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Abstract
Self-powered electronic devices have been widely sought after in the last few years demanding efficient harvesting of locally available forms of energy. Electromagnetic generators are suitable contenders for powering both small-scale and large-scale devices due to their widespread availability and customizability. New promising magnet levitation architectures for mechanical vibration energy harvesting offer low production and maintenance costs, as well as a wide array of designs. They also exhibit complex non-linear and hysteretic resonant behaviors. Nonetheless, their performance is typically optimized towards external excitations with very specific characteristics. In this study, we theoretically and experimentally prove the concept of an instrumented self-adaptive levitation generator with on/off coil switching employing an accelerometer, transmission gate switches and a processing system. This adaptable system is able to periodically turn off coils not contributing to the generated electromotive forces for certain frequencies and amplitudes of the input excitations. Taking the power consumption of instrumentation into account, power gains up to ≈ 26% were achieved for harmonic inputs with randomly time changing frequencies and amplitudes. Using a prototype generator with 140.7 cm3, output average powers of up to 1.79 W (i.e., 12.7 kW/m3) were extracted for optimal electrical loads under non-linear resonant conditions. Significant increases in electric power efficiencies were achieved as well. These promising results should pave the way towards intelligent self-adapting energy generators.
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1. Introduction
The engineering of new high-performance energy harvesters has recently been widely sought after for both small-scale and large-scale powering [1-3]. Small-scale and large-scale energy scavenging is expected to find use in cutting-edge self-powered remote sensors and/or actuators [4], mobile devices [5], portable and wearable systems [6], and intracorporeal biomedical devices [7, 8]. Battery-free solutions have been envisioned following the continuous decrease in energy demand of a large number of actuators, sensors, communication and processing systems [9, 10]. This has been driven in part by the urgent need to significantly minimize their replacement in bioelectronic intracorporeal medical devices, not only to avoid unnecessary risks related to surgical procedures, but also to avoid battery malfunctioning [11]. Thus, promising energy harvesting systems should support long-term and intensive monitoring and actuation operations, short periods for data transmission/receiving and processing of dynamic control with complex artificial intelligence algorithms [12-14].
Among the various types of available renewable energy, mechanical vibrations are ubiquitous although intermittent in terms of frequency and amplitude. This fact introduces complications, namely high maintenance costs and low generation performance, as current non-intermittent energy harvesting systems are not able to carry out adaptation to varying mechanical excitations [15, 16]. Various vibration transduction mechanisms have been explored mainly including: piezoelectric (PEGs) [17, 18], electromagnetic (EMGs) [1, 19], and electrostatic/triboelectric (TENGs) [3, 20]. Electromagnetic generators in particular are well established, versatile and scalable from small- to large-scale [20-22]. Unlike triboelectric and piezoelectric generators, EMGs typically behave as low voltage sources with low internal impedance and high output short-circuit currents, which is a requirement of most portable electronics [15, 19, 23]. EMGs using magnetic levitation architectures are recent technologies with a non-complex design that offer low maintenance costs and extreme durability [19]. Moreover, its construction can be easily tweaked to optimize its performance for a particular range of input mechanical excitations. With a rational design, real-time self-adaptability can be achieved. These advantages are relevant to contribute towards the energetic societal goal of reducing 90% of conventional non-renewable energy sources over the next three decades [24, 25], in a global scenario where limitations of intermittent renewable sources (such as wind and sun) remain critical.
Combining the two emerging technologies of self-powered sensing and intelligent systems has recently opened a new very promising area of interdisciplinary research [26]. Relying mostly on machine learning techniques as resulted in smart healthcare devices for real-time self-powered monitoring, including cardiac, brain, perspiration, respiration, rehabilitation, sleep, and body mechanics analysis [27]; self-powered intelligent keyboards [28] or computer mice [29] with deep learning capabilities for user recognition; smart vehicles with driver behavior monitoring, human-vehicle interfaces and tire condition and safety monitoring [30], as well as human-like auditory systems [31]. Up to date, only vibration EMGs with passive smart enhancing of power generation have been developed [32-34]. The widely used methodology to provide adaptability is based on impedance tuning for maximum power point tracking [33-37]. Another much-explored methodology is to insert additional components to the passive generator structures mainly for resonance frequency self-tuning [38-41]. Universal power management methods, with system configuration dependent sequential switching for maximized energy transfer over one operation cycle, have already been developed for TENGs [42, 43]. In general, the designed circuits include a DC buck converter, for stepping down and steadying the high-voltage output, as well as a self-management mechanism employing electrical or mechanical switches. Such methods have made use of single mechanical switches, which open or close with the movement of the TENG, voltage-triggered switches, where the high output voltage of the TENG causes a discharge between electrodes, or adaptable electronic switches, usually realized by a micro-power voltage comparator and a MOSFET [42]. In this study, we propose for the first time an automated EMG with self-adaptive structure. It combines both energy transduction with automation engineering: the generator structure adaptability is based on automation methods. We implemented an automated self-adaptive levitation EMG with electronic coil switching, periodically turning off coils not contributing to the generated electromotive forces, depending on the frequencies and amplitudes of the input excitations. The instrumentation comprised: (i) an accelerometer to monitor the driving mechanical excitation; (ii) multiple fast transmission gate switches to connect/disconnect internal coils from the external circuit; (iii) a processing system with a microcontroller and conditioning circuitry to control the entire system. We here demonstrate two very relevant findings: (1) automated self-adaptive mechanism can offer significant energy gains in comparison with non-automated generation for mechanical vibrations with a wide array of time-changing parameters; (2) optimal performances require self-adaptive generator structures: it is not enough to provide adaptability based on tuning external components to the generators. Therefore, this work provides a solid basis for the development of intelligent generators. Automated generation can then be applied to multiple applications requiring self-powering. In micro-scale applications, the development of multifunctional instrumented intracorporeal medical devices must be highlighted [7, 10]; in the scope of macro-scale applications, automated EMGs can be an effective technology to generate electric energy using ocean energy [15,16]. Besides, much higher performances can be achieved by the recent methodology based on hybrid generation, namely electromagnetic-piezoelectric and electromagnetic-triboelectric generation [44, 45].

2. Methods
2.1 Structural design overview. The developed EMG generator is based on a very promising magnetic levitation architecture [15]. A prototype EMG was designed being composed of an hollowed cylindrical structure, four concentric coils along the length direction connected in series and cylindrical annuli NdFeB hard-magnets, with a central stacked free-magnet levitating between end magnets with opposite magnetization. Instrumentation was incorporated within the harvester for adaptive performance by controlling the on/off switching of the two more external coils as a function of the time-varying characteristics of the external mechanical power source. This instrumented EMG included a sensing system (accelerometer), processing unit and two transmission gate switches for optimization of the generator’s output, by means of an open-loop control system, as illustrated in Fig. 1a-c and Fig. S1. In general, the simple linear shaped generator permits a straightforward optimization of the relative position between levitating magnet and coils for maximum magnetic flux change and yields an oscillatory resonant system. The free-magnet dynamics was monitored using an ultrasonic sensor. A relatively large number of small diameter wire loops was employed in the coils in order to maximize the output energy conversion efficiency and voltage. Two or four separate coils can be switched on/off depending on the input excitation in order to maximize the effective electromechanical (EM) coupling between free-magnet and coils while minimizing the energy losses in the internal resistances of the coils. The employed circuit configuration (Fig.1c) used two switches to periodically short-circuit the more external coils, thus minimizing the number of switches and eliminating the possibility of large inductive voltage spikes.

2.2 Features of the adaptive generator. To maximize the harvester performance, the container was manufactured using PTFE, as it ensures low friction coefficient. Its architecture was designed to ensure a 1.25 mm tight-fit container-magnet interface. Appropriate materials with negligible magnetic permeability and electrical conductivity properties were carefully selected; bushings were incorporated whenever the assembly required rotating, oscillating and linear movements. The cylindrical dimensions of the manufactured container were 40112 mm. The actuation and sensing mechanisms were positioned at the same end extremity of the container.

2.3 Instrumentation of the adaptive harvester. The excitation driving the harvester was monitored by an ultra-low power accelerometer (BMA400, Bosch Sensortec), requiring 52.2 µW of power consumption. The system was controlled by an ultra-low power microcontroller (MSP430, Texas Instruments) demanding 66 µW to perform processing operations ( = 118.2 µW), including monitoring of the mechanical excitations and command operations. Two transmission gate bilateral switches consisting of NMOS (SCTW90N65G2V) and PMOS (IXTK40P50P) transistors were employed. These were controlled by externally applied logic levels requiring power inputs of  = 100 µW to close the switches (2 active coil case). The ultrasonic sensor (microsonic nano-15/CU) was only used for model validation purposes.

2.4 Numerical calculations. A system of ODEs describing the dynamics of the system was solved numerically using Runge-Kutta methods through Matlab (v. 9.4, Mathworks) solver ode45 (low frequency approximation) and solver ode15s in a time span of , with  the number of cycles. The magnetic forces and EM coefficients as a function of the position were calculated and saved in lookup tables. These parameters were then interpolated for faster numerical performance.

2.5 Energy gain model. The harvester was excited with harmonic random patterns with frequencies in the range of 4-18 Hz and amplitudes in the range of 3-10 mm, having a realistic decreasing probability distribution between  and  () associated with the random variable: , with  a uniformly distributed random number between 0 and 1. Since the change of frequencies and amplitudes was continuous, the system attains conditions of non-hysteretic non-linear resonance for most of the time, as in the frequency sweeping study. The stability time was set to  = 1 s and the control time to  = 0.1-4s and results were obtained over a long time span of .104 s.

2.6 Mechanical excitation apparatus. Digital I/O channels from a DSP board (DS1104 from dSPACE) were integrated with Matlab (v. 9.4, Mathworks) and Simulink (v. 9.1, Mathworks) using Real-Time Workshop (v. 5.6, Mathworks) and the Real-Time Interface (v. 7.12, dSPACE). A software application was developed in ControlDesk (v. 7.0, dSPACE) to interact with a real-time system, which was used to control the mechanical excitation system, a slider-crank mechanism actuated by an AC Motor (W21 90S, WEG) and an AC Inverter Drive (EFC3610-1K50, Bosch). 

2.7 Experimental testing. The magnetic force between the bottom fixed magnet and the levitating-magnet was tested as a function of the distance between them by coupling different masses to the latter and measuring its corresponding equilibrium position inside the container under the gravitational field. Values of the EM coefficient and resonance frequency were measured by fitting the linear voltage frequency response of the EMG, operating under low amplitude harmonic input conditions, with the top magnet placed 53, 43, 33, 23 and 13 mm away from the center of the container. The time response of the voltage of the system was measured while applying a sinusoidal axial translation input with constant displacement amplitudes from 3 to 10 mm and sweeping the frequency from 4 to 18 Hz. Multiple load resistances from 1 kΩ to 5 MΩ were tested.
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Fig. 1. (a) Instrumented electromagnetic energy harvester photo. (b) Photo-realistic representation of the EMG (1,3 – non-levitating fixed magnets; 2 – levitating free-magnet; 4 – container; 5 – coil; 6 – ultrasonic sensor, accelerometer and controllers). (c) Diagram of the open-loop control approach using data from the mechanical excitation dynamics to control the on/off switching of the more external coils, using transmission gate switches, to minimize internal resistive losses. In the diagram on the left hand side, coils are sequentially winded in clockwise and anticlockwise directions, and dots and crosses represent currents flowing in the out-of-plane and into-the-plane directions, respectively, as the free-magnet moves upwards in relation to the container. The induced electromotive forces () and internal impedances of the coils are shown, together with the possible current () paths, dependent on the activated switches, represented by dashed arrows. (d) General translations and rotations of the cylindrical container and free-magnet (), in relation to a time-independent reference configuration (), in inertial and non-inertial frames, respectively.

3. Results
3.1 Model from first principles. The transduction mechanism of EMGs is based on the phenomenon of electromagnetic induction as described by Faraday’s law of induction. In accordance with Lenz’s law, the induced electric currents in the coils produce magnetic fields opposing the change of the magnetic flux associated with the relative motion between magnets and coils. Thus, a force opposing this motion (i.e., damping) is generated due to the laws of conservation of momentum. Overall, EMGs therefore convert part of the kinetic energy of its moving parts into electrical energy in the form of currents flowing through an external circuit. The relationship between EM parameters can be derived using classical electrodynamics and rigid body dynamics, most generally described by the Maxwell’s equations, Lorentz force and balance laws for mass, momentum and energy [15, 46].
To model the EMG we considered a cylindrical material system as show in Fig. 1d. A reference configuration is described by a time independent position vector  in an inertial frame with standard basis vectors  and origin at the geometric center of the cylinder ( pointing along the rotational axis of symmetry). The current position of the reference point is given by  in a time-dependent frame with orthonormal basis vectors , also centered at the geometric center of the container and following its movement in space. The basis vectors are related through a  unitary rotation matrix by (using summation convention, upper case indexes for the vector components in the inertial frame and lower case indexes for the components in the non-inertial frame): . The current position coordinates in each frame are related by:

	,
	(1)



where  is a translation vector. Assuming the free-magnet behaves as a rigid body constrained to unidimensional translations in the  direction, its material points can be described by:

	,
	(2)



where  is the displacement, i.e the axial position of the geometric center of the free-magnet in relation to the center of the container ( = 0, by definition), and  is the Kronecker delta symbol. Combining Eq. (1) and (2) with the balance of linear momentum equation for a rigid body in the inertial frame () results in:

	,
	(3)



where  is the center of mass (= ) of the free-magnet in the reference configuration,  are the components of the external forces and  is the mass of the magnet. Expressing the rotation matrix in terms of intrinsic  Euler angles , ,  to describe the container position in space at a given time (Fig. 1d) and assuming the center of mass position is along : , simplifies the dynamic equation in the axial  = 3 direction to:

	;
	(4a)

	,
	(4b)



where  is the equivalent inertial force applied to the free-magnet. External forces applied to the container (, with  the mass of the container) compels it to move and, in the non-inertial frame of reference of the container, the free-magnet is subjected to resulting inertial forces [19, 47, 48]. The form of this force (equal to , in vector form with material angular velocity  with components =), indicates that the EMG is sensitive to accelerations of the translation components along the axial direction of the container (), as well as time changes in precession () and nutation () angles, which are related to the centrifugal acceleration. The free-magnet can also be allowed to undergo self-rotations by an angle  around the  axis of the container in Eq. (2), so that , although this should not contribute to the output of the system has can be seen from the absence of the  angle in Eq. (4b). The total axial force  in the non-inertial referential does not contain components due to normal constrain forces and includes non-linear magnetic restoring forces (), gravity forces (), Lorentz braking forces () and mechanical damping forces ().
The first principle model employs the quasi-magnetostatic form of the Maxwell’s equations (), Lorentz’s force and continuum mechanics [49-51]. The magnetic fields, magnetic force between magnets and Lorentz forces between current loops and magnets can be obtained using equivalent surface current (Ampère model) [52, 53] or charge (Gilbert model) [53, 54] models or, alternatively, magnetic energy variation [19, 55] or Maxwell’s stress tensor methods [56, 57]. Because the system has cylindrical symmetry, it is convenient to work in cylindrical coordinates  with  (; ) and the magnetic fields and forces can be analytically computed using elliptic integrals [19, 58, 59] or Bessel functions [19, 60]. We consider a cylindrical annuli shaped permanent magnet with a constant magnetization, , occupying a volume described by ; ; , where  is the  position of its center in the symmetry axis,  the length,  the inner radius and  the outer radius. The other component of the EMG is a coil which we assume to be composed of infinitesimally thin current loops with radius  and axial position . The corresponding free-current density is: , where  is the current and  are Dirac delta functions (since the free-charge and polarization are assumed to be null, both the magnetization and current should have the same form in both frames). With the quasi-magnetostatic Maxwell equations and Helmholtz decomposition theorem for the magnetic induction  field (integrated over a volume  with surface boundary ):

	,
	(5)



where  is the vacuum permeability, the only non-null components of the magnetic vector potentials associated with the magnets (6a) and coils (6b) are:

	;

	(6a)

	;
	(6b)

	,
	(6c)



where  is a dimensionless function which can be written in terms of complete elliptic integrals of the first and second kind (; ; ) [19] which has the useful commutation properties: , , . The two non-null components of the magnetic fields can be obtained from the two potentials (defined in Eqs. (6a) and (6b)) by:

	;
	(7a)

	.
	(7b)



From the superposition principle, for  magnets and  current loops, the total magnetic vector potential at a given point in space is given by:

	.
	(8)



Fig. 2a shows the cylindrically symmetric distribution of the magnetic vector potential () and Fig. 2b the magnetic vector field () produced by the magnets, calculated using Eqs. (6a,7). The vector potential and magnetic field generated by the four coils connected in series per unit of flowing current (calculated using Eqs. (6b,7)) are depicted in Fig. 2c,d.
From the Faraday’s law of induction, an electromotive force () is generated in a current loop proportionally to the time change of the magnetic flux () over a surface delimited by the current path (). Considering a surface with area element , and the magnetic fields calculated before, the magnetic flux is:

	,
	(9)



and the total electromotive force induced on the th loop by the time-changing currents (), flowing on the th loops, and the displacement of the free-magnet () is (with Eqs. (6) and (8) and the chain rule):

	;
	(10a)

	;
	(10b)

	,
	(10c)



where  is the inductance matrix of the coil and  is an EM coupling factor between magnets and coil loops, relating the output open-circuit voltage with the velocity of the magnet (). As depicted in Fig. 2e, this coupling takes maximum absolute values (with different signs) when the top or bottom edge of the levitating magnet is at the center position of a loop of wire with the same radius [52, 61]. The high-flux change regions are where the loops of the coil should be concentrated, up to a certain radius after which the contribution to the internal resistance of the coil becomes more significant than the contribution to the EM coupling.
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Fig. 2. (a) Magnetic vector potential and (b) corresponding magnetic induction field (field lines (in white) and direction arrows (in black) and corresponding absolute value in color scale) generated by the magnets. (c) Magnetic vector potential and (d) corresponding magnetic induction field generated per unit of current flowing through the coils (4 active coils connected in series). (e) Calculated variation of the magnetic flux () through an axial loop of wire (at position  and with radius ) with the variation of the vertical position of the free-magnet. This parameter is equal to the electromechanical coupling coefficient  for such loop. (f) Total electromechanical coupling coefficient () calculated as a function of the free-magnet position for 2 or 4 coils connected in series and for each separate coil. (g) Magnetic restoring force applied to the free-magnet by the fixed magnets as a function of its position inside the container. 1-5 position labels correspondent to those in Fig. 3 are indicated. Experimentally measured values for the coupling and forces are superimposed.

With Maxwell-Faraday’s equation, Ohm’s law and Kirchhoff’s circuit laws (), connecting the  loops of the coil in series (described by an array , with  and  as array elements, depending on which terminals + and - are connected to which other) to an external circuit yields a total voltage  and current  (with no summation over ) related by:

	;
	(11a)

	;
	(11b)

	,
	(11c)



where  is the total EM coupling coefficient () [47, 52, 62],  is the inner equivalent resistance of the coil system (equal to the sum of individual resistances of each loop ) and  is its equivalent inductance. The EM coupling and resistance increase roughly with the number of turns in the coil, while the inductance increases with its square. The total EM coupling coefficient tends to be averaged out in most studies [15, 19, 47, 48, 55, 62] although it strongly depends on the relative position between the free-magnet and coils, which significantly influences the form of the system’s output. As depicted in Fig. 2f, this coupling factor for two or four turned-on active coils, appropriately connected in series, is the sum of the coupling associated with each individual coil. A local absolute maximum value is obtained when the free-magnet has one of its vertices in the interior region of a single coil, followed by another up to two fold larger maximum of opposite sign when the magnet has its two vertices each in the interior region of two different coils. The magnet should approx. have the same vertical length as the coils in order to maximize the average EM coupling factor over all positions that it can reach. The system with 4 active coils is shown to yield an up to two times larger EM factor on the more external positions, in relation to the system with 2 coils, resulting in an up to two fold larger average square of the EM coefficient over all of the available space (), as well as a two times larger internal resistance ().
The Lorentz forces induced on an isolated material by an external magnetic field () can be given in integral form by [51]: 

	.
	(12)



For the free-magnet (), taking into account the cylindrical symmetry of the system, the non-null  directed component of the force applied to it is:

	.
	(13)



With the magnetic vector potentials associated with the fixed magnets given by Eq. (6a), the total magnetic restoring force applied to the free-magnet (with index  = 1) is:

	.
	(14)



The magnetic force calculated using Eq. (14) changes according to a highly non-linear pattern with the position of the free-magnet, as depicted in Fig. 2g. The angular natural frequency of the system, where the output power is typically maximal, takes the form:  ( ≈ 6 Hz, for our EMG), with .
The force Eq. (13), with the magnetic vector potentials associated with the current loops given by Eq. (6b), results in the total Lorentz braking force applied to the free-magnet by the currents flowing in the coils:

	,
	(15)



where the right-hand identity is due to the commuting properties of the  function and Eqs. (10b) and (11b).
The gravity force () on the free-magnet in the axial direction is approximately:

	,
	(16)



where  is the standard acceleration of gravity. The mechanical damping force was modelled taking into account the Coulomb dry friction and viscous drag friction:

	,
	(17)



where  is the total force applied to the free-magnet excluding the damping force itself,  is the normal force exerted by the walls of the container (equal to  for translations along the axial direction),  is the static coefficient of friction,  the kinetic coefficient of friction and  the mechanical damping coefficient.
The balance of linear momentum Eq. (4a) and electrical circuit Eq. (11a), together with the forces given by Eqs. (14-17), results in the system of non-linear second order ordinary differential equations (ODE) that completely describes the behavior of the free-magnet and electrical circuit:

	.
	(18)



This system of equations can be solved for the displacement  and current  as a function of time with prescribed initial conditions of displacement , velocity  and current , provided relation between the voltage and current for the external circuit (), as well as the time dependent input translation () and rotation ( and ) components. Multiplying the top equation in (18) by  and the bottom equation by , and combining the terms results in a statement of conservation of energy i.e. the power input from the external forces equals the power loss due to friction () and Joule heating () plus the time rate of change of the kinetic energy (), potential energy () and inductor energy (). 
In a first approximation, valid for low enough displacements of the free-magnet, the magnetic force and EM coefficient terms can be expanded in a power series around a time-independent equilibrium position () of the system: 

	;
	(19a)

	.
	(19b)



Truncating the powers up to order one for the magnetic force () and zero for the EM coefficient (), using a simple viscous force () and an input harmonic forcing term ( and ), with a constant term  and translation amplitude , results in a linear driven harmonic oscillator equation. This can be solved employing complex algebra (i.e. ; ; ; ) and an harmonic balance method to find a steady-state solution of the form:

	;
	(20a)

	.
	(20b)



We keep terms up to order one in the previous expansions ( =  = 1) and replace them in Eq. (18), while considering the load circuit to be composed of passive components so that the voltage drop  can be written as a linear response function with characteristic load impedance  (i.e. ), and collect terms of the exponential functions  and . The 0th order equations result in the solutions:  and  = 0. The 1st order equations yield the complex displacement phasor, current (voltage) phasors and average output power (over one cycle of period ) of the steady-state response (omitting the subscript indexes ):

	;
	(21a)

	;
	(21b)

	;
	(21c)

	,
	(21d)



where  and  are effective EM and mechanical damping ratios, respectively,  is the total internal impedance of the coils and  is the impedance of the external load circuit. These equations show that all parameters have a resonant behavior, with its absolute values having a maximum peak at certain frequencies. In the special case of real total impedance  (i.e.  = 0 and ) and with a constant input acceleration  term, the absolute displacement  takes a maximum at  and the current, voltage and average power at exactly . If the amplitude  is kept constant instead, these values can be slightly larger. For the case of a complex total impedance term , the frequencies for a maximum in the average output power (Eq. (21c)) are a root of a cubic equation and in general shift to slightly higher values as the imaginary part increases and to lower values as the imaginary part decreases [63]. Larger values of the absolute load impedance () correspond to smaller EM damping ratio () and, thus, larger resonant displacements and sharper peaks. If the amplitude  is constant, the output average powers from Eq. (21c) in general increase with the frequency, while also being limited by the maximum displacement amplitude allowed (= 41 mm, for the developed EMG).
The EMG, in the linear approximation, behaves broadly like a Thévenin (Norton) equivalent circuit composed of a voltage (current) source, with amplitude  () given by Eq. (21b) in the limit of an infinite (null) load impedance , and an equivalent internal complex impedance in series (parallel) given by the ratio , such that  and  with:

	;
	(22a)

	;
	(22b)

	;
	(22c)

	.
	(22d)



The output average power is of the form:

	,
	(23)



taking a maximum value of:

	,
	(24)



for an optimal matching impedance  (we note that  = 0 implies a negative value of ), or:

	,
	(25)



in the case of a simple matching resistance  (i.e. if ). As can been seen from Eq. (22c), these optimal impedances change as a function of the input frequency  (as well as position of the magnet inside the container and corresponding effective ) and thus various strategies have been proposed towards actively tuning its values depending on the excitation parameters of the EMG [33-37]. It is important to notice that the equivalent impedance is close to the internal impedance of the coil  under frequencies much lower or higher than the resonance frequency. Under resonance conditions (), both the open-circuit voltage Eq. (22a) and short-circuit current Eq. (22b) increase proportionally with the inverse of the total damping ratio, although the voltage increases more due to the absence of Lorentz braking forces. Thus, the equivalent impedance increases with the  factor as , and the optimum matching impedance can be significantly larger than the internal impedance of the coils [64]. The maximum extractable average power for an optimal frequency-dependent complex load impedance as a function of the input frequency can be given by: 

	.
	(26)



For frequencies significantly larger than the resonant frequency, the maximum average power takes a value of :, increasing with the square of the frequency in case the amplitude of the displacement  is kept constant. At frequencies much smaller than the resonance frequency, the average power has the form: . The  power factor is thus a good indicator of the ability of the system to convert kinetic energy into electrical energy, scaling roughly with the number of loops in the coil (if the diameter of the wire is kept constant), the radius and the square of the magnetization of the free-magnet. These expressions also show how it can be possible to increase the output power, out of resonance conditions, simply by employing a magnet position dependent switching of the coils thus minimizing its effective internal resistance  and maximizing the  factor, even in the case where the external load is fully optimized. Under resonance conditions, the average power takes a value of: , increasing with the inverse of the mechanical damping ratio  (up to an upper limit due to physical constrains and the steady state never being achievable for ) and with the  factor. This expression shows how the magnet position dependent switching to maximize the  factor under resonant conditions should only produce significant gains in case this factor was small, in relation to the mechanical damping term, to begin with. These observations are also valid for the case when the imaginary part of the internal impedance of the coil is small compared to the real part (i.e. for ) and the maximum extractable average power across a purely resistive load is considered (). The energy conversion efficiency over one cycle of period  in the steady-state, calculated by taking into account only the internal losses of the EMG associated with Joule heating and the friction forces, can be given in the linear approximation by:

	,
	(27)



taking a maximum value for , or in the case of a simple resistance for , increasing under these conditions from 0 to 100% with the  ratio (or up to 50% for  or for ). Thus, reducing the total internal resistance of the coil system is also expected to improve the conversion efficiency, regardless of the external load.
In the general case, the system of ODEs in Eq. (18) is more complex and similar to a Duffing’s equation with a cubic nonlinearity [62, 65] exhibiting an hardening stiffness, with the frequency response overhanging to the high-frequency side as well as having an hysteretic response, with two solutions for frequencies close to the natural frequency, and amplitude jumps at two points. Furthermore, the non-linearity of the EM coefficient also results in higher harmonic output electrical signals with characteristic frequencies at multiples of the input frequency, each one initially increasing proportionally with higher powers of the input amplitude [46]. In this study, a resistive load () is connected to the output of the coils, so that Ohm’s law applies: . A low frequency approximation can be considered, in which the  term in the bottom equation is assumed to be small when compared to the other terms (i.e., for frequency of excitation , ) and, thus, the current can be written explicitly as [61]: . The instantaneous power received by the external load is then:

	,
	(28)



which indicates that it tends to increase with the square of the velocity () and EM coefficient at the current position of the free-magnet (). Furthermore, the function of the resistances: , increases with the value of the load  up to a maximum of  when , after which it starts to decrease. In practice, the value of the displacement amplitude and velocity also increase with the load due to lower Lorentz braking forces, with this effect being especially noticeable under resonance conditions (). Thus, the load for maximum output power is shifted to values higher than . Regardless, Eq. (28) shows how one can in general enhance the output power by decreasing the value of the internal resistance () while maximizing the square of the EM coupling, to yield maximum power-to-velocity ratios and powers of up to:

	.
	(29)



This is due to a reduction in the fraction of the output power which is lost by Joule heating in the internal resistance of the coils (equal to ). Since the EM coupling for a certain position of the magnet is determined almost exclusively by the coil windings closer to its vertices (see Fig. 2e), coils farther away could potentially be disconnected from the circuit with low loss of induced electromotive force. In this way, electromotive forces and associated currents generated on the high-flux change coils would not have to be forced through the low-flux change coils resulting in additional resistive power losses. This suggest a strategy of introducing a relatively large number of separate coils along the length of the container and switching on to the external circuit only those close enough to the current position of the free-magnet. For  equal coils, the total EM coefficient should be (disregarding the Lorentz forces from short-circuited coils in Eq. (18)): , with  the EM coefficient associated with the th individual coil and  an array of 1 and 0 indicating if the coils are turned on or off from the circuit at a given time. Equivalently, the total internal resistance of the system should be: , with  the sum of the resistances of all the coils and  the resistance of each individual coil. In the ideal case of a perfect switching (i.e. with no time lag and power losses), one could potentially have a maximum , together with a relatively low internal resistance determined by the minimum number of coils that would have to be turned on to achieve such a maximum EM coupling. By comparing the vertical length of the high EM factor regions in Fig. 2e with the available length of displacement for the free-magnet, we conclude that the average  factor over all of space could potentially be enhanced by up to approx. four fold ( 8 and ) in relation to the case with coils all along the container and with no switching ( 8 and ).
Due to the high complexity of the free-magnet position dependent active-switching mechanism, in this study we developed a simpler coil switching controlled by the input excitation parameters of displacement amplitude and frequency. In the case of the system alternating between 4 or just the 2 inner coils connected in series, Eq. (28) shows that, assuming an equivalent velocity of the free-magnet, the ratio of the output powers should be: , for loads equal to the internal resistance, and simply: , for loads significantly larger than the internal resistance. Thus, for input excitations with low amplitude and frequency, we expect low output magnet displacement amplitudes (), resulting in averaged EM coefficients (in first approximation expanded in terms of , ) of , and a ratio of the average powers from 1/2, for , to 1, for large . Input excitations with large amplitude and frequency should result in large displacement amplitudes and , with average power ratios from 1, for , to 2, for large . Since the resonant regime is typically characterized by both large displacement amplitudes and loads for maximum output power (for large enough  [64]), the system with the 4 connected coils is expected to yield significantly larger output powers under such conditions (from 1 to 2 fold). The system with 2 coils should conversely yield larger powers outside of the resonant regime (from 1 to 2 fold).
In greater detail, the output current in the low frequency approximation can be combined with the top equation in (18), resulting in a single second-order ODE with a load dependent EM damping constant equal to (disregarding possible Lorentz forces from farther away short-circuited coils disconnected from the circuit, which are assumed to be comparatively low): . Due to the non-linear terms, approximate solutions to this equation are commonly obtained analytically using an harmonic balance method or a perturbation method of multiple scales [62] or numerically e.g. using Runge-Kutta methods [19, 66, 67].
In this study, we considered simple translations of the EMG along its axial direction with a sinusoidal time-changing inertial force, as exhibited in Eq. (4b), with  = , (i.e.  = 0;  = −π/2;  =  = 0;  = ). The initial conditions were set to:  =  =  = 0. The time and frequency response of the transduction mechanism was investigated with a constant applied amplitude of displacement  of the container, while continuously sweeping the frequency  in steps in ascending followed by descending order. Eq. (18) was numerically solved using Runge-Kutta methods. The tested parameters of excitation of the system, as well as its EM characteristics, are summarized in Table 1.

Table 1 – Parameters of excitation and electromechanical characteristics of the generator. (: center position, : length; : inner radius; : outer radius; and, : magnetization of each magnet. : mass of the free-magnet. : top lower /bottom upper position; : inner radius; : diameter; : number of loops along the length direction; : number of loops along the radial direction of the coils. : equivalent internal resistance, and : equivalent internal inductance for 2 and 4 coils; : mechanical damping coefficient; : static, and  kinetic coefficients of friction. : array describing the series connection of the coils from top to bottom).
	Frequency (Hz)
	Amplitude (mm)
	Resistance (Ω)
	Number of coils
	 (mm)
	 (mm)
	 (mm)
	 (mm)
	 (g)
	 (MA/m)

	4−18
	3−10
	1k−5M
	2 / 4
	-53; ; 53
	6; 18; 6
	3
	7.5
	28.26
	1.138

	 (mm)
	 (mm)
	 (µm)
	
	 (kΩ)
	 (H)
	 (N/(m/s))
	
	
	

	±5;±30
	8.75
	67
	29845
	8.41/16.82
	4.1/8.2
	0.34
	0.04
	0.04
	



The computed frequency response of the generator (component of the discrete Fourier transform of the displacement  at a frequency equal to the input frequency), for the case of 2 and 4 permanently connected coils, at a large amplitude of excitation of  = 10 mm and various load resistances, is shown in Fig. 3a,b. The generator behaves as predicted by a linear approximated solution, given by Eqs. (21,22), for low values of the resistance (< 10 kΩ). At frequencies significantly lower or larger than the natural frequency, maximum output average power is obtained for loads approx. equal to the internal resistance of the coil (Fig. S2e,f, Fig. S3i,j). Under resonance conditions, this load can increase up to  ≈ 34 kΩ or more. For larger loads, lower Lorentz forces allows the free-magnet to attain larger displacement amplitudes such that the non-linearities of the magnetic force and EM coefficient become significant. Thus, a characteristic shifting of the resonant frequency to higher values and an occasional hysteretic behavior can be observed. Since the amplitude of the input displacement  is kept constant while sweeping the frequency, the corresponding acceleration increases very rapidly with the frequency as  and the same happens with the supplied instantaneous input power (). A stable non-linear resonant steady-state up to very large frequencies results under conditions of sufficiently large amplitude of excitation and load resistance, which is characterized by particularly large displacement and velocity amplitudes and depends on initial conditions of sufficiently high velocity/displacement attained by the sweeping process. These initial conditions must be high enough and properly synchronized with the input excitation (∝ cos(ωt)) such that the magnet can achieve the high frequency non-linear resonant state. More details about the nature of the non-linear response including the full phase space dynamics can be found in Refs. [46, 68, 69]. Comparing the systems with the 2 or 4 active coils, we note that the effective EM damping constant () for the same load in the equilibrium position of the free-magnet, which is important under resonance conditions, is lower in the case of the 4 coils due to the higher internal resistance (). The maximum displacement amplitude thus increases more rapidly with the external load () and the system can enter the non-linear resonance state for a slightly smaller load. For larger loads, the damping constant is approx. the same in both cases and, since the load for maximum output power tends to be large under resonance conditions, the dynamics of the free-magnet are similar overall under such conditions of maximum power yield (see Fig. S3a-d). Accordingly, we have the approximate proportionality relations for the maximum output voltage, current and instantaneous power normalized by the velocity ratios out-of-resonance conditions for a load equal to the internal resistance of:

	; ; ,
	(30)



and under-resonance conditions for a load significantly larger than the internal resistance of:

	; ; .
	(31)



Fig. 3c-f shows the time response of the EMG operating under a high frequency of  = 18 Hz (after up-sweeping) and amplitudes of  = 5 mm and 10 mm, with 2 or 4 active coils, and optimal load resistances corresponding to maximum average power output. For the lower amplitude of  = 5 mm, the system is in a low amplitude non-resonant steady-state, while for the larger amplitude of  = 10 mm, it’s in the non-linear resonance regime. In this last case, the free-magnet oscillates with an amplitude close to the length of the container and its position (Fig. 3c) and velocity (Fig. 3d) have almost triangular and rectangular waveforms, respectively. To avoid destructive collisions between magnets, for higher input conditions, impact-absorbing bumpers were installed just in front of the fixed magnets [15]. For  = 10 mm, the correspondence (for 4 active coils) between displacement, velocity, voltage and instantaneous power (Fig. 3c-f) and the EM coefficient and magnetic force (Fig. 2f,g), as the magnet moves through different positions between the coils, is indicated by the numbers 1-5. The larger EM coupling factor associated with the more external positions (labeled 2 and 4) for the system with 4 coils results in higher output voltage and power peaks as the magnet passes through these positions (Fig. 3e,f). The electrical output has a dominant component with three times the input frequency due to the three local maxima in the EM coefficient. The system with 2 active coils yields a higher voltage and power peak as the magnet passes through the center position of the container (labeled 3) due to the slightly larger EM coefficient there, as can be seen in Fig. 2f. Regardless, the maximum average output power is significantly larger in the case of the 4 coils ( = 1−2). For the lower excitation amplitude of  = 5 mm, the free-magnet never reaches the positions of the more external coils and the system behaves as in the linear non-resonant regime. The higher internal resistance in the case of the 4 active coils thus results in a significantly lower maximum average power ( = 1/2−1).

[image: ]
Fig. 3. Frequency response of the displacement of the free-magnet, i.e. discrete Fourier transform of the time changing displacement (component with the same frequency as the frequency of the input signal), to an harmonic translational input with large amplitude  = 10 mm for different load resistances in the system with (a) 2 permanently active coils and (b) 4 active coils. The insets show the corresponding phase lag. Time response of the EMG, to an input with amplitudes  = 5 mm and 10 mm and a frequency of  = 18 Hz under optimal load resistances for corresponding maximum average power output, for the: (c) position of the free-magnet (); (d) velocity of the free-magnet; (e) voltage; (f) instantaneous electrical power. 1-5 labels (for 4 active coils) correspondent to those in the EM coupling factor and magnetic force dependence shown in Fig. 2f,g are indicated.

3.2 Experimental results and discussion. The fundamental factors of magnetic force and EM coefficient, as a function of the position of the free-magnet, were experimentally measured in order to validate the model of the transduction mechanism. Very good agreements were achieved by superimposing the experimental results with the calculated curves in Fig. 2f,g.
The output voltages measured as a function of time for a harmonic input signal with an amplitude of 10 mm and frequency increasing in time steps, with load resistances of 15 kΩ and 30 kΩ for the system with 2 or 4 permanently active coils are shown in Fig. 4a and Fig. 4b, respectively. Both systems enter the high-amplitude non-linear resonance regime after a frequency of ≈ 6 Hz and the resistance of 30 kΩ. Under these conditions, the case with the 4 coils yields an output with a more defined third harmonic component due to the more symmetric nature of its EM coefficient with three equivalent local maxima. For the lower resistances, the presence of the linear resonance peak around 6 Hz is not noticeable at this relatively large amplitude of operation. The output signal has the same frequency as the input signal, since the amplitude of displacement of the free-magnet is low and it simply oscillates between the two inner coils. The frequency response of the output voltage peak values for the same input amplitude and various load resistances is depicted in Fig. 4c,d. These results behave as predicted by the model (Fig. S2c,d) with corresponding calculated displacements amplitudes shown in Fig. 3a,b. Discrepancies between the experimental and calculated results should be attributed mainly to small differences between the geometric and EM parameters of the EMG and the complex form of real mechanical friction forces. Since the voltage is proportional to the velocity of the free-magnet, the peak value tends to increase with the frequency of the input. Because the third harmonic component increases with an higher power of the displacement amplitude, a slight transition between regimes with dominant first and third harmonic components after a frequency of ≈ 12 Hz can be observed in the system with 4 coils (more clearly seen in Fig. S2d), as the central positions of the more external coils begin to be attained. The corresponding output average powers are plotted in Fig. 4e,f. Because the excitation amplitude of displacement  was kept constant while the frequency  was swept, the power supplied to the generator increases with the frequency and the output electrical power, in agreement with Eq. (21c) and (28), increases approx. proportionally to . At this amplitude of excitation, both cases with 2 or 4 coils are under non-linear resonance for resistances larger or equal to 30 kΩ. The maximum average power is extracted across a load of ≈ 30 kΩ for frequencies larger than the natural frequency of 6 Hz. The output power from the system with the 4 coils increases more prominently with the frequency due to the transition from the non-resonant region, with lower displacement amplitude and effective  factor, to the resonant region, with larger displacement amplitude and effective  factor. At the maximum tested frequency of 18 Hz, the system with the 4 coils thus yielded a maximum average power of up to 1.79 W while the system with the 2 coils only generated 1.39 W. At the other end of the frequency spectrum at 4 Hz, the reverse was observed with powers of ≈ 2.2 µW and 2.8 µW using 4 or 2 active coils, respectively.
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Fig. 4. Experimentally measured output voltage vs time of the EMG to an harmonic translation input with high amplitude  = 10 mm and a continuously increasing frequency (transition periods removed) for a load resistance of  = 15 kΩ and 30 kΩ in the system with: (a) 2 permanently active coils and (b) 4 active coils. Frequency response of the peak voltage in the system with: (c) 2 active coils and (d) 4 active coils, for various load resistances (and simulated result with frequency down-sweeping for 15 kΩ, depicting the characteristic non-linear hysteretic response in the case of 4 active coils). Average output power in the system with: (e) 2 active coils and (f) 4 active coils.

Fig. 5 shows the electrical characterization of the EMG in terms of output peak voltage, peak current and average power as a function of the load resistance at a frequency of 18 Hz and for different amplitudes of excitation. For the amplitudes larger than 6 mm, the system is able to attain the non-linear resonance state after a sufficiently large load where the outputs are significantly enhanced. The values of this loads decrease with the input amplitude, since more energy is supplied to the free-magnet and it can thus attain larger velocities even in the presence of higher Lorentz braking forces. The system with the 4 active coils also enters the resonance regime at slightly lower resistances due to the lower associated EM damping factor. Similar open-circuit peak voltages of up to 500-600 V (resonance conditions) were obtained with 2 or 4 connected coils, in accordance with Eqs. (30,31) since they depend only on the maximum peak values of the EM coupling coefficient (Fig. 2f) and not on the internal resistance. These voltages do not increase significantly with the input amplitude between 7 mm and 10 mm since the free-magnet already has an amplitude of displacement close to its maximum value allowed by the finite length of the container. A short-circuit peak current of up to 16.8 mA (out-of-resonance conditions) was recorded in the system with 2 active coils and an approx. two fold lower value in the case of 4 active coils. This follows from Eq. (30), showing this value to be inversely proportional to the internal resistance of the coils. The output average power plots in Figs. 5c,d depict two local maximum values, a larger one under non-linear resonance conditions at a large resistance, and a smaller one out of the resonance regime and for a load matching the internal resistance of the coils. Maximum output average powers of up to 1.79 W and 1.39 W were measured for the system with 4 or 2 active coils, respectively, at an optimal load of 30 kΩ under resonance conditions at 18 Hz. The resonant peak values increase with the input amplitude essentially due to the optimal loads being closer to the internal resistances in Eq. (28).

[image: ]
Fig. 5. Experimental peak voltage (right-hand scale) and current (left-hand scale) as a function of the load resistance in the system with: (a) 2 permanently active coils and (b) 4 active coils; and average power output for: (c) 2 active coils and (d) 4 active coils, for an input excitation with various amplitudes and frequency of  = 18 Hz. For sufficiently low resistive loads, the system is generally in a non-resonant state while for higher loads and amplitudes of 7 or 10 mm it may be in a non-linear resonant state. The insets show the instantaneous output powers as a function of time for an amplitude of 7 mm and optimal load resistances.

The maximum output average power obtained as a function of the input amplitude and frequency of excitation in the system with 2 or 4 permanent active coils is shown in Fig. 6a,b, for corresponding optimal load resistances depicted in Fig.6c,d. Fig. 6e and Fig. 6f show respectively the experimental and calculated ratio between the maximum output average powers for the case with 4 and 2 active coils. The system with 4 coils is shown to be able to deliver up to 1.7 fold larger powers under non-linear resonant conditions for approx.  > 8 Hz and  > 6.5 mm, where the output is also significantly enhanced. Conversely, the system with 2 coils can yield powers up to two times larger in the out-of-resonance regime, in relation to the one with 4 coils. Thus, it is clear how it might be useful to switch the configuration of the coils based on the characteristics of the input excitation. Physically, the behavior of the system is non-trivial and can roughly be divided in 4 working regions: (i) low frequency non-resonant ( < 5 Hz or  < 8 Hz ⋀  > 8.5 mm); (ii) high frequency non-resonant ( > 8 Hz and  < 6.5 mm); (iii) linear resonant (5 Hz <  < 8 Hz and  < 8.5 mm); and (iv) non-linear resonant ( > 8 Hz and  > 6.5 mm).
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Fig. 6. Maximum output average powers, in color scale, measured in the system with (a) 2 permanently active coils and (b) 4 active coils, as a function of the amplitude and frequency of an input signal for corresponding optimal load resistances (c,d). (e) Experimental and (f) higher resolution calculated power gain (i.e. maximum output average power for 4 active coils normalized by the same value for 2 active coils) of the self-adaptive system. Calculated isosurfaces of output average power as a function of the load resistance, input displacement amplitudes, and frequencies in the system with (g) 2 active coils and (h) 4 active coils.

Only region (iv) is characterized by a relatively large displacement  > 30 mm (Fig. S3a,b; Fig. 3a,c), so that the free-magnet can attain the positions of the more external coils in the system with 4 active coils (see Fig. 2f). Accordingly, the average square of the EM coefficient of the system with 4 coils can be up to two-fold higher than that of the system with 2 coils ( = 1−2). Since the load for maximum output power is also significantly larger than the internal resistance, Eq. (31) indicates why the output power can be enhanced by up to two-fold. Region (iii) has a low displacement amplitude ( = 1) and high optimal load, and thus, in accordance with Eq. (31), the gain is close to 1. Regions (i) and (ii) have low displacement amplitude and loads () resulting in power gains down to 1/2, in agreement with Eq. (30). The maximum gains are achieved for amplitudes close to 7 mm, since this state is associated with larger optimal load requirements for entering the non-linear resonant regime. As the amplitude continues to increase, the maximum gain drops down to 1.29 at 10 mm. We note that for input amplitudes lower than 3 mm and frequencies lower than 4 Hz the system generates very low voltages, of the same order of the noise level of the detection device, and furthermore the stronger static friction forces become dominant. The complete picture of the harvested power can be visualized in the scalar volume data plots in Fig. 6g,h, with isosurfaces of the output average powers represented as a function of the load resistances, input displacement amplitudes, and frequencies.
To prove the concept of the active self-adaptive coil switching EMG we employed a Monte Carlo method to analyze the output energy of the system to harmonic random input excitations with a realistic decreasing probability distribution of displacement amplitudes and frequencies. The energy demand from the adaptive mechanism, including the sensing, processing, and actuation systems, was taken into account. The total energy extracted by an electrical load during a time interval between  and  can be given by:

	,
	(32)



where  is the instantaneous power harvested by the load (as shown in Fig. 6g,h),  are the power losses from the self-adaptive system,  are the time changing adaptive variables of load and number of active coils, and  are the input excitation variables of amplitude and frequency. The problem consists of finding the optimum control variables  that maximize the energy integral in a time interval for given input parameters .
Multiple case studies were carried out using different algorithms and control parameters. Mechanical harmonic excitations were considered with random continuously time changing amplitudes and frequencies, with a characteristic stability time () over which they slowly change (i.e. an injective function in this interval), as depicted in Fig. 7a. The control algorithm extracts the input values and adapts the system in time steps of . If  represents the present time, the form of the input signal between  and  is not known and can only be estimated from past sensor data. In the most simple approximation, the input signal inserted in the control algorithm is assumed to be constant and equal to its value measured at present  (see staircase-like estimated curve in Fig. 7a). We assume, for simplicity, that the electrical load always corresponds to the optimal load for maximum extracted power, so that  simply represents the number of active coils. Constant power losses, associated with the sensors and processors ( and externally applied logic levels for closing the electronic switches in the case of 2 active coils (, for 2 active coils; , for 4 active coils), were assumed: . The switching time was also considered to be significantly faster than . With these assumptions, the estimated energy output in the  time interval has the form:

	,
	(33)



which includes the output average powers previously measured and pictured in Fig. 6a,b. This value was computed in each interval for various configurations of the coils (), in order to find the corresponding optimal value that should be set by the controllers and maximize the total harvested energy. The corresponding real energy gain for the actual input  was then obtained from Eq. (32).
Analyses were conducted considering the power consumption of the hardware apparatus. The EMG was excited with random patterns with amplitudes in the range of 3-10 mm and frequencies in the range of 4-18 Hz, having a realistic decreasing 1/ probability distribution as depicted in the inset of Fig. 7a. The tested case studies included: (i) reference measurements for 2 or 4 permanently active coils and no losses associated with the self-adaptive mechanism; (ii) the described algorithm that maximizes the total energy gain, taking losses into account; (iii) an estimation of the upper-limit of the total energy gain employing self-adaptation while disregarding the power consumption of the apparatus. Results for the different case studies as a function of time are shown in Fig. 7b, for a stability time of  = 1 s and a control time of  = 0.1 s. The reference case with 2 active coils yielded a long-term average power of ≈ 34 mJ/s and energy conversion efficiency of 23.3% and the case with 4 active coils of 39 mJ/s and 24.6%, while the self-adaptive mechanism permitted increasing these values up to 43 mJ/s and 28.6%, with a maximum upper limit of 43.5 mJ/s and 28.7%. For this probability distribution of input amplitudes and frequencies, the output of the system should correspond to the non-linear resonant regime only for ≈ 8% of the time and, thus, the complete 4 coils are only activated in small time intervals as illustrated in the inset of Fig. 7b. Regardless, the extractable power under such conditions is much larger resulting in significantly higher energy outputs in the reference case of 4 coils and the self-adapting system. Fig. 7c shows the long-term energy gain of the self-adapting mechanism and corresponding upper limit normalized by the output energies from the reference cases with 2 or 4 permanently active coils as a function of the control/sensing time (). As expected, lower control times are associated with the control algorithm better following the shape of the input time-changing excitation parameters, as depicted in Fig. 7a, and the total gain converging approx. to 8%, in relation to the reference system with 4 coils, and to 26%, in relation to the system with 2 coils. Furthermore, the achieved results of average power of up to 1.79 W, and peak power of up to 6 W, for a generator with 140.7 cm3 (i.e., 42.6 mW/cm3 peak power density) correspond to an approx. 4 fold power increase in comparison with the best results previously achieved with levitating generators (8 mW/cm3), as depicted in Fig. 7e [15]. In theory, further energy gains could be anticipated for a more sophisticated self-adapting system with multiple switches for each coil and a control algorithm based on the instantaneous position of the levitating magnet. As shown in Fig. 7f, such an idealized system with periodic short-circuiting of coils further away from the current position of the magnet, not contributing enough to the energy generation, could yield a significantly enhanced power conversion factor curve (). Thus, in accordance with Eq. (29), an up to two times higher power extraction could be obtained in relation to the system with 4 permanently active coils.

[image: ]
Fig. 7. (a) Input frequency of the time changing harmonic excitation used in the Monte Carlo self-adaptive energy gain model. The present estimated form of the input signal, obtained in time steps of  by the sensor units, is represented. The inset shows the decreasing 1/ probability distribution histogram of the input frequencies (equivalent to the one used for the input amplitudes). (b) Total energy harvested as a function of time for: (i) reference configurations with 2 or 4 permanently active coils, with no self-adaptation mechanism; (ii) the self-adapting system; (iii) the upper limit case, with no regard to the instrumentation power losses. The corresponding energy conversion efficiency and adaptive variation of the number of active coils of the EMG are shown in the insets as a function of time. (c) Total long-term energy gain in relation to the reference configurations as a function of the control times (t) of the adaptation algorithm and (d) illustration of the coil switching self-adaptation mechanism. (e) Comparison of the maximum peak power densities obtained in levitating EMGs grouped into different related categories [15]. (f) Power conversion factor () as a function of the levitating magnet’s position in the system with 2 or 4 permanently active coils and in a system with an idealized magnet’s position dependent switching. 
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4. Conclusions
In this investigation we proved the concept of an automated self-adapting instrumented levitating electromagnetic generator with input excitation dependent periodic coil switching. A model based on first principles was developed and experimentally validated. The prospect of the self-adapting generator for yielding significant power gains was both theoretically and experimentally demonstrated. The complex dynamics of the free-magnet, including hysteresis and non-linear resonant behavior up to large frequencies was studied. Maximum open-circuit resonant voltage peak values up to ≈ 550 V, short-circuit current peaks of 16.8 mA and average powers of 1.79 W (with instantaneous power peaks up to 6 W; 4-fold power density increase in comparison with the best results already published concerning this type of electromagnetic generator) were obtained for matching loads of 10-100 kΩ under translational excitations with displacement amplitudes of 3-10 mm and frequencies of 4-18 Hz. Up to 1.7-fold larger output average powers were achieved in the system with 4 permanently active coils, in relation to the one with 2 active coils, under high frequency and amplitude non-linear resonant conditions. Conversely, a two-fold larger power was obtained in the system with 2 active coils in the out-of-resonance regime. A Monte Carlo method using random time-changing harmonic excitations showed the ability of the self-adaptation mechanism to provide energy gains of up to 8%, in relation to the static case with 4 active coils, and 26%, in relation to the case with 2 active coils. These results demonstrate the potential of the coil switching self-adaptation system for enhancing the total energy conversion from general widespread mechanical vibrations. Regardless, several issues still need to be addressed, namely:
(i) Characteristics of the time-changing input excitations must be accurately predicted by more sophisticated algorithms, such has those that occur in mechanical sources driving renewable energy systems (ocean, wind, etc.) [16, 70] and human-induced motion [71, 72]. The response of the EMG to more general input excitations, with broad frequency spectrums and movements, must be studied in detail, including changes of orientation, irregularities and white noise.
(ii) Improved energy conversion and miniaturization are required to power small-scale devices. Innovative magnetic levitation architectures with lower natural frequencies and advanced manufacturing methods will be essential. Hybrid generators, such as electromagnetic-piezoelectric and electromagnetic-triboelectric generators [44, 45, 73], combining the advantages of each transduction mechanism could also prove useful. 
(iii) Wider bandwidths of operation are indispensable, which could be achieved by integrating multiple forms of self-adaptability into the same device such as natural frequency, coil and load tuning.
(iv) Novel automated adaptive electromagnetic generators with magnetic levitation architectures able to provide higher efficiencies and including an higher number of independent switchable coils electronically triggered depending on the configuration of the system and optimally controlled by closed-loop model predictive or autonomous machine learning algorithms.

Results presented in this work offer significant advances in this promising research area, such that both intelligent self-adapting small-scale and large-scale generators can be developed in a near future.
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