
Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

55The Parallel Universe

Dmitri Goloubentsev, Head of Automatic Adjoint Differentiation, Matlogica, and Evgeny Lakshtanov,
Principal Researcher, Department of Mathematics, University of Aveiro, Portugal and Matlogica LTD

If you’re interested in high-performance computing, high-level, object-oriented languages aren’t the

first things that come to mind. Object abstractions come with a runtime penalty and are often difficult

for compilers to vectorize. Adapting your code for multithreading execution is a huge challenge, and

the resulting code is often a headache to maintain.

You’re in luck if performance-critical parts of your code are localized and can be flattened and safely

parallelized. However, many performance-critical problems can benefit from object-oriented programming

abstractions. We’re proposing a different programming model that lets you achieve top performance on

single instruction multiple data (SIMD), non-uniform memory access (NUMA) multicore systems.

Getting Top Performance on Modern Multicore Systems

A New Approach to Parallel Computing
Using Automatic Differentiation

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

56The Parallel Universe

Operator Overloading for Valuation Graph Extraction
We’ll focus on problems where the same function, F(1), needs to be executed on a data set X[i].

For example, let’s look at Monte Carlo simulations in the finance world where X[i] is a random

sample and F(.)is a pricing function (Figure 1). We use an operator overloading pattern to extract

all primitive operations performed by F(.).

1 Example operator overloading pattern

This pattern is very common in automatic adjoint differentiation (AAD) libraries. Unlike traditional

AAD libraries, we don't build a data structure to represent the valuation graph. Instead, we compile

binary machine code instructions to replicate valuations as defined in the graph, which can be seen

as a just-in-time (JIT) compilation. However, we don't work with the source code directly. Instead,

we compile a valuation graph produced by the user's algorithm. Since we want to apply F(.) to a

large set of data points, we can compile this code to expand all scalar operations to full SIMD vector

operations and process four (AVX2) or eight (AVX-512) data samples in parallel.

Learn by Example
Let's look at a simple option pricing framework where we use various abstract business objects. In

this example, we simulate asset values as a random process:

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://en.wikipedia.org/wiki/Operator_overloading
https://en.wikipedia.org/wiki/Automatic_differentiation#Operator_overloading_(OO)

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

57The Parallel Universe

The classes BankRate and AssetVolatility can define different ways of computing model

parameters, and implementation can be done deep in the derived classes. This function can be used with

the native double type. When applied along timepoints, t[i] can be used to simulate asset value at the

option expiry:

However, this leads to bad performance because the compiler can’t effectively vectorize the code and

business objects may contain virtual function calls. Using the AAD runtime compiler, we can execute the

function, record one random path of asset evolution, and compute option intrinsic value at the expiry:

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

58The Parallel Universe

At this stage, the func object contains compiled, vectorized machine code that replicates valuations to

produce the final payoff output value given the arbitrary random_samples vector as input. The function

object remains constant after recording and requires memory context for execution:

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

59The Parallel Universe

Free Multithreading
Making efficient and safe multithreaded code can be difficult. Notice that the recording happens only

for one input sample and can be executed in the controlled, stable, single-threaded environment. The

resulting recorded function, however, is threadsafe and only needs separate workspace memory allocated

for each thread. This is a very attractive property, since it lets us turn non-multi-thread-safe code into

something that can be safely executed on multicore systems. Even optimal NUMA memory allocation

becomes a trivial task. (You can view the full code listing for the multithreaded example here.)

Automatic Differentiation
This technique not only accelerates your function, it can also create an adjoint function to compute

derivatives of all inputs with respect to all outputs. This is similar to the back-propagation algorithm

used for deep neural network (DNN) training. Unlike DNN training libraries, this approach works for

almost any arbitrary C++ code. To record an adjoint function, simply mark which input variables are

required for differentiation:

Finally, to execute the adjoint function, initialize the gradient values of outputs and call the reverse()

method on the function object:

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://github.com/matlogica/pum-example

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

60The Parallel Universe

Getting Top Performance
Hardware is evolving toward increasing parallelism with a lot more cores, wider vector registers, and

accelerators. For object-oriented programmers, it’s hard to adapt single-threaded code to existing parallel

methods like OpenMP and CUDA. Using the AADC tool from Matlogica, programmers can turn their

object-oriented, single-threaded, scalar code into AVX2/AVX512 vectorized, multithreaded, and threadsafe

lambda functions. Crucially, the AADC tool can also generate a lambda function for the Adjoint method of

computing, with all required derivatives using the same interface. Visit Matlogica for more details and a

demo version of AAD-C.

Acknowledgements
Evgeny Lakshtanov is partially supported by Portuguese funds through the Center for Research and

Development in Mathematics and Applications (CIDMA) and the Portuguese Foundation for Science and

Technology (FCT, Fundação para a Ciência e a Tecnologia), within project UIDP/04106/2020.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://matlogica.com/

