallic combinations (Fe–Co, Mo–Co, Fe–Ni and
Mo–Ni), deposited on SiO2 [172]. In terms of ammonia conversion percentage, Co proved to be the best
among the monometallic catalysts, and Fe–Ni the best among the bimetallic ones, with NH3 conversions of
48% and 60%, respectively, at 460 ◦C. Curiously, Fe–Ni was the only bimetallic surface which displayed a
higher conversion percentage than the parent metals, at any temperature between 330 ◦C and 460 ◦C. Given
its promising capabilities, Fe–Ni was then tested with different molar ratios, and the activity was found to
peak at 61% on 6Fe–4Ni, showing excellent durability over a 200 h long period of continuous operation. The
6Fe–4Ni catalyst also exhibited the highest synergy with plasma: at 500 ◦C, over 99.9% of ammonia was
decomposed, at a TOF of around 3.46 s−1. Optical emission spectra characterization showed that plasma
pre-activates NH3 into NH2 and NH and accelerates both the initial ammonia adsorption on metals and the
final recombinative desorption of N adatoms. Consequently, the combination of plasma technology with a
relatively cheap metal catalyst proved promising in the quest for better catalysts for ammonia decomposition.
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One of the most recent studies involves quinary nanoparticles made up of Co, Mo, Fe, Ni and Cu [173].
Tests at 500 ◦C revealed that the ammonia conversion percentage and the TOF critically depend on the
Co/Mo ratio, with a volcano-type relationship with the N adsorption energy. While for ratios⩽ 1 the TOF
was found lower than on Ru/TiO2 (3.08 s−1), including more Co than Mo resulted in TOFs of 5.45 and
7.00 s−1 for ratios of 9/5 and 11/3, achieving conversions of 64.5% and 100%, respectively. The Co/Mo ratio
in these quinary nanoparticles can therefore be adjusted to optimize their catalytic activity under different
experimental conditions.

3. Final remarks and future directions

The review of the literature concerning the utilization of multimetallic catalysts in some important reactions
for H2 production shows that the added metals have different roles in the catalytic processes. The metal
alloying alters the band structure, which necessarily changes the reactivity of the material, leading to different
catalysis-relevant changes, such as adsorption mechanisms and strength, as well as alternative surface
reaction paths. The supports have been found to also have important roles in the reactions: by competing
with the metallic particles for adsorption of some intermediate species, the poisoning of active metal sites can
be avoided; in other cases, the support induces changes in the catalytic properties of the metal particles which
are beneficial.

In the case of the WGSR, an important synergic effect was found when alloying copper and nickel. While
the shift activity of nickel is greater than that of copper, nickel is found to be less selective and some
formation of methane occurs. The alloying of the two metals leads to high reaction rates while retaining
methane formation, i.e. copper is essential to control the high activity of nickel towards the cleavage of the
C–O bond of carbon monoxide, thus suppressing undesirable side effects. Results of computational studies
suggest that the incorporation of very small amounts of other abundant metals, e.g. Zn or Al, may
dramatically improve the activity of copper towards the WGSR. The addition of Zn shifts to lower values the
reduction temperature of CuO to Cu while the main role of Al is to increase the catalyst stability. In the case
of the supported catalysts, catalysts using reducible oxide supports are much more active than those
employing non-reducible oxides.

The steam reforming of hydrocarbons relies essentially on nickel-based catalysts. However, these catalysts
are prone to coke formation. This problem can be somewhat prevented upon the utilization of high
H2O/CH4 ratios but, unfortunately, this generates increased costs in post-reaction separations. Therefore, it
is of utmost importance to find catalysts that can oxidize adsorbed carbon into CO. Multimetallic catalysts
alloying nickel with not only noble metals, such as gold, platinum, or silver, but Earth-abundant metals such
as copper and cobalt have also been suggested in the literature to inhibit coke formation while retaining or
increasing activity. Apparently, the metal element added to the nickel catalyst prefers to interact with very
low-coordinated Ni atoms, which are highly reactive sites that promote formation of carbon deposits.
Therefore, in this specific catalytic process, the added metals do not lead to an increase of the intrinsic
activity of nickel towards the steam reforming but have an important role of avoiding coke formation,
improving the stability and resistance of the catalyst.

Traditionally, Pt is the most studied and promising catalyst for methanol decomposition into hydrogen
and carbon monoxide. One major problem of using pure Pt is the quick CO poisoning of its surface, caused
by strong CO adsorption. This motivated the still ongoing research of multimetallic alternatives, which
attempt to keep the catalytic potential of monometallic surfaces for dehydrogenating methanol, while
mitigating the CO saturation. Among these, Pt/Au is quite popular for its success in greatly reducing CO
poisoning and in some cases providing reaction paths which avoid the production of CO.

Studies of bimetallic materials as catalysts for ammonia decomposition show that they have the potential
to be more active than Ru-based materials. New combinations of metals and technologies are still being
discovered, with the material design being further complicated by the unpredictability of some properties.
While some of the studies reviewed here used the simple periodic table interpolation to form bimetallic
compounds, this approach sometimes yields results worse than those of the parent metals. Employing
first-principles calculations to predict and tune nitrogen binding energies has been shown to often lead in the
desired direction, due to the established volcano-like relationship between this quantity and the TOF of
catalysts. However, this area is still relatively new and further tests are still needed to confirm the
reproducibility and stability of the results available so far.

Regrettably, the unifying feature of some of these reactions is the reliance on precious metals, given their
resistance against oxidation and selectivity. Naturally, since these metals are rare by definition, more
sustainable alternatives are required. This motivates the use of first-row TMs, such as Cu- and Ni-based
bimetallic materials. Encouragingly, these non-precious TMs are also catalytically active, in special when
alloyed with other Earth-abundant metals which can lead to further improvements if when wisely combined.
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Despite the significant knowledge gathered from the experimental and computational studies reported in the
literature, additional work is needed. Experimentally, studies are needed to fully understand the
compositions of the catalysts under operando conditions, either the support termination, its interface with
the metal particles and the amount of segregation at the surface of the metal particles. This information is
crucial for developing structural models that can be used in parallel computational studies. In our view, the
synergic combination of experimental and computational works is important to advance from trial and error
synthesis to de facto tailored design of catalysts.
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