
 

Universidade de Aveiro 

2010  

Departamento de Electrónica, Telecomunicações e 

Informática 

Tiago Simões Batista 

 

Arquitecturas para sistemas de informação 

baseados em cloud computing 

 

Architectures for cloud computing based 

information systems  

 

 

   



 

Universidade de Aveiro 

2010  

Departamento de Electrónica, Telecomunicações e 

Informática 

Tiago Simões Batista 

 

Arquitecturas para sistemas de informação 

baseados em cloud computing 

 

Architectures for cloud computing based 

information systems  

 Dissertação apresentada à Universidade de Aveiro para cumprimento dos 
requisitos necessários à obtenção do grau de Mestre em Engenharia de 
Computadores e Telemática, realizada sob a orientação científica do Prof. 
Doutor Joaquim Manuel Henriques de Sousa Pinto, Professor Auxiliar do 
Departamento de Electrónica, Telecomunicações e Informática da Universidade 

de Aveiro e do Doutor Cláudio Jorge Teixeira Vieira, investigador post doc da 
Universidade de Aveiro. 

 

   



  

 

 

 

 

 

 

o júri / the jury   
 

Presidente / President Doutor José Luís Guimarães Oliveira 
Professor associado do Departamento de Electrónica e Telecomunicações da Universidade de 
Aveiro 

  
 

Vogais / Examiners committee Doutor Fernando Joaquim Lopes Moreira 
Professor Associado do Departamento de Inovação, Ciência e Tecnologia da Universidade 
Portucalense 

  
 

 Doutor Joaquim Manuel Henriques de Sousa Pinto 
Professor Auxiliar do Departamento de Electrónica e Telecomunicações da Universidade de Aveiro 

  
 

 Doutor Cláudio Jorge Teixeira Vieira 
Investigador post-doc da Universidade de Aveiro 

 



  

  

 

agradecimentos 

 

Um abraço para todos os colegas que me acompanharam ao longo do curso, 

especialmente durante os últimos dois anos. 

Um muito obrigado à minha família que me perdoou andar a pastar pela uni-

versidade antes de descobrir a minha verdadeira vocação. 

E já agora, um grande agradecimento ao Nuno e ao Diogo por me terem aber-

to os olhos a tempo de eu não desistir. 

Abraços para todos lá de casa que me ajudaram nos momentos de humor 

mais negro, e um beijo especial para a Fátima, que tem a compreensão para 

não me mandar bugiar apesar do pouco tempo que lhe posso dedicar. 

Obrigado aos professores que me deram aulas ao longo do curso, especial-

mente para aqueles que me estimularam a ser independente, autodidacta, e a 

não ter medo de confrontar as ideias pré concebidas. 

Finalmente, muito obrigado aos meus orientadores pelo estímulo que me 

deram para sair da minha zona de conforto e explorar vertentes novas desta 

área maravilhosa! 

As pessoas que me ajudaram a chegar até aqui são incontáveis, mas como 

este espaço é limitado, tenho que me conformar em mandar um abraço a 

todos, sem poder mencionar nomes! 

 

 



  

  

palavras-chave 

 

Nuvem, SOA, IaaS, PaaS, virtualização 

 

resumo 

 

 

Este trabalho faz um apanhado do panorama actual no que diz respeito a 

Cloud computing. Começa por analisar a definição proposta pelo NIST e cate-

gorizar vários serviços comerciais de acordo com as categorias propostas nes-

sa definição. 

De seguida, são analisadas as implementações grátis disponíveis em licenças 

Open Source e chega-se à conclusão que para Clouds do tipo IaaS já existem 

várias implementações, algumas com boa qualidade, mas que na área de 

PaaS ainda existe muito trabalho a ser feito antes de se chegar a uma imple-

mentação com funcionalidade comparável à dos serviços comerciais existen-

tes. 

Após uma breve análise sobre a integração de SOA com as facilidades do 

Cloud computing, chegou-se à conclusão que PaaS se apresenta como o 

modelo de serviço mais adequando para desenvolver aplicações SOA. 

Visto que não existe ainda nenhum PaaS livre, e que os existentes apresentam 

problemas sérios de vendor lock in, é especificada uma framework completa, 

portátil e aberta que permitirá implementar um serviço do tipo PaaS em infra-

estrutura privada ou sobre algum dos IaaS existentes. 

O PaaS especificado baseia-se, sempre que possível, em tecnologias existen-

tes, concluindo-se que apenas a tecnologia de armazenamento de dados 

estruturados está aquém do necessário para a implementação. Deixa-se para 

o futuro a implementação dos vários módulos que permitirão a integração dos 

vários componentes da PaaS, no entanto sempre que possível, são sugeridas 

tecnologias a utilizar de forma a manter a implementação aberta e portátil. 

 

 



  

  

keywords 

 

Cloud, SOA, IaaS, PaaS, virtualization. 

 

abstract 

 

This work sums up the current situation of Cloud computing. It starts by per-

forming an analysis of the NIST definition draft, and categorizing some com-

mercial services into the categories proposed by the referred definition. 

Next, the free implementations distributed under an Open Source license are 

analyzed, and the conclusion is that there are some high quality IaaS cloud 

implementations, but the PaaS area still needs a lot of work before the functio-

nality of a free implementation is comparable to that of the commercial services 

available. 

After a brief analysis of the integration of SOA and Cloud computing, the con-

clusion is that PaaS presents the most adequate service model for the devel-

opment of SOA applications. 

Given that, up to the moment, there is no free PaaS, and that the existing ones 

present serious vendor lock in problems, a complete, portable, and open 

framework that allows the deployment of a PaaS type service on private or on 

IaaS infrastructure is specified. 

The specified PaaS is based on current technology whenever possible, with 

exception of the storage of structured data that is not up to the requirements 

yet. The implementation of the modules required to integrate the various PaaS 

components is left as future work. Yet, whenever possible, suggestions are 

made about usable technologies that will allow the PaaS to remain portable 

and open. 

 



 

i 

Table of Contents 

Table of Contents ______________________________________________________ i 

Table of Figures ______________________________________________________ iii 

Table of Tables ________________________________________________________v 

Acronym List _________________________________________________________vii 

1 Introduction _______________________________________________________1 

1.1 Motivation _____________________________________________________________ 1 
1.2 Objectives _____________________________________________________________ 1 

1.3 Methodology ___________________________________________________________ 2 

1.4 Document organization __________________________________________________ 3 

2 Cloud Computing – State of the art _____________________________________5 

2.1 Characteristics _________________________________________________________ 5 
2.1.1 On-demand self-service _______________________________________________ 5 
2.1.2 Broad network access ________________________________________________ 6 
2.1.3 Resource pooling ____________________________________________________ 6 
2.1.4 Rapid elasticity ______________________________________________________ 7 
2.1.5 Measured Service ____________________________________________________ 7 

2.2 Service Models _________________________________________________________ 7 
2.2.1 Cloud Software as a Service (SaaS) _____________________________________ 8 
2.2.2 Cloud Platform as a Service (PaaS) ______________________________________ 8 
2.2.3 Cloud Infrastructure as a Service (IaaS) __________________________________ 9 

2.3 Deployment Models _____________________________________________________ 9 
2.3.1 Private cloud ________________________________________________________ 9 
2.3.2 Community cloud ____________________________________________________ 9 
2.3.3 Public cloud _______________________________________________________ 10 
2.3.4 Hybrid cloud _______________________________________________________ 10 

2.4 Comparing Cloud to Grid _______________________________________________ 10 

2.5 Comparison of free IaaS implementations _________________________________ 12 
2.5.1 Architecture ________________________________________________________ 12 
2.5.2 Guest Operating Systems_____________________________________________ 13 
2.5.3 Virtualization Technologies ____________________________________________ 13 
2.5.4 Public Interfaces ____________________________________________________ 14 
2.5.5 Licensing __________________________________________________________ 14 

2.6 Choosing one infrastructure manager ____________________________________ 15 

2.7 PaaS implementations__________________________________________________ 16 
2.7.1 Manjrasoft’s Aneka __________________________________________________ 16 
2.7.2 JBoss Cooling Tower ________________________________________________ 17 
2.7.3 Google’s AppEngine _________________________________________________ 17 

3 OpenNebula Deployment ____________________________________________19 

3.1 Testing deployment configurations _______________________________________ 19 
3.1.1 Choosing the hypervisor ______________________________________________ 20 

3.2 Configuring OpenNebula _______________________________________________ 21 

3.3 Driver comparison _____________________________________________________ 22 

3.4 The next step: more hardware! __________________________________________ 23 

3.5 Contextualization ______________________________________________________ 24 

3.6 Networking ___________________________________________________________ 24 
3.6.1 Remote access _____________________________________________________ 25 

3.7 Extending the functionality ______________________________________________ 26 



 

ii 

4 Proposal of a new PaaS architecture__________________________________ 29 
4.1 Common application deployment architectures _____________________________ 29 

4.2 A multi tenant elastic platform ___________________________________________ 30 
4.2.1 Storing the data _____________________________________________________ 31 
4.2.2 The application server ________________________________________________ 36 
4.2.3 Becoming a multi tenant platform _______________________________________ 39 
4.2.4 The platform infrastructure manager _____________________________________ 49 
4.2.5 Portability isssues ___________________________________________________ 53 

5 Comparison ______________________________________________________ 55 
5.1 Gateways _____________________________________________________________ 55 

5.2 Application server ______________________________________________________ 56 

5.3 Structured data storage _________________________________________________ 56 

5.4 UDDI _________________________________________________________________ 57 

6 Conclusions & Future Work _________________________________________ 59 
6.1 IaaS __________________________________________________________________ 59 

6.2 PaaS _________________________________________________________________ 60 

6.3 Future work ___________________________________________________________ 60 

References __________________________________________________________ 61 

Appendix ___________________________________________________________ 65 

Appendix A - Commercial Cloud implementations _______________________________ 67 
A.1 Amazon ___________________________________________________________ 67 
A.2 Google ____________________________________________________________ 68 
A.3 Microsoft __________________________________________________________ 68 

Appendix B - Academic or open source IaaS implementations ____________________ 71 
B.1 Apache VCL ________________________________________________________ 71 
B.2 Nimbus ____________________________________________________________ 72 
B.3 OpenNebula ________________________________________________________ 73 
B.4 Eucalyptus _________________________________________________________ 75 
B.5 Enomaly ___________________________________________________________ 75 
B.6 OpenQRM _________________________________________________________ 76 
B.7 ConVirt ____________________________________________________________ 77 

 



 

iii 

Table of Figures 

Figure 1 - Cloud and Grid compared ............................................................................................ 12 
Figure 2 - Network setup .............................................................................................................. 25 
Figure 3 - Small application deployment ....................................................................................... 30 
Figure 4 - Scalable application deployment .................................................................................. 30 
Figure 5 - Application deployment ................................................................................................ 38 
Figure 6 - Load balancer architecture ........................................................................................... 42 
Figure 7 - VCL conceptual overview ............................................................................................. 72 
Figure 8 - Nimbus components and interaction diagram ............................................................... 73 
Figure 9 - OpenNebula Architecture ............................................................................................. 74 
Figure 10 - Eucalyptus architecture .............................................................................................. 75 
Figure 11 - OpenQRM architecture ............................................................................................... 77 
Figure 12 - ConVirt core architecture ............................................................................................ 78 



 

v 

Table of Tables 

Table 1 - Infrastructure managers architecture ............................................................................. 13 
Table 2 - Guest operating systems supported............................................................................... 13 
Table 3 - Virtualization backends supported ................................................................................. 14 
Table 4 - Public interfaces ............................................................................................................ 14 
Table 5 - Licensing terms ............................................................................................................. 15 
 

 



 

vii 

Acronym List 

ACID Atomicity, Consistency, Isolation, Durability (set of properties) 

BPEL Business Process Execution Language 

CLI Command Line Interface 

CORBA Common Object Request Broker Architecture 

GUI Graphical User Interface 

IaaS Infrastructure as a Service 

IEETA Instituto de Engenharia Electrónica e Telemática de Aveiro 

KVM Kernel Virtual Machine 

NAS Network Attached Storage 

NCSU North Carolina State University 

OCCI Open Cloud Computing Interface 

OGF Open Grid Forum 

OOP Object Oriented Programming 

PaaS Platform as a Service 

RDBMS Relational Database Management System 

REST Representational State Transfer 

RDP Remote Desktop Protocol 

RMI Remote Method Invocation 

SaaS Software as a Service 

SDK Software Development Kit 

SOA Service Oriented0020Architecture 

SSH Secure Shell 

UDDI Universal Description Discovery and Integration 

VM Virtual Machine 

VNC Virtual Network Computing 

WSDL Web Service Definition Language 

WSRF Web Services Resource Framework 

XML Extensible Markup Language 

 



Motivation Introduction 

 

1 

1 Introduction 

With the advent of what has been called web 2.0 [1], many new ideas have risen to become suc-

cessful business from night to day. This sort of meteoric growth poses a great challenge for system 

and application administrators not only because of under or over provisioning [2], but also because 

the architecture of an application sometimes becomes its own greatest problem when scaling. 

Over the previous years, two technologies that try to ease both problems - the scalability and the 

creation of new services - have emerged. They are Cloud Computing and Service Oriented Archi-

tecture (SOA), each of them addressing a different problem. SOA is geared towards the creation of 

new applications using loose coupling design patterns; it also allows the creation of new services 

by orchestrating available services or modules. 

1.1 Motivation 

Cloud computing aims to solve the scalability problem by supplying computation power on demand, 

thus allowing the resources allocated to an application to scale in or out as needed. 

The combination of both technologies (Cloud & SOA) will enable application developers to create 

richer applications, using less development time, and with more confidence that the external mod-

ules work as expected. 

This requires a good understanding of SOA and cloud computing as well as a good definition of 

what is to be achieved, because each of the concepts involved is so vast that a full understanding 

would take longer than the time allowed for the whole project. 

1.2 Objectives 

The work developed during this dissertation is expected to culminate in two deliverables. The first 

is a simple Infrastructure as a Service (IaaS) cloud implemented and running at the datacenter. 

This implementation is useable by itself for teaching and research purposes. By the time this dis-

sertation is finished, this cloud should be working, requiring only small adjustments for a larger 

scale deployment. 

The second deliverable is a specification for a platform running on the cloud that serves two pur-

poses. The first is the creation of a truly vendor agnostic platform that parts with some of the limita-

tions of current commercial implementations. The second is to ease SOA application development 

and deployment by addressing problems that exist with current public UDDI implementations. 



Introduction Methodology 

 

2 

The specified platform should allow the creation of SOA services that seamlessly integrate and 

take advantage of the cloud scalability features, yet it should be open and fully portable in order to 

avoid lock in issues. 

1.3 Methodology 

The first thing that must be explored is Cloud computing. There are some commercial implementa-

tions, and several implementations of academic interest. There is much discussion over the defini-

tion of cloud computing, yet this is not the place to continue that discussion, therefore the NIST 

draft [3] will be explored as an introduction to the concept. Some implementations that were able to 

perform (or are in the process of performing) the transition from datacenter virtualization to cloud 

computing management will be analyzed based on feature charts, and the best candidate will be 

used for field-testing on the available resources. 

Service Oriented Architecture (SOA) is now a mature software architecture. Its main objectives are 

code reusability and loose coupling. To achieve that objective, developers must transform each 

module of their applications into standalone services. When each module is a service, new applica-

tions may be built just by recombining a subset of the available modules into a service orchestra-

tion. This pattern is therefore the epitome of modular software, where each module becomes truly 

autonomous from the others. 

This architecture has found its way mostly on the Business to Business (B2B) market segment, 

where integration of new software and legacy systems is a common issue. By wrapping the legacy 

system on a modern service interface, it becomes possible to include that functionality on a modern 

service orchestration. 

SOA takes advantage of several well known remote invocation patterns such as CORBA, RMI or 

Web Services to build its interfaces, therefore allowing loose coupling between services. 

As the complexity of the required orchestration increases, automatic systems for discovery and 

orchestration of services are introduced by SOA, commonly UDDI for service discovery and BPEL 

for service orchestration. 

While SOA is a well known concept, there is the need to clarify which aspects of the architecture 

are more prone to take advantage of a cloud computing environment. 

To build a test bed suitable for experimentation with the topics described above, some underused 

resources from the IEETA datacenter will be used. 

The available computing resources range from Pentium III class desktop computers to modern 

multi CPU servers. The heterogeneity that at first may seem an obstacle is in fact a great opportu-

nity: a) to explore how certain services scale horizontally; b) to simulate off cloud services; or even 

c) to test the chosen cloud implementation flexibility. 



Document organization Introduction 

 

3 

If the early testing stages prove to be successful, it will be necessary to study the possibility of 

growth through migration / integration of extra computation resources into the cloud to enhance the 

flexibility, and increase the usage of the available resources. This step is critical especially if the 

resulting cloud will be used for teaching or research purposes, as planned 

1.4 Document organization 

This document is split into six chapters and two appendixes. The first chapter introduces the prob-

lem, proposes a step towards a possible solution, as well as a methodology to achieve it. The 

second chapter, complemented by the appendixes, is an in depth analysis of the current state of 

the art in cloud computing, both in the commercial world as in the open source community. 

Chapter three describes the deployment of the selected infrastructure manager, as well as all the 

decisions made during the process of creating an IaaS testbed. Chapter four proposes a new PaaS 

architecture, and chapter five compares it to the solutions that are now available. 

Finally, chapter six contains a short conclusion and some ideas for the future. 

 



Characteristics Cloud Computing – State of the art 
 

5 

2 Cloud Computing – State of the art 

Some people may claim that cloud computing is just a new fancy name for something that already 

existed. 

The interesting thing about cloud computing is that we've redefined cloud computing to include 

everything that we already do. I can't think of anything that isn't cloud computing with all of these 

announcements. (…) I'm not going to fight this thing. But I don't understand what we would do diffe-

rently in the light of cloud [4]. 

Others claim that it represents a true paradigm shift in the consumption and delivery of IT services 

[5]. 

The commercial offerings from the major companies added to the controversy, because they all 

claim to be Cloud based, yet the services offered vary greatly in scope. 

One thing is certain, all the press in the IT area is overpopulated with articles that talk about, try to 

define, and demystify Cloud Computing. There is much discussion, both in the academic communi-

ty and in the business world, as to what is the definition of cloud computing. 

Because of this, there is a greater and greater need to reach a conclusion on what constitutes a 

cloud, and what is something else. NIST in cooperation with industry and government is now trying 

to reach a consensus as to the definition of cloud computing: 

Although that definition does not achieve full community consensus, it encompasses many of the 

initial ideas for the definition on cloud computing, and will be explored here to give a better under-

standing of what is Cloud Computing and its service models. 

Cloud computing is a model for enabling convenient, on-demand network access to a shared pool 

of configurable computing resources (e.g., networks, servers, storage, applications, and services) 

that can be rapidly provisioned and released with minimal management effort or service provider 

interaction. This cloud model promotes availability and is composed of five essential characteris-

tics, three service models, and four deployment models [3]. 

2.1 Characteristics 

2.1.1 On-demand self-service 

A consumer can unilaterally provision computing capabilities, such as server time and network 

storage, as needed automatically without requiring human interaction with each service’s provider 

[3]. 



Cloud Computing – State of the art Characteristics 

 

6 

This allows for a great deal of automatic flexibility. If the consumer has the privileges to provision 

for more resources, then the provisioning act can be an automated one responding to external 

stimuli, such as an increased load on the server, a degraded quality of service, or even a remote 

site outage. 

This is the major difference between Grid computing and Cloud computing. On a Grid, the re-

sources are scheduled, and the allocation is usually made in large chunks and served when avail-

able, which is suited to batch computing. On a Cloud, the resources are allocated in small chunks, 

and are served almost in real time. This makes Cloud Computing a very interesting platform when 

the amount of required resources for a given task is not known in advance [6]. 

2.1.2 Broad network access 

Capabilities are available over the network and accessed through standard mechanisms that pro-

mote use by heterogeneous thin or thick client platforms (e.g., mobile phones, laptops, and PDAs) 

[3]. 

The PC is no longer the only device accessing the internet. We have a plethora of new connected 

devices, and all need to be catered by the services on the cloud. This means that the cloud must 

supply its services in a standard way, so that any new device that adheres to the same standards 

will be able to take advantage of the supplied services with no modification. 

2.1.3 Resource pooling 

The provider’s computing resources are pooled to serve multiple consumers using a multi-tenant 

model, with different physical and virtual resources dynamically assigned and reassigned according 

to consumer demand. There is a sense of location independence in that the customer generally 

has no control or knowledge over the exact location of the provided resources but may be able to 

specify location at a higher level of abstraction (e.g., country, state, or datacenter). Examples of 

resources include storage, processing, memory, network bandwidth, and virtual machines [3]. 

This enables the costumer to be focused on the business requirements instead of the infrastructure 

details. As an example, some datasets are of sensitive nature and cannot cross certain geographic 

borders in order to avoid a legal nightmare. The multi-tenant model also enables resource sharing, 

allowing a given resource that is not being used by a costumer to be assigned to another, with the 

confidence that neither of them will ever interfere with each other’s operation. 



Service Models Cloud Computing – State of the art 
 

7 

2.1.4 Rapid elasticity 

Capabilities can be rapidly and elastically provisioned, in some cases automatically, to quickly 

scale out and rapidly released to quickly scale in. To the consumer, the capabilities available for 

provisioning often appear to be unlimited and can be purchased in any quantity at any time [3]. 

The costumer must be able to quickly scale in or out. If the supplied service has an unexpected 

success the scaling speed can be daunting, and a traditional datacenter may take days or weeks to 

provision for a higher load, which may lead to big loss of revenue. Even if the provision is done 

right on the first time, the application supplier still needs to provision for peak load, wasting re-

sources most of the time. If the application is an unexpected flop, the provider will end up with a 

server infrastructure that may never be used, wasting even more resources on the initial invest-

ment. 

Using cloud computing, the scaling of the infrastructure allocated to the application is very fast, 

allowing the costumer to scale according to the current application load, not according to his expec-

tation of the application acceptance by the public. 

The rapid elasticity means that the provider infrastructure must be provisioned for peak load. This 

may pose a problem for private clouds (see section 2.3.1), where the company that uses the cloud 

services performs provisioning of the datacenter. But on the case of large public cloud providers 

(see section 2.3.3) that serve worldwide clients, that problem is alleviated because peak load hours 

vary for each client and the available resources can therefore be reallocated throughout the day. 

2.1.5 Measured Service 

Cloud systems automatically control and optimize resource use by leveraging a metering capability 

at some level of abstraction appropriate to the type of service (e.g., storage, processing, band-

width, and active user accounts). Resource usage can be monitored, controlled, and reported pro-

viding transparency for both the provider and consumer of the utilized service [3]. 

As with any other utility, the supplier usually charges the client on a usage basis, this means that 

the usage level must be clearly metered, and the metric used to calculate any charging amount 

must be understood and accepted by both parties. On a different level, the provider must be able to 

monitor its datacenters usage patterns in order to plan when and where to invest in order to keep 

the service level. 

2.2 Service Models 

Most of the services offered by cloud providers can be split in a few classes of services. A descrip-

tion of those classes follows. These classes are not absolute; some services will fall into more than 

one category especially if they are composite or orchestrated services. 



Cloud Computing – State of the art Service Models 

 

8 

2.2.1 Cloud Software as a Service (SaaS) 

The capability provided to the consumer is to use the provider’s applications running on a cloud 

infrastructure. The applications are accessible from various client devices through a thin client in-

terface such as a web browser (e.g., web-based email). The consumer does not manage or control 

the underlying cloud infrastructure including network, servers, operating systems, storage, or even 

individual application capabilities, with the possible exception of limited user-specific application 

configuration settings [3]. 

This model completely hides the underlying complexity from the consumer. From the outside, the 

system works as if a large computer were servicing all the requests, always maintaining an accept-

able quality of service. If the consumer is to be charged, the charging will most likely take the form 

of a subscription, or a per access payment. 

Software as a Service did not emerge with cloud computing [7]. It has been around for years, in the 

form of subscription services on the internet, some of them are free to the end user, such as 

Google’s Gmail, others are paid services, such as some online scientific libraries that request pay-

ment for each article downloaded. Software as a Service gained visibility with Cloud Computing 

because the flexibility of on demand scaling enabled the software providers to pay only for the re-

sources that are actually used by the application. 

2.2.2 Cloud Platform as a Service (PaaS) 

The capability provided to the consumer is to deploy onto the cloud infrastructure consumer-

created or acquired applications created using programming languages and tools supported by the 

provider. The consumer does not manage or control the underlying cloud infrastructure including 

network, servers, operating systems, or storage, but has control over the deployed applications and 

possibly application hosting environment configurations [3]. 

This service model offers a development stack that enables the client to take advantage of the 

provider’s infrastructure without the need to learn how to manage it, and in most cases without the 

need to understand how to take advantage of parallelization. On today’s offerings, the provider 

usually supplies a free SDK for the available programming languages, thus allowing a developer to 

take full advantage of the cloud just by learning a new SDK. When on a commercial business mod-

el, the charging for this service can be quite complex, and is usually based on one or more of the 

following criteria: 

 CPU cycles used 

 Number of requests 

 Amount of data transferred 

 Emailed recipients 



Deployment Models Cloud Computing – State of the art 
 

9 

This service model usually has a great downside. It completely locks the application developer to 

the service provider as there is no standard SDK for cloud development, and changing the SDK 

may mean a full rewrite of the application. 

2.2.3 Cloud Infrastructure as a Service (IaaS) 

The capability provided to the consumer is to provision processing, storage, networks, and other 

fundamental computing resources where the consumer is able to deploy and run arbitrary software, 

which can include operating systems and applications. The consumer does not manage or control 

the underlying cloud infrastructure but has control over operating systems, storage, deployed appli-

cations, and possibly limited control of select networking components (e.g., host firewalls) [3]. 

This service allows a user to provision and spawn an infrastructure and run his selected software 

stack. This is an on demand service, as the infrastructure can grow or shrink with the load fluctua-

tions. It is usually the client’s responsibility to manage most of the software stack and make sure 

that the application running on the cloud can scale horizontally with the addition of new nodes. The 

startup and shutdown process of extra nodes is requested via an interface (usually a web service). 

When in a commercial business model, the charges are calculated on CPU/hour usage. Usually 

associated with an IAAS is also a storage service, where charges are based on GB transferred 

and/or stored per month. 

2.3 Deployment Models 

2.3.1 Private cloud 

The cloud infrastructure is operated solely for an organization. It may be managed by the organiza-

tion or a third party and may exist on premise or off premise [3]. 

This is an in-house cloud, its full resources are committed to the service of a single organization 

needs. This type of cloud has the disadvantage of requiring the owner to scale the physical re-

sources for peak load, thus muting some of the cloud computing advantages over other computing 

models. Yet, if a company has strict security or legal impairments, this may be the only way to take 

advantage of the cloud model. 

2.3.2 Community cloud 

The cloud infrastructure is shared by several organizations and supports a specific community that 

has shared concerns (e.g., mission, security requirements, policy, and compliance considerations). 



Cloud Computing – State of the art Comparing Cloud to Grid 

 

10 

It may be managed by the organizations or a third party and may exist on premise or off premise 

[3]. 

The community cloud has a lot in common with a private cloud, yet the ability to share resources 

among various organizations can lead to a better utilization ratio of those resources, thus achieving 

a better utilization ratio of the resources committed to build the cloud. 

2.3.3 Public cloud 

The cloud infrastructure is made available to the general public or a large industry group and is 

owned by an organization selling cloud services [3]. 

This is the most flexible model. The provider is able to take advantage of scale economy, and pass 

the savings on to the clients. Usually the provider has a resource pool so large that from any client 

point of view, it looks like a nearly infinite amount of resources. 

2.3.4 Hybrid cloud 

The cloud infrastructure is a composition of two or more clouds (private, community, or public) that 

remain unique entities but are bound together by standardized or proprietary technology that 

enables data and application portability (e.g., cloud bursting for load-balancing between clouds) [3]. 

This deployment model has some similarities with grid federation where two or more grids under 

different administration domains [8-9] are presented to the end user as an uniform resource. This 

means that the end user does not need to worry as to the particular interface of each cloud that 

forms the hybrid cloud, nor about different pricing schemes. From the user point of view, only one 

cloud is visible. The cloud provider has to deal with different pricing schemes from each of the up-

stream providers, as well as with the task of presenting its service as unified as possible, abstract-

ing its clients from the particularities of each of the upstream clouds. 

There is debate on the lease vs. buy infrastructure matter. In some cases the company may go 

with a hybrid model, acquiring enough infrastructure to take advantage of the locality effect, or to 

accommodate the base load, and leasing as the load peaks. Whether this leads to monetary sav-

ings is not part of this study, yet when this happens, the resulting computing environment is called 

a hybrid cloud. 

2.4 Comparing Cloud to Grid 

Up to now, it is established that Cloud Computing is a highly flexible computing environment that is 

able to scale close to real time to the computational needs of the task at hand. 



Comparing Cloud to Grid Cloud Computing – State of the art 
 

11 

On the other hand, Grid computing is a way of harnessing the power of a number of computational 

resources to perform a given task. 

In fact, according to [10], in 2004 the definition for Grid computing did include many of the charac-

teristics that are now publicized as Cloud computing. Yet some differences arise with time and with 

a closer look. 

Recent comparisons [6, 11] show that Grid computing never quite fulfilled the real time scalability 

promise that some expected it to. Due to the fact that Grid computing often works on federated 

scenarios, real time scalability becomes even more difficult as different administrative domains may 

have very different resource allocation policies. This means that Grid computing became popular 

especially among those that previously used clusters or supercomputers to tackle problems that 

would otherwise take a long time to solve, which lead to complex scheduling and reservation poli-

cies on top of heterogeneous compute resources that cross various administrative domains. 

Cloud computing on the other hand removed much of the complexity from the grid solutions, and 

focused on scaling the resources dedicated to a given task almost in real time. This means that 

usually a Cloud does not transverse administrative domains, does not allow the allocation of re-

sources ahead of time (although some vendors do allow it) and focuses primarily on managing the 

usage of a large pool of resources from a single company, by a large number of users with shifting 

needs. 

One difference that is now visible between the Grid and the Cloud paradigms lies on the adminis-

trative domains and target audience. Grid computing pools a set of resources from different admin-

istrative domains, and exposes it to a given community. On the other hand, Cloud computing ex-

poses the computing resources of a single organization to the general public. 

Another great difference between the two paradigms is on usual size and scheduling of the alloca-

tions. Grid computing usually serves large allocations, it is not uncommon for an allocation to span 

all of the resources, for a scheduled amount of time, to a small group of users. This means that 

Grid allocations are seldom possible at the time they are requested, and therefore complex sche-

duling is required to take the most advantage of the available resources. As for Cloud computing, 

allocations are usually small, and are served on a best effort basis. Service Level Agreements 

(SLA) are possible, but usually will be more expensive. 



Cloud Computing – State of the art Comparison of free IaaS implementations 

 

12 

 

Figure 1 - Cloud and Grid compared1 

As Figure 1 shows, Grid computing overlaps most if not all of the distributed computing technolo-

gies. In fact, many are now harnessing the possibility of using IaaS nodes as Grid nodes on de-

mand, or even building fully virtualized Grids over IaaS. 

2.5 Comparison of free IaaS implementations 

Each of the implementations reviewed on this document (see Appendix A) has its own set of fea-

tures. Those features can be a strength or a weakness for a given implementation, depending on 

the intended usage scenario. A deeper analysis of the differences and similarities of those imple-

mentations is necessary if one is to choose a single one for deployment. 

2.5.1 Architecture 

Not being exactly a feature, the architecture of an application says a lot about its possible future. A 

clear, modular, and extensible architecture eases the addition of new features and the never-

ending process of finding and solving bugs. How the modules communicate among them is also of 

capital importance, determining how much of the system can be distributed and/or duplicated for 

reliability and load balancing. 

The analyzed implementations’ architecture range from a traditional three tier architecture [12] to a 

fully pluggable architecture [13]. This proves that all of the architectures are viable to start with, yet 

only time will tell if all of them will keep up with the fast pace of technology. 

  

                                                   
1 Taken from [11] I. Foster, Y. Zhao, I. Raicu et al., ‚Cloud Computing and Grid Computing 360-Degree 
Compared,‛ Gce: 2008 Grid Computing Environments Workshop, pp. 60-69, 2008. 



Comparison of free IaaS implementations Cloud Computing – State of the art 
 

13 

 Architecture Brokers 

VCL Three Tier  
Globus/Nimbus Monolithic tools Java interfaces 

OpenNebula Three tier tools Text protocols 

Eucalyptus Three tier  
Enomaly   

OpenQRM Plugin based  
ConVirt Plugin based  

Table 1 - Infrastructure managers architecture 

Table 1 shows the referred projects architecture and brokers. Unfortunately not all of the informa-

tion required to properly build the entire table is available on the public documentation. When the 

required information could not be gathered either from the official project documentation or from the 

associated development communication mediums (usually mailing lists), the field is left empty. 

2.5.2 Guest Operating Systems 

While running only POSIX guests may be enough for most use case scenarios, a really flexible 

implementation must be guest-agnostic. Not all implementations achieve this at the moment, yet 

the tendency seems to add support for as much guest operating systems as possible. 

At the moment, the greatest problem seems to be the configuration of user accounts and network-

ing settings during the boot process. Most implementations are now addressing this problem, with 

some of them already supporting Windows guests to some extent. 

The support for Windows and other legacy operating systems is on most cases conditional to the 

existence of virtualization extensions on the underlying hardware, because most hypervisors re-

quire such extensions to run those systems unmodified. 

Table 2 shows how well each of the projects supports each class of operating system. It should be 

noted that none of the existing (commercial or open source) implementations mention support for 

the OS X operating system, although it is very similar to other BSD systems. 

 Linux Other UNIX 2 Windows 
VCL Yes Yes Yes 

Globus/Nimbus Yes N/A3 No 
OpenNebula Yes  N/A Yes [14] 

Eucalyptus Yes N/A Yes [15] 
Enomaly Yes N/A Yes4 

OpenQRM Yes N/A Yes5 

Table 2 - Guest operating systems supported 

2.5.3 Virtualization Technologies 

This type of technology enables the creation of a uniform resource pool where the infrastructure 

can be deployed. Where available, the virtualization implementation may take advantage of the 

                                                   
2 This group includes *BSD, (Open)Solaris, and other POSIX compliant systems, excluding OS X 
3 No information available 
4 At least on the commercial version 
5 Only on version 3.x 



Cloud Computing – State of the art Comparison of free IaaS implementations 

 

14 

virtualization extensions present on modern CPUs. However some of the implementations, such as 

KVM may actually require that these extensions are present [16]. 

All cloud computing implementations support at least two of the available virtualization technolo-

gies; some of them support all of the major virtualization technologies. 

 Xen KVM VMware Others 

VCL No No Yes Physical hosts 
Globus/Nimbus Yes Upcoming [17] Yes No 

OpenNebula Yes Yes Yes No 

Eucalyptus Yes Yes No No 
Enomaly Yes Yes No Qemu 

OpenQRM Yes Yes Yes Vserver 

Table 3 - Virtualization backends supported 

2.5.4 Public Interfaces 

The major difference between a private IaaS cloud and legacy datacenter virtualization is on whom 

has the ability to control what infrastructure is deployed at any given time. On a cloud computing 

scenario, that control is shifted towards the client. Therefore, the public interfaces become of pa-

ramount importance. 

A web interface is a great thing to have if a human is to interact directly with the cloud, however 

most of the current use cases of IaaS require a programmatic self service interface to the available 

operations, therefore a web interface is not essential. 

Currently, the most popular public interfaces seem to be based either on a web service or on a web 

application. Among the web services, the EC2 interface specified by Amazon seems to be the most 

popular one, and most of the projects implement it to some extent. 

 Web application Web Service Other 
VCL Yes No XML-RPC 

Globus/Nimbus No / Upcoming? [18] EC2 / WSRF No 
OpenNebula No OGF OCCI / EC2  XML-RPC 

Eucalyptus Yes EC2 No 
Enomaly Yes REST No 

OpenQRM Yes   

Table 4 - Public interfaces 

Table 4 shows the public interfaces exposed by the projects. OpenQRM did not document any 

programmatic interfaces for its functionality, which severely cripples its usability on a cloud scena-

rio. 

2.5.5 Licensing 

As this is an academic project, and there is no allocated budget, both the licensing and the price 

become a factor when choosing the infrastructure manager. All of the projects analyzed have a free 

version, those are the versions that will be compared. 



Choosing one infrastructure manager Cloud Computing – State of the art 
 

15 

The terms of the license agreement are also important as they may hinder a possible commercial 

use of the end results. As an example, the GNU Affero license states that any software that sup-

plies a service over a network, should have its source available. This is an extension of the usual 

GPL license terms to networked software. 

 License 

VCL Apache License v2.0 
Globus/Nimbus Apache License v2.0 

OpenNebula Apache License v2.0 

Eucalyptus BSD  up to v1.5.1 / GPL3  from v1.5.2 
Enomaly GNU Affero General Public License v3 

OpenQRM GNU GPL v3 

Table 5 - Licensing terms 

2.6 Choosing one infrastructure manager 

Due to budget constraints, all of the software used must be free (as in beer), therefore all the 

projects that require payment are automatically excluded. A search for projects that implement the 

required functionality showed that a great number of them started as grid management platforms 

and are now turning to cloud interfaces, leveraging previous knowledge on distributed computing 

platforms. Some are quite new, and do not yet gather community consensus as to their quality. 

The ones that stood the initial challenge are compared bellow. An initial look at the contenders 

shows that there are many interpretations of what are the most important features of an IaaS cloud. 

The contenders are Apache VCL, Nimbus, OpenNebula, Eucalyptus, Enomaly, OpenQRM and 

ConVirt. Of these, ConVirt was quickly dismissed as an option as at the time of deployment, the 

documentation states that it crashes intermittently. However, its feature list is quite large and this 

project may be worth revisiting at a later time. 

Apache VCL started as an infrastructure manager for the North Carolina State University. Among 

all of the projects, it is the one with the most advanced scheduler, as its main purpose is the alloca-

tion of computing resources for classes. The two major downsides of this project are the lack of a 

publically documented interface, and the lack of support for open source hypervisors. 

Nimbus is a great candidate; it supports the EC2 API, and has special functions to deploy pre con-

figured clusters. However, this project only supports the Xen hypervisor (KVM support is being 

written), which limits the freedom of choice. 

OpenNebula features both the EC2 and the OCCI interfaces. It also supports a wide choice of 

hypervisors. Its driver based architecture allows for easy development of new features as well as 

the replacement of internal features with ones that provide the same interface. 

Eucalyptus also features a good specification list, but has the downside of only providing a single 

public interface. The Eucalyptus interface is compatible with EC2, the most widely used interface, 

however this may change as new interfaces are being proposed as standards. 



Cloud Computing – State of the art PaaS implementations 

 

16 

Enomaly is a commercial project with a crippled community edition. From the developer point of 

view, the only point of contact is the mailing list. This severely reduces the ability to use this project 

on an academic environment where modifications to the core functionality may be required at any 

time. 

OpenQRM features an architecture similar to the one of OpenNebula, although the language used 

to describe it is quite different. OpenQRM calls it a plug in based architecture. The downside of this 

implementation is that no interface other than the web interface is documented, which takes it off 

the cloud computing scenario and into the datacenter virtualization market. However if this project 

ever introduces one or more programmatic interfaces (web-services or rpc), it will automatically 

become a great candidate for an IaaS management solution. 

From the platforms described above, OpenNebula stands out as the best all rounder, it supports 

Xen, KVM and VMware as its virtualization backends and can use them simultaneously if care is 

taken to mark each virtual machine template with the appropriate hypervisor requirement. On the 

interface side, it features an RPC2 interface on top of which other interfaces are implemented such 

as part of the EC2 and OCCI interfaces. As this project is part of the larger RESERVOIR project, it 

should be around and be supported for quite some time, and an ecosystem is forming around it 

with satellite projects that add to the base functionality. 

2.7 PaaS implementations 

While there is a plethora of projects that claim to deliver a good IaaS implementation, and some of 

them actually deliver a good product, that is not the case when speaking about implementations of 

the PaaS service model. 

In fact, no free and functional PaaS implementation was found for inclusion on this project, there-

fore this is for sure a field that is lacking on academic exploration. 

Some PaaS implementations should however be mentioned here as they supply a framework that 

is deployable on private infrastructure, meaning that the product itself is a platform, not usage of a 

private platform as a service. 

2.7.1 Manjrasoft’s Aneka 

Aneka is a .NET based, multi platform PaaS implementation produced by Manjrasoft [19]. It is not a 

free product, therefore no experiments were performed on this software. 

This product features a very complex resource scheduling and reservation algorithm that was ex-

pected on a grid middleware instead of on a cloud PaaS; it also features a very strong authentica-

tion mechanism that is used throughout its inner services. Due to its programming models, a tradi-

tional .NET application requires some porting before it can take advantages of the features of the 



PaaS implementations Cloud Computing – State of the art 
 

17 

platform. The application data is stored on a RDBMS that is connected to the platform via a plugin, 

meaning that alternative data storage models are a possibility [20-21]. 

The provisioning model used by this project is heavily market oriented, it allows complex account-

ing, and the establishment of Service Level Agreements (SLA) with clients [20]. This is a major 

advantage if Aneka is to be used to host a public PaaS. However, its usage of a RDBMS may 

hinder such a wide public deployment. 

Although Aneka has some market oriented features, no one created a public cloud based on this 

project up to the moment. This may be due to licensing issues, as it is a proprietary project and 

therefore it is not easy to modify its core to cater to a specific company needs. 

Another reason for the lack of a public PaaS based on Aneka can be that this project does not ac-

tually show off a cloud usage scenario on its web page, instead it publicizes its usage on batch 

oriented parallel computing, a workload that is more akin to grid computing. 

2.7.2 JBoss Cooling Tower 

The JBoss community is developing the Cooling Tower [22], and advertising it as a turnkey PaaS 

solution. This project is based on a traditional JBoss Application Server cluster, and the automatic 

deployment of the required software stacks to scale said cluster. 

For the storage of application data, Cooling Tower recommends Infinispan, a persistent extension 

to the java.util.Map interface, that allows a simple data model, yet it features very interesting core 

features such as automatic management of data copies and balancing the data among available 

nodes [23]. 

This project should allow the usage of most of the J2EE specification, with exceptions for every 

part of the standard that relies on the existence of a relational database for persistence, such as 

the Java Persistence API (JPA). 

2.7.3 Google’s AppEngine 

This product’s business model is described in some detail on Apendix A.2. On the technical side, it 

supports both Pyton and Java programming languages, and it features an impressive structured 

storage solution. 

AppEngine’s data storage solution, BigTable, when accessed from a java program features an 

interface similar to JPA, yet it supports a different query language similar to SQL but without some 

of the complex queries, deemed Google Query Language (GQL) [24-25]. 



Testing deployment configurations OpenNebula Deployment 
 

19 

3 OpenNebula Deployment 

In order to perform any kind of study on the subject of cloud computing, a cloud is required! As 

there is no knowledge to be gained by starting with one of the available commercial IaaS offerings 

(and there is money to be lost!), the first step is to deploy a small test cloud on the available hard-

ware. Its resources need not be large, it just needs to be large enough to prove that the concepts 

that are to be explored are valid and functional. 

On section 2.6, the choice for OpenNebula as the best all rounder of all of the infrastructure man-

agers is made. OpenNebula proved to be truly open, well documented, flexible and simple. Those 

are the main requirements for the base IaaS cloud that is to be created as a testbed to explore new 

software architectures. 

Over the next sections, all of the design choices made for its deployment are detailed. Some of the 

choices are in fact not the best choices, but they are the ones that allow a greater level of flexibility 

while playing with the resources that are allocated for the project. 

OpenNebula has a core that manages its several drivers, a scheduler that performs the matching 

between VM’s and hosts on its simplest form, and several drivers that actually take the actions 

required to fulfill a request [26]. 

3.1 Testing deployment configurations 

In the beginning, two hardware systems were available. One, a Pentum III class desktop that was 

used as an OpenNebula frontend, the other, a Dell PowerEdge 4400 with two xeon processors 

(Pentium III family) and five SCSI hard drives. 

The desktop system was used to deploy the OpenNebula software, and the PowerEdge was used 

as a virtualization host. During this phase, the only tests performed were on the integration with 

different distributions of Xen, and with VMware ESX 3i. 

The search for a good Xen distribution that runs on dated hardware was quite lengthy. It involved 

several full installations plus the time to understand the specifics of each installed distribution add-

ed to the time required to understand what distribution specific configuration options are needed to 

integrate each of them with the OpenNebula manager. 

Several distributions were installed, but most of them did not fully support the Xen hypervisor as 

the kernel recommended by Xen is quite old and not all the distributions have the manpower re-

quired to forward port the patches to recent kernels. This problem should become mute soon as 

the bulk of the Xen patchset is being integrated with the mainline kernel [27]. The only distributions 

that supplied a recent dom0 kernel with Xen support were openSUSE and Fedora Core. Open-

SUSE lead to server hard locks after a few days running a VM. No attempt was made to figure out 



OpenNebula Deployment Testing deployment configurations 

 

20 

what was the problem due to time and resources limitations. Fedora Core was not installed as it is 

known for being a bleeding edge distribution often used to try out experimental features [28]. 

Of all the tried distributions, the ones that seemed to perform better were the RHEL based CentOS 

and Scientific linux. The second was chosen over the first as it is already installed on other servers 

at the datacenter. The system was installed on a logical volume created on a software RAID 1 

spanning two of the server’s disks. On the other three, a RAID 5 configuration was created to store 

the cloud system images. 

3.1.1 Choosing the hypervisor 

The choice of a hypervisor can make or break such a project, especially if the hardware is consi-

dered legacy hardware. Before installing anything, a little research showed that the available 

hypervisors all have advantages and disadvantages. 

Xen is the most mature of the open source hypervisors, many production systems use it, and its 

usage is well documented. The downside of this hypervisor is the lack of support for it on the vanil-

la kernel, which means that each linux distribution must supply their set of patches. This leads to a 

fragmentation of the code, meaning that there will be distribution specific problems on top of ver-

sion specific problems. Meaning that the choice of a linux distribution must be made with extra care 

if Xen is to be used. 

KVM is regarded as many as the future standard linux hypervisor. Although it is already used on 

many datacenters in a production environment, the version shipped with the enterprise distributions 

generally used on server class hardware is quite dated. Also, this hypervisor only recently added 

support for hardware without virtualization extensions which disqualifies it from the usable hypervi-

sors on this deployment. 

VMware ESX 3i does run on older systems and its binary rewrite virtualization technique allows it to 

run legacy guests without modification, however it does have a major drawback. After the initial trial 

period, if the free serial number is entered, the public API used to manage the server will become 

read-only, disallowing management operations via that interface [29]. 

Given ESX 3i limitations, the choice was reduced to Xen and KVM. Choosing Xen means that quite 

a few linux distributions must be tested until a good balance between age and ease of manage-

ment is found. Choosing KVM means that a recent distribution that includes the new paravirtualiza-

tion code must be chosen. The distributions that include that code are at the moment targeted for 

the desktop market, with a very fast pace of updates, leading to a greater slice of time allocated for 

system administration in order to keep up with the constant releases. Preliminary tests using desk-

top oriented linux distributions also showed some problems while booting on some of the available 

hardware, so KVM was discarded for the time being. 



Configuring OpenNebula OpenNebula Deployment 
 

21 

3.2 Configuring OpenNebula 

On an early stage, the front node for OpenNebula was installed on an old Pentium III desktop. Dur-

ing this stage, the documentation on the OpenNebula web site was an invaluable resource that 

covered almost all of the problems found [30]. The only real problem found during the install 

process that was not covered by the documentation was the resolution of the dependencies for 

some of the ruby gems required by the software. 

The configuration of a Xen host was also very well documented, and it was possible to validate that 

the process required to deploy a new system into the cloud was fully functional. At this point it was 

not possible to test all of the cloud’s functions as some, such as migration, require at least two vir-

tualization hosts. 

In order to compare the functionality of the Xen backend with that of the VMware backend, the 

virtualization host was backed up, and a copy of ESX 3i was installed. 

Adding support for VMware on the OpenNebula frontend requires both the VMware SDK and the 

OpenNebula VMware driver to be compiled. Although the process is documented, the documenta-

tion on VMware’s site was not simple to follow as each modification to the environment is described 

in detail, but no step by step instructions or installation script was found. 

Once the driver was installed and the compute node was added to OpenNebula, the problems be-

gan! The first of those problems was a licensing issue; the VMware API becomes read-only when 

the free serial number is entered. In order to proceed, the serial number was removed and the host 

went back into trial mode. The only possibility of using ESXi with OpenNebula is by acquiring one 

of their enterprise licenses, which leaves all of the functionality of the API intact. 

The second problem faced was with the OpenNebula driver. The driver supplied with the current 

release (1.4) does not have all of the functionality that is present on the Xen or KVM drivers. It 

misses quite a few options and has a serious security fault. One of the missing functions was the 

attachment of a CDROM drive, a process used on the contextualization of virtual machines. This 

rendered the driver useless as no contextualization could be performed during the boot process 

(setting up the IP address and administrative login). The security fault was that the administrative 

username and password for the ESXi hosts were included on the command line when invoking the 

driver, this way any user on the machine that runs the front end would be able to easily access that 

information. 

In order to compare the hypervisors, the VMware driver was improved with better CPU manage-

ment, support for context and regular CDROM, and a security flaw was removed in the process. 

The patch was submitted upstream and is expected to become part of the next major release of 

OepnNebula. 

 



OpenNebula Deployment Driver comparison 

 

22 

3.3 Driver comparison 

The drivers were compared based mostly on subjective terms as the deployment of each one has a 

few differences mostly on the distributed storage area that would invalidate any benchmark results. 

It must also be noted that whatever the results of such comparison, the Xen hypervisor would be 

chosen due to economical constraints, given that the cost of a VMware license is so high that it 

would be cheaper to buy new servers! 

The time spent by a systems administrator managing the virtualization servers is quite precious, as 

that time could be spent managing and adding more functionality to the cloud itself. 

ESXi requires very little of the system administrator’s time, given that it is distributed as a firmware 

image. The only time spent on the configuration of this server was the time required to enable the 

(unsupported) SSH console, the time that takes to create a user, and the time required to configure 

the storage backend. 

Xen on the other hand requires a few hours of system administration before a virtualization host 

can be added to OpenNebula. A user must be created, that user must be given some administra-

tive abilities required to manage Xen, the storage must be properly configured, some utility soft-

ware must be installed, and finally the system must be regularly updated as any linux system.  

Another detail that must be mentioned is the driver functionality. Even with the patches created 

especially for this project, the functionality of the VMware driver is below that of the Xen driver be-

cause it does not support the migrations of virtual machines. This function is not essential for regu-

lar operation, however it is essential if one of the virtualization hosts must be taken down for sche-

duled maintenance. 

KVM was not tested as the ability to perform paravirtualization on this hypervisor is newer than the 

kernel supplied with the linux distribution used, and the hardware does not have virtualization ex-

tensions. This hypervisor uses different strategies than Xen, yet its functionality is about the same, 

and it also requires a full linux install to function, so most of what was said about Xen administra-

tion also applies. 

All of the above means that the choice of the hypervisor will seriously impact both how the time of 

the system administrator is spent and the reliability of the deployed virtual machines. If the man-

power required to manage full linux hosts is available, Xen is at the moment the best choice, as it 

allows for paravirtualization on dated hardware, and will take advantage of virtualization extensions 

as they become available with the migration to new hardware. 

However if the system administration time is a problem, there is a VMware enterprise license avail-

able, and if the Virtual machines deployed can be taken down at any time, the choice is VMware, 

as it is an ‚install and forget‛ environment, as most of the time required by this solution is on the 

compilation of the OpenNebula driver. 



The next step: more hardware! OpenNebula Deployment 
 

23 

3.4 The next step: more hardware! 

After the initial evaluation of the software, comes the time to actually create a computation cloud, 

and there is no way a cloud with a single virtualization node can be called a cloud! 

This means that the cloud is starving for more virtualization nodes. At this point a ‚new‛ server be-

came available, a PowerEdge 2850, with two Xeon CPUs 2GB of memory and two 30GB SCSI 

drives on a RAID controller. 

The Linux install process was effortless on this server. But a decision had to be taken about where 

to place the OpenNebula frontend as the old desktop was not nearly strong enough to manage a 

large number of virtual machines or virtualization hosts and still perform its original duties. 

With a clean linux install on both the servers, both the systems were configured to run the frontend 

and storage if required. At this point a closer look at the performance of each of the servers was 

taken. The older of the two has more disk space available; however a benchmark revealed that its 

performance was worse than that of the new server with its disks on a hardware raid controller. On 

the downside, the tests also revealed that when deploying a large number of VM’s at the same 

time, the newer server shows a load spike, rendering it nearly unusable for the time it takes to copy 

all the files. 

On the networking side, the older server has a 100Mbit Ethernet card, while the newer one has two 

gigabit interfaces. Even with only one of those interfaces connected, the newer server has an ad-

vantage. If it is to manage a large number of virtual machines, the distributed storage must have 

enough network throughput to allow the remote virtual machines to operate on their disks. 

The newer server was chosen due to the fact that it has a higher network throughput and faster 

disks. This means that a large amount of disk space is wasted on the older server with a higher 

disk capacity. 

As of now two more storage solutions remain to be tested. One of those is the decoupling of the 

storage from the frontend node, placing it on the datacenter’s NAS. The other is the usage of a 

cluster file system. Those solutions should be tested if this project is to be enlarged. 

The NAS solution was not tested due to the high amount of IO operations that would be performed. 

There is the fear that if this solution is to be used, the remainder of the department grinds to a near 

halt while the files required to deploy a large number of new virtual machines are copied. 

The cluster filesystem solution was not tested because that solution does not make sense with only 

two nodes as reliability would be severely reduced. However if dedicated storage nodes become 

available, other solutions will be promptly tested. 



OpenNebula Deployment Contextualization 

 

24 

3.5 Contextualization 

The contextualization of virtual machines is an essential step of the deployment process on a 

cloud. This process is composed of two steps. The first is the configuration of the network interface 

with the required IP address, and the second is the configuration of the administrative login for the 

virtual machine. Further steps may be required such as installing a software package, or deploying 

an application on an application server, those steps are not yet implemented, however once the 

initial contextualization scripts are in place, it becomes easier to perform other administrative tasks. 

OpenNebula achieves this by attaching an ISO image with the required information during the boot 

process. The ISO image always contains a file used to set a number of environment variables. 

Added to that, a number of user defined files can be added to the image. The scripts used at the 

moment setup networking, and put an SSH key in place for the root user in order to allow the re-

mote operation of Linux hosts. The virtual machine image must be previously configured to look for 

and use these scripts during the boot process as part of the preparation required to run it on a 

cloud environment. 

Another way to perform a similar task is by using a customized init script that sets up part of the 

system during the initial boot process, leaving the remaining tasks to the contextualization script. 

A mix of both of the above contextualization solutions is used when booting Linux systems, using 

the first script to set up some basic networking information to be used during the boot process, and 

the second to perform more complex tasks such as setting a host name, or even installing a soft-

ware package, as those tasks require external information. 

3.6 Networking 

The OpenNebula documentation always uses a bridged scenario that requires the gateway to route 

traffic to all of the IP networks used on the cloud. However at the IEETA datacenter, routable IP 

addresses are a valuable resource. This restriction lead to the usage of a private network for all of 

the deployed VM’s, which means that they could communicate with each other, but not with the 

outside world. Although communication with the outside world is not strictly needed for this project, 

it would ease the administration of the virtual machines as it allows one to customize a machine at 

will, shut it down, and reuse its image as a new deployable image. 

In order to connect all of the virtual machines to the internet, some sort of NAT must take place. 

The first idea that comes to mind is usually performing that on the network gateway, but on this 

case the gateway is off limits. The second option would be applying NAT to all outgoing traffic on 

each of the virtualization nodes, but that would break the connectivity between virtual machines 

deployed on different virtualization nodes. 



Networking OpenNebula Deployment 
 

25 

The solution to this problem technically simple, however the final network architecture ends up 

quite complex as the physical network ends up with two logical networks and two routers. Given 

that there is no administrative access to the datacenter router, one of the hosts that can be mod-

ified must be chosen as a router for the virtual machines. The choice was to use the newer server 

for this task as it has a gigabit interface that should be more than enough to route internet traffic for 

several virtual machines. However not all of the outgoing traffic should be translated, so the 

IPtables rule set does not modify outgoing traffic for other virtualized hosts, but translates all traffic 

that is directed to other hosts that are not on the same IP network. 

The final step required to allow full connectivity between all the hosts and the internet is adding the 

IP address selected as the gateway to the router’s ethernet interface. Now that the IP connectivity 

is possible, the addition of the host’s resolv.conf file to the contextualization ISO image finishes the 

process, and allows the virtual machines to connect to each other as well as to the internet. 

 

Figure 2 - Network setup 

This networking setup allows full internet connectivity and requires no modifications to the existing 

network infrastructure, therefore adding new private networks becomes a matter of modifying the 

IPtables script and adding an IP alias to a host. 

Figure 2 illustrates the logical connections between physical hosts and the internet, and between 

the virtual hosts and the internet. Virtual hosts must route their internet traffic via the NAT gateway, 

otherwise access will fail as the physical gateway (department router) has no knowledge of the 

existence of the private network used by the VM’s. 

3.6.1 Remote access 

OpenNebula supports various ways of accessing the console of the virtual machines. At the mo-

ment only SSH is used as the VM’s are on a non public network, and therefore in order to access 



OpenNebula Deployment Extending the functionality 

 

26 

them, one must first access one of the physical hosts. If a set of routable IP addresses are allo-

cated to this project, accessing the VM’s via a remote access protocol such as VNC or RDP be-

comes possible. 

At that time, the core of the OpenNebula will be modified in order to add further information to the 

user table on the database to allow the addition of a hook that sends an email to the owner of a VM 

with the required remote access information. 

At the moment, no steps were performed to add this functionality as the OpenNebula team is work-

ing on a whole new user management system that is to replace the current one on the next major 

release. 

3.7 Extending the functionality 

All the steps described previously lead up to the correct setup of a functional virtual infrastructure 

manager. It is not yet possible to supply any service to the public as no public interface exists as of 

yet. 

As said on section 2.5.4, the greatest difference between datacenter virtualization and a IaaS cloud 

is whom has the ability to control what infrastructure is deployed on any given moment. On a cloud 

computing scenario, that control is shifted towards the clients, which are given the ability to deploy 

an arbitrary software stack on a virtual machine on demand. 

In order to be able to supply such service to the public, an interface has to be exposed. OpenNebu-

la enables by default its own RPC2 interface, but that is a proprietary interface that is specific to 

this implementation. For that reason, two other interfaces can be enabled. The first and most 

known of them is the EC2 interface, widely known due to Amazon's compute cloud. Another inter-

face supplied with OpenNebula is the OCCI interface. OCCI is an interface developed by the Open 

Grid Forum, and it is expected to become a standard interface in the future [31]. 

Each of these interfaces has limitations. The implementation of the EC2 interface is at the moment 

incomplete and does not work with most of the tools designed to work with Amazon's implementa-

tion. The OCCI interface is not widely used and therefore there are few client tools available. 

However limited, support for both protocols was enabled. Both of the protocols work well with the 

core infrastructure manager, but it is not recommended to use both of them at the same time (in the 

same management application) as that would severely hinder application portability given that no 

other infrastructure manager implements both of these interfaces. 

There are quite a few public interfaces for clouds, with more being proposed... As the time passes, 

only a few of these interfaces are expected to become widely used. At that time, It is expected that 

OpenNebula will fully implement some of those interfaces with their full functionality [32]. Until then, 



Extending the functionality OpenNebula Deployment 
 

27 

OpenNebula supplies a set of client tools that are usable with the current implementation of each 

interface. 





Common application deployment architectures Proposal of a new PaaS architecture 

 

29 

4 Proposal of a new PaaS architecture 

There are a few commercial IaaS offerings. Those have the advantage of not locking in an applica-

tion to a given vendor; however they also end up being more expensive when compared to a PaaS 

offering if one wants the deployed application to be scalable. 

The above is an empiric statement that may not hold true for all the applications deployed on a 

cloud computing scenario, yet the deployment of a high availability typical application on an IaaS 

cloud requires a few instances to be available at all times. At the minimum, a load balancer, an 

application server, and one database server need to be deployed if the application is to be availa-

ble and have the possibility of scaling with load increase or decrease. 

When compared to a PaaS this is quite expensive, especially if the application has a low traffic 

volume. Commercial PaaS offerings also have a large downside, vendor lock in. As stated earlier, if 

one wants to change from one vendor to another, all of the features that rely on the vendor platform 

must be reimplemented. This may end up being almost a full application rewrite, but at the mini-

mum it would mean a rewrite of the persistence and session layers. 

4.1 Common application deployment architectures 

A simplistic scalability definition states that scalability is the ability of an application to maintain a 

given service level when the load increases. There are several ways to achieve scalability, most of 

them falling in two scenarios, scale up or scale out [33-34]. 

Scale up is the solution that most small companies will use for their in house applications, where 

the maximum load is a factor of the size of the company. This technique consists on throwing mon-

ey at the problem by building servers with faster storage, more CPU’s, and more RAM to support 

the same application. This will work well if the application has a known peak usage, but may fail if 

the load increases above the server capacity. 

Scaling out, on the other hand, means building an architecture that will see its performance in-

creased simply by the addition of new machines to any of the application layers. This solution is 

becoming more and more popular for IaaS cloud deployments, where the available virtual ma-

chines have limited resources, yet are available in quantity [35]. 

The typical application scaling pattern for applications that started small and used leased hardware 

collocated on a remote datacenter used to follow the steps described below. 

For small to medium applications the usual deployment scenario requires one application server 

and one SQL database. For very small deployments, the services can even be hosted on the same 

machine. As the application load grows, the deployment becomes more and more critical. 

  



Proposal of a new PaaS architecture A multi tenant elastic platform 

 

30 

 

Figure 3 - Small application deployment 

As the application grows, the database and application services must be split into two different 

machines. This allows for a little more load, yet it does not yet perform well if an application has a 

load peak as it is not a scalable architecture. 

Scalable architectures require that all of the application state is saved on the database, as well as a 

modified application server that knows where to look for that information. This allows the distribu-

tion of the load between all of the available servers, allowing a larger number of requests to be 

served on the same amount of time. Nowadays, most application servers already allow such dep-

loyment scenarios [36]. 

As the load increases, the database must also become distributed over several machines in order 

to allow an increased performance. Most of the SQL solutions available do allow some sort of clus-

tering but do not support any sort of real time scalability, meaning that in order to take advantage of 

any new server the database must be rebuilt [37-38]. 

 

Figure 4 - Scalable application deployment 

If an application follows the above patterns, it will in fact scale out to a limit. That limit is the limit of 

the SQL server’s ability to scale with the addition of new node, as performing a complex query on 

data spread over several nodes severely hinders the performance of the current SQL servers. 

4.2 A multi tenant elastic platform 

In order to take advantage of the possibilities that cloud computing brought to the computing world, 

a new application deployment architecture must be devised. Previously, simple reasoning showed 

that PaaS was the ideal service model to develop new SOA applications. However, PaaS comes 

with the disadvantage of vendor lock in. 



A multi tenant elastic platform Proposal of a new PaaS architecture 

 

31 

Over the next pages, the old and the new come together to form a new PaaS based on well known 

technologies. Such a platform has several advantages both for existing applications as for new 

applications. 

Existing applications will transition easily to the platform proposed here, without fear of vendor lock 

in as the platform is well known, and easy to deploy on a private infrastructure if needed. 

New applications can take advantage of the economy of scale, as hosting on a multi tenant plat-

form is usually cheaper than renting the required infrastructure, even on a pay as you go model. 

At any point, an application can switch vendors without modification. Cloud computing is a busi-

ness model, and as such, prices will always follow the supply and demand laws. Using this plat-

form, service providers are able to stimulate direct competition, leading to platform improvements 

and cheaper prices. 

A major problem that should be avoided by a public PaaS specification is the strategy commonly 

known as ‚Embrace, Extend and Extinguish‛, where a powerful company takes over a given plat-

form, and extends it with proprietary functionality making sure that interoperability breaks in order 

to extinguish the concurrency [39]. 

A novel improvement over existing PaaS is also presented, as the proposed platform supports 

SOA application deployment via the integration of a modified UDDI service with the original design. 

Such integration allows an increased reliability of the information stored on the UDDI server as that 

information is gathered and validated upon application deployment. 

4.2.1 Storing the data 

The persistence layer of an application can rely on a series of technologies. From flat files to full 

Relational Database Management Systems (RDBMS), every solution has its strengths and draw-

backs. 

The most common solution used for web applications is a relational database. However, with the 

advent of cloud computing, alternative storage solutions with better horizontal scalability are being 

proposed. 

Those alternative storage solutions, relinquish some of the ACID properties of a traditional RDBMS 

system for speed and scalability. Two commercial examples with some success are Google’s 

BigTable, and Amazon’s SimpleDB. 

The open source community is now starting to build similar products, such as Cassandra and Mon-

goDB. Although some of those are on production on applications such as Facebook or Twitter, they 

are in fact still under heavy development and lack some of the features that are required on a real 



Proposal of a new PaaS architecture A multi tenant elastic platform 

 

32 

multi tenant platform, such as data separation or a reliable query parser. The noSQL6 site keeps an 

up to date list of non relational data store implementations. 

4.2.1.1 Key Value data stores 

These are the simplest of data stores. These solutions are very similar to the already widely known 

memcached data store, but they offer persistence, something that memcached does not offer. 

These solutions store a scalar value under a given key, and can only retrieve the value based on 

the key. This means that it is not possible at all to perform complex queries, in fact it is not even 

possible to query the datastore based on a property of the stored data. 

This type of datastore is very scalable and fast due to its simple architecture. Its major downside is 

also what allows it to be scalable and fast, its simplicity. 

In order to use such a datastore to build an application persistence layer, complex coding must be 

done to overcome some of the datastore limitations, and it is predictable that certain applications, 

even if they do not need data integrity, need a way to store complex data and query it based on 

various data properties. 

4.2.1.2 Document stores 

Document stores add to the key value stores because they allow  the storage of complex docu-

ments. The documents are a series of attribute-value pairs, where the values can be complex data 

types. 

Document stores are quite scalable and can deliver good performance levels, as the stored data 

can be indexed. Yet at the moment, none of the available document stores is mature enough to be 

useable on a multi tenant platform where strict data isolation and a reliable interface is a must. 

Still, the data model offered by this class of systems is very close to the serialization of an object on 

an OOP language, turning it into a very interesting data storage model. 

4.2.1.3 Column oriented data stores 

This type of data store can hold a series of records with a well defined schema, yet more properties 

can be defined on a per record base during runtime. These data stores, contrary to most RDBMS 

systems that store data on a per row basis, store all of the values for each column together. 

This storage model has advantages over row based storage if the operations performed on the 

data tend to be column oriented instead of row oriented. It is commonly used for data wharehous-

ing solutions where analytical processing is more important than transaction processing. 

                                                   
6 http://nosql-database.org/ 



A multi tenant elastic platform Proposal of a new PaaS architecture 

 

33 

However these systems allow complex data models, which means that they start to suffer from the 

potential scalability problems described next for traditional RDBMS systems, but lack the amount of 

development that the traditional systems received while trying to attenuate them. 

4.2.1.4 RDBMS systems 

These are the most commonly used storage systems for application data. They are well known, 

feature full ACID compliance, and most of the commonly used OOP languages feature some type 

of widely used abstraction layer on top of the relational model. 

The weakest point of these systems lay on the horizontal scalability, as they feature complicated 

locking mechanisms and allow complicated queries that may become quite slow when several 

nodes must be contacted to form the result. 

The major vendors are now working on better horizontal scalability, and some even on elasticity, 

each with a different approach. This work is quite promising, but up to now some scalability prob-

lems still arise, especially on large database clusters. 

4.2.1.5 Object oriented databases 

This type of database offers the same ACID properties that are available on a RDBMS. Using such 

a database for data storage is quite transparent, as the programmer is already dealing with objects 

on the code, the difference being that the database objects allow transactions and locking, which 

also solves concurrency and persistence problems. 

The downside of these databases lies on the available implementations, as none of the known 

open source implementations allows the distribution of data among several nodes. This severely 

impairs the scalability of the persistence layer for a multi tenant scenario. 

4.2.1.6 Other datastores 

Data storage is a very complex field, and no single solution solves all of the requirements for every 

application. The solutions presented above are the ones with wider community adoption, or which 

seem to have better potential, but in no way is the above to be used as a comprehensive list of 

data storage models. 

Other solutions are available, such as graph databases or memory only databases. Those are not 

presented here because they either lack some required features by design, because none of the 

known implementations features a community of users large enough to allow a steady develop-

ment plan, or even because the storage model itself does not present any advantages on a distri-

buted scenario. 



Proposal of a new PaaS architecture A multi tenant elastic platform 

 

34 

4.2.1.7 The choice 

On a IaaS cloud, all of the machines have low CPU and memory, as well as small disks, so it is not 

possible to scale up efficiently. The data storage model is also of great importance, as using an 

obscure data storage model does not capitalize previous knowledge and may in fact deter the 

adoption of a platform. 

The chosen solution must have a few characteristics. Data isolation is a must, given that the final 

product is a multi tenant platform. A shared nothing data storage model is required because of the 

characteristics of the cloud computing model. Elasticity is a must, as the datastore must not be put 

offline just to add a new node. Data redundancy is a plus as one should always plan on having 

some nodes failing. Robustness is required because no sanitation is to be performed on deployed 

applications, and a malformed query (intentional or not) must not affect the datastore normal opera-

tion. 

The requirement list presented above is quite large and in fact, none of the available free solutions 

seems to fulfill all of them. Some commercial solutions such as Objectivity/DB claim to fulfill all of 

them, but such claims cannot be verified as they would require extensive testing. 

Of the above, document datastores seem to be the most interesting solutions as they are very 

close to the OOP model, and the community is developing solutions with some very interesting 

features. Yet at the time there are still a few problems with the available solutions. 

CouchDB is very interesting performance wise, and it does scale well if there is enough space on 

each host’s disks, but its replication model does not allow for data partitioning, which is one of our 

must have requirements [40]. 

The solution that is to be chosen must support an authentication system that allows each applica-

tion to access its own data, and no other. At the moment, the MongoDB datastore does not support 

such a feature when using the sharding configuration [41]. 

Key value datastores are indeed fast, but due to their simplistic data model, they are not suited to 

perform as a generalist datastore. This means that they are an option for a future feature, but not 

required on the initial stages of development. 

More unusual solutions such as graph databases are just too unknown or have licenses too restric-

tive to make them a viable solution. As an example, Neo4j was not discussed due to its relative 

obscurity, but it solves some quite interesting problems [42]. 

The solutions referred above are all part of a recent trend to move away from relational databases 

to alternative storage models such as document stores, key value stores, or even a graph model 

for large scale storage solutions. Most of those solutions provide horizontal scalability features be it 

via replication or sharding. All of them are extremely fast when used to power a solution that takes 



A multi tenant elastic platform Proposal of a new PaaS architecture 

 

35 

advantage of their intrinsic capabilities, yet none of them is mature enough to power a multi tenant 

platform without some serious development work. 

At the moment the only storage solutions that feature a shared nothing architecture, and have the 

features required by a multi tenant application are RDBMS. These solutions do have some scalabil-

ity issues, but a lot of work is being put into its mitigation. 

A closer analysis of the resources that could be potentially made available to this project also 

shows that it would never hit the scalability limitations of the freely available and time proven 

RDBMS’s. This leaves us with a choice between a PostgreSQL or a MySQL based datastore. 

Although this conclusion does not take into account all the use cases for the actual platform that is 

to be deployed, it ends up being a step towards large scale adoption of the platform, as it capitaliz-

es on common knowledge. However, choosing an RDBMS as the storage model does hinder the 

platform’s ability to scale to massive numbers of applications. 

So, the ideal solution will be an RBMS that features sharding over several nodes, and is able to 

withstand the failure of any node. 

At the moment, both of the major open source RDBMS are working on ways to simplify sharding for 

horizontal scalability, as well as to make it transparent to the end user. 

On the MySQL side, the spider storage engine automatically partitions data according to some 

rules on the database schema. This storage engine requires very little modifications to the actual 

application, and avoids the usage of sharding code on the application logic, such as hibernate 

sharding. MySQL cluster also claims to achieve horizontal scalability and elasticity, and features a 

shared nothing architecture, which is a plus for the projected scenario. 

On the PostgreSQL project, several plugins try to support some sort of horizontal sharding. One of 

the most promising projects is gridSQL. Another interesting project is pl/proxy by skype, but using 

this project requires heavy modifications to the application logic. 

Both GridSQL and the spider storage engine require slight modifications of the persistence layer in 

order to be used efficiently, and the current state of integration with ORM like hibernate is un-

known, but GridSQL seems to be at a disadvantage as it does not expose all of the postgreSQL 

dialect and is optimized for data warehousing. 

MySQL cluster is apparently the most transparent solution, and is the recommended solution for 

the current deployment scenario. However extra work must be put into the development of an ar-

chitecture that does the most with the available resources, such as using a transparent cache in 

front of the database to speed up access to the most accessed resources [43]. 

With the maturing of different technologies, other solutions are expected to become available. The 

technology that seems to be the most promising is the document datastore, as it is close to the 

OOP paradigm, and a lot of community effort is going into the development of some implementa-



Proposal of a new PaaS architecture A multi tenant elastic platform 

 

36 

tions of this data storage model. This means that a stored document may contain all of the proper-

ties of an object at any given time, therefore being enough to restore an object state from the da-

tastore. 

Future work may either add a document store to the architecture, or prove that the SQL backend is 

not scalable enough and completely replace it. However, if it is to be replaced, it must be done as 

soon as possible, preferably before public availability of this PaaS to avoid future application migra-

tion problems. 

4.2.2 The application server 

4.2.2.1 Programming languages 

Choosing an application server for a cloud computing platform is not an easy task. Several imple-

mentations are available, but none of the open source ones are geared towards providing a PaaS. 

The first choice has to be a programming language. Many options are available, but the choice 

must leverage in house and community knowledge. As most of the programming disciplines cur-

rently taught at the University of Aveiro use java as a programming language, it seems to be a 

good choice. Other languages can be added later if this architecture proves itself useful. Both .NET 

and Ruby are good candidates as those languages are becoming fierce competitors for the estab-

lished java status quo. 

The Ruby programming language is compilable to java bytecode, this means that a platform that 

fully supports the java standard is easily customizable to support this language. Yet no research 

was performed on this subject as the initial user base is geared towards java and .NET. 

In due time, .Net poses a great addition to the supported technologies, however, as it is expected 

that some modifications must be performed to the core of the language or to the application server, 

the only viable implementation is based on Mono, an open source implementation of the .Net tech-

nology [44]. But there are still concerns among the open source community as to what is the legali-

ty of the project outside of Novell’s agreement with Microsoft [45-46]. As well as to the legality of 

the ASP.NET and ADO implementations that are built on top of the base .NET CLI and are not 

covered by the agreement at all [47-48]. 

So, for the initial implementation effort, the choice falls on a java application server, as the available 

implementations are free, modifiable, and have the advantage of running on multiple platforms 

unmodified. 



A multi tenant elastic platform Proposal of a new PaaS architecture 

 

37 

4.2.2.2 Application server architecture 

The first solution that comes to mind is a cluster of application servers, commonly known as a web 

farm. However, this setup requires that each of the application servers must have access to the full 

pool of deployed applications. Given that most of the current IaaS implementations either do not 

support the attachment of persistent storage, or provide it at a cost, the only solution would be 

building a distributed storage solution using a large number of persistent storage instances. As this 

would severely increase the runtime cost due to the allocation of extra compute nodes just for sto-

rage, an alternative solution must be found. 

Given that the clustering facilities cannot be used to scale the application server layer, decisions 

have to be taken as to how much of the J2EE standard can be supported, and which application 

server should be used to support it. In order to do so, we start by looking at how the current appli-

cation servers allow stateful communication over a stateless protocol. 

HTTP is a stateless protocol, so in order to implement stateful functionality over HTTP, some in-

formation has to be stored by the server. Each of the application servers available implement a 

session manager. This component usually stores session data on the memory of the java virtual 

machine (JVM) that is running the application server. 

In order to share the HTTP session between several application servers, that information must 

either be replicated in memory, or stored on a backend database. In fact, all of the application 

servers implement and use those features when working in clustered mode, however as said be-

fore, their clustering facilities require a large amount of disk space which is not available on regular 

cloud VM’s. This means that the standard implementation of the session manager and other com-

ponents that allow stateful operation must be replaced with versions that store its information on a 

persistent backend, or the application server must be modified in such a way that ‚partial cluster-

ing‛ becomes a possibility. 

The modification of the individual classes is preferred over the modification of the application server 

clustering code because this solution allows deployed clouds to take advantage of new application 

server releases without modifying the server, an advantage because modifying a complex applica-

tion server is likely introduce bugs. 

Higher up the J2EE specification are the stateless EJB’s. Due to their stateless nature, there is no 

need to actually persist any information, so they can be used without modification. 

Entity beans are another problem area, as there are different policies to deal with them. Some con-

tainers populate theirs information once, and modify them in memory until a time comes where all 

modifications are persisted. If state is to be shared among all of the application servers, extra care 

has to be taken by the programmer to persist any and all modifications if they are to be seen by a 

subsequent request that may be served by an arbitrary server. How to achieve this is dependent on 

the chosen application server. 



Proposal of a new PaaS architecture A multi tenant elastic platform 

 

38 

Stateful beans are the most problematic area, clustered servers usually route all of the requests for 

a given EJB instance to the same server, but that is not an option on this scenario. This means that 

the state for every instance of an EJB also has to be persisted after every single request.Due to the 

expected complexity of dealing with the stateful EJB state, the support for this feature is left off the 

initial implementation effort, as this feature is not required to prove the validity of the platform. 

No application server available today implements the required features. This means that modifica-

tions must be made to any of the available servers. 

 

Figure 5 - Application deployment 

Figure 5 depicts the expected result of the proposed modifications. A semi clustered application 

server, where a given server has a set of applications that may differ from those deployed on 

another server, yet the state information required by the application servers is kept on a shared 

repository containing the state of all the deployed applications. This means that each application 

server can operate without the need to exchange information with other servers, therefore remov-

ing the need for a traditional cluster and all the additional state synchronization chat that is required 

to maintain it. 

4.2.2.3 Choosing the server 

A survey of the available java application servers shows that they are split into two categories, the 

simpler category is the servelet and JSP server, where Apache’s tomcat is the only serious con-

tender, and full blown J2EE servers (either version 5 or 6 of the standard), where there is fierce 

competition between Glassfish, WebSphere and Jboss. 



A multi tenant elastic platform Proposal of a new PaaS architecture 

 

39 

The requirements detailed above lead to the conclusion that any of the available J2EE application 

servers available must be modified in order to be useable in this scenario as none of them separate 

the possibility of persisting session information from the clustering logic. 

This means that the chosen implementation must be as simple and well documented as possible, 

in order to allow a speedy development. 

The most simple of the well known java application servers is Apache’s Tomcat, however it does 

not implement the full J2EE specification. It is a great starting point precisely because it is the sim-

plest of the available application servers. 

Other free application servers that are widely used include GlassFish, Jboss and Geronimo. These 

application servers support the full J2EE standard and are certified either for version 5 or version 6 

of the standard. 

The choice of the application server must take into account the requirements of the platform. If it is 

to become a plain JSP/servlet container, then Tomcat is the appropriate choice. However if it is 

required to run a full J2EE application, then one of the certified application servers is required. If 

that is the case, a closer look at the specification and session management techniques used by 

each of them is required. 

At the early stages of deployment, Tomcat is the best option as it is simpler than the other applica-

tion servers. The modifications that are required on this server will allow the evaluation of the mod-

ifications required to integrate a certified J2EE server, while allowing initial development of simpler 

servelet based applications that can be used to test the platform on the early development stages. 

After the early development stages, it will be time to move to a full J2EE server. When that time 

arrives, the choice should fall on JBoss as it allows integration with tomcat. However, a deeper 

analysis should be performed at the time, as the contenders keep evolving and new features may 

turn this into a void statement. 

4.2.3 Becoming a multi tenant platform 

All of the above does not specify the full architecture of the platform; it only deals with problems 

that must be solved in order to achieve full horizontal scalability using small servers. 

In order to offer a scalable system, other considerations must be made. Data storage and applica-

tion servers are of the utmost importance because they supply the programming interfaces that the 

platform users will use. However the true strength of PaaS is on its automatic scalability. 

The previously described architecture for the application server requires that a single instance of 

the application server receives, processes, and replies to a client request. This requirement is in 

place because the clustering capabilities are not to be used. This means that the remaining func-

tionality of the cluster must also be implemented by the platform. 



Proposal of a new PaaS architecture A multi tenant elastic platform 

 

40 

4.2.3.1 Information repository 

The information repository must be available to the entire infrastructure. Due to its nature, it is the 

single most important piece of the PaaS architecture. It contains all the information required to 

identify what infrastructure is deployed at any time, the information about the deployed applica-

tions, plus the information about what nodes are scaling out or scaling in. 

Due to the nature of the information stored on this repository, either a RDBMS or a document store 

can be used. 

At the moment, a document store seems the best option, with a preference for MongoDB for its 

data storage model. This document store does not support authentication on a sharded environ-

ment yet, but that feature is planned for an upcoming release, in the meanwhile it can be used on a 

single instance. This will allow a simpler data model even if at the cost of denormalization, and it 

will enable the writing of some documentation on using a non relational data store, to be used later 

by application developers. 

When the authentication issue of mongoDB is resolved, it will be easy to migrate all of the data to a 

distributed datastore, taking immediate advantage of the sharding of data between several servers, 

and the robustness that comes with that feature is welcome. 

The data model is quite simple. The document data model fits almost perfectly with the object 

oriented programming model, so the properties of each document class are the same as the prop-

erties of a given object class. The document classes that have been identified so far are: 

 User – Contains all of the user information: username, email, password, application list… 

 Application – Contains all of the application information: size, tarball hash, document root, 

webservice information, WSDL path… 

 Application server – Contains the information about a given application server: List of 

deployed applications, CPU load, IOwait, network load, IP address, hostname… 

 Load balancer – Contains information similar to the application server class. 

 Datastore server – Not used yet as the datastore is not elastic at the moment but would 

store metrics that are similar to the application server. 

 Information repository server – Contains the same information as the datastore server 

class, but will be used to scale the information repository. 

If stronger authentication mechanisms are required, this service can either be wrapped by a secure 

web service, or replaced by a RDBMS. Due to this uncertainty added to the fact that many of the 

details that are to be persisted will only become apparent during the implementation, it is not yet 

possible to specify an information schema. 

4.2.3.2 Load Balancing 

Regular load balancers have a pool of homogeneous resources, and direct a given request to a 

given resource based on some pre established metric. 



A multi tenant elastic platform Proposal of a new PaaS architecture 

 

41 

This platform however does not require that all application servers have access to all of deployed 

applications, as that would require an enormous amount of storage per server. This means that on 

any given time, each server will have a different set of applications deployed. 

In order to make sure that there is no clash on the namespace of the platform, each application 

must have a unique root path on the context of the application server. This approach avoids other 

options such as creating multiple virtual hosts, one per account. Simple application name sanitation 

must therefore be performed before a new application is deployed on the platform. 

The load balancer must be made aware of which servers may respond to a request for a given 

application. So, a reverse proxy that is able to redirect a request based not only on the usual me-

trics but also on the path being requested is suited to balance the load among the real application 

servers. 

This raises two more problems. The first is that a single load balancer will not be enough to route 

requests for an unspecified number of application servers, so an experimental ratio must be set. 

The number of public IP addresses that those load balancers expose to the public must also be 

higher than the number of load balancers running. This will allow real time scaling without the la-

tency that comes with the addition of a new DNS record. In such a scenario, scaling a load balanc-

er that has two IP addresses assigned to its interface becomes as simple as removing one of the 

addresses from the interface and assigning it to the new load balancer. When removing a load 

balancer, the heartbeat software automatically takes care of assigning the no longer used address 

to one of the running balancers. A traditional clustering architecture can be used to manage the 

assignment of IP addresses to the various hosts. 

The second problem is that the status of each application server as well as the list of deployed 

applications must be stored on a location that is readable by the load balancer, and must be kept 

up to date at all times under penalty of losing some requests. 

A first proposal for a load balancer is a modified reverse proxy based on Lighttpd, a small web 

server that already features most of the features required, and is fairly easy to modify. Its load ba-

lancing schedules are varied, and it is very easy to add a new one. 



Proposal of a new PaaS architecture A multi tenant elastic platform 

 

42 

 

Figure 6 - Load balancer architecture 

Figure 6 shows the architecture of the load balancer deployment. This deployment scenario raises 

one more problem, who has the responsibility of monitoring the several existing nodes of the infra-

structure. 

4.2.3.3 Monitoring the infrastructure 

The information about the load of all the infrastructure can easily be gathered via a protocol such 

as SNMP. Extra information such as the list of deployed applications on each application server 

can either be monitored via a custom SNMP MIB, via a remote SSH session, or via a web service, 

with preference to the custom SNMP MB because it allows a looser coupling between the informa-

tion gatherer and the information source and it is a very simple protocol. 

The gathered information is to be placed on an information repository described in detail on section 

4.2.3.1. 

4.2.3.4 Deploying an application 

All of the application servers described earlier feature the possibility of performing automatic appli-

cation deployment. That said, the possibility of two application names clashing is a real problem 

that must be avoided at all times. 

So, a unified interface must be exposed that allows a client to upload a standard application pack-

age, such as a WAR. Upon receiving such a package, the root path of the application must be re-

placed by a unique identifier that is to be used later by the load balancer. An example of a simple 



A multi tenant elastic platform Proposal of a new PaaS architecture 

 

43 

identifier is one that contains the username and the application name separated by an underscore, 

if care is taken to disallow underscores both on the username and on the application name. 

Such an identifier could also be used to name a database to be created on the datastore. That 

database must be created on the datastore when receiving the application for the first time, and 

must be erased when the application is removed from the platform. 

After receiving a new application for deployment, performing the required sanity checks and creat-

ing the database for the application, the application can be copied to a common storage area that 

holds a copy of every single application deployed or potentially deployable on the platform. 

The common storage area does not need to be very fast, or shared among all the application serv-

ers. In fact it does not even need to be a contiguous storage area; it just needs to be a space 

where all application packages can be found for deployment on an application server. 

4.2.3.5 Managing the load 

Previously, when discussing the available datastores, the chosen solution was a RDBMS, which is 

not a solution that can be scaled in real time (human intervention is required). This means that the 

amount of servers to be deployed on the data storage layer must be calculated for peak load, 

which parts with the real time scalability of the cloud computing paradigm, however that datastore 

should be complemented or replaced by a more flexible implementation as soon as the available 

ones reach a level considered mature enough to be used on a multi tenant environment. 

When the datastore is replaced or complemented, it will be possible to scale it using similar metho-

dologies to those described here, but at the time, the discussion that follows only applies to the 

application servers and the load balancers. 

There are four metrics that must be watched to get a service with a reasonable quality from a serv-

er. They are IOwait , CPU load, network usage, and finally available disk space. 

The available disk space is only a metric of how many more applications can be deployed on a 

given server. It is not indicative of the quality of the service performed by that server. 

The CPU load increases with the complexity of the business logic of all the applications deployed 

on a given server. When this value goes over a certain threshold, the performance deterioration will 

be noticed, especially if there is a human being waiting for the result of a calculation. 

Given that the servers have a very limited amount of memory it is unlikely that filesystem cache is 

useful. This means that almost all the requests require the server to read the necessary files from 

disk, which takes time. That time is called IOwait, and meters how long the CPU is idle waiting for 

data from the disk. This value is likely to increase especially when the server receives a large num-

ber of requests with short replies, but that require disk access. 



Proposal of a new PaaS architecture A multi tenant elastic platform 

 

44 

The final metric is how much of the available bandwidth is being used by a given server. If that 

value goes over a given threshold, the perceived performance will be seriously degraded, even if 

the server has enough of the other resources to deal with the load. 

All of these metrics must be monitored at small intervals, and the most up to date values stored at 

the information repository. If SNMP is used for monitorization, traps can be set up to start the dep-

loyment of an extra application server. 

When deploying a new application server, the choice of what applications should be deployed on 

that server is not an easy one. An easy way to cover all the bases is by setting a threshold number 

of applications. If the number of applications installed on a given server is above a certain thre-

shold, then those applications should be split between the two servers. However, if the server has 

a low number of applications, all of the applications should be deployed on the new server as well. 

A cleaner approach is possible if an appropriate SNMP MIB is available for each of the compo-

nents, such as the J2EE-MIB [49] for the monitoring of the J2EE application servers. Such a MIB 

allows fine grained monitoring of the resources used for each application, therefore allowing better 

scaling heuristics, such as deploying a copy of the most accessed application on the least over-

loaded server, as well as the application of a business model, by setting thresholds on the available 

resources for each application. Fine grained information is also at the core of the implementation of 

a Service Level Agreement (SLA) if the platform is viable. 

Again, if all metrics fall below a given threshold, it is time to consolidate. At that time, the two serv-

ers with the freest resources should be consolidated into one, which means deploying the applica-

tions that are only on one of the servers on the other, and shutting down the first. This consolida-

tion behavior should be independent of the monitoring method used. 

Similarly for load balancers, SNMP traps can be used to trigger the scaling. Scaling in is simple if 

common high availability methodologies are employed on the load balancers, as one of the availa-

ble ones should take over the tasks of the disappearing ones quickly and automatically. The prob-

lem is the deployment of a new load balancer, as the common high availability tools usually require 

human intervention when adding a host to the cluster, but it is possible to configure them as to 

allow nodes to automatically join the cluster. 

There are two major entities at play here. The first is a monitoring agent. That agent is responsible 

for collecting the required information from all of the reachable application servers and storing it on 

the information repository. That information must contain the metrics described above, and the list 

of applications deployed on a given server. This can be used by the platform administrators to eva-

luate the platform’s behavior as a hole, and to tweak the scaling metrics in an effort to optimize 

performance. The number of monitoring agents deployed should also be a function of the size of 

the monitored infrastructure. 



A multi tenant elastic platform Proposal of a new PaaS architecture 

 

45 

The second agent is a load manager. It is responsible for listening for SNMP traps and responding 

appropriately by deploying or consolidating servers. 

On an early stage, the agents manager can be a single program instance, however they should be 

planned to work on a high availability scenario, using an external datastore to keep track of their 

actions and state. This architecture will later enable a higher degree of robustness to the cloud as 

the failure or shutdown of an agent instance must not interfere with the operation of the cloud as a 

whole. As such, the usage of a Distributed Hash Table (DHT) is suggested as a way to keep the 

available infrastructure evenly distributed among the available agents. 

4.2.3.6 Extra value – Web services 

Brief introduction to SOA 

As the complexity of the applications increased with the decrease in the price of computing, pat-

terns that allowed code reuse started emerging. CORBA and RMI are standards that allowed build-

ing modular distributed applications whose modules communicated with each other using binary 

interfaces. Both of these technologies have two major weaknesses, they use binary protocols that 

are not friendly to network administrators, and they do not offer an internet wide means of discov-

ery. This makes them less than optimal to build the interface for a public service [50]. 

Many companies brought IT to the core of its business process, therefore many of the B2B prob-

lems that required standard communications between them could be replaced by automated com-

puter to computer communications, without any human intervention [51]. 

However, traditional component based design used binary protocols at its core, and was not suita-

ble for B2B applications as binary protocols are frowned upon by network administrators as all of 

the security must be implemented on the application, and because there was no standard way of 

discovering the interface of a service without human intervention. 

Web Services were the answer to both of the above problems. They use HTTP and XML at the 

communications level, which allows network administrators to inspect and filter traffic, and WSDL 

to specify its interfaces so that no human intervention is required to find the interface of a service. 

Wrapping legacy software with a web service also provided a quick way to expose the functionality 

of a legacy module or application as a business service, a quick way to use legacy services on 

modern services without the need to rewrite all of the business logic to implement a different inter-

face. 

The downside of web services is also one of the technologies that add more value to it. XML is a 

text based protocol, which means that it requires a lot more traffic to send the same information 

that would be sent over a binary protocol. Therefore using web services as a service interface will 

cause It to be somewhat slower than using one of the binary counterparts [52]. 



Proposal of a new PaaS architecture A multi tenant elastic platform 

 

46 

Service Oriented architecture (SOA) is an architecture pattern that uses the above technologies 

(among others) to allow loose coupling between application components. By using standard com-

munication protocols between modules, many of the problems of component based design go 

away. The need to use a single programming language to avoid integration issues becomes mute 

[53-54], and the need to run all of the components on the same machine is no longer an issue [55]. 

But SOA is not only about building loosely coupled component based applications. It takes a step 

further, and sees each component as a service that can be discovered and used by other applica-

tions. 

The inherently distributed application model recommended by SOA introduced many new possibili-

ties, as the orchestration of several services to form a new service, together with the possibility of 

replacing any of the individual services that build an application with another that implements the 

same interface. Those problems are solved by the architecture itself, by specifying layers for ser-

vice discovery and for service orchestration [7, 56]. 

The discovery of services is performed via the query of an UDDI server, this server contains the 

necessary business and technical information required to bind and use the listed services. Howev-

er, most of the public UDDI servers contain outdated information, and the protocol has some sca-

lability issues. These problems are being addressed by alternative UDDI implementations [57-59]. 

The orchestration of web services is performed by BPEL, a XML based language whose purpose is 

to integrate several, sometimes disparate, functions into an integrated service that performs as a 

whole [60]. 

How to bring SOA to the cloud computing age 

SOA and Cloud computing aim at solving different problems. SOA aims at building better quality 

software by identifying real and artificial dependencies, and getting rid of as many of the artificial 

dependencies as possible. Cloud computing aims at solving scalability problems, whether on the 

infrastructure or on the application level. 

So, when building an SOA application for the cloud, what is the service model that fits best? The 

IaaS model is not abstract enough, as it still requires that some active party, be it the application 

manager or the application itself, to monitor the load and scale appropriately. 

The SaaS model is closer to the end result expected form an SOA application or service running on 

the cloud. 

The PaaS model seems to fit perfectly with the requirements to build such an application. It fea-

tures a well known programming interface (and usually a data store), and it is easy to implement a 

scalable application using this service model, as the cloud scales the application automatically 

according to the load on the service. 



A multi tenant elastic platform Proposal of a new PaaS architecture 

 

47 

The problem with the PaaS model is vendor lock in. None of the current commercial implementa-

tions is interoperable with another. This means that in order to switch between vendors, the appli-

cation provider must rewrite a (possibly significant) part of the application. 

So, the ideal cloud deployment model for a SOA application would be a PaaS cloud, preferably 

integrated with an UDDI system, that is completely open and vendor agnostic. This would take the 

advantages of no vendor lock in that come with an IaaS, as well as the ease of development that 

comes with a PaaS. 

Integrating UDDI with the PaaS 

Currently there are a myriad of web services available throughout the web, and several attempts 

have been made to bring some order to the chaos. Current UDDI public registries contain mostly 

unreliable information, meaning that the technical information that describes a service is incorrect 

and therefore unusable for the composition of new services [61-62]. 

There are two solutions to this problem. The first is a matter of changing the development practices 

of the application developers, adding the extra step of updating every UDDI with the updated appli-

cation information and removing such information when the service is no longer online. This does 

not seem to be working as the information on most of the registries is still outdated! 

Another way to solve the problem of stale information is by using an UDDI registry that periodically 

monitors the applications that are registered on its database. This approach works better, but it has 

the disadvantage of requiring extra work by the registry. The distribution of the service seems to be 

a good way of lessening the burden on the central server, as each local registry may check the 

accuracy of a subset of the registered services [57-58]. 

What is proposed is an hybrid between a traditional passive UDDI, and an active distributed UDDI. 

Given that the application upload and deployment takes place on a controlled environment, the 

required information about the service supplied by the application (white and yellow pages) can be 

updated on application upload. On the other hand, the technical information about the application 

can easily be retrieved in runtime. 

To retrieve the technical information (green pages), a local agent running on each application serv-

er can monitor new applications upon deployment, and if a (correct) web service is found, it can 

then update the information repository with the correct WSDL information. A mandatory file placed 

at the root of the application can point to the WSDL location to facilitate the discovery process. 

The frontend UDDI server can then serve external requests. Given that the UDDI is running in a 

controlled environment, no application registration is required as that action is performed on dep-

loyment. Also, the available information will always be correct as the local agents are in charge of 

keeping the technical information up to date, while the white pages are associated with the user 

profile, and the yellow pages with the application profile. 



Proposal of a new PaaS architecture A multi tenant elastic platform 

 

48 

Traditional UDDI directories organize its information in categories and sub categories, on a tree 

structure. This may in fact be detrimental, as there is a possibility that the required service for a 

given application may not be found due to a misinterpretation during the navigation of the tree [63]. 

Therefore, it is proposed that the UDDI interface should organize its contents based on a semantic 

ontology instead of a tree. This approach will in fact require extra work, as making sure that the 

semantics of the information associated with each service is accurate takes administration time, but 

the advantages are enormous. 

The advantage of organizing the information on a semantic ontology is that the required services 

can be easier to locate. The more information is contained in the query, the more likely it is that the 

returned results will match the exact requirements. This is better than keyword search as it is diffi-

cult to add all possible keywords to a given service. Another advantage of the semantic ontology is 

that the same service may appear on several points of the ontology, without the need to re-register 

the service [63]. 

The organization of the information on a semantic ontology lead to another question. What about 

the services that cannot be performed by a computer? Lets say that one company is looking for a 

human resources management contractor. Usually, that company would look at the yellow pages 

(the ones on paper!) and start placing calls for each company. However the UDDI service already 

has the ability of performing the same function as the yellow pages and more. This lead to the con-

clusion that the semantic ontology colud easily be able to separate services that are intended to be 

consumed by a device from services that are meant to be consumed by a human, meaning that 

there is no problem in listing both kinds of services on the same directory. The only modification 

required is supplying a web interface where an identified user may publish his services to the 

world. Such a service should only allow the input of information about the company and the ser-

vice, with no possibility of adding technical information meant for computer consumption. 

The problem with services that are meant to be consumed by humans is that there is no way to 

make sure that the supplied information is accurate and up to date. As to the accuracy of the appli-

cation, very little can be done. It is up to the one that publishes the information to make sure that it 

is in fact accurate. 

The problem of maintaining the information up to date on the other hand is quite easy to solve. 

Human services, unlike computer services tend to be quite stable over time. A company does not 

change its points of contact often, and the life time of a supplied service is commonly counted in 

years. This means that a simple expiricy policy may solve the staleness of the data. As an exam-

ple, if a user registered a service, that registration should be valid for six months. However, after 

three months the system should automatically start sending monthly mails reminding the user that 

his service would be removed from the listing after that period. Such warnings would grant plenty of 

time for a service provider to log in and confirm or deny that he still provides the service, therefore 

reducing the duration of the stale data to a maximum of six months. 



A multi tenant elastic platform Proposal of a new PaaS architecture 

 

49 

4.2.4 The platform infrastructure manager 

The previous sections identified and defined the various entities required to build a scalable PaaS 

using an existing IaaS cloud, as well as the flow for some of the actions that are commonly per-

formed on a PaaS system. The major differences between existing PaaS services and the one 

specified are the inclusion of the UDDI service as part of the core design, and the portability of the 

PaaS itself as it can be deployed on any infrastructure be it cloud based or not. 

Most of the described entities are based on common freely available software and standards, and 

therefore are achievable simply by introducing slight modifications to the existing software in order 

to fulfill the new requirements. Others are new software, but are in fact quite simple to develop 

such as the user interface for deploying a new application. 

Operating system portability is achieved because all of the components are built to be cross plat-

form, or run on a JVM that is itself cross platform. 

Yet, at the heart of this system lies the development of a completely new application, a Platform 

Infrastructure Manager (PIM). 

The role of this manager is to scale the platform, removing the need for human intervention. This 

software must be designed on a distributed way, with the possibility of replicating each module on a 

different machine, therefore taking advantage of the cloud’s scalability properties. 

This new application will therefore take advantage of the patterns of SOA when possible, not by 

using web services, as those are better suited for B2B applications but by using loose coupling 

strategies between each of the available modules. This makes it easy to extend and add features 

to the manager in the future. Some ideas for such features include an external (non managed) hop-

In/hop-out nodes as an integrant part of the platform infrastructure. 

4.2.4.1 The core of the Manager 

At the core of the manager lies the information repository described on 4.2.3.1. This information 

repository’s distributed nature allows for the distribution of the state of the PIM. Meaning that the 

application itself must be developed with care to store all of the relevant state information on the 

repository as a way of enabling horizontal scaling and elasticity. 

The core application of the PIM is to be a small application that may run on any of the managed 

nodes in parallel with every other application. It must be kept as simple as possible, to ease main-

tenance, and must be fully fault tolerant. 

Each of the core application instances must register itself on the central datastore and update its 

own status on a regular base. The status information contains a timestamp, and a list of managed 

modules, as well as the status of each of the managed modules. 



Proposal of a new PaaS architecture A multi tenant elastic platform 

 

50 

Each instance must also run a cleanup and reassignment of active applications at random intervals 

with a configurable probability. Such probability must be automatically decreased as the number of 

deployed copies increases, and the information about when the last cleanup process occurred 

should be stored to avoid running such a process at very small intervals. 

Upon the failure of an application core, all of its modules must be distributed among all of the re-

maining cores. This task is to be performed by whatever core performs the cleanup process. Extra 

care should be taken to make sure that no information is lost if an application fails when performing 

a cleanup, as an example, to migrate one module from one manager to the other, the new informa-

tion should be written before the old one is removed. 

Other than that, each application core should be responsible for managing and monitoring a series 

of autonomous modules. Each module type must be properly designed to store all of the required 

information on the datastore as well, in order to allow for automatic horizontal scalability. 

Each of the application modules should have a type and a subtype, as well as a target and host 

operating system, used to indentify its function. As an example, a module that monitors the CPU 

load of a server should have the monitor type and the CPU subtype. If the module depends on the 

operating system of the target server, it should specify it on the target operating system property, 

and if the module runs only on a given operating system, it should be noted on the appropriate 

section as well. 

Another property that each module should have is a class. At the moment, the two classes that are 

envisioned are the independent and the agent. Where the independent module may run on any 

server and the agent is to be deployed together with a given application or server type instance. 

This means that modules of the class agent should not be scaled according to any of the metrics 

previously described; instead they should be scaled with the application they are to be deployed 

with. 

Several module types and subtypes should be available for deployment. Some of those will be 

described next, but others will most likely be required later if the system is to be fully implemented. 

4.2.4.2 Monitor load 

The load monitor belongs to the class independent. Its purpose is to monitor the load of a set of 

servers, and scaling those servers appropriately. Each module is to be responsible for a single type 

of server, be it an application server, a datastore server, or a PIM host. When deploying the load 

monitor, the deployer (another load monitor or a cloud operator) must configure that load monitor 

with enough information to allow the new process to access the information repository, and start 

operation. Such information comprises a cloud template for the deployment of a new server of the 

class that is to be monitored, how much time to wait before deploying a new server to avoid per-

forming many scaling operations on a row because of the same server. 



A multi tenant elastic platform Proposal of a new PaaS architecture 

 

51 

At the time it was not defined whether this module actively monitors the other servers or if it waits 

for the servers to send it trigger information. Yet the most likely solution includes a mix of both, with 

periodic monitoring used to gather statistics and make sure that the monitored services are run-

ning, while the critical conditions should be triggered by the monitored host itself, informing the 

monitor that the load passed a threshold that is supposed to cause the monitor to act upon it. 

The required information should be added as part of the contextualization of the virtual machine to 

be deployed if running under an infrastructure manager, or sent to the server (possibly via SNMP). 

When scaling out, the module should first boot a new instance of a given server, then call a scaling 

function that is server specific and actually performs any required work to distribute the load over 

the two servers. 

When scaling in, the module should call a scaling function before destroying the server. That func-

tion should remove the server from any cooperative tasks it may be performing before allowing the 

scale in process to continue. When possible, the scale in process should take place on the two 

servers with the lowest load possible, consolidating the tasks performed by both of them on a sin-

gle server. 

Other server types such as the load balancers do not require any complicated actions to be per-

formed on them; this means that an empty function should be called for those modules. 

If unmanaged nodes are to become a possibility, the need to uniquely identify a given node be-

comes paramount as the IP address or even domain name of the server may change in runtime. 

This requires the usage of a robust name resolution system, far more sophisticated than DNS. The 

XRI/XDI architecture has the required abilities to handle such naming scheme modifications. 

This naming resolution system supports, among other things, the reuse of the same identifier with-

out the fear of mixing the identity of two hosts, therefore allowing per server accounting even if a 

given server changes its IP address and domain name to one that was previously assigned to 

another host. This technology already proved its applicability for this scenario as it is at the core of 

the OpenID v2.0 specification precisely to allow a safe and robust resolutions of the user’s identity 

[64]. 

Deploy application on new server 

After deploying a new application server, a set of applications must be deployed on the new server 

if the load is to be distributed between the two. This is the task of this module. 

If the number of applications deployed on a given server is over a configurable threshold, the appli-

cations should be split among the two servers. However, if the application count is bellow that thre-

shold, the module replicates the full application list on the new server. 

  



Proposal of a new PaaS architecture A multi tenant elastic platform 

 

52 

Consolidate application servers 

Before scaling in two application servers, one must be chosen to keep on running. The applications 

that are running on the server that is to be shut down must be deployed on the other server if not 

deployed already. 

The load managers must remove the server that is to shut down from their rotation, and some time 

must be allowed to avoid shutting down the server while in the middle of answering a request. Only 

then is it possible to shut down one of the application servers. 

Deploy a new Datastore server 

Deploying a new datastore process is not supported on the initial stages of the development as the 

application datastore is based on a RDBMS that requires human intervention and the information 

repository is based on a monolithic datastore. So at the moment this module should just send an 

email to an operator informing that the datastore is overloaded. 

Later, when a new (and improved) datastore is deployed, information about the existing datastore 

deployment should be added to the new instance, and possibly, the rebalancing process should be 

triggered. 

Consolidate the datastore server 

On the initial stages this is not recommended as the chosen datastore does not allow on line con-

solidation, yet when the new datastore is in place, it will be the task of this function to remove the 

node from the datastore, therefore distributing its information over the remaining datastore. 

4.2.4.3 Deploy new application 

This module exposes an internal cloud service. It performs the actual sanitation of a new applica-

tion submitted by a user, setting the correct application root, and performing any other checks that 

are required. 

If the application is marked as a web service by the user, it is also this module’s responsibility to 

check the sanity of the user provided application information. 

This module then deploys the application on a configurable number of application servers, and if 

required adds the required information to the UDDI servers. However, the presence and validity of 

the WSDL file must be checked before adding any information to the UDDI server. 



A multi tenant elastic platform Proposal of a new PaaS architecture 

 

53 

4.2.4.4 Delete application 

This module takes an application name and username and deletes that application from the whole 

platform. This encompasses deleting all of the application specific information from the repository 

and the UDDI if the application is a web service, undeploying every application instance, and finally 

deleting the application WAR from the central application repository. 

4.2.4.5 Other modules 

The modules and functions described above are expected to be operating system agnostic, how-

ever on the real world, the need for operating system specific modules may arise, especially if a 

non POSIX compliant system is ever used as an application server host. 

Other modules may be required, as the platform development begins and the requirements and 

system limitations become evident. However, the modules described above should provide an ini-

tial base functionality that should be enough to evaluate the viability of the platform, as well as to 

evaluate any scalability problems that may arise due to architecture mistakes. 

4.2.5 Portability isssues 

All of the current PaaS implementations come with the downside of vendor lock in. This comes 

from the fact that none of the services actually license the code that comprises the platform, which 

would allow a client to deploy that very same platform on another vendor’s infrastructure. 

The proposed PaaS parts radically with this trend. By using only open source components, and 

licensing the code that is to be developed under an appropriate license, such as the GNU Affero 

license, the freedom to deploy individual components of the whole PaaS on any infrastructure is 

granted to all that make use of it. 

The proposed PaaS was designed with the possibility of running on a large number of small virtual 

machines in mind, precisely to make sure that it will run on any available infrastructure without re-

quiring top end servers. 

If needed, a partial deployment is possible on physical hardware, just by removing the agents that 

perform the scaling of the infrastructure. On the other hand, deployment on different IaaS suppliers 

is possible by the implementation of different client API’s on the scaling agents, therefore turning 

this into a very flexible PaaS. 

As to host operating system, all of the required software is multi platform. This is accomplished 

either by recompilation for the required platform, or by running on a java/python/ruby virtual ma-

chine. In either case, supporting different host operating systems should be as easy as recompiling 

a few modules, and creating a new distribution package for the given operating system. Neverthe-



Proposal of a new PaaS architecture A multi tenant elastic platform 

 

54 

less, during the specification phase, Linux was always seen as the most viable host for such a sys-

tem, as (taking EC2 as an example) running a linux instance on a IaaS is cheaper than running 

windows on the same hardware, and because it is a very well documented and widely used system 

for server purposes. 



Gateways Comparison 

 

55 

5 Comparison 

The comparison of the proposed platform with existing products is not a simple task. The first prob-

lem is that the maturity of the existing projects is quite varied, and so are the target audiences for 

each one. 

A famous title in software development states that ‚there is no silver bullet” [65]. Brooks became 

famous for this not only due to the content of the article itself, but also due to the fact that this prin-

ciple is applicable not only to software engineering methods, but to many other aspects of the soft-

ware lifecycle, from the choice of a programming language, to the final product. 

The platform proposed by this dissertation work is an example of the concept. Many decisions were 

taken when specifying the platform, and many more need to be taken when the development cycle 

of each component begins. Those decisions are unlikely to please all possible audiences, yet care 

was taken to try to cater to the needs of the enterprise J2EE application as much as possible. 

If this approach is successful, the addition of the .Net programming language should cater to the 

needs of another large community, and therefore the needs of most of the enterprise market should 

be covered. 

There are some key points that define the scalability of the cloud architecture. The first of those is 

the ability to move data in and out of the cloud, the available throughput that must be shared by all 

the cloud applications and users. The second is how the application servers itself work and share 

information, this may eventually lead to a point where adding more servers may decrease perfor-

mance instead of increasing it. The third factor is the structured storage solution used for applica-

tion data persistence, this is most likely the field where the greatest number of implementations are 

available. There are many solutions to particular problems that plague data storage, yet no single 

public domain implementation solves all the issues up to the moment. 

5.1 Gateways 

The gateway system to the AppEngine PaaS is not clear and the other implementations currently 

use a clustered application server to respond to all the requests. 

The proposed platform parts with this concept, as the fact that the cloud bandwidth is saturated 

does not imply that a new application server should be deployed, nor does the fact that the network 

has little load mean that the application servers are idling. 

On the most common scenario, the proposed platform should be deployed on an infrastructure that 

features better internal links than internet links for each host. 

By separating the gateway from the application server, this platform allows the usage of different 

templates in the case of deployment on a IaaS cloud, which could reduce the total running costs. 



Comparison Application server 
 

56 

The gateway load balancers should run as a cluster not to share state information, but to scale IP 

addresses appropriately as adding and removing IP addresses from the DNS system may take a 

long time due to the architecture of the DNS system itself. 

This is an improvement over current implementations where any application server is in charge of 

responding to its own requests and routing those that must be replied elsewhere, as it separates 

the task of replying to a request from the task of routing the requests, therefore allowing the scaling 

of each layer in separately. 

5.2 Application server 

Scaling the application servers is a crucial feature of a PaaS. The available and known implemen-

tations scale the application servers using the well established cluster technology to allow session 

state to be maintained, with the exception of Google’s AppEngine that forces each request from the 

user to be completely stateless, or the developer to explicitly store session information on the 

BigTable data store. 

The proposed implementation parts with the cluster architecture, as it requires constant state and 

routing information sharing, and taking a page form the shared nothing architecture, it states that 

no information should be shared by the application servers, meaning that each server is autonom-

ous from the others while serving a request. This removes the need for a high performance shared 

storage where the full pool of deployed applications are stored after deployment, but it adds the 

need for an intelligent load balancer to route a request to one of the available applications servers 

that have the required application deployed. This may add a bit of latency as it requires a round trip 

to a persistent data store, yet the communication protocol used to perform this task should be as 

fast as possible in order to minimize perceived latency. 

The proposed PaaS does allow the maintenance of session information, yet it does that in a com-

pletely different way. It hides the complexity of storing and fetching session information on a persis-

tent data store from the user. This does lead to an increase on the latency for any request that 

uses this feature, but that increase is justified due to the fact that it should not degrade with load. 

5.3 Structured data storage 

Application data can be stored using several models, and within each data model several imple-

mentations are available. This is an area where a lot of effort is being placed by the developers in 

order to add the required functionality to supply a really scalable service, with the possibility of stor-

ing and querying complex data. 



UDDI Comparison 

 

57 

Current PaaS implementations developed different solutions for this problem. JBoss’s Paas uses a 

key value data store, therefore trading data complexity for scalability. Unfortunately, complex data 

storage is required on most of the real world applications that may take advantage of such a PaaS. 

Aneka’s solution is a full RDBMS for application data storage. This solution allows a large data 

complexity and allows the application to take advantage of the ACID properties. The downside of 

this choice is that the current scalability and elasticity of the available RDBMS systems is quite 

limited, and therefore this may become a bottleneck for a busy application. 

Google’s BigTable is currently the best available solution of the available PaaS’s for application 

data. The data model of this solution takes advantage of the fact that most developers were al-

ready using some sort of object-to-relational solution such as hibernate or LINQ, and exposes a 

programmatic interface very similar to such products. 

Although many criticize Google due to the strict limits placed upon the queries performed, there is 

no doubt that if an application is programmed taking into account the artificial limitations placed 

upon the queries, this data store can scale to extremely large volumes of queries without showing 

any impact due to the increased load. 

The proposed PaaS specification tried to part with the RDBMS system with no success, as current-

ly none of the implementations of complex data stores allow the storage of complex data on a multi 

tenant environment. Yet, it is expected that the MongoDB will reach that point in a little time, there-

fore the RDBMS is just a temporary solution. 

5.4 UDDI 

Up to this moment none of the available PaaS implementations really integrated an UDDI service 

into its core. This may be a major flaw, as many of those implementations are trying to enter the 

business space where SOA is actually used. 

As such, this proposal encompasses the integration of an UDDI service in the core of the cloud 

itself. This service can be used for internal service publication in the case of services that are re-

lated to the management of the cloud itself. But the main reason to add a directory to the core of 

the implementation was the proposal of a new concept of UDDI management, where the published 

information is always up to date without the need of constant monitoring as is the case of active 

UDDI. 

This is probably the most innovative concept introduced by this work, as it effectively allows the 

integration of applications deployed on the PaaS into existing or new service orchestrations de-

signed to build a new service, or even an enterprise business layer. 



Comparison UDDI 
 

58 

Another novelty introduced by this work is the way in which the services are searched within the 

UDDI server itself, that parts with the traditional tree like organization and takes a semantic ap-

proach, therefore increasing the chances of finding an adequate service. 



IaaS Conclusions & Future Work 

 

59 

6 Conclusions & Future Work 

6.1 IaaS 

The first objective of this dissertation was to assert the state of the current IaaS implementations. 

The state of the commercial implementations is widely documented on the supplier’s web sites, but 

that is not always the case with the open source implementations, where the documentation often 

lags behind the implementation features. 

The chosen implementation was OpenNebula. It is still quite a simple infrastructure manager, yet it 

is developing quite fast as the users realize that it features a clean and easily extensible architec-

ture. In fact, in order to compare the VMware driver with the Xen driver on even grounds, some 

modifications were necessary. 

The resulting deployment of OpenNebula is nearly useable as a production system, with very few 

modifications required for such operation. Those modifications consist mainly in the addition of new 

virtualization hosts and moving the shared storage to a dedicated appliance, or using an image 

management system that copies the source images to all virtualization nodes and deploys a copy 

of the local image on the node. 

An interesting addition to the existing deployment is a project from the ecosystem that consists on 

a web console that is usable to manage the cloud. However, tests performed on the very early 

stages of the implementation of the console did not show any advantage for the current work, so no 

effort was placed on helping the development team. 

When compared with existing IaaS deployments, the one performed at IEETA can be at most clas-

sified as a proof of concept due to its small size, and already a plethora of new ideas are bubbling 

around it. With the addition of new resources, the possibility of sharing the deployment among sev-

eral investigation groups, or using it for educational purposes becomes real and appealing. 

An interesting test performed by CERN also shows that OpenNebula is able of deploying about one 

VM per second when using LVM deployment and pre transferred images, which is quite an impres-

sive number for such a simple manager, yet not enough for CERN’s requirements. 

The core of OpenNebula also has some flaws that reduce its usability for a large public deploy-

ment. At the moment, high availability is not yet part of the immediate design goals of the OpenNe-

bula team. This means that in the case of a failure of the node that runs the scheduler, deployment 

of new images will be impossible. Another flaw lies on user and permissions management that is 

too simplistic. The next release should include the ability to specify access lists for each user or VM 

image, meaning that it will be a major step towards the deployment of a public cloud. 

The IaaS cloud that resulted from this dissertation work is suitable for wide deployment, with very 

small modifications that lie especially on the mass storage used to store system images. It can be 



Conclusions & Future Work PaaS 

 

60 

used either for teaching or research purposes, where a large number of small machines are a 

common requirement. 

It is also proof that the IaaS open source implementations are now at a stage that allows them to 

be used for initial production applications, but also that there is a lot of work that still needs to be 

performed by the development community. 

6.2 PaaS 

The lack of an open PaaS cloud is a major drawback to the adoption of this service model as a 

hosting platform for the enterprise business logic due to the fear of vendor lock in, among other 

factors. 

The PaaS specification envisioned by this document explores existing technologies to build a mod-

ern platform that features well known technologies that are widely used on the enterprise market 

segment. It also brings the UDDI server into the cloud, taking advantage of existing application 

information to avoid the publication of outdated or incorrect information on that server. 

This PaaS steps forward the existing ones as it solves some of the most important problems that 

pose as a barrier to PaaS adoption, the problem of vendor lock in and the problem of portability. 

Those problems seem to be the two most important barriers to wide enterprise PaaS adoption. 

6.3 Future work 

The OpenNebula community is now tackling what are perceived as its current weaknesses. Work is 

focusing on the public API that is incomplete and does not expose the full functionality of the soft-

ware. The core is now a single point of failure, architecture modifications that will allow a high 

availability core are under consideration. The user management is currently too simplistic, ACL 

support is being added to the core of the system, as well as alternative authentication mechanisms. 

The work on OpenNebula is a community effort that is doing quite well. From personal experience, 

the support mailing lists are quite friendly, bugs are not a common place and are solved quite 

quickly. Configuration issues seem to be the most common problem, but those have an easy solu-

tion most of the times. 

The refinement of the specification and the implementation of the PaaS proposed here would be a 

very interesting project, however due to its length and amount of technologies to be approached, 

that task is better suited for a medium sized project than for a single person’s work. 

 



 References 

 

61 

References 

[1] T. OReilly, ‚What is Web 2.0: Design patterns and business models for the next generation of 

software,‛ 2007. 
[2] M. Armbrust, A. Fox, R. Griffith et al., ‚Above the clouds: A Berkeley view of cloud computing,‛ EECS 

Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2009-28, 2009. 

[3] P. Mell, and T. Grance. "Draft NIST Working Definition of Cloud Computing v15," September 10, 
2009; http://csrc.nist.gov/groups/SNS/cloud-computing/. 

[4] L. Ellison. "Oracle's Ellison nails cloud computing," September 9, 2009; http://news.cnet.com/8301-

13953_3-10052188-80.html. 
[5] IBM. "IBM - Cloud Computing," September 9, 2009; http://www.ibm.com/cloud/. 
[6] T. Biske. "Cloud versus Grid," April 2010; http://www.biske.com/blog/?p=460. 

[7] M. Papazoglou, "Service-oriented computing: Concepts, characteristics and directions." 
[8] A. Rajsekar, M. Wan, R. Moore et al., ‚Data grid federation,‛ PDPTA, Las Vegas NV, 2004. 

[9] R. Ranjan, A. Harwood, R. Buyya et al., ‚Grid Federation: An Economy Based, Scalable Distributed 
Resource Management System for Large-Scale Resource Coupling,‛ Grid Computing and Distributed 
Systems Laboratory, University of Melbourne, Australia, 2004. 

[10] M. Bote-Lorenzo, Y. Dimitriadis, and E. Gómez-Sánchez, "Grid characteristics and uses: a grid 
definition." pp. 291-298. 

[11] I. Foster, Y. Zhao, I. Raicu et al., ‚Cloud Computing and Grid Computing 360-Degree Compared,‛ 

Gce: 2008 Grid Computing Environments Workshop, pp. 60-69, 2008. 
[12] A. Aarsten, D. Brugali, and G. Menga, "Patterns for three-tier client/server applications." 
[13] J. Mayer, I. Melzer, and F. Schweiggert, ‚Lightweight plug-in-based application development,‛ Lecture 

Notes in Computer Science, pp. 87-102, 2003. 
[14] "[one-users] Does OpenNebula support Windows guest VM?," September 18, 2009; 

http://lists.opennebula.org/pipermail/users-opennebula.org/2009-May/000428.html. 

[15] "Running Windows on Eucalyptus « Ajmf's Weblog," September 18, 2009; 
http://ajmf.wordpress.com/2009/08/05/running-windows-on-eucalyptus/. 

[16] "Main Page - KVM," October 1, 2009; http://www.linux-kvm.org/page/Main_Page. 

[17] "[workspace-user] KVM Status in Globus Workspace," September 18, 2009; 
https://lists.globus.org/mailman/htdig/workspace-user/2009-June/000850.html. 

[18] "google-summer-of-code-2009-globus," September 18, 2009; http://code.google.com/p/google-

summer-of-code-2009-globus/downloads/list. 
[19] "Manjrasoft," May 2010; http://www.manjrasoft.com/. 

[20] C. Vecchiola, X. Chu, and R. Buyya, ‚Aneka: a software platform for .NET-based Cloud computing,‛ 
High Performance & Large Scale Computing, Advances in Parallel Computing. IOS Press, 
Amsterdam, 2009. 

[21] X. Chu, K. Nadiminti, C. Jin et al., "Aneka: Next-generation enterprise grid platform for e-science and 
e-business applications." 

[22] M. Neale. "Cooling Tower - JBoss community," May 2010; 

http://community.jboss.org/wiki/CoolingTower. 
[23] "INFINISPAN - Open Source Data Grids - JBoss community," May 2010; 

http://www.jboss.org/infinispan. 

[24] F. Chang, J. Dean, S. Ghemawat et al., "Bigtable: A distributed storage system for structured data." 
[25] Google. "GQL Reference - Google App Engine - Google Code," 

http://code.google.com/appengine/docs/python/datastore/gqlreference.html. 

[26] B. Sotomayor, R. Montero, I. Llorente et al., ‚Capacity leasing in cloud systems using the opennebula 
engine,‛ Cloud Computing and Applications, vol. 2008, 2008. 

[27] J. Fitzhardinge. "Re: [Xen-devel] What is the current state of Dom0 kernel support?," March, 2010; 

http://lists.xensource.com/archives/html/xen-devel/2009-06/msg01193.html. 
[28] "Overview - Fedora project," March, 2010; http://fedoraproject.org/wiki/Overview. 
[29] M. DiPetrillo. "UPDATE: VMware RCLI now writes to ESXi Free Hosts," March, 2010; 

http://www.mikedipetrillo.com/mikedvirtualization/2008/12/update-vmware-rcli-now-writes-to-esxi-free-
hosts.html. 

[30] "OpenNebula: The Open Source Toolkit for Cloud Computing - Documentation," March 2010; 

http://www.opennebula.org/documentation:documentation. 
[31] O. O. C. C. I. W. Group. "OGF Open Cloud Computing Interface Working Group :: start," October 21, 

2009; http://www.occi-wg.org/doku.php. 
[32] "Open Cloud Manifesto," March 2010; http://www.opencloudmanifesto.org/. 
[33] A. B. Bondi, ‚Characteristics of scalability and their impact on performance,‛ in Proceedings of the 2nd 

international workshop on Software and performance, Ottawa, Ontario, Canada, 2000, pp. 195-203. 

http://csrc.nist.gov/groups/SNS/cloud-computing/
http://news.cnet.com/8301-13953_3-10052188-80.html
http://news.cnet.com/8301-13953_3-10052188-80.html
http://www.ibm.com/cloud/
http://www.biske.com/blog/?p=460
http://lists.opennebula.org/pipermail/users-opennebula.org/2009-May/000428.html
http://ajmf.wordpress.com/2009/08/05/running-windows-on-eucalyptus/
http://www.linux-kvm.org/page/Main_Page
http://code.google.com/p/google-summer-of-code-2009-globus/downloads/list
http://code.google.com/p/google-summer-of-code-2009-globus/downloads/list
http://www.manjrasoft.com/
http://community.jboss.org/wiki/CoolingTower
http://www.jboss.org/infinispan
http://code.google.com/appengine/docs/python/datastore/gqlreference.html
http://lists.xensource.com/archives/html/xen-devel/2009-06/msg01193.html
http://fedoraproject.org/wiki/Overview
http://www.mikedipetrillo.com/mikedvirtualization/2008/12/update-vmware-rcli-now-writes-to-esxi-free-hosts.html
http://www.mikedipetrillo.com/mikedvirtualization/2008/12/update-vmware-rcli-now-writes-to-esxi-free-hosts.html
http://www.opennebula.org/documentation:documentation
http://www.occi-wg.org/doku.php
http://www.opencloudmanifesto.org/


References  

 

62 

[34] M. Michael, J. E. Moreira, D. Shiloach et al., "Scale-up x Scale-out: A Case Study using 

Nutch/Lucene." pp. 1-8. 
[35] D. Oppenheimer, and D. Patterson, ‚Architecture and dependability of large-scale Internet services,‛ 

IEEE Internet Computing, pp. 41-49, 2002. 

[36] V. Cardellini, M. Colajanni, and P. Yu, ‚Dynamic load balancing on web-server systems,‛ IEEE 
Internet Computing, vol. 3, no. 3, pp. 28-39, 1999. 

[37] A. Delis, and N. Roussopoulos, "Performance and scalability of client-server database architectures." 

pp. 610-610. 
[38] M. Stonebraker, ‚The case for shared nothing,‛ Database Engineering Bulletin, vol. 9, no. 1, pp. 4-9, 

1986. 
[39] J. West, and J. Woodard, ‚Strategic Responses to Standardization: Embrace, Extend or Extinguish?,‛ 

2009. 

[40] "Configuring_distributed_systems," April 2010; 
http://wiki.apache.org/couchdb/Configuring_distributed_systems. 

[41] D. Merriman. "Security and Authentication," April 2010; 

http://www.mongodb.org/display/DOCS/Security+and+Authentication. 
[42] B. Scofield, ""Comics" is hard: On domains and databases," 2009. 
[43] Q. Yao, and A. An, "Using user access patterns for semantic query caching." pp. 737-746. 

[44] "Mono project," May, 2010; http://www.mono-project.com/Main_Page. 
[45] "Novell and Microsoft Collaborate," May 2010; http://www.novell.com/linux/microsoft/faq.html. 
[46] B. Smith. "Microsoft's Empty Promise - Why Worry About C#?," May 2010; 

http://www.fsf.org/news/2009-07-mscp-mono. 
[47] Microsoft. "ECMA C# and Common Language Infrastructure Standards," May 2010; 

http://msdn.microsoft.com/en-us/netframework/aa569283.aspx. 

[48] R. Schestowitz. "Novell Wants to Bring Microsoft, Moonlight, and Mono to Linux Phones (Android)," 
May 2010; http://techrights.org/2010/03/17/android-mono-silverlight-danger/. 

[49] Sun, "J2EE-MIB," 2002. 

[50] H. Petritsch, ‚Service-Oriented architecture (SOA) vs. component based architecture,‛ White Paper, 
Vienna University of Technology, 2008. 

[51] T. Mukhopadhyay, and S. Kekre, ‚Strategic and operational benefits of electronic integration in B2B 
procurement processes,‛ Management Science, vol. 48, no. 10, pp. 1301-1313, 2002. 

[52] N. Gray, "Comparison of Web Services, Java-RMI, and CORBA service implementations." 

[53] A. Cleary, S. Kohn, S. Smith et al., ‚Language interoperability mechanisms for high-performance 
scientific applications,‛ 1998. 

[54] M. Weiser, A. Demers, and C. Hauser, "The portable common runtime approach to interoperability." p. 

122. 
[55] F. Leymann, ‚Web services: Distributed applications without limits,‛ Business, Technology and Web, 

Leipzig, 2003. 

[56] L. Chen, B. Wassermann, W. Emmerich et al., "Web service orchestration with BPEL." p. 1072. 
[57] B. Sujata, B. Sujoy, G. Shishir et al., ‚Scalable Grid Service Discovery based on UDDI,‛ in 

Proceedings of the 3rd international workshop on Middleware for grid computing, Grenoble, France, 

2005. 
[58] Z. Du, J. Huai, and Y. Liu, ‚Ad-UDDI: An active and distributed service registry,‛ Technologies for E-

Services, pp. 58-71. 

[59] W. Tsai, R. Paul, Z. Cao et al., ‚Verification of web services using an enhanced UDDI server,‛ 2003. 
[60] "Web Services Business Process Execution Language Version 2.0," May 2010; http://www.oasis-

open.org/committees/download.php/23964/wsbpel-v2.0-primer.htm. 

[61] M. Clark. "UDDI weather report," April 2010; 
http://www.webservicesarchitect.com/content/articles/clark04.asp. 

[62] S. Kim, and M. Rosu, ‚A survey of public web services,‛ E-Commerce and Web Technologies, pp. 96-

105. 
[63] R. Akkiraju, R. Goodwin, P. Doshi et al., "A method for semantically enhancing the service discovery 

capabilities of UDDI." pp. 9-10. 
[64] D. Reed, L. Chasen, and W. Tan, "OpenID identity discovery with XRI and XRDS." pp. 19-25. 
[65] F. Brooks, ‚No silver bullet: Essence and accidents of software engineering,‛ IEEE computer, vol. 20, 

no. 4, pp. 10-19, 1987. 
[66] J. Barr. "Amazon EC2 Beta," October 9, 2009; 

http://aws.typepad.com/aws/2006/08/amazon_ec2_beta.html. 

[67] J. Barr. "New EC2 Features: Static IP Addresses, Availability Zones, and User Selectable Kernels," 
October 9, 2009; http://aws.typepad.com/aws/2008/03/new-ec2-feature.html. 

[68] J. Barr. "Amazon EBS (Elastic Block Store) - Bring Us Your Data," October 9, 2009; 

http://aws.typepad.com/aws/2008/08/amazon-elastic.html. 
[69] Amazon. "Amazon Simple Storage Service (Amazon S3)," October 21, 2009; 

http://aws.amazon.com/s3/. 

http://wiki.apache.org/couchdb/Configuring_distributed_systems
http://www.mongodb.org/display/DOCS/Security+and+Authentication
http://www.mono-project.com/Main_Page
http://www.novell.com/linux/microsoft/faq.html
http://www.fsf.org/news/2009-07-mscp-mono
http://msdn.microsoft.com/en-us/netframework/aa569283.aspx
http://techrights.org/2010/03/17/android-mono-silverlight-danger/
http://www.oasis-open.org/committees/download.php/23964/wsbpel-v2.0-primer.htm
http://www.oasis-open.org/committees/download.php/23964/wsbpel-v2.0-primer.htm
http://www.webservicesarchitect.com/content/articles/clark04.asp
http://aws.typepad.com/aws/2006/08/amazon_ec2_beta.html
http://aws.typepad.com/aws/2008/03/new-ec2-feature.html
http://aws.typepad.com/aws/2008/08/amazon-elastic.html
http://aws.amazon.com/s3/


 References 

 

63 

[70] M. Palankar, A. Iamnitchi, M. Ripeanu et al., "Amazon S3 for science grids: a viable solution?." pp. 

55-64. 
[71] "Welcome to Google Apps," October 9, 2009; http://www.google.com/apps/. 
[72] I. Blau, and A. Caspi, "What type of collaboration helps? Psychological ownership, perceived learning 

and outcome quality of collaboration using Google Docs." pp. 48-55. 
[73] "Google App Engine - Google Code," October 8, 2009; http://code.google.com/intl/pt/appengine/. 
[74] "Quotas - Google App Engine - Google Code," October 8, 2009; 

http://code.google.com/intl/pt/appengine/docs/quotas.html. 
[75] Microsoft. "Windows Azure Platform," October 21, 2009; http://www.microsoft.com/windowsazure/. 

[76] H. E. Schaffer, S. F. Averitt, M. I. Hoit et al., ‚NCSU's Virtual Computing Lab: A Cloud Computing 
Solution,‛ Computer, vol. 42, no. 7, pp. 94-97, 2009. 

[77] "Academic Partners | Virtual Computing Lab (VCL)," September 11, 2009; 

http://vcl.ncsu.edu/academic-partners. 
[78] "Apache VCL," April 2010; http://incubator.apache.org/vcl/. 
[79] "Home | Virtual Computing Lab (VCL)," September 18, 2009; http://vcl.ncsu.edu/. 

[80] "How it Works | Virtual Computing Lab (VCL)," September 12, 2009; http://vcl.ncsu.edu/help/general-
information/how-it-works. 

[81] "VCL XML RPC," September 18, 2009; 

http://people.apache.org/~jfthomps/xmlrpcdocs/xmlrpcWrappers_8php.html. 
[82] "Creating base windows XP image," April 2010; http://vcl.ncsu.edu/help/applications-images/creating-

windows-xp-base-images. 

[83] "FAQ - Nimbus Open Source IaaS Cloud Computing Software," April 2010; 
http://www.nimbusproject.org/docs/?doc=2.2/faq.html#nimbus. 

[84] "Publications - Nimbus Open Source IaaS Cloud Computing Software," April 2010; 

http://www.nimbusproject.org/papers/. 
[85] "[workspace-user] Does Nimbus support Windows VM?," September 14, 2009; 

http://lists.globus.org/mailman/htdig/workspace-user/2009-June/000835.html. 

[86] "TP2.2 Extensibility Guide - Nimbus Open Source IaaS Cloud Computing Software," October 1, 2009; 
http://workspace.globus.org/vm/TP2.2/plugins/index.html. 

[87] "OpenNebula: The Open Source Toolkit for Cloud Computing - about," April 2010; 
http://www.opennebula.org/about:about. 

[88] "Reservoir: Home," September 14, 2009; http://www.reservoir-fp7.eu/. 

[89] "OpenNebula: The Open Source Toolkit for Cloud Computing - Architecture," April 2010; 
http://opennebula.org/documentation:rel1.4:architecture. 

[90] "Haizea - An Open Source VM-based Lease Manager," September 16, 2009; 

http://haizea.cs.uchicago.edu/whatis.html. 
[91] "Eli Lilly, NASA Build Eucalyptus Clouds - Plug Into The Cloud - InformationWeek," September 16, 

2009; http://www.informationweek.com/cloud-computing/blog/archives/2009/06/eli_lilly_nasa.html. 

[92] "EucalyptusOverview - Eucalyptus," April 2010; http://www.eucalyptus.com/products/overview. 
[93] "The Eucalyptus Story | Eucalyptus Systems Inc," October 21, 2009; 

http://www.eucalyptus.com/about/. 

[94] "FAQs | Eucalyptus community (Interface)," April 2010; 
http://open.eucalyptus.com/wiki/FAQ#interface. 

[95] "FAQs | Eucalyptus community (kvm)," April 2010; http://open.eucalyptus.com/wiki/FAQ#kvm. 

[96] "Enomaly Developers Wiki," September 17, 2009; http://src.enomaly.com/. 
[97] Intel, "Intel® Cloud Builder Deployment Guide for ECP," Intel® Cloud Builder Deployment Guide for 

ECP. 

[98] "OpenQRM," September 17, 2009; http://www.openqrm.com/. 
[99] "Features | openQRM," September 12, 2009; http://openqrm.com/?q=node/2. 
[100] "Architecture of openQRM | openQRM," September 17, 2009; http://www.openqrm.com/?q=node/42. 

[101] "FAQ - ConVirt," September 23, 2009; 
http://www.convirture.com/wiki/index.php?title=FAQ#Q._What_is_ConVirt.3F. 

[102] "Documentation - ConVirt," September 23, 2009; 
http://www.convirture.com/wiki/index.php?title=Documentation#Features. 

[103] "Bugs and caveats - ConVirt," September 23, 2009; 

http://www.convirture.com/wiki/index.php?title=Bugs_and_caveats. 
[104] "Get Involved - ConVirt," September 23, 2009; 

http://www.convirture.com/wiki/index.php?title=Get_Involved#Docs. 

 

http://www.google.com/apps/
http://code.google.com/intl/pt/appengine/
http://code.google.com/intl/pt/appengine/docs/quotas.html
http://www.microsoft.com/windowsazure/
http://vcl.ncsu.edu/academic-partners
http://incubator.apache.org/vcl/
http://vcl.ncsu.edu/
http://vcl.ncsu.edu/help/general-information/how-it-works
http://vcl.ncsu.edu/help/general-information/how-it-works
http://people.apache.org/~jfthomps/xmlrpcdocs/xmlrpcWrappers_8php.html
http://vcl.ncsu.edu/help/applications-images/creating-windows-xp-base-images
http://vcl.ncsu.edu/help/applications-images/creating-windows-xp-base-images
http://www.nimbusproject.org/docs/?doc=2.2/faq.html#nimbus
http://www.nimbusproject.org/papers/
http://lists.globus.org/mailman/htdig/workspace-user/2009-June/000835.html
http://workspace.globus.org/vm/TP2.2/plugins/index.html
http://www.opennebula.org/about:about
http://www.reservoir-fp7.eu/
http://opennebula.org/documentation:rel1.4:architecture
http://haizea.cs.uchicago.edu/whatis.html
http://www.informationweek.com/cloud-computing/blog/archives/2009/06/eli_lilly_nasa.html
http://www.eucalyptus.com/products/overview
http://www.eucalyptus.com/about/
http://open.eucalyptus.com/wiki/FAQ#interface
http://open.eucalyptus.com/wiki/FAQ#kvm
http://src.enomaly.com/
http://www.openqrm.com/
http://openqrm.com/?q=node/2
http://www.openqrm.com/?q=node/42
http://www.convirture.com/wiki/index.php?title=FAQ#Q._What_is_ConVirt.3F
http://www.convirture.com/wiki/index.php?title=Documentation#Features
http://www.convirture.com/wiki/index.php?title=Bugs_and_caveats
http://www.convirture.com/wiki/index.php?title=Get_Involved#Docs




 Appendix 

 

65 

 Appendix 





Commercial Cloud implementations Appendix 

 

67 

Appendix A -   Commercial Cloud implementations 

A.1 Amazon 

Nowadays it is impossible to circumvent this company when speaking about the subject of cloud 

computing. Amazon is offering two major cloud services, EC2 and S3. The first is a computation 

(IaaS) cloud, its purpose is to supply IT infrastructure on demand. The S3 service supplies storage 

both to the public, and to the EC2 cloud. These two clouds complement each other, and allow for a 

great flexibility on the final service presented to the user. 

The interface for this commercial offering is based on web services and there are multiple client 

implementations, ranging from command line applications to browser plugins. This interface is in 

fact becoming a de facto standard, as most free and open source implementations of this deploy-

ment model are now offering a compatible interface. 

The EC2 service is based on virtual machine provisioning. Amazon took the concepts of datacenter 

virtualization a step further into the web 2.0 era by providing a user centric interface to their virtual 

machine provisioning service [66]. For the first time, users were able to provision full software 

stacks in a matter of minutes, being charged on a pay as you go model instead of requiring that the 

application owner predict how many servers would be required for any given task during peak load.  

This model was an evolution over the rental of virtual private servers because it allows a greater 

granularity on the pricing model, a faster allocation of the requested resources, and due to the abili-

ty to create pre configured system images, it even offloaded some of the system administration time 

used to roll out updates to running systems. 

Initially, the virtual machines did not have any persistent storage and interruption of a task cloud 

lead to data loss. This was later resolved with the addition of new features, among them the Elastic 

Book Store, which can be used as an attachable volume on the virtual machines instances [67-68]. 

S3 is a data storage service that is accessible from any internet connected device [69]. This service 

is commonly used as a data gateway for Amazon EC2, as most of the workloads to be processed 

require the availability of datasets and the transfer of data between S3 and EC2 is free. 

The S3 service interface is kept as simple as possible; each file is called a data object, and each 

directory a bucket. The primary interface is HTTP based (REST and SOAP), a bittorrent interface is 

also provided to lower the costs for high scale distribution [70]. 

This data storage service has a SLA guaranteeing reliability, yet it should not be mistaken for a high 

availability distributed storage solution, as the bandwidth allowed per object is not very high, and 

because the security system does not allow one to set granular access permissions on a bucket or 

object [70]. 



Appendix Commercial Cloud implementations 

 

68 

A.2 Google 

Google offers both PaaS and SaaS. Most of the products in the Google portfolio are free to use until 

a threshold is passed, and others are completely free. This is a major factor when experimenting 

with new products or services as no upfront investment is needed to test the product. 

On the SaaS front, Google offers among others [71], the Google Docs suite, a set of online produc-

tivity tools. Although this suite does not try to compete with similar desktop products on the level of 

complexity and amount of advanced features, many users are choosing it due to the great collabo-

ration features that are only possible on an online product [72]. Google Docs, as well as other ser-

vices from this company were built using a distributed cloud platform. This platform was later made 

available to the public, and branded as App Engine. 

The PaaS called App Engine [73], only supported python in its early days but has been upgraded to 

support the java programming language. In order to use this platform, the developer must use a 

SDK provided by Google and follow some simple sandbox rules that prevent abuse of the re-

sources. The download and usage of the SDK is free, and the development platform can run on the 

most common desktop operating systems. The developed application is allowed to use a limited 

amount of system resources to prevent it from hogging resources needed by others. The limitation 

is based on per minute and per day quota of each of the resources available. If an application ex-

ceeds its daily quota usage of a resource, usage of that resource is denied, which may leave the 

application on a crippled or even unavailable state. In order to prevent the denial of usage due to 

going over quota, the application owner can set up billing. In this situation, if the resource is used 

beyond a given quota the application owner gets charged, the value of the maximum daily budget is 

configurable to avoid exceeding the owner expectations [74]. There are also hard limits on the 

amount of computation needed to serve any given request, to avoid starvation of other applications. 

If all aforementioned constraints are met, the application will scale seamlessly with the increase or 

decrease of load in such a way that no performance degradation is perceived by the end user. This 

capability is one of the major features of thee PaaS as a service model, as no special care must be 

taken to allow the application to scale with the load. 

A.3 Microsoft 

Microsoft Azure has some resemblances with the service provided by Amazon on the architecture 

point of view [75]. Yet on the business side, the way the service is exposed to users is completely 

different. On this service, a user only has a few system images he may choose from, and those 

images are based on roles, such as an application server or an SQL server. Therefore, it becomes 

simpler to build standard application architectures at the cost of some flexibility. This service model 

is somewhere between the IaaS and the PaaS as a user can select instance types, yet the software 

stack for each instance type is fixed. 



Commercial Cloud implementations Appendix 

 

69 

This service capitalizes on the .NET knowledge and tools that are already deployed at the users 

premises. With the addition of a SDK, the application can be deployed on the cloud platform. 

The charging model is quite complex, based both on deployment time and on resources consump-

tion. For the application server, that Microsoft calls .‛compute instance‛, the pricing is based on 

uptime. For the storage services, charges are based on the amount of Gb stored per month with an 

extra fee for each 100000 transactions. SQL servers are charged monthly according to the number 

of databases used. AppFabric, a set of communication buses that allow integration with external 

applications is charged based on the number of connections and authentication requests. Finally, 

data transfer is charged per Gb. 





Academic or open source IaaS implementations Appendix 

 

71 

Appendix B -  Academic or open source IaaS implementations 

Most universities are now on their first steps towards understanding the advantages of cloud com-

puting. The open source community is also active; several implementations allow cloud computing, 

some of those even claim to be of production quality. This means that now is the time to start look-

ing at those implementations with a critical eye, trying to understand the advantages and shortcom-

ings of each one. Most of the available implementations focus on the IaaS model, the model that 

enables a smooth scalability of PaaS and SaaS by creating a uniform resource pool that can be 

scaled on demand. 

In order to compare features, one must rely heavily on each implementation web page, mailing lists 

and other communication forms, as the feature list is usually a moving target and scientific publica-

tion does not always keep up with the latest improvements. 

B.1 Apache VCL 

This implementation started some time before of the cloud computing hype. The North Carolina 

State University (NCSU), when faced with escalating requirements and costs to support its IT infra-

structure, realized that some of the problems they were facing were solvable by loading a system  

image on a blade on demand [76]. With the advent of virtualization, deployment on virtual ma-

chines was added, and the service grew organically to its current form which fits on the definition of 

cloud computing. Virtual Computing Lab (VCL)  is now hosted by the Apache foundation, and is 

used in production by some universities [77]. 

The VCL is an open source system designed to provision and broker access to a compute envi-

ronment requested by an end user. The provisioned computer can range from a virtual machine to 

a physical computer, the computer can be housed on a datacenter, in which case remote access 

tools must be used, or it can be located on a computing lab under VCL management [78]. 

The primary goal of this project is to deliver a dedicated computing environment to a user for a 

limited amount of time. The supplied computing environment can range from a simple virtual ma-

chine running productivity software to a blade server running high end software, or even a cluster 

of compute nodes. At the NCSU there are several environments available to faculty and students, 

that include linux, solaris and windows operating systems [78-79]. 

B.1.1 VCL Architecture 

VCL has a three tier architecture, consisting on a web server for the frontend, a database server, 

and one or more management nodes. Each management node controls one or more compute 

nodes that actually run the software images requested by the end users [80]. 

B.1.2 Web server 

The web server is running Linux and uses Apache to serve PHP files to clients. It serves as a fron-

tend to the database and provides tools to request, manage, and govern all VCL resources [80]. 



Appendix Academic or open source IaaS implementations 

 

72 

Browsing the source also shows that a XML RPC interface exists, but how much of the full VCL 

functionality is covered by this interface is not clear [81]. 

B.1.3 Database server 

The database consists on a MySQL server running on Linux. It holds all the system reservations, 

access controls, machine and environment reservations, log history, etc [80]. 

B.1.4 Management nodes 

These are the nodes that actually perform all the work, they run a VCLD daemon written in perl, 

that controls a series of compute nodes, these can be physical machines or VMware machines 

[82]. The management node processes reservations/jobs assigned on the web portal, and ensures 

that the requested image is available for the user when he connects [80]. 

B.1.5 Conceptual Overview 

Figure 7 illustrates VCL’s conceptual overview. The users connect to the web portal to schedule a 

desired application environment. The environment consists of a full operating system loaded with a 

selected suite of applications. The user can choose to host his environment on blade servers, vm-

ware virtual machines or standalone machines, which include the traditional computing labs [80]. 

When the scheduled time arrives, the user connects to the requested resource using standard re-

mote desktop technology [80]. 

 

Figure 7 - VCL conceptual overview 

B.2 Nimbus 

This implementation is a set of tools wrapped in a package that eases installation and maintenance 

of an IaaS cloud computing solution. Its main purpose is to cater the needs for scientific clouds on 

universities [83]. A look at the early publications listed denotes that the project was initially geared 

towards the grid community, later shifting its focus to the cloud paradigm [84]. This implementation, 



Academic or open source IaaS implementations Appendix 

 

73 

has however, a major drawback for production deployment; a search on the mailing list shows that 

at the moment, there is no support for virtual machines running the Windows operating system [85]. 

B.2.1 Nimbus Architecture 

This set of tools allows for very loose coupling, allowing each component to be replaced by a simi-

lar one that exposes the same interface [86]. On the public side, it exposes two interfaces, one is a 

partial implementation of EC2, and the other is a web service (WSRF) interface that exposes the 

full functionality of the service. This way, a user can select from a number of clients that use either 

the EC2 semantics, or the WSRF protocol. A context broker allows clients to coordinate large vir-

tual cluster launches automatically and repeatedly. The RM API translates the EC2 or WSRF 

commands to specific site manager commands. The site manager then communicates with work-

space control or workspace pilot. The workspace pilot is a small program that runs on the Virtual 

Machine Manager and allows the system to be part of a batch processing system, integrating with 

scheduling systems such as PBS. Workspace control is responsible for the execution of commands 

on the host that runs the virtual machine, currently only Xen can be controlled like this, but KVM 

control is implemented and expected to be released soon [83]. 

 

Figure 8 - Nimbus components and interaction diagram 

Figure 8 shows how all the components interact. Loose coupling is an integrant part of the design, 

thus allowing each component’s replacement by another as long as the same interfaces are res-

pected. 

B.3 OpenNebula 

This project is an IaaS implementation that orchestrates network, storage and virtualization tech-

nologies to supply a single service to its end users. OpenNebula is able to orchestrate datacenter 

resources, as well as remote resources according to allocation policies. It is part of the RESER-

VOIR project, an European Union project that aims to enable massive scale deployment and man-

agement of complex IT services [87-88]. 

OpenNebula enables the creation of private and hybrid clouds, allowing any existing deployment to 

grow beyond existing physical resources. This is a major advantage in the event of an unexpected 

load peak. 



Appendix Academic or open source IaaS implementations 

 

74 

B.3.1 Architecture 

OpenNebula has a three tier architecture, composed of tools, core, and drivers. The tools layer 

consists on a series of tools that can be used by a client or system administrator to query the inter-

faces provided by the core. The core consists on a management layer and a SQL backend used to 

store management information. The driver allows the plugging of different virtualization, storage 

and monitoring technologies and Cloud services to the core [89]. 

 

Figure 9 - OpenNebula Architecture 

B.3.2 Tools 

This layer consists of tools that are either distributed with OpenNebula such as the command line 

interface (CLI) or the scheduler, and third party tools that are created using either the XML-RPC 

interface or the REST OpenNebula Cloud API (OGF OCCI) [31, 89]. 

The Command Line Interface (CLI) is the client that allows clients and system managers to mani-

pulate the infrastructure. 

The scheduler is a replaceable module that allows the definition of several policies related to the 

load or resources availability. This module can be replaced with Haizea [90] to allow a more so-

phisticated scheduling policy. 

B.3.3 Core 

Several modules compose the core, their objective is to control and monitor the virtual machines, 

storage network and hosts. The core performs its actions by invoking a suitable driver [89]. A Re-

quest Manager exposes an XML-RPC interface, decoupling the requests from the underlying archi-

tecture. A Virtual Machine Manager manages and monitors virtual machines. A Transfer Manager 

transfers files needed for the correct deployment of virtual machines. A Virtual Network Manager 

handles IP, MAC addresses, and all virtual Network operations. A Host manager manages and 

monitors all the physical hosts. A Database keeps the current state on a persistence layer to allow 

recovery in case of failure, and permits the deployment of any custom accounting modules that 

may be needed. 

This core architecture means that there is a high flexibility for module replacement and instrumen-

tation, therefore easing the process of extending or debugging the system. 



Academic or open source IaaS implementations Appendix 

 

75 

B.3.4 Drivers 

To allow for a pluggable architecture, when the core needs to interact with a middleware, that inte-

raction is performed through a specific adaptor, that OpenNebula designates as a driver. The driver 

then performs the requested operation on the specific middleware. OpenNebula has VM drivers 

that allow it to control Xen KVM and VMware Virtual machines, it also features a driver for libvirt. 

B.4 Eucalyptus 

This implementation aims at production quality code, some big companies are using it right now, 

and paid technical support is available for the enterprise version [91]. 

Eucalyptus is interface compatible with Amazon EC2, but it is designed in such a way that other 

interfaces may be added at a later time. The platform is implemented using common Linux tools 

and web services, in an effort to make it easy to install and maintain [92]. 

This project started at the University of California as part of another research project. As the parent 

project ended, the original developers formed a company to sell commercial support for the plat-

form, and to continue the development of the product [93]. 

B.4.1 Architecture 

This implementation exposes an EC2 interface, because it seemed to be the best documented of 

the available choices at the time we began development and also the most commercially success-

ful [94], yet its architecture is modular, and other interfaces may be added later. On the virtualiza-

tion side, both Xen and KVM are supported [95]. 

 

Figure 10 - Eucalyptus architecture 

The internal architecture is layered, comprising of a cloud controller that serves as a front end for 

the whole cloud, a Cluster controller that manages a cluster, and a Node controller that instantiates 

and stops virtual machines. A Eucalyptus cluster is the equivalent to an Amazon EC2 availability 

zone, which means that one single cloud controller can control several cluster controllers, each of 

them controlling several node clusters. 

B.5 Enomaly 

Enomaly claims to be a cloud infrastructure designed to work alongside the existing virtual data-

center on enterprises of all sizes. It aids in the design, deployment and management of applica-



Appendix Academic or open source IaaS implementations 

 

76 

tions in the cloud, while reducing administrative workload. It features a web based interface that 

makes it a simple utility for administrators [96]. 

This is a commercial implementation with a community edition. The community edition is the one 

that will be analyzed here, as the commercial versions are not free and therefore not usable for 

most academic purposes. 

The documentation from the developer point of view is almost inexistent, which leads to a situation 

where the mailing list is the only point of contact for developers. The lack of a central knowledge 

base usually leads to the repetition of questions and scattering of knowledge where the parting of a 

developer may cause a big impact. 

The documentation for the user and system administrator is outstanding; this is most likely due to 

the commercial version of the project. 

B.5.1 Architecture 

The community website that was previously used by the enomaly community, that contained some 

scarce development information has been removed since the initial writing of this document. This 

limits this project usability even further. 

The architecture is not clear, yet the frontend is web based, with a REST API exposed to the user. 

On the cloud deployment guide, the need for a database becomes apparent; this means that the 

persistence layer is most likely on that database. Still on the installation guide, there is mention of 

support to Xen, KVM (and Qemu), as the virtualization backends [97]. 

Multiple backends and frontends are typical on three tiered architectures; however, from the avail-

able documentation nothing can be said about the number of modules, or how those modules 

communicate among them. 

B.6 OpenQRM 

OpenQRM is an open source implementation that features a pluggable architecture. It supports 

multiple virtualization backends, and aims to be a single management console for the complete IT 

infrastructure with a well defined API that can be used to integrate third party tools and plugins [98]. 

This implementation features an impressive feature set [99]. It supports migration of images be-

tween physical and virtual hosts, which may be an advantage on some scenarios. Support for win-

dows VM is only available for version 3.x which may become a limitation. 

B.6.1 Architecture 

OpenQRM is separated on a ‘base’ an ‘plugins’, the base just manages the plugins and provides 

the framework for the interaction with the plugins, but the functionality is all provided by its plugins 

[100]. 



Academic or open source IaaS implementations Appendix 

 

77 

 

Figure 11 - OpenQRM architecture 

Figure 11 shows the architecture of OpenQRM, each of the features depicted is implemented by a 

plugin, therefore achieving a high degree of modularity.  

This sort of architecture eases the implementation of new features, and allows a modular approach 

to bug tracking, as features are fully contained in modules.  

The downside is that an upgrade on the module management system that breaks backward com-

patibility will lead to a big module rewrite as most (if not all) of the interfaces must be rewritten. This 

sometimes leads to missing functionality on a newer version as not all modules are ported to the 

new version (as is the case of Windows VM support). 

B.7 ConVirt 

ConVirt is an easy to use, yet sophisticated tool that aims to administer and monitor virtualized 

environments that range from a few Virtual Machines on a single workstation to thousands of virtual 

machines spread across hundreds of servers [101]. 

This implementation is not well known among the academic community, a search on Google scho-

lar returns very little articles that mention ConVirt. It has a list of features [102] that rival with the 

other implementations mentioned on this document, however its stability is not as good as might be 

expected from a package intended to control a large number of managed servers as it crashes or 

hangs intermittently [103]. 

B.7.1 Architecture 

ConVirt features a pluggable architecture, allowing easy extension and the addition of plugins that 

implement new features. The communication mechanism between the plugins and the core is not 

clear, and the developer documentation available seems to be oriented towards a power user in-

stead of a developer as there is no API documentation [104].  



Appendix Academic or open source IaaS implementations 

 

78 

The core architecture is well documented, with a clear UML diagram showing the various packages 

and the relation between them. 

 

Figure 12 - ConVirt core architecture 

 
 




