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Abstract. Often, real life problems require modelling several response
variables together. This work analyses multivariate linear regression model
when the data are censored. Censoring distorts the correlation structure
of the underlying variables and increases the bias of the usual estimators.
Thus, we propose three methods to deal with multivariate data under left
censoring, namely, Expectation Maximization (EM), Data Augmentation
(DA) and Gibbs Sampler with Data Augmentation (GDA). Results from
a simulation study show that both, DA and GDA estimates are consis-
tent for low and moderate correlation. Under high correlation scenarios
EM estimates present lower bias.
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1 Introduction

Linear regression (LR) is one of the most widely used models in Economet-
rics to analyse the relationship between two sets of variables. Often, real life
problems can be best described by considering several (say m ≥ 2) correlated
response variables, that is, experiments are performed to analyse the variation
of m characteristics of the same phenomenon. In these cases, we should consider
multivariate LR model, which is a natural extension of the univariate regression
model. An essential aspect of multivariate analysis is the dependence between
the different variables, which may involve the covariance between them [2].

Additionally, some or all of the response variables can be censored, mean-
ing that they are only accessible in a restricted interval. Censored data can
arise for a variety of reasons, such as limitations of the measuring device or of
the experimental design [12]. Examples occur in environmental studies where
mineral concentration in air/water may be subjected to lower detection limits
[9], in Medicine, where [3] studied the relationship between two cytokines (pro-
inflammatory and anti-inflammatory) when both variables are censored or in
Economics where hours worked is usually treated as censored variable [1]. We
might note that in the literature, the terminology censored data is also used in
the survival data analysis, in which the variable of interest is the time to an
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event. In these cases, unexpected interruptions of scheduled experiments create
fully missing values or censored survival (or failure time) data. The structure
of such data and the censored data described above are quite different and re-
quire different statistical techniques for their analysis ([13],[5]). Our discussion
will focus on the first type of censored data in which the outcome or variable of
interest is below (or above) a limit of detection (LOD).

Censoring makes the observed data set incomplete and therefore direct anal-
ysis using standard complete data methods inadequate, resulting in inconsistent
estimates. To overcome these issues, a variety of methods have been proposed
to handle censored univariate data (see [17], [6], [20]). Filling in censored data
in order to apply standard complete data methods has a strong intuitive ap-
peal, because this strategy greatly reduces the burden of developing specialized
methods and computer code for analysing incomplete data [9].

Methods for creating complete data via filling in censored data can be single
imputation (one value for each observation) or multiple imputation. In single
imputation, it is common to fill in the censored observation by its expected
value, predicted mean or the center of the detection interval. More statistically
sound approaches are based on the EM and DA algorithms ([8], [17]). However,
extension of methods to handle censored data in multivariate setting confronts
a significant practical barrier. Indeed, there are very few works is this subject
([14], [5], [9]). In particular, to the best of our knowledge, there is no specific
work in literature about censored multivariate linear regression model (CMLR).

Muthén [15] pointed out that, in addition to inconsistent estimates, cen-
soring also distorts the correlation structure of the response variables. Aiming
to develop more suitable methods to handle this problem, in this work we pro-
pose three methods to estimate CMLR, mainly Expectation Maximization (EM),
Data Augmentation (DA) and Gibbs sampler with Data Augmentation (GDA).
All of these methods are based on filling in censored data in order to create a
complete data set, which is the most widely used strategy when the data are
missing or censored, both in Classical and Bayesian approaches.

The paper is organized as follows: Section 2 presents the CMLR model, Sec-
tion 3 analyses three methods to estimate CMLR model, in Section 4 we present
the simulation study, in which we analyse the accuracy of the proposed methods
and, finally, we present some final remarks.

2 Censored Multivariate Linear Regression

In this section we define multivariate linear regression model in order to introduce
censored multivariate linear regression.

2.1 The Multivariate Linear Regression Model

In matrix form, the Multivariate Linear Regression Model (MLR) can be written
as follows:
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W = Xβ + ε, (1)

where W = [W(1) . . . W(m)] is a n×m matrix of m response variables, X is
a n× (k + 1) matrix of k predictors, whose rows are xi = (1, xi1, . . . , xik)′, i =
1, . . . , n, β is a (k + 1) × m coefficients matrix and ε = [ε(1) . . . ε(m)] is a
n ×m matrix of the errors associated with each response variable, where each
εi = (εi1, . . . , εim)′, i = 1, . . . , n is assumed to be iid m−variate normal variable
with mean 0 and m×m covariance matrix Σ = [σij ] [11]. Then, the model (1)
may be written as

W11 . . . W1m

...
. . .

...
Wn1 . . . Wnm

 =

1 x11 . . . x1k
...

...
. . .

...
1 xn1 . . . xnk

 ·
β01 . . . β0m...

. . .
...

βk1 . . . βkm

+

ε11 . . . ε1m...
. . .

...
εn1 . . . εnm

 (2)

where E[ε(j)] = 0 and Cov(ε(i), ε(j)) = σijIn, σjj = σ2, i, j = 1, . . . ,m and In
is the n× n identity matrix. This is the generalization of multiple LR (m = 1),
where each response variable W(j), j = 1, . . . ,m, follows a multiple LR model.

In the MLR model (2), observations from different individuals are uncor-
related, but the errors for different responses of the same individual can be
correlated [11]. By using the multivariate model the covariance of the response
variables can be modelled, which is not possible in case of separate univariate
regression models.

2.2 The Censored Multivariate Linear Regression Model

Let’s assume that the latent variable Wi = (Wi1, . . . ,Wim)′ denotes the m
multivariate measure on subject i = 1, . . . , n, and that each component vector
W(j) of the hypothetical multivariate data W is subjected to left censoring at
fixed limit of detection (LOD), Lj ∈ R, j = 1, . . . ,m. Rather than Wi we
actually observe Yi = (yi1, . . . , yim)′, where yij = max{wij , Lj} and corresponds
to the j−th record on the subject i, for i = 1, . . . , n ([14], [5]). Here we are
assuming that the censoring patterns vary across the component vectors, but is
fixed within each W(j), for j = 1, . . . ,m.

Now, given a dataset Y = (y′1, . . . ,y
′
n)′, each observation yi = (yi1, . . . , yim)′

of the CMLR model can be defined as follows:

Y =[yij ] = [max(wij , Lj)], i = 1, . . . , n and j = 1, . . . ,m,

W =Xβ + ε.
(3)

For simplicity of notation, the remaining of the text focus in the bivariate
case, m = 2, defined as follows:

Censored Bivariate Linear Regression. We assume that the errors term
εi, i = 1, ..., n has bivariate normal distribution N2(0,Σ), the probability
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density function (pdf) of the latent variable Wi is N2(β′xi,Σ), and has the
form

f(Wi1,Wi2) =
1

2πσ1σ2
√

1− ρ2
exp

{
− 1

2(1− ρ2)

[(Wi1 − x′iβ1

σ1

)2
+
(Wi2 − x′iβ2

σ2

)2
− 2ρ

(Wi1 − x′iβ1)(Wi2 − x′iβ2)

σ1σ2

]}
,

(4)

while the observed Yi variable has a bivariate truncated normal distribution,
with support [L1,∞]× [L2,∞] and pdf

f(Yi1, Yi2|Wi1 ≥ L1,Wi2 ≥ L2) =
f(Wi1,Wi2)

P (Wi1 ≥ L1,Wi2 ≥ L2)
× I(Wi1≥L1,Wi2≥L2).

(5)
Although there are several approaches and methods to estimate CLR in the

univariate case, extensions to multivariate settings confront a significant practi-
cal barrier. Muthén [15] observed that censoring distorts the correlation struc-
ture of the underlying variable and presented results on a general formula for
truncation in the standard bivariate normal distributions. Cohen [7] found a
maximum likelihood solution for the truncated bivariate normal where the trun-
cation is with respect to only one variable, while Tallis [16] gave general formulas
for multivariate truncation from below in the multivariate normal distribution
using the moment-generating function.

3 Estimation of CMLR model

In this section we propose three methods to estimate the CMLR model, focusing
on left-censored bivariate data. All these methods are based on filling in the
censored data in order to obtain complete data.

3.1 EM Algorithm for Multivariate Data

The EM (Expectation Maximization) algorithm is an iterative method to max-
imize the expected value of the likelihood function, given the observed data, Y
[8]. In case of censored bivariate data, the algorithm requires the computation
of the expected value of the truncated bivariate variable, in order to fill up the
data. If the latent variable Wi = (Wi1,Wi2)′ is left–censored, then the values
below the LOD have right-truncated distribution, with expected value given by

E[(Wi1,Wi2)′|Wi1 ≤ L1,Wi2 ≤ L2] =

(E[Wi1|Wi1 ≤ L1,Wi2 ≤ L2], E[Wi2|Wi1 ≤ L1,Wi2 ≤ L2])′.
(6)

for i = 1, . . . , n. Using the moment-generating function, Tallis [16] gave general
formulas for truncated multivariate multivariate normal distribution. Let α =
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P (W1 ≤ L1,W2 ≤ L2) = F (L1, L2) represent the probability that the random
variable W = (W1,W2)′ takes on a value less than or equal to L = (L1, L2)′.
Taking µj = E[W(j)], ηj = (Wj − µj)/σj and γj = (Lj − µj)/σj , j = 1, 2, the
probability α can be written as

α = P (η1 ≤ γ1, η2 ≤ γ2), (7)

where ηj , j = 1, 2, are standardized normal variables, truncated at γ = (γ1, γ2).
Thus, we can write

α = Φ(γ;R), (8)

where

R =

[
1 ρ
ρ 1

]
(9)

is the correlation matrix with ρ = corr(η1, η2) [16] and the expected value of the
truncated standardized bivariate variable, η = (η1, η2)′, is given by

E[ηi|η ≤ γ] =
1

α
×
{
ρi1φ(γ1)Φ(A12;R1) + ρi2φ(γ2)Φ(A21;R2)

}
, i = 1, 2, (10)

where Aij = (γj − ρjiγi)/
√

1− ρ2ji, for i, j = 1, 2 and i 6= j [16].

From (10) results that

E[η1|η ≤ γ] =
1

α

{
ρ11φ(γ1)Φ(A12) + ρ12φ(γ2)Φ(A21)

}
E[η2|η ≤ γ] =

1

α

{
ρ21φ(γ1)Φ(A12) + ρ22φ(γ2)Φ(A21)

}
,

(11)

where φ(.) and Φ(.) are, respectively, the pdf and distribution function of stan-
dard normal variable.

Using the result in the equation (11), the expected value of each component
Wij of the truncated variable Wi = (Wi1,Wi2) is given by

E[Wij |W ≤ L] = x′iβ(j) + σj × E[ηj |η ≤ γ] (12)

where E[Wj |W ≤ γ], j = 1, 2 are the conditional expected value of standard-
ized normal variables.

At iteration t, after filling up the censored observed data set, the complete
dataset Y(t) is then used to compute the expected log-likelihood function, con-
ditional on θ̂(t−1),

Q(θ|θ̂(t−1)) = E[logL(θ|W,θ(t−1))] (13)

where θ = (β,Σ) and L(θ|W) denotes the likelihood function given the com-

plete data. The expected MLE estimates satisfy θ̂(t) = argmax Q(θ|θ̂(t−1)).
The value of β which maximizes (13) is
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β̂(t) = (X′X)−1X′W(t). (14)

Given an estimate of β, an unbiased estimate for Σ is

Σ̂(t) =
1

n−m− 1
(W(t) −Xβ̂(t))′(W(t) −Xβ̂(t))′. (15)

3.2 Data Augmentation algorithm

The data augmentation (DA) algorithm as described here is based on successive
updating of the censored observations, and the corresponding ordinary least
squares (OLS) estimates are computed using the augmented data.

At each iteration of the DA algorithm, censored values of each response vari-
able W(j) are sampled from their univariate truncated distribution conditional
on the values of the remaining response variables, corresponding to the same
subject. This procedure results in a sequence of random m−variate variables
which converge in probability to the joint distribution of the m−variate latent
variable W = (W1, . . . ,Wm) [4].

In multivariate distributions, the acceptance-rejection algorithms are feasible,
but the rate of convergence may be too low to be practical. Thus, a more efficient
algorithm is the data augmentation, in which incomplete data is reconstructed
using a Gibbs sampler type algorithm [10],[4].

3.3 Gibbs Sampler with Data Augmentation algorithm

The Gibbs sampling with data augmentation (GDA) algorithm [17] allows the
use of a Bayesian approach to estimate the CMLR model, where inferences about
the model parameters are obtained from the posterior distribution, π(β,Σ|W),
defined by

π(β,Σ|W) ∝ L(β,Σ|W)× π(B,Σ), (16)

where L(β,Σ|W) is the likelihood function of the observed data and π(B,Σ)
represents the joint prior distribution of the parameters.

The Likelihood Function. As in [18], model (2) may be rewritten equivalently
as

W∗ = X∗B + ε, (17)

where W∗ = (W′
(1), . . . ,W

′
(m))

′ is a mn× 1 vector, X∗ = diag(X(1), . . . ,X(m))

is a mn × (mk + m) block diagonal matrix, where X(1) = . . . = X(m) = X,
B = (β′(1), . . . ,β

′
(m))

′ is a (mk + m) × 1 vector of the regression coefficients

and ε = (ε′(1), . . . , ε
′
(m))

′ is a mn × 1 vector of the disturbances, assumed to be
normally distributed, with zero mean and covariance matrix Σ ⊗ In. Then, the
likelihood function for β and Σ may be rewritten as
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L(β,Σ|W∗) =(2π)−nm/2|Σ|−n/2exp
{
− 1

2
ε′Σ−1 ⊗ Inε

}
.

=(2π)−nm/2|Σ|−n/2exp
{
− 1

2
(W∗ −X∗B)′Σ−1 ⊗ In(W∗ −X∗B)

}
(18)

where ⊗ is the Kronecker product and In is the identity matrix of order n.
Using the properties of the trace of a matrix [11] and considering that β̂ =

(X′X)−1X′W and A = (W −Xβ̂)′(W −Xβ̂) are jointly sufficient for β and
Σ [18], the likelihood function (18) can be simplified to

L(β,Σ|W) =(2π)−nm/2|Σ|−n/2

× exp
{
− 1

2
trΣ−1A− 1

2
(B− B̂)′Σ−1 ⊗X′X(B− B̂)

}
.

(19)

The Prior Distribution. Now, let’s assume that β and Σ are independent
[18]. Then, a non-informative prior distribution for β and Σ can be written as

π(β,Σ) = π(β)π(Σ). (20)

Due to the invariance property [18], we have that

π(β) ∝ C,

π(Σ) ∝ |Σ|−
m+1

2 ,
(21)

where C is a constant. Then, π(β,Σ) ∝ |Σ|−m+1
2 .

The Posterior Distribution. Using the prior distribution in (21) in conjunc-
tion with the likelihood function (19), the posterior distribution of β and Σ is
given by

π(β,Σ|W) ∝L(β,Σ|W)× π(B,Σ)

∝|Σ|−
n+m+1

2 exp
{
− 1

2
trΣ−1A− 1

2
(B− B̂)′Σ−1 ⊗X′X(B− B̂)

}
∝ exp

{
− 1

2
(B− B̂)′Σ−1 ⊗X′X(B− B̂)

}
× |Σ|−

n+m+1
2 exp

{
− 1

2
tr
(
Σ−1A

)}
(22)

From the equation (22) and taking only the terms involving each model
parameters, the conditional posterior distribution of B and Σ can be expressed
as

π(B,Σ|W) = π(B|Σ,W)π(Σ|W), (23)
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with

π(B|Σ,W) ∝ exp
{
− 1

2
(B− B̂)′Σ−1 ⊗X′X(B− B̂)

}
(24)

and

π(Σ|W) ∝ |Σ|−
n+m+1

2 exp
{
− 1

2
tr
(
Σ−1A

)}
. (25)

The functional form of (24) and (25) show that

π(B|Σ,W) ∝ N(mk+m)

(
B̂,Σ ⊗ (X′X)−1

)
π(Σ|W) ∝ IW (n,A),

(26)

where IW (.) stands for inverted Wishart distribution [19]. Thus, observations
from the joint distribution π(B,Σ|W) can be drawn, iteratively, through the
GDA algorithm.

The GDA Algorithm. The GDA algorithm has two main steps: (1) update the
parameters’ values from the posterior distributions, based on the data from the
previous iterations and (2) use data augmentation (DA) algorithm (see sec. 3.2)
to update the censored observations, based on the current parameters’ values.
The successive updating of the model parameters and censored observations will
result in a sequence of random m−variate variables which converge to the joint
posterior distribution of θ = (β,Σ) [4],[5].

4 Simulation Study

To analyse the performance of the above procedures consider a bivariate censored
LR model (m = 2) with one predictor3. The datasets, of size n = 100, 500 and
1000, are generated using two sets of regression coefficients β(1) and β(2), each
one combined with three different covariance matrices (low Σ(1), moderate Σ(2)

and high correlation Σ(3)), as follows:

β(1) =

[
2 1

0.6 0.89

]
and β(2) =

[
0.2 0.3
0.4 0.24

]
, (27)

Σ(1) =

[
2 0.1

0.1 1.5

]
,Σ(2) =

[
2 −0.4
−0.4 1.5

]
Σ(3) =

[
2 0.8

0.8 1.5

]
. (28)

Values of LOD (L1 and L2) were set so that the observed response variables
Y(1) and Y(2) have five different pairwise levels of censorship: A = (5%, 5%), B =
(5%, 20%), C = (5%, 40%), D = (20%, 20%) and E = (40%, 40%). We generate
100 realizations of each of these 90 scenarios to assess the finite sample behaviour

3 The generalisation of this study to more than one independent variable is trivial for
DA and GDA. However, the computation of the EM estimates may be hindered by
the need to obtain the moments of the truncated multivariate distributions.
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of the estimates.

To illustrate the comparison between the methods, boxplots of biases cor-
responding to the three scenarios of censorship (low, medium and high) are
represented in Figures 1 to 4.

The overall results, illustrated in Figures 1 (weak correlation) and 2 (strong
correlation) indicate that the proposed methods produce approximately unbi-
ased estimates for the regression parameters, β, with decreasing variance as the
sample size increases. However, as the correlation increases the estimates present
slight bias specially for high censoring.

The DA and GDA approaches yield estimates for Σ, illustrated in Figures 3
and 4, approximately unbiased and with decreasing variance as the sample size
increases under weak correlation Σ(1). Under high correlation, Σ(3), and high
censoring rate, the bias increases for all the approaches, with EM showing lower
bias. The results indicate that Σ is under estimated in all scenarios but this
does not affect the estimates of β. This behaviour is expected since, in theory,
the estimator of β is independent of the estimator of Σ̂ [11].

5 Final Remarks

One of the main features of multivariate LR is cross-correlation among the re-
sponse variables. The censorship may distorts the correlation pattern in multi-
variate data. Then, in this work we propose three methods based on filling up
data: EM, DA and GDA. Results from the simulation study show that both, DA
and GDA estimates are consistent for low and moderate correlation.

This study has been conducted for the bivariate case. The main issue when
considering m > 2 is related to the computation of the conditional expected
value of the multivariate censored variable, needed to compute the EM estimates.
Since general expressions for this conditional mean are given in [16] it is our aim
to implement higher order cases in the future. Furthermore, we aim to develop
methods for censored multivariate time series data.
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Fig. 1. Biases of β̂(1) based on data generated from the model with Σ(1), for n = 100
(top) and n = 1000 (down).
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Fig. 2. Biases of β̂(1) based on data generated from the model with Σ(3), for n = 100
(top) and n = 1000 (down).
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Fig. 3. Biases of Σ̂(1) based on data generated from the model with β(1), for n = 100
(top) and n = 1000 (down).
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Fig. 4. Biases of Σ̂(3) based on data generated from the model with β(1), for n = 100
(top) and n = 1000 (down).
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