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EXISTENCE AND MULTIPLICITY RESULTS FOR PARTIAL

DIFFERENTIAL INCLUSIONS VIA NONSMOOTH LOCAL

LINKING

ANTONIO IANNIZZOTTO AND VASILE STAICU

Abstract. We consider a partial differential inclusion driven by the p-Laplacian
and involving a nonsmooth potential, with Dirichlet boundary conditions. Un-
der convenient assumptions on the behavior of the potential near the origin, the
associated energy functional has a local linking. By means of nonsmooth Morse
theory, we prove the existence of at least one or two nontrivial solutions, respec-
tively, when the potential is p-superlinear or at most asymptotically p-linear at
infinity.

1. Introduction

This paper is devoted to the study of the following partial differential inclusion
(PDI, for short) with Dirichlet boundary conditions:

(1.1)

{
−∆pu ∈ ∂j(x, u) in Ω

u = 0 on ∂Ω.

Here Ω ⊂ RN (N > 1) is a bounded domain with a C2 boundary, p > 1, j : Ω×R →
R is a measurable function and for a.e. x ∈ Ω, u 7→ j(x, u) is locally Lipschitz, with
subcritical growth. By ∂j(x, u) we denote Clarke’s generalized subdifferential of the
function u 7→ j(x, u) (see Section 2).

The energy functional φ associated to problem (1.1), defined by

φ(u) =
∥∇u∥pp
p

−
∫
Ω
j(x, u) dx for all u ∈W 1,p

0 (Ω),

is locally Lipschitz continuous in the Sobolev space W 1,p
0 (Ω), hence the weak so-

lutions are defined as critical points of φ in the sense of nonsmooth critical point
theory introduced by Clarke [6].

The variational study of PDI’s has its roots in the work of Chang [4], with applica-
tions to elliptic equations with discontinuous nonlinearities. Since then, variational
methods based on min-max theorems were developed for several types of PDI’s with
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Dirichlet or Neumann boundary conditions and nonlinear differential operators, see
for instance [13, 14, 15, 16, 22, 24] and the monographs [3, 12, 21] (see also [1] for
a different approach based on degree theory).

Morse theory for nonsmooth functionals was started by Corvellec [8] with the
definition of critical groups for isolated critical points of a continuous (or even lower
semicontinuous) functional on a complete metric space, in the framework of metric
critical point theory introduced by Degiovanni [10] (see also [9, 11]), and applied to
elliptic equations with general growth conditions which produce continuous energy
functionals (see the survey [2]). The first application of nonsmooth Morse theory to
PDI’s, to the best of our knowledge, was proposed in [7] along with the introduction
of critical groups at infinity and a suitable nonsmooth implicit function theorem,
in the case of locally Lipschitz continuous energy functionals. Speaking generally,
we can say that most results of Morse theory for C1-functionals on Banach spaces
(based on singular homology theory and critical groups) can be extended to the
nonsmooth case, while getting a nonsmooth version of Morse lemma and of the
subsequent results for C2 functionals on Hilbert space are still open issues, due to
the lack of an effective notion of second-order derivative (though some hints may
come from [5]).

Here we focus on the case when j(x, ·) is p-linear near the origin, precisely we
assume that for a.e. x ∈ Ω and all t with |t| small enough

λ1|t|p ≤ pj(x, t) ≤ λ̂|t|p

for some λ̂ ∈ (λ1, λ2), where λ1, λ2 with 0 < λ1 < λ2 denote the first and second

eigenvalue of the negative p-Laplacian in W 1,p
0 (Ω), respectively. Such assumption

forces for the functional φ a homological local linking at 0, which produces a nontriv-
ial sequence of critical groups at 0. The notion of homological local linking, closely
related to Morse theory, was introduced by Perera in [23] for C1 functionals, and
applied by Liu [18] to prove existence results for p-Laplacian elliptic equations, and
by Liu [19] and Liu and Su [20] to prove multiplicity results. Here such topological
notion is first extended to the nonsmooth case and applied to PDI’s.

As usual, the other required information is the behavior of φ at infinity, which,
compared with the critical groups at 0, leads to detecting nontrivial critical points.
Precisely, we will prove that:

(a) if j(x, ·) is p-superlinear at infinity (with a nonsmooth Ambrosetti-Rabinowitz
condition), then (1.1) has at least one nontrivial solution;

(b) if j(x, ·) is p-sublinear, or asymptotically p-linear with resonance, at infinity,
then (1.1) has at least two nontrivial solutions.

Our results extend to the nonsmooth framework those of [18, 20].
The structure of the paper is the following: in Section 2 we recall the basic notions

of nonsmooth critical point theory and Morse theory, and we prove existence and
multiplicity results for nonsmooth functionals with a homological local linking; in
Section 3 we establish a variational framework for PDI’s and prove some preliminary
lemmas; in Section 4 we deal with the p-superlinear case; and in Section 5 we deal
with the p-sublinear case.
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Notation. The measure of sets is always the N -dimensional Lebesgue measure.
By Bρ(u) we denote the open ball in W 1,p

0 (Ω), centered at u with radius ρ > 0

(similarly Bρ(u), ∂Bρ(u) denote the closed ball and the sphrere, respectively). By
C > 0 we will denote several constants.

2. Nonsmooth Morse theory and local linking

In this section we recall some notions from nonsmooth critical point theory, fo-
cusing in particular on nonsmooth Morse theory and the notion of local linking.
Our main reference is [21] (see also [6, 12]).

Let (X, ∥ · ∥) be a reflexive Banach space with dual (X∗, ∥ · ∥∗). A functional
φ : X → R is said to be locally Lipschitz continuous, if for every u ∈ X there exist
a neighborhood U of u and L > 0 such that

|φ(v)− φ(w)| ≤ L∥v − w∥ for all v, w ∈ U .

The generalized directional derivative of φ at u along the direction v ∈ X is

φ◦(u; v) = lim sup
w→u, t→0+

φ(w + tv)− φ(w)

t
.

The generalized subdifferential of φ at u is the set

∂φ(u) =
{
u∗ ∈ X∗ : ⟨u∗, v⟩ ≤ φ◦(u; v) for all v ∈ X

}
.

For easy reference, in the next lemma we recall some basic properties useful for
what follows (see [21, Section 3.2]):

Lemma 2.1. Let φ, ψ : X → R be locally Lipschitz continuous. Then

(i) φ◦(u; ·) is positively homogeneous, sub-additive, and continuous for all u ∈
X;

(ii) φ◦(u;−v) = (−φ)◦(u; v) for all u, v ∈ X;
(iii) if φ ∈ C1(X), then φ◦(u; v) = ⟨φ′(u), v⟩ for all u, v ∈ X;
(iv) (φ+ ψ)◦(u; v) ≤ φ◦(u; v) + ψ◦(u; v) for all u, v ∈ X.

Lemma 2.2. Let φ,ψ : X → R be locally Lipschitz continuous. Then

(i) ∂φ(u) is convex, closed and weakly∗ compact for all u ∈ X;
(ii) the multifunction ∂φ : X → 2X

∗
is upper semicontinuous with respect to

the weak∗ topology on X∗;
(iii) if φ ∈ C1(X), then ∂φ(u) = {φ′(u)} for all u ∈ X;
(iv) ∂(λφ)(u) = λ∂φ(u) for all λ ∈ R, u ∈ X;
(v) ∂(φ+ ψ)(u) ⊆ ∂φ(u) + ∂ψ(u) for all u ∈ X;
(vi) for all u, v ∈ X there exists u∗ ∈ ∂φ(u) such that ⟨u∗, v⟩ = φ◦(u; v);
(vii) if g ∈ C1(R, X), then φ ◦ g : R → R is locally Lipschitz, and for all t ∈ R

∂(φ ◦ g)(t) ⊆
{
⟨u∗, g′(t)⟩ : u∗ ∈ ∂φ(g(t))

}
(viii) if u is a local minimizer (or maximizer) of φ, then 0 ∈ ∂φ(u).

For all u ∈ X we set

mφ(u) := min
u∗∈∂φ(u)

∥u∗∥∗
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(see Lemma 2.2 (i)). We say that u ∈ X is a critical point of φ, if mφ(u) = 0 (or,
equivalently, if 0 ∈ ∂φ(u)). The set of critical points of φ is denoted by

K(φ) =
{
u ∈ X : mφ(u) = 0

}
=

{
u ∈ X : 0 ∈ ∂φ(u)

}
,

while for all c ∈ R we set

Kc(φ) =
{
u ∈ K(φ) : φ(u) = c

}
.

We say that c ∈ R is a critical level of φ, if Kc(φ) ̸= ∅. In most results of critical
point theory, we use the following nonsmooth Palais-Smale condition:

(PS) Every sequence (un) in X, s.t. (φ(un)) is bounded in R and mφ(un) → 0,
has a convergent subsequence.

For all c ∈ R we set

φc =
{
u ∈ X : φ(u) < c

}
, φc =

{
u ∈ X : φ(u) ⩽ c

}
.

We say that u ∈ K(φ) is an isolated critical point of φ, if there exists a neighborhood
U ⊂ X of u s.t.

K(φ) ∩ U = {u}.
In such case, for all integer m ⩾ 0 we define the m-th critical group of φ at u as

Cm(φ, u) = Hm(φc ∩ U,φc ∩ U \ {u}),

where Hm(A,B) stands for the m-th singular homology group of a topological pair
A ⊇ B, understood as a vector space on R (for a general introduction to singular
homology theory we refer to [21, Section 6.1]). Due to the excision property of
singular homology groups, Cm(φ, u) is invariant with respect to U . Critical groups
for nonsmooth functionals were introduced in [8] in the framework of metric critical
point theory, and developed for locally Lipschitz continuous functionals in [7].

We shall use the following decomposition result (see [7, Lemma 4]):

Proposition 2.3. Let φ : X → R be locally Lipschitz continuous satisfying (PS),
a < c < b ⩽ ∞ be s.t. c is the only critical level of φ in [a, b] and Kc(φ) is a finite
set. Then, for all integer m ⩾ 0

Hm(φb, φa) =
⊕

u∈Kc(φ)

Cm(φ, u).

We extend to the nonsmooth framework the notion of homological local linking,
originally introduced in [23] (see also [21, Definition 6.82]):

Definition 2.4. Let φ : X → R be locally Lipschitz continuous, u ∈ Kc(φ),
m,n ⩾ 1 be integers. We say that φ has a (m,n)-local linking at u0, if there exist a
neighborhood U ⊂ X of u0, and subsets E0 ⊂ E, D of X s.t. u0 /∈ E0, E0 ∩D = ∅,
and

(i) K(φ) ∩ φc ∩ U = {u0};
(ii) φ(u) ⩽ c < φ(v) for all u ∈ E, v ∈ U ∩D \ {u0};
(iii) dim im(i∗m−1) − dim im(j∗m−1) ⩾ n, where i∗m−1 : Hm−1(E0) → Hm−1(X \

D), j∗m−1 : Hm−1(E0) → Hm−1(E) are homomorphisms induced by the
inclusion mappings E0 ↪→ X \D, E0 ↪→ E.
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Whenever u0 is a critical point of the type above, we can have explicit information
about the critical groups of φ at u0 (see [21, Theorem 6.87] for the smooth case):

Proposition 2.5. Let φ : X → R be locally Lipschitz continuous, u0 ∈ Kc(φ) be
an isolated critical point, m,n ⩾ 1 be integers, s.t. φ has a (m,n)-local linking at
u0. Then,

dimCm(φ, u0) ⩾ n.

Proof. Let U , E0, E, D be as in Definition 2.4. By [21, Definition 6.9], the following
sequence is exact:

Cm(φ, u0)
∂−−→ Hm−1(φ

c ∩ U \ {u0})
l∗−−→ Hm−1(φ

c ∩ U),

where l∗ is the homomorphism induced by the inclusion mapping φc ∩ U \ {u0} ↪→
φc ∩ U . So we have

(2.1) dimker(l∗) = dim im(∂) ⩽ dimCm(φ, u0).

The next step consists in proving that

(2.2) dimker(l∗) ⩾ n.

Indeed, the following diagram is commutative:

Hm−1(X \D) Hm−1(E0)
i∗m−1

oo

h∗

��

j∗m−1
// Hm−1(E)

k∗

��

Hm−1(φ
c ∩ U \ {u0})

p∗
iiSSSSSSSSSSSSSSS

l∗ // Hm−1(φ
c ∩ U)

,

where homomorphisms i∗m−1, j
∗
m−1 are as in Definition 2.4 (iii), and p∗, h∗, k∗ are

induced by the corresponding inclusion mappings. Looking at the diagram and
applying the rank-nullity theorem, we see that

dim im(i∗m−1) = dim im(p∗ ◦ h∗)
⩽ dim im(h∗),

as well as

dim im(j∗m−1) ⩾ dim im(k∗ ◦ j∗m−1)

= dim im(l∗ ◦ h∗)
= dim im(h∗)− dimker( l∗|imh∗)

⩾ dim im(h∗)− dim (ker l∗).

So, by Definition 2.4 (iii) we have

dimker(l∗) ⩾ dim im(h∗)− dim im(j∗m−1)

⩾ dim im(i∗m−1)− dim im(j∗m−1),

which proves (2.2). From (2.1), (2.2) we readily conclude. □

We extend to the nonsmooth framework the main result of [18] (see also [21,
Proposition 6.91]), namely an existence result for critical points of a functional
having a local linking:
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Theorem 2.6. Let φ : X → R be locally Lipschitz continuous satisfying (PS),
K(φ) be finite, a < c < b be real, m,n ⩾ 1 be integer s.t. Kc(φ) = {u0}, φ has a
(m,n)-local linking at u0, and in addition

Ka(φ) = Kb(φ) = ∅, Hm(φb, φa) = 0.

Then, there exists u1 ∈ K(φ) s.t. one of the following holds:

(i) a < φ(u1) < c, Cm−1(φ, u1) ̸= 0;
(ii) c < φ(u1) < b, Cm+1(φ, u1) ̸= 0.

Proof. Since K(φ) is finite, we can fix ε > 0 s.t.

a < c− ε < c < c+ ε < b,

and

K(φ) ∩
{
u ∈ X : c− ε ⩽ φ(u) ⩽ c+ ε

}
= {u0}.

By Propositions 2.3, 2.5 we have

Hm(φc+ε, φc−ε) = Cm(φ, u0) ̸= 0.

Consider the chain φa ⊂ φc−ε ⊂ φc+ε ⊂ φb and apply [21, Lemma 6.90] to get

dimHm(φc+ε, φc−ε) ⩽ dimHm−1(φ
c−ε, φa)+dimHm+1(φ

b, φc+ε)+dimHm(φb, φa),

and by assumption the last addendum is 0. So, one of the groups Hm−1(φ
c−ε, φa)

or Hm+1(φ
b, φc+ε) is nontrivial. In the first case, by Proposition 2.3 again we can

find u1 ∈ K(φ) satisfying (i). In the second case, similarly we can find u1 ∈ K(φ)
satisfying (ii). □

The next result, namely a nonsmooth extension of the main result of [20], is a
multiplicity theorem for a bounded below functional having a local linking:

Theorem 2.7. Let φ : X → R be locally Lipschitz continuous satisfying (PS) and
bounded below, u0 ∈ K(φ), m,n ⩾ 1 be integers be s.t. φ has a (m,n)-local linking
at u0 and u0 is not a global minimizer of φ. Then, φ has at least three critical
points.

Proof. By hypothesis φ satisfies (PS) and

inf
u∈X

φ(u) = µ > −∞.

It follows from Ekeland’s principle that φ has a global minimizer u2 ∈ X, in partic-
ular we have

φ(u2) = µ < c := φ(u0).

Arguing by contradiction, assume

(2.3) K(φ) = {u0, u2}.

Then, u2 is both a strict local minimizer and an isolated critical point of φ, hence
by elementary properties of singular homology (see [21, Axiom 7 and Remark 6.10,
p. 143]) we have for all integer k ⩾ 0

Ck(φ, u2) = δk,0R.
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Now fix a, b ∈ R s.t. µ < a < c < b. By the nonsmooth second deformation theorem
(see [7, Theorem 4]), {u2}, φb are strong deformation retracts of φa, X respectively,
which, along with [21, Proposition 6.12, Corollary 6.15], implies for all integer k ⩾ 0

Hk(φ
b, {u2}) = Hk(X, {u2}) = 0, Hk(φ

a, {u2}) = 0.

By [21, Proposition 6.21], the following sequence is exact:

Hm(φa, {u2}) −→ Hm(φb, {u2}) −→ Hm(φb, φa) −→ Hm−1(φ
a, {u2}).

By the computation above we deduce

Hm(φb, φa) = 0.

Then, Theorem 2.6 implies the existence of u1 ∈ K(φ) s.t. either a < φ(u1) < c, or
c < φ(u1) < b, against (2.3). Thus, φ has at least three critical points. □
Remark 2.8. All results of this section can be extended to the case where X is a
complete metric space and φ : X → R is continuous, satisfying a metric (PS)-type
condition, see [8]. Regarding Theorem 2.7, we observe that assuming φ bounded
below and satisfying (PS) is in fact equivalent to assuming φ coercive (see [21,
Proposition 5.22] for the C1 case).

3. Variational methods for PDI’s

Here we establish a variational framework for problem (1.1) and some preparatory
results under the following minimal hypotheses:

H0 j : Ω × R → R is a Carathéodory mapping s.t. j(x, ·) is locally Lipschitz
continuous and j(x, 0) = 0 for a.e. x ∈ Ω, and there exist c0 > 0, q ∈ (1, p∗)
s.t. for a.e. x ∈ Ω, all t ∈ R, and all ξ ∈ ∂j(x, t)

|ξ| ⩽ c0(1 + |t|q−1).

Here p∗ denotes the critical Sobolev exponent, i.e.,

p∗ =


Np

N − p
if N > p

∞ if N ⩽ p.

We set X =W 1,p
0 (Ω), endowed with the norm ∥u∥ = ∥∇u∥p, while for all r ∈ [1,∞]

we denote by ∥ · ∥r the usual norm of Lr(Ω). We recall that the embedding X ↪→
Lr(Ω) is continuous and compact for all r ∈ [1, p∗). We rephrase the p-Laplacian as
an operator A : X → X∗ defined by

⟨A(u), v⟩ =
∫
Ω
|∇u|p−2∇u · ∇v dx,

which is an (S)+-map (see [21, Proposition 2.72]). As seen in the Introduction, we
define an energy functional for (1.1) by setting for all u ∈ X

φ(u) =
∥u∥p

p
−
∫
Ω
j(x, u) dx.

We also define a set-valued Nemytskii operator

N(u) =
{
w ∈ Lq′(Ω) : w(x) ∈ ∂j(x, u(x)) for a.e. x ∈ Ω

}
.
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We say that u ∈ X is a (weak) solution of (1.1), if there exists w ∈ N(u) s.t. for all
v ∈ X

(3.1) ⟨A(u), v⟩ =
∫
Ω
wv dx.

Lemma 3.1. Let H0 hold. Then, φ : X → R is locally Lipschitz continuous and
for all u ∈ X

∂φ(u) ⊆ A(u)−N(u).

Proof. Clearly,

u 7→ ∥u∥p

p

is a C1-functional with gradient A. Now set for all u ∈ Lq(Ω)

J(u) =

∫
Ω
j(x, u) dx.

Then, by H0 and [21, Proposition 3.49], J is Lipschitz continuous on any bounded

subset of Lq(Ω), with ∂J(u) ⊂ N(u). We identify Lq′(Ω) as a subspace of X∗, so
the same holds for J |X . By Lemma 2.2 (v) we conclude. □

Lemma 3.2. Let H0 hold and u ∈ K(φ). Then, u ∈ C1
0 (Ω) is a solution of (1.1).

Proof. By Lemma 3.1 we have A(u) ∈ N(u) in X∗, i.e., we can find w ∈ N(u) s.t.
(3.1) holds for all v ∈ X. By H0 we have for a.e. x ∈ Ω

|w(x)| ⩽ c0(1 + |u(x)|q−1).

So, by (3.1) and [21, Theorem 8.4], we deduce u ∈ L∞(Ω). Then, by Lieberman’s
nonlinear regularity theory (see [17] or [21, Theorem 8.10]) we have u ∈ C1

0 (Ω). □
Finally, we prove that φ satisfies (PS) along bounded sequences:

Lemma 3.3. Let H0 hold and (un) be a bounded sequence in X, s.t. (φ(un)) is
bounded in R and mφ(un) → 0. Then, (un) has a convergent subsequence.

Proof. For all integer n ⩾ 0 we can find u∗n ∈ ∂φ(un) s.t.

∥u∗n∥∗ = mφ(un).

By Lemma 3.1, in turn, we find wn ∈ N(un) s.t.

u∗n = A(un)− wn

(in X∗). Passing if necessary to a subsequence, we have un ⇀ u in X, un → u in

Lq(Ω), and un(x) → u(x) for a.e. x ∈ Ω. By H0, (wn) is bounded in Lq′(Ω). So, for
all n we have

⟨A(un), un − u⟩ = ⟨u∗n, un − u⟩+
∫
Ω
wn(un − u) dx

⩽ ∥u∗n∥∗∥un − u∥+ ∥wn∥q′∥un − u∥q
(where we have used Hölder’s inequality), and the latter tends to 0 as n→ ∞. So

lim sup
n

⟨A(un), un − u⟩ = 0.

By the (S)+-property of A, we have un → u in X. □
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4. Existence result for the superlinear case

First we recall some spectral properties of −∆p in X. Consider the eigenvalue
problem

(4.1)

{
−∆pu = λ|u|p−2u in Ω

u = 0 on ∂Ω.

It is well known (see [21, Propositions 9.47, 9.49]) that problem (4.1) admits an
unbounded sequence of variational (Lyusternik-Schnirelmann) eigenvalues

0 < λ1 < λ2 ⩽ λ3 ⩽ . . . ⩽ λk . . .

In particular, λ1 > 0 is simple and isolated with the variational characterization

(4.2) λ1 = min
u∈X\{0}

∥u∥p

∥u∥pp
.

We denote by û1 ∈ int(C1
0 (Ω)) the (unique) positive, Lp(Ω)-normalized eigenfunc-

tion associated to λ1. Besides, in the interval (λ1, λ2) there lie no eigenvalues of
(4.1).

The latter information is the basis for our local linking scheme. Indeed, let us
denote by Y ⊂ X the (1-dimensional) eigenspace associated to λ1, namely,

(4.3) Y =
{
u ∈ X : ∥u∥p = λ1∥u∥pp

}
= span(û1).

and by Z any direct complement to Y in X (i.e., Z ⊂ X is a closed subspace s.t.
X = Y ⊕ Z), then we have for all u ∈ Z

(4.4) ∥u∥p ⩾ λ2∥u∥pp.

Indeed, the Krasnosel’skii genus of Z\{0} is gen(Z\{0}) ⩾ 2, hence by [21, Theorem
9.45] we have

1

λ2
⩾ min

{∥u∥pp
p

: u ∈ Z,
∥u∥p

p
= 1

}
.

In this section we prove an existence result for problem (1.1), extending to the
nonsmooth framework the result of [18]. We assume the following hypotheses:

H1 j : Ω × R → R is a Carathéodory mapping s.t. j(x, ·) is locally Lipschitz
continuous and j(x, 0) = 0 for a.e. x ∈ Ω, and
(i) |ξ| ⩽ c0(1 + |t|q−1) for a.e. x ∈ Ω, all t ∈ R, ξ ∈ ∂j(x, t) (c0 > 0,

q ∈ (p, p∗));

(ii) λ1|t|p ⩽ pj(x, t) ⩽ λ̂|t|p for a.e. x ∈ Ω, all |t| ⩽ δ (δ > 0, λ̂ ∈ (λ1, λ2));
(iii) 0 < µj(x, t) ⩽ ξt for a.e. x ∈ Ω, all |t| ⩾ M , ξ ∈ ∂j(x, t) (M > 0,

µ > p).

Clearly H1 incorporates H0. Hypothesis H1 (ii) implies that 0 is a local mini-
mizer of j(x, ·), for a.e. x ∈ Ω, hence 0 ∈ N(0). Thus, 0 ∈ X is a critical point
of φ, i.e., (1.1) admits the trivial solution. Finally, we note that H1 (iii) is a non-
smooth Ambrosetti-Rabinowitz condition, forcing for j(x, ·) a p-superlinear growth
at infinity.
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Example 4.1. The following locally Lipschitz continuous (autonomous) potential
j : R → R satisfies hypotheses H1:

j(t) =


λ̂
|t|p

p
if |t| ⩽ 1

λ̂
|t|µ

p
if |t| > 1,

with λ̂ ∈ (λ1, λ2), µ ∈ (p, p∗).

We begin by establishing some properties of the energy functional φ:

Lemma 4.2. Let H1 hold. Then, φ satisfies (PS).

Proof. Let (un) be a sequence in X, s.t. |φ(un)| ⩽ C for all n ∈ N, mφ(un) → 0.

By Lemma 3.1, there exist sequences (εn) in R and (wn) in Lq′(Ω) s.t. εn → 0+,
wn ∈ N(un), and ∥A(un)− wn∥∗ ⩽ εn for all n ∈ N. Then we have

∥un∥p

p
−
∫
Ω
j(x, un) dx ⩽ C,

−∥un∥p +
∫
Ω
wnun dx ⩽ εn∥un∥

(the latter is obtained by testing with un). Multiplying the first inequality above
by µ and adding the second, we get

(4.5)
(µ
p
− 1

)
∥un∥p ⩽

∫
Ω

(
µj(x, un)− wnun

)
dx+ εn∥un∥+ C.

By Rademacher’s theorem (see [12, Theorem A.2.4]), j(x, ·) is a.e. differentiable in
R with j′(x, t) ∈ ∂j(x, t), so integrating on H1 (i) we have

|j(x, t)| ⩽
∣∣∣ ∫ t

0
j′(x, τ) dτ

∣∣∣
⩽ c0

(
|t|+ |t|q

q

)
.

Plugging such estimate and H1 (ii), (iii) into (4.5), we get for all n ∈ N(µ
p
− 1

)
∥un∥p ⩽

∫
{|un|<M}

2c0(|un|+ |un|q) dx+ εn∥un∥+ C

⩽ εn∥un∥+ C

(with a bigger C > 0 independent of n). Since µ > p, we see that (un) is bounded
in X. The conclusion then follows from Lemma 3.3. □

In the following, we will assume that 0 is an isolated critical point of φ:

Lemma 4.3. Let H1 hold. Then, φ has a (1, 1)-local linking at 0.

Proof. Fix ρ > 0 s.t. K(φ) ∩ Bρ(0) = {0}. Let Y be defined by (4.3). Since

û1 ∈ C1
0 (Ω), by reducing ρ > 0 if necessary, for all u ∈ Y ∩Bρ(0) we have ∥u∥∞ ⩽ δ

(δ > 0 defined as in H1 (ii)), hence

(4.6) φ(u) ⩽ ∥u∥p

p
−
∫
Ω

λ1|u|p

p
dx = 0.
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Besides, set

D =
{
u ∈ X : ∥u∥p ⩾ λ2∥u∥pp

}
.

Clearly, Y ∩ D = {0}. By H1 (i), (ii), (4.4), and the embedding X ↪→ Lq(Ω), we
have for all u ∈ D

φ(u) ⩾ ∥u∥p

p
−
∫
{|u|⩽δ}

λ̂|u|p

p
dx−

∫
{|u|>δ}

c0

( |u|q

δq−1
+

|u|q

q

)
dx

⩾ ∥u∥p

p
− λ̂

∥u∥pp
p

− C∥u∥qq

⩾
(
1− λ̂

λ2

)∥u∥p
p

− C∥u∥q.

Since λ̂ < λ2 and q > p, the mapping

t 7→
(
1− λ̂

λ2

) tp
p
− Ctq

is positive in a right hand neighborhood of 0. So, by further reducing ρ > 0, we
have for all u ∈ D ∩Bρ(0) \ {0}

(4.7) φ(u) > 0.

Set u0 = 0, c = 0, U = Bρ(0), E0 = Y ∩ ∂Bρ(0), E = Y ∩ Bρ(0), and D as above
in Definition 2.4. Clearly E0 ⊂ E ⊂ U , E0 ∩ D = ∅, 0 /∈ E0. Condition (i) (of
Definition 2.4) follows from the choice of ρ > 0. By (4.6), (4.7) we have (ii).

It remains to prove (iii) with m = n = 1, arguing as in [21, Proposition 6.84].
Denoting by Z ⊂ X any direct complement of Y (as before), by (4.4) we have
Z ⊆ D. For all u ∈ X \D there exist unique v ∈ Y \ {0}, w ∈ Z s.t. u = v+w. We
define a continuous deformation η : (X \D)× [0, 1] → (X \D) by setting

η(v + w, t) = (1− t)(v + w) + t
ρv

∥v∥
.

So we see that E0 is a strong deformation retract ofX\D. Thus, the homomorphism
i∗0 : H0(E0) → H0(X \D) induced by the inclusion mapping is bijective, and since
E0 consists of two points we have by [21, Example 6.42]

(4.8) dim im(i∗0) = 2.

Besides, since E is contractible (it is in fact a line segment), we have

H0(E,E0) = H−1(E0, ∗) = 0,

hence the homomorphism j∗0 : H0(E0) → H0(E) induced by the inclusion mapping
is surjective. So,

(4.9) dim im(j∗0) = dimH0(E) = 1.

From (4.8), (4.9) we get condition (iii). Thus, we conclude that φ has a (1, 1)-local
linking at 0. □

The following lemmas define the asymptotic behavior of φ:
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Lemma 4.4. Let H1 hold. Then, for all u ∈ ∂B1(0)

lim
t→∞

φ(tu) = −∞.

Proof. Without loss of generality, we may assume µ ⩽ p∗ in H1 (iii). First we prove
that for a.e. x ∈ Ω, all |t| ⩾M

(4.10) j(x, t) ⩾ j(x,M)
|t|µ

Mµ
.

Indeed, arguing as in the proof of Lemma 4.2 and integrating on H1 (iii), we have
for all t ⩾M ∫ t

M

j′(x, τ)

j(x, τ)
dτ ⩾

∫ t

M

µ

τ
dτ,

hence

ln
( j(x, t)

j(x,M)

)
⩾ ln

( tµ

Mµ

)
,

which yields (4.10). The argument for t ⩽ −M is analogous. Now fix u ∈ ∂B1(0).
For all t > 0 big enough, we have |tu| ⩾M in a subset of Ω with positive measure,
hence by (4.10) we have

φ(tu) ⩽ tp

p
−

∫
{|u|⩾M/t}

j(x,M)
|tu|µ

Mµ
dx+

∫
{|u|<M/t}

|j(x, tu)| dx

⩽ tp

p
−

∫
Ω
j(x,M)

|tu|µ

Mµ
dx+

∫
{|u|<M/t}

j(x,M) dx+

∫
Ω
c0

(
M +

M q

q

)
dx

⩽ tp

p
− tµ

Mµ

∫
Ω
j(x,M)|u|µ dx+ C,

and the latter tends to −∞ as t → ∞, since µ > p and j(·,M)|u|µ ⩾ 0 and does
not vanish identically in Ω. So we conclude. □
Lemma 4.5. Let H1 hold. Then, for all a < 0 small enough, u ∈ φa, u∗ ∈ ∂φ(u)

⟨u∗, u⟩ < 0.

Proof. First we note that, by Lemma 4.4, φ is unbounded from below in X. Fix

a < inf
u∈Bρ(0)

φ(u) ⩽ 0

(to be better determined later). Then, for all u ∈ φa, u∗ ∈ ∂φ(u) we have ∥u∥ > 1,
and by Lemma 3.1 we can find w ∈ N(u) s.t.

u∗ = A(u)− w.

So, using H1 (i), (ii) we compute

⟨u∗, u⟩ = ∥u∥p −
∫
Ω
wudx

⩽ ∥u∥p −
∫
{|u|<M}

wudx−
∫
{|u|⩾M}

µj(x, u) dx

⩽ ∥u∥p +
∫
Ω
c0(M +M q) dx+

∫
{|u|<M}

µj(x, u) dx−
∫
Ω
µj(x, u) dx
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⩽
(
1− µ

p

)
∥u∥p + µφ(u) + c0(M +M q)|Ω|+ µ

∫
Ω
c0

(
M +

M q

q

)
dx

⩽
(
1− µ

p

)
+ µa+ (1 + µ)c0(M +M q)|Ω|,

and the latter is negative as soon as we choose

a < min
{

inf
u∈Bρ(0)

φ(u),
(
1 +

1

µ

)
c0(M +M q)|Ω|

}
.

So we conclude. □

Now we can prove our existence result for the superlinear case:

Theorem 4.6. Let H1 hold. Then, (1.1) has at least one solution u1 ∈ C1
0 (Ω)\{0}.

Proof. Without loss of generality we may assume that K(φ) is a finite set. From
Lemma 4.3 we know that 0 ∈ K(φ) and φ has a (1, 1)-local linking at 0. Fix a < 0
as in Lemma 4.5, and

b > max
u∈K(φ)

φ(u) ⩾ 0.

Also without loss of generality we may assume that

K0(φ) = {0}, Ka(φ) = Kb(φ) = ∅.

By Lemmas 4.4, 4.5 and the nonsmooth implicit function theorem (see [7, Lemma
3]), there exists a mapping T ∈ C(∂B1(0), (1,∞)) s.t. for all u ∈ ∂B1(0), t ⩾ 1

φ(tu)


> a if t < T (u)

= a if t = T (u)

< a if t > T (u).

In particular we have

φa =
{
tu : u ∈ ∂B1(0), t ⩾ T (u)

}
.

Define a continuous deformation η : Bc
1(0)× [0, 1] → Bc

1(0) by setting for all t ⩾ 1,
u ∈ ∂B1(0), s ∈ [0, 1]

η(tu, s) =

{
(1− s)tu+ sT (u)u if t < T (u)

tu if t ⩾ T (u).

So we see that φa is a strong deformation retract of Bc
1(0), as is ∂B1(0). Besides,

since there are no critical values of φ in [b,∞), by the nonsmooth second deformation
theorem (see [7, Theorem 4]) φb is a strong deformation retract of X.

We apply [21, Proposition 6.12, Corollary 6.15] to get

H1(φ
b, φa) = H1(X,φ

a) = H1(X,B
c
1(0)) = H1(X, ∂B1(0)) = 0,

the last equality coming from the fact that ∂B1(0) is contractible (recall that
dimX = ∞). By Theorem 2.6 (with c = 0, m = 1), there exists u1 ∈ K(φ)
s.t. either φ(u1) < 0 or φ(u1) > 0, hence u1 ̸= 0. By Lemma 3.2, u1 ∈ C1

0 (Ω) solves
(1.1). □
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5. Multiplicity results for the (sub) linear case

In this section we deal with a potential which is p-sublinear or asymptotically
p-linear at infinity, under assumptions which ensure coercivity of φ. We distinguish
between the non-resonant and resonant cases, but in both cases we prove existence
of at least two non-trivial solutions of (1.1). Our results extend to the nonsmooth
framework those of [20].

We consider first the non-resonant case, under the following hypotheses:

H2 j : Ω × R → R is a Carathéodory mapping s.t. j(x, ·) is locally Lipschitz
continuous and j(x, 0) = 0 for a.e. x ∈ Ω, and
(i) |ξ| ⩽ c0(1 + |t|q−1) for a.e. x ∈ Ω, all t ∈ R, ξ ∈ ∂j(x, t) (c0 > 0,

q ∈ (p, p∗));

(ii) λ1|t|p ⩽ pj(x, t) ⩽ λ̂|t|p for a.e. x ∈ Ω, all |t| ⩽ δ (δ > 0, λ̂ ∈ (λ1, λ2));

(iii) lim sup
|t|→∞

pj(x, t)

|t|p
< λ1 uniformly for a.e. x ∈ Ω.

ClearlyH2 incorporatesH0. As in the previous case, byH2 (ii) we have 0 ∈ K(φ).

Example 5.1. The following locally Lipschitz continuous (autonomous) potential
j : R → R satisfies hypotheses H2:

j(t) =


λ̂
|t|p

p
if |t| ⩽ 1

λ̂
|t|r

p
if |t| > 1,

with λ̂ ∈ (λ1, λ2), r ∈ (1, p).

The main difference, with respect to the previous case, is that φ is coercive:

Lemma 5.2. Let H2 hold. Then,

lim
∥u∥→∞

φ(u) = ∞.

Proof. By H2 (iii) we can find θ ∈ (0, λ1), M > 0 s.t. for a.e. x ∈ Ω, all |t| ⩾M

j(x, t) <
θ|t|p

p
.

So, for all u ∈ X we have

φ(u) ⩾ ∥u∥p

p
−
∫
{|u|⩾M}

θ|u|p

p
dx−

∫
{|u|<M}

c0

(
M +

M q

q

)
dx

⩾ ∥u∥p

p
− θ∥u∥pp

p
+

∫
{|u|<M}

θ|u|p

p
dx− c0

(
M +

M q

q

)
|Ω|

⩾
(
1− θ

λ1

)∥u∥p
p

− C,

and the latter tends to ∞ as ∥u∥ → ∞. □
We prove now our first multiplicity result:

Theorem 5.3. Let H2 hold. Then, (1.1) has at least two solutions u1, u2 ∈ C1
0 (Ω)\

{0}.
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Proof. By Lemma 5.2, φ is coercive in X. Besides, by H2 (i) it is easily seen that
φ is sequentially weakly l.s.c. in X. So we have

min
u∈X

φ(u) = m > −∞.

We check that φ satisfies (PS). Indeed, let (un) be a sequence in X, s.t. |φ(un)| ⩽ C
andmφ(un) → 0 as n→ ∞. By Lemma 5.2, (un) is bounded in X, hence by Lemma
3.3 it has a convergent subsequence.

Arguing as in Lemma 4.3, we see that φ has a (1, 1)-local linking at 0. We
distinguish two cases:

(a) If m = 0, i.e., 0 is a global minimizer of φ, then just as in the proof of
Lemma 4.3 we see that φ(u) = 0 for all u ∈ E, so φ admits infinitely many
critical points.

(b) If m < 0, i.e., 0 is not a global minimizer of φ, then by Theorem 2.7 φ
admits at least three critical points.

In both cases we find u1, u2 ∈ K(φ)\{0}, u1 ̸= u2. By Lemma 3.2, u1, u2 ∈ C1
0 (Ω)

solve (1.1). □

Now we turn to the resonant case, i.e., pj(x, t) ∼ λ1|t|p as |t| → ∞, but with a
tempering condition:

H3 j : Ω × R → R is a Carathéodory mapping s.t. j(x, ·) is locally Lipschitz
continuous and j(x, 0) = 0 for a.e. x ∈ Ω, and
(i) |ξ| ⩽ c0(1 + |t|q−1) for a.e. x ∈ Ω, all t ∈ R, ξ ∈ ∂j(x, t) (c0 > 0,

q ∈ (p, p∗));

(ii) λ1|t|p ⩽ pj(x, t) ⩽ λ̂|t|p for a.e. x ∈ Ω, all |t| ⩽ δ (δ > 0, λ̂ ∈ (λ1, λ2));

(iii) lim
|t|→∞

pj(x, t)

|t|p
= λ1 uniformly for a.e. x ∈ Ω;

(iv) lim
|t|→∞

[
min

ξ∈∂j(x,t)
(ξt)− pj(x, t)

]
= ∞ uniformly for a.e. x ∈ Ω.

ClearlyH3 incorporatesH0. As in the previous case, byH3 (ii) we have 0 ∈ K(φ).
In comparison with H2, we see that H3 (iii) allows resonance at infinity, so H3 (iv)
is required to ensure coercivity of the energy functional.

Example 5.4. The following locally Lipschitz continuous (autonomous) potential
j : R → R satisfies hypotheses H3:

j(t) =


λ̂
|t|p

p
if |t| ⩽ 1

λ̂
|t|p

p
− ln(|t|) if |t| > 1,

with λ̂ ∈ (λ1, λ2).

Still we have coercivity:

Lemma 5.5. Let H3 hold. Then,

lim
∥u∥→∞

φ(u) = ∞.
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Proof. Set for all (x, t) ∈ Ω× R

ȷ̃(x, t) = j(x, t)− λ1|t|p

p
,

then ȷ̃ : Ω × R → R satisfies H0. Besides, by H3 (iii), (iv) we have uniformly for
a.e. x ∈ Ω

(5.1) lim
|t|→∞

pȷ̃(x, t)

|t|p
= 0,

(5.2) lim
|t|→∞

[
min

ξ∈∂ȷ̃(x,t)
(ξt)− pȷ̃(x, t)

]
= ∞.

As in the proof of Lemma 4.2 we see that ȷ̃(x, ·) is differentiable a.e. in R, and by
(5.2) for all K > 0 there exists M > 0 s.t.

ȷ̃′(x, t)− pȷ̃(x, t) ⩾ K

for a.e. x ∈ Ω and a.e. |t| ⩾M . The product formula for derivatives holds a.e. (see
[6, Propositon 2.3.13]), so we have

d

dt

[ ȷ̃(x, t)
|t|p

]
=
ȷ̃′(x, t)t− pȷ̃(x, t)

|t|p+1
⩾ K

|t|p+1

for a.e. x ∈ Ω and a.e. |t| ⩾M . Integrating in [t, T ] for any M ⩽ t < T , we have

ȷ̃(x, T )

T p
− ȷ̃(x, t)

tp
⩾

∫ T

t

K

τp+1
dτ =

K

p

( 1

tp
− 1

T p

)
.

Letting T → ∞ and using (5.1), we have for a.e. x ∈ Ω, t ⩾M

(5.3) ȷ̃(x, t) ⩽ −K
p
.

A similar argument leads to (5.3) for all t ⩽ −M . Arguing by contradiction, let
(un) be a sequence in X, s.t. φ(un) ⩽ C, ∥un∥ → ∞ as n→ ∞. Set for all n ∈ N

vn =
un

∥un∥
,

then passing if necessary to a subsequence we have vn ⇀ v in X, vn → v in Lp(Ω),
and vn(x) → v(x) for a.e. x ∈ Ω. By (5.3) we have for all n ∈ N

C

∥un∥p
⩾ φ(un)

∥un∥p

=
1

p

∫
Ω

(
|∇vn|p − λ1|vn|p

)
dx−

∫
Ω

ȷ̃(x, un)

∥un∥p
dx

⩾ 1

p

(
1− λ1∥vn∥pp

)
+

∫
{|un|⩾M}

K

p∥un∥p
dx−

∫
{|un|<M}

ȷ̃(x, un)

∥un∥p
dx

⩾ 1

p

(
1− K|Ω|

∥un∥p
)
− c0

∥un∥p
(
M +

M q

q

)
|Ω|.

By the inequality above, choosing a bigger C > 0 we have for all n ∈ N

∥vn∥pp ⩾
1

λn
− C

∥un∥p
.
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Passing to the limit as n→ ∞, we get

∥v∥pp ⩾
1

λ1
,

while by construction ∥v∥p = 1. By (4.2) we deduce

∥v∥p = λ1∥v∥pp = 1.

So, v ∈ X is a λ1-eigenfunction of (4.1), hence, either v > 0 in Ω, or v < 0
in Ω. Thus, we have |un(x)| → ∞ for a.e. x ∈ Ω, which by (5.3) again implies
ȷ̃(x, un) → −∞ for a.e. x ∈ Ω. Then, for all n ∈ N we have

φ(un) ⩾
∥un∥p

p
− λ1∥un∥pp

p
−
∫
Ω
ȷ̃(x, un) dx

⩾ −
∫
Ω
ȷ̃(x, un) dx,

and the latter tends to ∞ as n→ ∞ by Fatou’s lemma, against φ(un) ⩽ C. So we
conclude. □

We can now prove our second multiplicity result:

Theorem 5.6. Let H3 hold. Then, (1.1) has at least two solutions u1, u2 ∈ C1
0 (Ω)\

{0}.

Proof. By Lemma 5.5, φ is coercive in X. Besides, by H3 (i) φ is sequentially
weakly l.s.c. in X, hence it is bounded from below. Then, the conclusion follows
exactly as in Theorem 5.3. □

Remark 5.7. The variational method we have employed for problem (1.1), as well
as the Morse-theoretic approach, can be easily extended to a more general class of
PDI’s, namely {

−∆pu ∈ F (x.u) in Ω

u = 0 on ∂Ω,

where F : Ω× R → 2R is a set-valued mapping satisfying the following conditions:

(i) F (x, ·) : R → 2R is u.s.c. with convex compact values for a.e. x ∈ Ω;
(ii) minF, maxF : Ω× R → R are L ⊗ B-measurable;
(iii) |ξ| ⩽ c0(1 + |t|q−1) for a.e. x ∈ Ω, all t ∈ R, and all x ∈ F (x, t) (c0 > 0,

q ∈ (p, p∗)).

The main step consists in defining a suitable potential j s.t. ∂j(x, t) ⊂ F (x, t) for
a.e. x ∈ Ω and all t ∈ R, and then study (1.1) (see [13, 14] for details).
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