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AND P. SANTOS

Abstract. Quantum splines are curves in a Hilbert space or, equivalently,
in the corresponding Hilbert projective space, which generalize the notion of

Riemannian cubic splines to the quantum domain. In this paper, we present a

generalization of this concept to general density matrices with a Hamiltonian
approach and using a geometrical formulation of quantum mechanics. Our

main goal is to formulate an optimal control problem for a nonlinear system

on u∗(n) which corresponds to the variational problem of quantum splines. The
corresponding Hamiltonian equations and interpolation conditions are derived.

The results are illustrated with some examples and the corresponding quantum

splines are computed with the implementation of a suitable iterative algorithm.

1. Introduction

Quantum control theory, and in particular quantum optimal control, is drawing
considerable attention from quite different communities in different areas of physics,
chemistry, applied mathematics and quantum information (see [23] for a nice in-
troduction to the area with several practical physical and chemical applications).
This subject represents an essential ingredient to use the new quantum technolo-
gies which are being created in these fields, with a wide range of applications (see,
for instance, [5, 6, 16, 18, 22, 24, 25, 26]). An important problem is the design of
efficient algorithms to generate accurately specified quantum states under certain
conditions (in minimal time, with a minimal energy investment, etc). These al-
gorithms usually consist in defining a suitable time dependent Hamiltonian which
drives the system to the desired quantum states under the required conditions.

In a recent paper [9], Brody and co-workers introduced the notion of quantum
spline as the generalization to the quantum domain of the familiar notion of geomet-
ric splines (see [12, 13, 15, 21]). A quantum spline is the solution of the following
quantum optimization problem. Let us consider a set of states {|ψ0〉, · · · , |ψN 〉}
in a certain finite dimensional Hilbert space H and a corresponding set of times
{t0, · · · , tN}. The problem is to find a time-dependent Hamiltonian H(t) defining
an unitary evolution which, at the given times tk, passes arbitrarily close to the
given states |ψk〉, and such that the total change in the Hamiltonian along the curve
is minimized. We can write it as a variational problem asking to minimize the cost
functional

J =

∫ tN

t0

〈iḢ(t) | iḢ(t)〉dt+
1

2ε

N∑
k=1

D2(|ψ(tk)〉, |ψk〉) (1)
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where |ψ(t)〉 = U(t)|ψ0〉 represents the trajectory in H defined by the unitary
evolution U(t), the scalar product 〈· | ·〉 represents the trace of the product

〈A | B〉 = −1

2
Tr(AB), ∀A,B ∈ u(H), (2)

and ε is just a positive coefficient which allows us to change the relative importance
of the total change of the Hamiltonian of the system and how close we are from the
point we are supposed to target (D represents the corresponding distance).

Some comments are in order:

• As the time dependence of the Hamiltonian in quantum control problems is
often implemented as time-dependent magnetic fields which interact with
the spin system, we can think at the minimization problem as the equi-
librium between the accuracy at targetting the points at the designated
times and the total energy required to change the magnetic fields during
the process.
• The (square) distances D2(|ψ(tk)〉, |ψk〉) are considered on the projective

space PH, with respect to the canonical Fubini-Study metric. From the
technical point of view, the functional (1) combines thus quantities defined
on two different manifolds: the trace-norm of skew-Hermitian operators
and the Fubini-Study metric on the projective space.
• The solution of the problem above, even for very simple examples such

as a two-level quantum system, requires of numerical algorithms. In [9]
the authors provide an algorithm for the discretization of their variational
equations which is used in the construction of the solution of the example
they study.

The aim of this paper is to introduce an alternative formulation of the problem
of quantum splines and a generalization of the notion which enlarges the range of
potential applications. The main idea is to re-formulate the problem in terms of
density matrices and to adapt the conditions on the dynamics to it. Thus, the
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notion of quantum spline for pure states introduced in [9] is included, while an
analogous notion for mixed states does also make sense:

New formulation of the interpolation problem: Let us consider a set
of density matrices {ρ0, · · · , ρN} on a certain finite dimensional Hilbert
space H and a corresponding set of times {t0, · · · , tN}. Find a time-
dependent Hamiltonian H(t) defining an unitary evolution which, at the
given times tk, passes as close as possible to the given points ρk, and such
that the change in the Hamiltonian is optimal in the sense that the cost
functional

J =

N∑
k=1

∫ tk

tk−1

〈iḢ(t) | iḢ(t)〉dt+
1

2ε

N∑
k=1

d2(ρ(tk), ρk) (3)

is minimized, where the trajectory of the system represented by ρ(t) is a
solution of von Neumann equation:

i~ρ̇(t) = H(t)ρ(t)− ρ(t)H(t), (4)

and d represents the distance on the space of Hermitian operators

d(A,B) =
√

1
2Tr(A−B)2.

This formulation of the problem includes the previous one for the case of pure
quantum states, but it allows to consider it also for general quantum states. Fur-
thermore, it relaxes the continuity condition on the derivative of the Hamiltonian
H(t) at the intermediate points, as it is often assumed in (quantum) control based
on pulses. From a physical point of view, the lack of continuity does not represent
a serious condition on the system, and as we are going to see it allows for a much
simpler analysis of the problem.

Regarding the generalization to density matrices, notice that all real systems are
in contact with some type of environment. In that case, we know that the system
is very seldom in a pure quantum state and therefore to extend the notion of quan-
tum spline to mixed states seems as a natural step forward. For instance, we could
consider a system which initially is in equilibrium at a finite temperature T (see [7])
with a bath. If the evolution associated to the quantum controls is much faster than
the dynamics produced by the interaction with the bath, we could approximate the
evolution by a unitary transformation on the set of mixed quantum states. This is
the type of problem that we will be considering in this paper. Another interesting
generalization would be to consider that the controlled evolution is of the same or-
der as the interaction with the bath and replace von Neumann equation by a more
general master equation, such as Lindblad-Kossakowski equation. The problem
would be formally analogous to our “New formulation” above, replacing equation
(4) by Lindblad-Kossakowski equation. Nonetheless, Lindblad-Kossakowski equa-
tion would put some constraints in the possible values of the set of times {tj} and
density matrices {ρj} (remember that Lindblad dynamics is not always control-
lable [2, 3]). We are also studying this problem and it will be considered in a future
paper.

There are important aspects that characterize the new formulation:
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• From the technical point of view, our formulation is much simpler than the
one considered in [9], since it can be done at the level of a linear space (the
dual space to the algebra of the unitary group u∗(n)), instead of considering
the Lie group U(n) and the projective space CPn−1.
• The set of quantum states D for our formulation will be the submanifold of
u∗(n) defined by the elements which have trace equal to one and are positive
definite. D is a nonlinear submanifold of u∗(n), but the particular choice
of our dynamic system allows us to treat the problem as a problem defined
on the linear space u∗(n). Indeed, as the dynamics on D is defined by von
Neumann equation, we know that the solution ρ(t) must belong to a unitary
orbit of the coadjoint action of the unitary group. As it is well known
(see [20]), those orbits constitute symplectic submanifolds of u∗(n) which
define the leaves of the symplectic foliation associated with its Lie-Poisson
canonical structure. If we consider an initial condition contained in one of
the leaves, the whole solution will be contained in it. This property will
allow us to consider the problem defined directly at the linear space u∗(n)
and forget about the nonlinear constraints. Nonetheless, this also imposes
some constraints for the definition of splines in the general case. Indeed, as
the dynamics we are considering is always unitary, any generalized spline
will be contained in a unitary orbit. Thus, if the target points are not
contained in one unitary orbit, the best possible solution will only be able
to define the closest unitary orbit to the set of target points. We will discuss
this point at the end of the paper.
• The geometric formulation of Quantum Mechanics (see [4, 8, 10, 19] ) is

a natural framework to formulate the problem in a geometric formalism
which exhibits these symplectic aspects. In that framework, von Neumann
equation defines in a natural way a Hamiltonian vector field. This property
is particularly useful when considering numeric integration of the solutions,
since by using symplectic integrators we do not need to take into account
constraints such as the trace of the quantum state or its rank and the
problem can be treated as a free one.
• In [9], a numerical algorithm was introduced in order to provide a method

of integration for the splines. In our formalism, even if simpler, a numerical
algorithm will also be necessary. We introduce an iterative algorithm to
approach the optimal solution of the interpolation problem. We may not
reach the absolute optimal solution, but we always obtain a very good
approximation to it. As our framework is defined on linear spaces the
algorithm turns out to be very simple and the efficiency is very high.

The structure of the paper is as follows. Section 2 presents a summary of the geo-
metric formalism of quantum mechanics, with special emphasis on the geometrical
structures associated with the description of the set of Hermitian operators and the
set of density states, which are the main ingredients of our construction. Section 3
presents the main aspects of our new formulation, analyzing first the quantum con-
trol problem from the point of view of the Pontryagin maximum principle, then the
analytical tools used to build the system of differential equations defining the solu-
tion and finally discussing an iterative algorithm to build solutions in an efficient
way and the numerical methods we use to obtain them. Section 4 illustrates our
construction with the simplest example for the interpolation between a set of pure
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states of a two level system and Section 5 presents a more sophisticated example of
the interpolation of mixed states of a three level quantum systems. Finally, Section
6 summarizes the main results of the paper and discuss the possible generalization
of our method to the case of open quantum systems.

2. The geometrical description of quantum mechanics

Let us briefly review some very general aspects of the geometrical formulation
of quantum mechanics, focusing on the ingredients which will be used later in the
paper. For more details, we address the interested reader to [4, 8, 10, 19] and
references therein. We use Einstein summation over repeated indexes.

2.1. The geometrical structures of u∗(n). We hereafter assume H to be an
n-dimensional complex Hilbert space. In this case the C∗–algebra of operators
corresponds to A = End(Cn) and the involution is the usual adjoint operation
for complex endomorphisms. In this case, when considering an orthonormal basis,
self-adjoint operators are represented by Hermitian matrices.

It is important now to emphasize the following facts:

• We can define isomorphisms between u(n), u∗(n) and the vector space of
Hermitian matrices iu(n) by mappings

iu(n) 3 A 7→ iA ∈ u(n); (5)

iu(n) 3 A 7→ ξA ∈ u∗(n), with ξA = 〈−iA | · 〉 : u(n)→ R. (6)

These isomorphisms define also Lie brackets on each space [·, ·]u, [·, ·]u∗ and
[·, ·]iu. We have a special interest in the identification of the elements of
u∗(n) with the Hermitian matrices, which will be used later.

• On the dual space u∗(n) we have a natural linear Poisson structure, the
Lie-Poisson structure. The Poisson tensor Λ is defined, on the set of linear
functions on u∗(n), as follows

Λξ(V,W ) = ξ ([V,W ]) , ξ ∈ u∗(n), ∀V,W ∈ u(n). (7)

From this definition on linear functions, we can construct the Poisson
bracket on general functions f, g ∈ C∞(u∗(n)) by extending equation (7)
requiring bilinearity, i.e., as the action of the bi-differential operator which
on linear functions behaves as equation (7). This defines the canonical
Lie-Poisson tensor of the dual of the unitary algebra (see [1]).

• The Hamiltonian vector field XiH = −Λ(iH, ·) is the infinitesimal generator
of the coadjoint action of U(n) on u∗(n) and, therefore, the system

ξ̇(t) = XiH(ξ(t)), ξ(0) = ξ0, ξ(t) ∈ u∗(n), (8)

is a symplectic Hamiltonian system on the coadjoint orbit where the initial
condition ξ0 is contained (again we refer the reader to [1] for details) .
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2.2. The set of density matrices D(H). The physical states which are used in
the Schrödinger formalism correspond to the points of the projective space PH. As
it is well known, we can also represent these states by using the projectors on one-
dimensional subspaces of the Hilbert space. Unitary evolution, associated with the
Schrödinger or the von Neumann equation, will define trajectories on this set. We
will denote by D1(H) the corresponding set of projectors. Nonetheless, D1(H) is
not enough to represent all the possible physical states of a system, since arbitrary
convex combinations of rank-one-projectors also define admissible physical states.
Indeed, if our system is not isolated and is surrounded by an environment (as it
is the case of all real systems), or just a set of other systems, the representing
state will not be, in general, pure. Therefore, we must enlarge the set of states to
consider:

Definition 2.1. The set of density states D(H) of the system corresponds to the
subset of u∗(n) obtained by convex combinations of rank-one-projectors, that is,

D(H) =

{
ρ =

∑
k

pkρk : pk ≥ 0,
∑
k

pk = 1, ρk ∈ D1(H)

}
. (9)

Equivalently, we can consider the following definition: an element ρ ∈ u∗(n) is a
density operator if and only if

Trρ = 1 and ρ ≥ 0. (10)

An important property of the manifold D(H) is its internal structure, in par-
ticular in what regards the restriction of the coadjoint orbits of the unitary group
on u∗(n). A very important aspect of that structure is the nature of D(H) as a
stratified manifold, the strata being defined by the rank of the states (see [?] for
details). Indeed, as all density states are self-adjoint and positive definite, they all
are diagonalizable and have non-negative eigenvalues. The number of non-vanishing
eigenvalues equals the rank of the operator (or the matrix, if we choose a basis).
Thus, all states having the same rank belong to the same stratum. As the coad-
joint action of the unitary group is known to preserve the spectrum of the density
operator, it is obvious that the orbit will stay on the same stratum as its initial
condition. Equivalently, we can claim that the Hamiltonian vector field defined by
equation (8) will be tangent to the different strata.

Thus, if we consider the Hamiltonian vector field XiH (defined by equation (8))
restricted to D(H), we obtain the von Neumann equation for the density matrix
ρ ∈ D(H),

ρ̇ = XiH(ρ). (11)

We know that this evolution corresponds to a unitary transformation. Thus, the
Hamiltonian vector fields of Λ are the infinitesimal generators of the coadjoint ac-
tion of the unitary group on u∗(n), and the corresponding orbits are known to
be symplectic submanifolds. For instance, the set of pure states D1(H) defines a
symplectic orbit which corresponds to a symplectic leaf of the canonical Poisson
foliation. Therefore, the solution of von Neumann’s equation on D1(H) is always
tangent to it and defines a symplectic transformation. This allows us to use the
formulation of the problem on u∗(n) without using any constraints to specify the
submanifold of pure states, since we know that any trajectory with an initial con-
dition on D1(H) will remain on the submanifold for all times.
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For the case of a mixed state, the situation is analogous, but in this case the
symplectic orbit of the coadjoint action will not cover all the stratum. Each stratum
will contain several coadjoint orbits of different dimensions and therefore the for-
mulation of the interpolation problem must take into account this property. Indeed,
the exact quantum spline for mixed states (i.e., a curve joining all points) makes
sense only if the set of points belong to the same coadjoint orbit. As the target
points are not reached exactly, the problem still makes sense for a neighborhood of
the orbit. In the next Section we will see how it is possible to define an iterative
algorithm which drives the evolution to the closest point of the orbit with respect
to the target point.

3. Dynamical interpolation problem on u∗(n)

Let {ρ0, ρ1, · · · , ρN} be a finite subset of D(H) and 0 = t0 < t1 < · · · < tN = T
a partition of the time interval [0, T ], T > 0. Consider also a m-dimensional vector
subspace h of u∗(n), m ≤ n2 which will represent the space of admissible controls
for our interpolation problem.

3.1. The control problems chain. In general, let E be a real vector space of
dimension n and U a subspace of E (in our case, E will be the vector space u∗(n)×
u∗(n)). Given a cost function L : E × U → R and the functions Gj : E → R,
consider the optimal control problem P concerning the minimum of the functional

J(u) =

N∑
j=1

∫ tj

tj−1

L(x(t), u(t)) dt+
1

ε

N∑
j=1

Gj(x(tj)), (12)

where ε is a tunable positive parameter, and with u : [0, T ]→ U and x : [0, T ]→ E
being curves, subject to the initial condition x(0) = x0, satisfying the control system

ẋ = f(x, u) (13)

and the conditions:

– x is continuous in [0, T ] and smooth in ]tj−1, tj [, with finite one-sided limits
at tj , for all j = 1, . . . , N ;

– u is smooth in ]tj−1, tj [, with finite one-sided limits at tj , for all j =
1, . . . , N .

This defines a set of N subproblems Pj , j = 1, . . . , N , one for each subinterval,
where the initial condition is fixed (by the value of the solution at the end point of
the previous interval), but the final condition is free. Thus, on interval ]tj−1, tj [ we
consider the functional

Jj(u) =

∫ tj

tj−1

L(x(t), u(t)) dt+
1

ε
Gj(x(tj), (14)

and search for the optimal solution x : [tj−1, tj ] → R subject to the initial con-
ditions x(tj−1) = xj−1, which corresponds to the final conditions of the previous
subinterval. Each of these subproblems is a particular case of a well known optimal
control problem known as a Bolza problem (see [11]). The solution x(t) is asked to
be continuous on the whole interval [0, T ].

The solution of each Bolza problem can be obtained straightforwardly by using
the Pontryagin maximum principle, the only difficulty being the boundary con-
dition. Although it is a well known method, let us present, for completeness, a
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sketch of the variational construction needed to prove Pontryagin’s result. Let us
take, for instance, the first subinterval [t0, t1]. Consider the Hamiltonian function
h : E × E∗ × U → R associated with the optimal control problem, defined by

h(x, p, u) = p(f(x, u))− L(x, u). (15)

For each x ∈ E and p ∈ E∗, the partial functional derivative of a function h
with respect to x at a is an element of E∗ denoted by (δh/δx)(a) and the partial
functional derivative with respect to p at a is an element of E denoted by (δh/δp)(a).
Now, let us enlarge the functional J by the dynamical constraints, using the costate
trajectory p : [t0, t1]→ E, in the following way:

J̃(u) =

∫ t1

t0

L(x(t), u(t)) dt+

∫ t1

t0

p (ẋ− f(x, u)) dt+
1

ε
G1(x(t1))

=

∫ t1

t0

(L(x, u)− p(f(x, u))) dt+

∫ t1

t0

p(ẋ) dt+
1

ε
G1(x(t1))

= −
∫ t1

t0

h(x, p, u)dt+

∫ t1

t0

p(ẋ) dt+
1

ε
G1(x(t1)).

Thus, we know that the optimal solution will satisfy the equations

ẋ =
δh

δp
, ṗ = −δh

δx
, p(t−1 ) = −1

ε

δG1

δx
(x(t1)),

δh

δu
(x, p, u) = 0. (16)

Therefore, it is now simple to prove the following result:

Theorem 1. If u is the optimal control resulting of the optimal control problems
Pj, j = 1, . . . , N and x is the associated optimal state trajectory, then there exists
a piecewise-smooth costate trajectory p : [0, T ] :→ E such that

ẋ =
δh

δp
, ṗ = −δh

δx
, (17)

δh

δu
= 0, (18)

p(t−j ) = −1

ε

δGj
δx

(x(tj)), for all j = 1, . . . , N. (19)

Proof
The problem is defined piecewisely, and hence we will proceed in the same way.

For each j, consider the problem on the subinterval [tj−1, tj ], determine the optimal
solution on it, and consider then the value of the optimal solution to define the
boundary condition of the next subinterval in order to ensure continuity of the
trajectory. On the first subinterval, [t0, t1], we have seen that the solution satisfies
the condition. Consider now the optimal solution x(t) and the corresponding value
x(t1), and use it as the initial condition for the Bolza problem in the subinterval
[t1, t2]. We will then define an optimal solution for the second subinterval which
will define the initial condition for the third one. On each case we produce a
smooth costate variable p, defined on each subinterval. If we repeat the procedure
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on all subintervals, the result follows and the global costate variable will be, by
construction, piecewise-smooth. �

Observe that system (17-18) and the time-invariance of the Hamiltonian h guar-
antee that h is an integral of motion.

3.2. The optimal control problem P for quantum splines. Let us apply now
the result above to our formulation of the interpolation problem. As we had for-
mulated it on u∗(n), we consider a cost function L : u∗(n)× u∗(n)× h→ R defined
by

L(ρ,H, u) =
1

2
‖u‖2 =

1

2
〈u, u〉 (20)

where 〈ξ, η〉 = 1
2Tr(ξη) for ξ, η ∈ u∗(n). The functions Gj : u∗(n)→ R are given by

Gj(ρ) =
1

2
‖ρ− ρj‖2 , j = 1, . . . , N. (21)

The dynamical interpolation problem is the optimal control problem concerning
the minimum of the functional

J(u) =

N∑
j=1

∫ tj

tj−1

L(ρ(t), H(t), u(t)) dt+
1

ε

N∑
j=1

Gj(ρ(tj)), (22)

with u : [0, T ] → h and (ρ,H) : [0, T ] → u∗(n) × u∗(n) being piecewise-defined
curves subject to the initial conditions

ρ(0) = ρ0 and H(0) = H0, (23)

satisfying the control system

ρ̇ = [H, ρ]u∗ , Ḣ = u, (24)

where the curves verify the same regularity conditions of the previous section.
The Hamiltonian function to apply the Pontryagin maximum principle becomes

now the function h : u∗(n)× u∗(n)× u(n)× u(n)× h→ R given by

h(ρ,H,Γ,Π, u) = Γ([H, ρ]u∗) + Π(u)− L(ρ,H, u). (25)

The approach considered above, obtained by application of the theorem 1, implies
the following result:

Theorem 2. If u is the optimal control resulting of the optimal control problems Pj,
j = 1, . . . , N , and (ρ,H) is the associated optimal state trajectory, then there exists
a piecewise-continuous optimal costate trajectory (Γ,Π) that satisfies the system

ρ̇ = [H, ρ]u∗ , Ḣ = u, Γ̇ = −ad∗HΓ, Π̇ = ad∗ρΓ, Π = u[, (26)

the initial conditions (23) and the interpolating conditions

Γ(t−j ) = −1

ε
(ρ(tj)− ρj)[, Π(t−j ) = 0, j = 1, . . . , N. (27)

In the equations above ad and ad∗ refer to the adjoint and co-adjoint actions of the
Lie bracket [·, ·]u∗ and ·[ specifies the isomorphism [ : u∗ → u given by the inner
product on u∗(n).



10L ABRUNHEIRO, M CAMARINHA, J CLEMENTE-GALLARDO, J. C. CUCHÍ, AND P. SANTOS

Notice that eliminating the controls in (26) we obtain the system

ρ̇ = [H, ρ]u∗ , Ḣ = Π]
h, Γ̇ = −ad∗HΓ, Π̇ = ad∗ρΓ, (28)

which is Hamiltonian with respect to the function h̃ : u∗(n)×u∗(n)×u(n)×u(n)→
R,

h̃(ρ,H,Γ,Π) = Γ([H, ρ]u∗) +
1

2

∥∥∥Π]
h

∥∥∥2

. (29)

Notice that ·] specifies the inverse of the isomorphism [.

Observe that the Hamiltonian system (28) can be written as follows

ρ̇ = [H, ρ]u∗ , Ḣ = Π]
h, Γ̇ = [H,Γ]][u∗ , Π̇ = [Γ], ρ][u∗ , (30)

with interpolation conditions

Γ(t−j ) = −1

ε
(ρ(tj)− ρj)[, Π(t−j ) = 0, j = 1, . . . , N. (31)

Consider now the problem P with u taking values in all space, that is, the space
of admissible controls corresponds to h = u∗(n) and thus m = n2. From Hamilton-

ian equations (30), we differentiate twice the equation Ḣ = Π] and eliminate the

costates Γ and Π, to obtain the equations Ḧ = −adρΓ
] and

...
H = [H, Ḧ]u∗ . Indeed,

...
H = − adρ̇Γ

] − adρΓ̇
] = −ad[H,ρ]u∗ Γ] − adρadHΓ]

= adρadHΓ] − adHadρΓ
] − adρadHΓ]

= −adHadρΓ
] = adHḦ = [H, Ḧ]u∗ .

(32)

Therefore, the associated optimal state trajectory (ρ,H) verifies the two conditions

ρ̇ = [H, ρ]u∗ and
...
H = [H, Ḧ]u∗ . (33)

Moreover, interpolation conditions can be interpreted in terms of ρ andH as follows:
ρ is of class C1, H is of class C0 and

Ḧ(t−j ) =
1

ε
[ρj , ρ(tj)]u∗ , Ḣ(t−j ) = 0, for all j = 1, . . . , N. (34)

Now, if we integrate the equation
...
H = [H, Ḧ]u∗ , we obtain

Ḧ(t) = Kj + [H(t), Ḣ(t)]u∗ , with t ∈ [tj−1, tj ], (35)

where Kj are the matrices defined by

Kj =
1

ε
[ρj , ρ(tj)]u∗ , for all j = 1, . . . , N. (36)

Notice that any solution of equations (35-36) satisfies the second equation of (33),
i.e., any of them are cubic polynomials and represent extremals of the continuous
part of functional J defined in equation (22).

Let {σl | l = 1, . . . , n2} be an orthonormal basis of u∗(n). Denote, with respect to
this basis, the coordinates of Kj by (klj), l = 1, . . . , n2, and the coordinate functions
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for ρ and H by (xl) and (yl), l = 1, . . . , n2, respectively. The system (33) is then
written in the following way

ẋl(t) =

n2∑
r,s=1

clrs yr(t)xs(t),

ÿl(t) = klj +

n2∑
r,s=1

clrs yr(t)ẏs(t),

(37)

for l = 1, . . . , n2 and t ∈ [tj−1, tj ], with j = 1, . . . , N and where clrs are the structure
constants of the Lie algebra structure of u∗(n).

3.3. Implicit numeric integration. The integration of equations (37) is far from
trivial because of the presence of the coefficients {klj}, which require of the solution
of ρ(t) to be determined, since

Kj =
1

ε
[ρj , ρ(tj)]u∗ .

These operators couple the equation for ρ(t) and the equation for H(t), which,
otherwise, would be independent. In any case, it is not clear whether the optimal
solution exist. Therefore, we have designed an iterative algorithm to obtain a
numerical solution for equations (33), always improving the distance to the target
points. We consider only one interval [tj−1, tj ], for the sake of simplicity:

• We fix the initial value of Kj = K0
j = 0 (the null matrix) and integrate

equation (37). This gives us an initial solution ρ0(t) which, in general, will
be a bad solution of the interpolation problem from ρj−1 to ρj .
• From this solution we determine the corresponding value ofK1

j := 1
ε [ρj , ρ

0(tj)]u∗ .
Notice that this expression corresponds to the extremal of the variations of
the cost functional G = 1

2ε‖ρ − ρj‖
2, and therefore it defines the suitable

steering acceleration of the solution (ρ(t), H(t)) to make ρ(tj) to move to-
wards ρj . For a suitable (not too small) value of ε, the computation of a
new solution of equation (37) with this value of K1

j , produces a solution

(ρ1(t), H1(t)), where ρ1(t) is a better solution of the interpolation problem.
If the value of ε is too small, the acceleration of H1(t), even in the correct
direction, will be too large and the solution ρ1(t) might become a worst
interpolation solution than ρ0(t).
• From solution ρ1(t) we recompute K2

j := K1
j + 1

ε [ρj , ρ
1(tj)]u∗ and integrate

again equation (37) to define a new solution (ρ2(t), H2(t)), where ρ2(t) will
be a better solution of the interpolation problem. We repeat the process to
obtain a sequence of solutions {ρj(t)}, each one representing a better inter-
polation solution for ρ(t). Notice that any curve of this series is a solution of
equation (33) and therefore provides a solution for the interpolation prob-
lem. Each iteration allows us to obtain solutions of equations (33) which
are closer and closer to the target points. At the same time, the number
of iterations of the algorithm also affects the value of the continuous part
of the functional J (equation 22): the larger the number of iterations, the
larger value for the integral part. Hence adjusting the number of iterations
can also be considered a mechanism to obtain solutions of the interpolation
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problem which assign different weights to the continuous part with respect
to the discrete part of the functional.
• On each of these steps the value of 1

ε [ρj , ρ
i(tj)]u∗ decreases, since ‖ρj −

ρi(tj)‖2 is decreasing. Therefore, after a sufficiently large number r of
steps, the value of Kr

j stabilizes within a certain tolerance. The speed of
the process depends on the value of ε, that is fixing the magnitude of Kj

(i.e. an acceleration for H(t)) and thus fixes the velocity of von Neumann
equation for ρ(t). In any case, notice that (ρi(t), Hi(t)) is not a solution of
equation (36) since Hi(t) is a solution of an equation obtained with respect
to a value of Ki

j which has been obtained from ρi−1(t) as

Ki
j = Ki−1

j +
1

ε
[ρj , ρ

i−1(tj)]u∗ =
1

ε

[
ρj ,

i−1∑
s=0

ρs(tj)

]
u∗

, (38)

and not as

Kj =
1

ε
[ρj , ρ

i(tj)]u∗ ,

which is the form required for the solution (ρi(t), Hi(t)) to be a solution of
equations (37) and (36). Hence we can conclude that it is not the optimal
solution for our problem. Nonetheless, it is still a solution of equations
(33) and therefore an acceptable one for our interpolation problem, even if
more optimal solutions may exist. Furthermore, as we will see later in the
examples, the method is very efficient and defines very accurate solutions
with a small number of iterations.

3.4. Numerical integration: unitary methods. Our construction has pro-
duced the system of equations (37) for the solutions of the optimization problem. It
is crucial now to notice that these equations represent the flow of the Hamiltonian
system (26), the first one (the x-coordinate in our notation) being the coordinate
expression of von Neumann’s equation, which was proved to be a Hamiltonian vec-
tor field (see equation (11)) with respect to the canonical Lie-Poisson tensor on
u∗(n). This Hamiltonian vector field represents the infinitesimal generator of the
coadjoint action of the unitary group U(n) and therefore we know that its integral
curves are contained in the corresponding orbit, which is known to be a symplectic
submanifold of u∗(n) (see [1]). In particular, if we consider an initial condition
which is a pure state, the corresponding symplectic orbit will be a curve on the
set D1(H) and therefore diffeomorphic to a curve in PH. Notice that, being a
unitary transformation, the evolution also defines isometries for the scalar product
on u∗(n).

If we are considering the interpolation of a set of points which do not belong to
the same unitary orbit, the situation is a bit different. As the evolution we choose
(with the vector field associated to von Neumann equation) is always unitary, any
solution of equations (37) must define a unitary transformation. Hence, the minimal
distance of the trajectory to the target point corresponds to the distance between
the unitary orbit containing the initial condition chosen and the target point. Notice
that the algorithm introduced in the previous section makes sense also in this case:
the sequence of operators Kj defined by equation (38) steer the solutions towards
the point in the unitary orbit which minimizes the distance with respect to the
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target point. We will discuss this point in detail in the following section for a
particular example.

From both properties we know that, by implementing a numerical method which
preserves the symplectic structure and the distance, we will be ensuring that tra-
jectories of equation (37) will remain on the corresponding orbit and therefore
that they will define solutions of our interpolation problem. There exists several
numerical methods with those properties, being one of the best known the Gauss(-
Legendre) Runge-Kutta (Gauss RK) implicit method (see [14] and [17]), that we
will be using in the example of the next Section. The transition matrix of the inte-
grator defines thus a canonical transformation (since the integrator is symplectic)
which is also an isometry for the metric structure.

4. Example 1: the interpolation problem for a qubit

As an application of our method, this section presents the optimal control prob-
lem on the Lie algebra u∗(2), with the function (20), L, defined on u∗(2)× u∗(2)×
u∗(2). Our goal is to determine a quantum spline for a set of points {ρj} ∈ D1(H)
and a set of times {tj}.

We will use, for simplicity, the identification of u∗(2) with the set of Hermitian
matrices iu(2) and consider as basis the set of Hermitian Pauli spin matrices:

σ1 =

(
1 0
0 1

)
, σ2 =

(
0 1
1 0

)
, σ3 =

(
0 −i
i 0

)
and σ4 =

(
1 0
0 −1

)
,

that obey the commutation relations [σ2, σ3]iu(2) = 2σ4, [σ4, σ2]iu(2) = 2σ3, [σ3, σ4]iu(2) =
2σ2. The structure constants with respect to this basis are

c423 = c342 = c234 = −c432 = −c324 = −c243 = 2 and zero otherwise.

The elements ρ ∈ D1(H) ⊂ iu(2) are written as

ρ(t) =
1

2
σ1 +

4∑
k=2

xk(t)σk, (39)

while the elements of the form H ∈ Tρiu(2) ∼ iu(2) become

H(t) =

4∑
k=1

yk(t)σk. (40)

With respect to these coordinates, the system (37) turns out to be

ẋ1(t) = 0

ẋ2(t) = 2x4(t) y3(t)− 2x3(t) y4(t)

ẋ3(t) = 2x2(t) y4(t)− 2x4(t) y2(t)

ẋ4(t) = 2x3(t) y2(t)− 2x2(t) y3(t)

ÿ1(t) = 0

ÿ2(t) = k2
j + 2y3(t)ẏ4(t)− 2y4(t)ẏ3(t)

ÿ3(t) = k3
j + 2y4(t)ẏ2(t)− 2y2(t)ẏ4(t)

ÿ4(t) = k4
j + 2y2(t)ẏ3(t)− 2y3(t)ẏ2(t).

(41)
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Note that the definition of Kj implies k1
j = 0, for all j = 1, . . . , N . The dynamics

also implies that the curve ρ in the set D1(H) of rank-one-projectors can be identi-
fied with a curve on the border of a sphere of radius r = 1

2 , that is, x2
2 +x2

3 +x2
4 = 1

4 .
Equations (34) imply that the value of u(t) at the final point of each subinterval
must vanish and this is imposed as a boundary condition. The only free parameter
is the value of H(0), which can be seen to be irrelevant for the algorithm, since the
implicit algorithm adapts itself to it. Remember also that H(t) is required to be
continuous.

Consider the uniform partition of times t0 = 0 < t1 = 1
5 < t2 = 2

5 < t3 = 3
5 <

t4 = 4
5 < t5 = 1 and the following set of rank-one-projectors:

ρ0 = 1
2 σ1 + 1

2 σ4

ρ1 = 1
2 σ1 + 1

4 σ2 + 1
4 σ3 +

√
2

4 σ4

ρ2 = 1
2 σ1 + 3

8 σ2 +
√

3
8 σ3 + 1

4 σ4

ρ3 = 1
2 σ1 + 1

2 σ2

ρ4 = 1
2 σ1 +

√
3

8 σ2 + 1
8 σ3 −

√
3

2 σ4

ρ5 = 1
2 σ1 + 1

2 σ3.

(42)

The problem consists in finding the optimal control function u(t) and the optimal
state trajectory (ρ(t), H(t)) that minimizes the functional

J(u) =

∫ 1

0

1

2
‖u‖2 dt+

1

2ε

5∑
j=1

‖ρ(tj)− ρj‖2 (43)

and satisfies the dynamical system

ρ̇(t) = −i(H(t)ρ(t)− ρ(t)H(t)) and Ḣ(t) = u(t), (44)

subject to the initial conditions

ρ(0) = ρ0 and H(0) = σ4, (45)

where regularity and interpolation conditions are assumed according to the dynam-
ical interpolation problem P .

We have implemented our algorithm described in Section 3.3 for different values
of the number of iterations and also different values of the parameter ε. Notice
that both options are not independent since a larger value of ε leads to a faster
convergence for the algorithm. The number of iterations of the algorithm also
affects the value of the continuous part of the functional J (equation 43): the
larger the number of iterations, the larger the value for the integral part. In the
table below we present the values obtained for the distance to the target points but
also for the continuous part of the functional. Numerical integration was done with
Wolfram’s Mathematica, by using the implicit unitary integrator included in the
“ImplicitRungeKutta” library of the NDSolveUtilities package. It is immediate to
verify that the purity of the state does not change at all because of the unitarity of
the integrator (hence the points are always on the surface of the sphere)

The resulting curve can be found in the figure 1 and it produces a remarkably
accurate result with suitable values for the parameter ε, as it can be seen in the
tables for ε = 0.005 and 5 iterations (left) and for ε = 0.005 and 50 iterations (right)
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t ‖ρ(tj)− ρj‖ Jcont J

0 0 0 0

0.2 0.0101 54.90 54.91

0.4 0.0125 72.46 72.47

0.6 0.0077 33.73 33.73

0.8 0.0128 55.87 55.88

1 0.0178 62.19 62.22

t ‖ρ(tj)− ρj‖ Jcont J

0 0 0 0

0.2 7.14× 10−11 57.82 57.82

0.4 7.16× 10−11 85.07 85.07

0.6 7.16× 10−11 46.12 46.12

0.8 7.16× 10−11 47.55 47.55

1 7.15× 10−11 60.80 60.80

We verify that the distance to the target points can be made almost zero for
a sufficiently large number of iterations. At each intermediate point tk, we also

include the values of the continuous part of the functional (Jcont =
∫ tk
tk−1

1
2‖u‖

2dt)

computed over the subinterval and the total value of J .
The computation time on a PC takes less than two seconds per iteration for the

example presented. We will see in next Section how the time increases significantly
when considering a three-level case.

Figure 1. Curve in D1(C2) ≡ S2 for ε = 0.005 and 5 iterations
of the algorithm (left) and 50 iterations (right). Points ρj for
j = 0, . . . , 5 are represented in red. Points ρ(tj) are represented
in black. We see how on the right, target points and the points
reached by the trajectory are indistinguishable. In the figure on
the left we can see a small discrepancy between red and black
points.

5. Example 2: the interpolation problem for a qutrit

As a second application of our method, this section presents the case of a three-
level systems (a qutrit). The formulation is entirely analogous to the previous case
but now the problem is formulated on the space D(C3) ⊂ u∗(3). As we did in the
qubit case we will use the identification of u∗(3) with iu(3) and we will represent
the density states as 3× 3 Hermitian matrices. As a basis, we will consider the set
of Gell-Mann matrices
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λ1 =

 0 1 0
1 0 0
0 0 0

 , λ2 =

 0 −i 0
i 0 0
0 0 0

 , λ3 =

 1 0 0
0 −1 0
0 0 0



λ4 =

 0 0 1
0 0 0
1 0 0

 , λ5 =

 0 0 −i
0 0 0
i 0 0

 , λ6 =

 0 0 0
0 0 1
0 1 0



λ7 =

 0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

 1 0 0
0 1 0
0 0 −2

 , λ9 =

√
2

3

 1 0 0
0 1 0
0 0 1

 .

The structure constants with respect to this basis are

c312 = −c321 = 2; c845 = c867 = −c854 = −c876 =
√

3;

c714 = −c741 = −c615 = c651 = c624 = −c642 = c725 = −c752 = c534 = −c543 = c763 = −c736 = 1

and zero otherwise. The elements ρ ∈ D(H) ⊂ iu(3) are written as

ρ(t) =
1

2
λ9 +

8∑
k=1

xk(t)λk, (46)

while the elements of the form H ∈ Tρiu(3) ∼ iu(3) become

H(t) =

9∑
k=1

yk(t)λk. (47)

With respect to these coordinates, we consider now the problem of finding the
optimal control function u(t) and the optimal state trajectory (ρ(t), H(t)) that
minimizes the functional

J(u) =

∫ 1

0

1

2
‖u‖2 dt+

1

2ε

N∑
j=1

‖ρ(tj)− ρj‖2 (48)

and satisfies the dynamical system

ρ̇(t) = −i(H(t)ρ(t)− ρ(t)H(t)) and Ḣ(t) = u(t), (49)

subject to the initial conditions

ρ(0) = ρ0 and H(0) = λ9, (50)

where regularity and interpolation conditions are assumed according to the dynam-
ical interpolation problem P . As we saw above, we have to solve the system (37).
Again, equations (34) imply that the value of u(t) at the final point of each subin-
terval must vanish and this is imposed as a boundary condition. The value of H(0)
can also be seen to be irrelevant for the algorithm, as it happens in the case of two
levels.
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5.1. First example: points contained in a unitary orbit. Let us consider the
following set of points, for times t0 = 0 < t1 = 1

6 < t2 = 1
3 < t3 = 1

2 < t4 = 2
3 <

t5 = 5
6 < t6 = 1:

ρ0 =

 1
3 0 0
0 2

3 0
0 0 0

 ,

ρ1 =

 0.436919 −0.0234205− 0.187994i 0.109777 + 0.158205i
−0.0234205 + 0.187994i 0.442465 0.0387764 + 0.0518969i
0.109777 − 0.158205i 0.0387764 − 0.0518969i 0.120616

 ,

ρ2 =

 0.25208 0.0710467 − 0.0594233i −0.178472 + 0.143899i
0.0710467 + 0.0594233i 0.358968 0.0437509 − 0.207081i
−0.178472− 0.143899i 0.0437509 + 0.207081i 0.388953

 ,

ρ3 =

 0.510032 0.0421306 − 0.160051i −0.158675 + 0.163612i
0.0421306 + 0.160051i 0.268756 0.0865724 + 0.0172119i
−0.158675− 0.163612i 0.0865724 − 0.0172119i 0.221213

 ,

ρ4 =

 0.145442 0.0762356 − 0.126603i −0.0740697 + 0.211438i
0.0762356 + 0.126603i 0.450398 −0.107868− 0.0207668i
−0.0740697− 0.211438i −0.107868 + 0.0207668i 0.40416

 ,

ρ5 =

 0.294447 0.1995 − 0.0726447i −0.0696641 + 0.219691i
0.1995 + 0.0726447i 0.301392 −0.0818337− 0.0494491i
−0.0696641− 0.219691i −0.0818337 + 0.0494491i 0.40416

 ,

ρ6 =

 0.0638338 −0.040794 + 0.00995446i 0.00664582 − 0.133158i
−0.040794− 0.00995446i 0.522085 0.152599 − 0.104391i
0.00664582 + 0.133158i 0.152599 + 0.104391i 0.414082

 .

All seven points belong to a unitary orbit of the set of mixed states in D(C3).
We have considered again our algorithm for this case in order to verify how does

it work for the case of mixed states. We have considered a value for ε = 0.001 and
200 iterations of our algorithm. The resulting distances of the points obtained and
the values of the functional J and its continuous part Jcont are the following:

t ‖ρ(tj)− ρj‖ Jcont J

0 0 0 0
1
6 4.87× 10−10 1.82× 10−16 3.01× 10−16

1
3 6.7× 10−4 845.53 845.53
1
2 9.01× 10−7 607.02 607.02
2
3 9.51× 10−9 77.55 77.55
5
6 5.64× 10−7 298.54 298.54

1 8.9× 10−6 282.83 282.83

Computation times are now longer, up to 5-6 seconds per iteration in certain
cases. We conclude thus that the algorithm is also very efficient in the case of mixed
states, although smaller values of the parameter ε must be considered. Notice that
this example constitutes an important generalization with respect to the approach
presented in [9] which makes sense only for pure states.
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5.2. Points in different unitary orbits. Furthermore, the richness of the struc-
ture of unitary orbits of the set D(C3) allows us to consider different situations.
For instance, we can consider a case where the target points do not belong to the
same unitary orbit and check the behavior of the algorithm. If we consider as initial
point

ρ0b =

 1
3 − 0.001 0 0

0 2
3 + 0.001 0

0 0 0

 ,

and seek for a curve joining ρ0b, ρ1 and ρ2 by using equations (37) we obtain points
which are contained in the unitary orbit of ρ0b. Hence, as ρ1 and ρ2 lie in a different
orbit, the curve can not reach them. Nonetheless, the algorithm stabilizes (after
100 iterations) at points

ρ1b =

 0.437204 −0.0233546− 0.18881i 0.109899 + 0.158095i
−0.0233546 + 0.18881i 0.442331 0.0383441 + 0.0521308i
0.109899 − 0.158095i 0.0383441 − 0.0521308i 0.120465


and

ρ2b =

 0.251872 0.070592 − 0.0598828i −0.178803 + 0.143833i
0.070592 + 0.0598828i 0.358735 0.0435776 − 0.207622i
−0.178803− 0.143833i 0.0435776 + 0.207622i 0.389393


which are at a distance of 0.001 of ρ1 and ρ2, respectively. These are the closest
possible points since the unitary transformation must preserve the distance between
both unitary orbits which is 0.001 at the initial points (ρ0 and ρ0b).

We conclude thus that our method provides an efficient numerical solution for
the interpolation problem of general (pure or mixed) quantum states and generates
a trajectory contained in the closest unitary orbit to them.

6. Conclusions and outlook

In this paper we have generalized the notion of quantum spline introduced in [9]
to the case of general quantum states, pure or mixed. Brody et al. formulated a
variational problem on a projective space defined in Section 1. They considered a
globally defined continuous curve on the Lie group U(n) and the corresponding set
of continuous variations, and study the set of extremals of the functional defined
in equation (1), which combines the curve on U(n) and its action on the complex
projective space. From this, they obtain a set of differential equations whose so-
lutions correspond to Riemannian cubic polynomials on the subintervals ]tj−1, tj [
and a set of boundary conditions on the times {tj}. Finding a global solution is
a difficult problem and they also provide a numerical algorithm illustrated by a
particular example in the case of a two level system.

Our definition reconsiders the problem and writes it on the complete set of quan-
tum states (pure and mixed), modeled as a submanifold D of the dual space u∗(n).
Considering (as in [9] ) the case of unitary dynamics, allows us to forget about D
and define the problem globally on the linear space u∗(n). This simplifies the prob-
lem in a remarkable way. Furthermore, we consider a different type of optimization
problem and choose a local formulation on the different subintervals of the time
domain which does not impose the differentiability of the time dependence of the
Hamiltonian. This choice, which is common, for instance, in quantum control solu-
tions based on pulses, simplifies further the problem from the mathematical point
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of view, and transform it in a chain of Bolza-type problems. We consider then a
Hamiltonian formulation of the corresponding control problem based on Pontrya-
gin Maximum Principle, which allows us to consider in a natural way symplectic
integrators associated to the geometrical formulation of Quantum Mechanics. De-
spite the much simpler formulation, the resulting system of differential equations
is still difficult to solve exactly. We have introduced then an iterative algorithm
to determine good solutions of the problem which works very efficiently for pure
states and for mixed states, even for problems where the points to be interpolated
do not belong to the same unitary orbit. Our algorithm allows us to define the
closest unitary orbit in an efficient way.

Another advantage of our formalism is that it admits further generalizations
in a simple way. Indeed, we can consider an analogous formulation where uni-
tary dynamics is replaced by more general master equations, as for instance the
Lindblad-Kossakowski equation. This Markovian generalization may impose some
extra constraints on the set of possible times and points to be interpolated, but the
formulation of the problem makes perfect sense. The conclusions of that analysis,
which is being done now, will be presented in a future paper.
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