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Abstract:We consider quasilinear elliptic systems in divergence form. In general, we cannot expect that weak
solutions are locally bounded because of De Giorgi’s counterexample. Here we assume that o�-diagonal co-
e�cients have a "butter�y support": this allows us to prove local boundedness of weak solutions.
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1 Introduction
This paper deals with quasilinear elliptic systems in divergence form

−div(a(x, u(x))Du(x)) = 0, x ∈ Ω, (1.1)

where u : Ω ⊂ Rn → RN and a : Ω × RN → RN
2n2 is matrix valued with components aα,βi,j (x, y) where

i, j ∈ {1, ..., n} and α, β ∈ {1, ..., N}.
On the coe�cients aα,βi,j (x, y) we set the usual conditions, that is they are measurable with respect to x,

continuous with respect to y, bounded and elliptic. When N = 1, that is in the case of one single equation,
the celebrated De Giorgi-Nash-Moser theorem ensures that weak solutions u ∈ W1,2(Ω) are locally bounded
and even Hölder continuous, see section 2.1 in [27].

But in the vectorial case N ≥ 2, the aforementioned result is no longer true due to the De Giorgi’s coun-
terexample, see [6], section 3 in [27] and the recent paper [29]; see also [32] and [20].

So it arises the question of �nding additional structural restrictions on the coe�cients aα,βi,j that keep
away De Giorgi’s counterexample and allow for local boundedness of weak solutions u, see Section 3.9 in
[28].

In the present work we assume a condition on the support of o�-diagonal coe�cients: there exists L0 ∈
[0, +∞) such that ∀ L ≥ L0, when α ≠ β,

(aα,βi,j (x, y) = ̸ 0 and
∣∣yα∣∣ > L)⇒ ∣∣∣yβ∣∣∣ > L, (1.2)

(see Figure 1 and note that the support has the shape of a butter�y in the plane yβ − yα).
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Under such a restriction we are able to prove local boundedness of weak solutions. All the necessary
assumptions and the result will be listed in section 2 while proofs will be performed in section 3.

It is worth to stress out that systemswith special structure have been studied in [33], [26] and o�-diagonal
coe�cients with a particular support have been successfully used when provingmaximum principles in [21],
L∞-regularity in [22], when obtaining existence formeasure data problems in [23], [24] and, for the degenerate
case, in [7].

Higher integrability has been studied as well in [10] when o�-diagonal coe�cients are small and have
staircase support and in [11] when o�-diagonal coe�cients are proportional to diagonal ones.

Let us mention as well that when the ratio between the largest and the smallest eigenvalues of aα,βi,j is
close to 1, then regularity of u is studied at page 183 of [12]; see also [31], [18], [17], [19].

Let us also say that proving boundedness for weak solutions could be an important tool for getting frac-
tional di�erentiability, see the estimate after (4.15) in [8]. In the present paperwe dealwith local boundedness
of solutions. If the reader is interested in regularity up to a rough boundary it could be worth looking at [25].

2 Assumptions and Result
Assume Ω is an open bounded subset of Rn, with n ≥ 3. Consider the system of N ≥ 2 equations

−
n∑
i=1

∂
∂xi

 N∑
α,β=1

n∑
j=1

aα,βi,j (x, u)
∂
∂xj

uβ
 = 0 in Ω, for α = 1, ..., N . (2.1)

Note that uβ is the β component of u = (u1, u2, ..., uN). We list our structural conditions.

(A) For all i, j ∈ {1, ..., n} and all α, β ∈ {1, ..., N}, we require that aα,βi,j : Ω × RN → R satis�es the following

conditions:

(A0)x 7→ aα,βi,j (x, y) is measurable and y 7→ aα,βi,j (x, y) is continuous;

(A1)(boundedness of all the coe�cients) for some constant c > 0, we have

|aα,βi,j (x, y) | ≤ c

for almost all x ∈ Ω and for all y ∈ RN;

(A2)(ellipticity of all the coe�cients) for some constant ν > 0, we have

N∑
α,β=1

n∑
i,j=1

aα,βi,j (x, y) ξ
α
i ξ

β
j ≥ ν|ξ |

2

for almost all x ∈ Ω, for all y ∈ RN and for all ξ ∈ RN×n;

(A3)("butter�y" support of o�-diagonal coe�cients) there exists L0 ∈ [0, +∞) such that ∀ L ≥ L0, when

α = ̸ β,

(aα,βi,j (x, y) = ̸ 0 and |yα| > L)⇒ |yβ| > L ,

(see Figure 1).
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yα

yβ

L0

−L0

aα,βi,j = 0

aα,βi,j = 0

Fig. 1: Assumption (A3): o�-diagonal coe�cients aα,βi,j vanish on the white part of the picture; they might be non zero only on
the grey part.

Remark 2.1. Assumption (A3) guarantees equality (3.2): such an equality is a basic tool for proving bounded-
ness of solutions.

Example 2.2. An example of coe�cients which readily satisfy the aforementioned assumptions are de�ned as
follows:

aα,βi,j (x, y) = a
α,β
i,j (y) =

 δij
max(|yβ| − |yα|, 0)

1 + 2|y| if α = ̸ β

δij if α = β

where α, β = 1, 2 and i, j = 1, . . . , n with n ≥ 3 and N = 2. In this case we have c = 1, ν = 1/2 and we can pick
for instance L0 = 0.



S. Leonardi et al., Butterfly support | 675

We say that a function u : Ω → RN is a weak solution of the system (2.1), if u ∈ W1,2
(
Ω,RN

)
and

∫
Ω

N∑
α,β=1

n∑
i,j=1

aα,βi,j (x, u(x))Dju
β(x)Diφα(x)dx = 0, (2.2)

for all φ ∈ W1,2
0

(
Ω,RN

)
.

Theorem 2.3. Let u ∈ W1,2
(
Ω,RN

)
be a weak solution of system (2.1) under the set (A) of assumptions. Then

u ∈ L∞loc
(
Ω,RN

)
and we have the following estimate

sup
B(x0 ,r)

|uα| ≤ 2max

L0;

[
2(n−1)
(n−2)

]n [
4 + 16c2n4N4

ν2

]n/2
24n+2+nn/2

(R − r)n
N∑
β=1

∫
B(x0 ,R)

|uβ|2


1/2 (2.3)

for every α = 1, ..., N and for every r, R with 0 < r < R and B(x0, R) ⊂ Ω, where c is the constant involved in
assumption (A1), ν is given in (A2) and L0 appears in (A3).

Remark 2.4. The present local L∞–regularity result improves on [22] since assumption (A3)allows o�diagonal
coe�cients to have a larger support than in [22].

Remark 2.5. "Butter�y" support (A3) has been used in [7] when proving the existence of at least one globally
bounded solution to a (possibly) degenerate problem with zero boundary value problem. In the present work we
prove local boundedness of every solution to a non degenerate system regardless of boundary values.

3 Proof of the result
The proof of Theorem 2.3 will be performed in several steps

STEP 1. Caccioppoli inequality

Lemma 3.1. (Caccioppoli inequality on superlevel sets) Let u ∈ W1,2
(
Ω,RN

)
beaweak solution of system (2.1)

under assumptions (A0), (A1), (A2), (A3). For 0 < s < t, let B(x0, s) and B(x0, t) be concentric open balls
centered at x0 with radii s and t respectively. Assume that B(x0, t) ⊂ Ω and L ≥ L0. Then

N∑
α=1

∫
{|uα|>L}∩B(x0 ,s)

∣∣D ∣∣uα∣∣∣∣2 dx ≤ 16c2n4N4

ν2
N∑
α=1

∫
{|uα|>L}∩B(x0 ,t)

(∣∣uα∣∣ − L
t − s

)2

dx, (3.1)

where c is the constant involved in assumption (A1), ν is given in (A2) and L0 appears in (A3).

Proof of Lemma 3.1 Let u ∈ W1,2
(
Ω,RN

)
be a weak solution of system (2.1). Let η : Rn → R be the standard

cut-o� function such that 0 ≤ η ≤ 1, η ∈ C10(B(x0, t)), with B(x0, t) ⊂ Ω and η = 1 in B(x0, s). Moreover,
|Dη| ≤ 2/(t − s) in Rn. For every level L ≥ L0, consider

TL (s) =


−L if s < −L
s if −L ≤ s ≤ L
L if s > L
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and
GL (s) = s − TL (s) .

We de�ne φ : Rn → RN with φ = (φ1, ..., φN), where

φα := η2GL
(
uα
)
, for all α ∈ {1, ..., N}.

Then

Di φα = η21{|uα|>L}Di uα + 2η(Diη)1{|uα|>L}GL
(
uα
)

for all i ∈ {1, ..., n} and α ∈ {1, ..., N}.

Using this test function in the weak formulation (2.2) of system (2.1), we have

0 =
∫
Ω

N∑
α,β=1

n∑
i,j=1

aα,βi,j Dju
βDiφα dx =

∫
Ω

N∑
α,β=1

n∑
i,j=1

aα,βi,j Dju
βη21{|uα|>L}Di uα dx +

∫
Ω

N∑
α,β=1

n∑
i,j=1

aα,βi,j Dju
β2η(Diη)1{|uα|>L}GL

(
uα
)
dx.

Now, assumption (A3) guarantees that

aα,βi,j (x, u (x)) 1{|uα|>L} (x) = a
α,β
i,j (x, u (x)) 1{|uβ|>L} (x) 1{|uα|>L} (x) (3.2)

when β ≠ α and L ≥ L0. It is worthwhile to note that (3.2) holds true when α = β as well; then∫
Ω

N∑
α,β=1

n∑
i,j=1

aα,βi,j 1{|uβ|>L}Dju
βη21{|uα|>L}Di uα dx

= −
∫
Ω

N∑
α,β=1

n∑
i,j=1

aα,βi,j 1{|uβ|>L}Dju
β2η(Diη)1{|uα|>L}GL

(
uα
)
dx. (3.3)

Now we can use ellipticity assumption (A2) with ξ αi = 1{|uα|>L}Di uα and we get

ν
∫
Ω

η2
N∑
α=1

1{|uα|>L}
∣∣Duα∣∣2 dx ≤ ∫

Ω

N∑
α,β=1

n∑
i,j=1

aα,βi,j 1{|uβ|>L}Dju
βη21{|uα|>L}Di uα dx. (3.4)

Moreover ∣∣GL (uα)∣∣ = ∣∣uα∣∣ − L where
∣∣uα∣∣ > L (3.5)

and

−
∫
Ω

N∑
α,β=1

n∑
i,j=1

aα,βi,j 1{|uβ|>L}Dju
β2η(Diη)1{|uα|>L}GL

(
uα
)
dx ≤

∫
Ω

c
N∑
β=1

n∑
j=1

1{|uβ|>L}|Dju
β|

N∑
α=1

n∑
i=1

2η|Diη|1{|uα|>L}
∣∣GL (uα)∣∣ dx ≤

∫
Ω

c
N∑
β=1

n1{|uβ|>L}|Du
β|

N∑
α=1

n2η|Dη|1{|uα|>L}
∣∣GL (uα)∣∣ dx ≤

∫
Ω

cn2ϵη2
 N∑
β=1

1{|uβ|>L}|Du
β|

2

+
∫
Ω

cn2
ϵ |Dη|

2
( N∑
α=1

1{|uα|>L}
∣∣GL (uα)∣∣

)2

dx ≤

∫
Ω

cn2N2ϵη2
N∑
β=1

1{|uβ|>L}|Du
β|2 +

∫
Ω

cn2N2

ϵ |Dη|2
N∑
α=1

1{|uα|>L}
∣∣GL (uα)∣∣2 dx, (3.6)
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where we used the inequality 2ab ≤ ϵa2 + b2/ϵ, provided ϵ > 0. Merging (3.5), (3.4) and (3.6) into (3.3) we get

ν
∫
Ω

η2
N∑
α=1

1{|uα|>L}|D uα|2 dx ≤

∫
Ω

cn2N2ϵη2
N∑
β=1

1{|uβ|>L}|Du
β|2 +

∫
Ω

cn2N2

ϵ |Dη|2
N∑
α=1

1{|uα|>L}(
∣∣uα∣∣ − L)2 dx.

We choose ϵ = ν/(2cn2N2) and we have

ν
2

∫
Ω

η2
N∑
α=1

1{|uα|>L}|D uα|2 dx ≤
∫
Ω

2c2n4N4

ν |Dη|2
N∑
α=1

1{|uα|>L}(
∣∣uα∣∣ − L)2 dx.

Using the properties of the cut o� function η we deduce

N∑
α=1

∫
{|uα|>L}∩B(x0 ,s)

|D uα|2 dx ≤ 16c
2n4N4

ν2
N∑
α=1

∫
{|uα|>L}∩B(x0 ,t)

(∣∣uα∣∣ − L
t − s

)2

dx. (3.7)

Note that ∣∣Di ∣∣uα∣∣∣∣ = ∣∣Diuα∣∣ ;
this ends the proof of Lemma 3.1.

STEP 2. Sup estimate for general vectorial functions

In the next Lemma we state and prove a general result that holds true for some general vectorial function
v ∈ W1,p(Ω,RN). Eventually, we will use such a result with v = (|u1|, ..., |uN |) and p = 2.

Lemma 3.2. Assume thatΩ is a bounded open subset ofRn and v = (v1, ..., vN) ∈ W1,p(Ω,RN)with 1 < p < n.
We require the existence of constants c1 > 0 and L0 ≥ 0 such that

N∑
α=1

∫
{vα>L}∩B(x0 ,s)

∣∣Dvα∣∣p dx ≤ c1 N∑
α=1

∫
{vα>L}∩B(x0 ,t)

(
vα − L
t − s

)p
dx, (3.8)

for every s, t, L, where 0 < s < t, B(x0, t) ⊂ Ω and L ≥ L0. Then,

sup
B(x0 ,r)

vα ≤ 2max

L0;

[
(n−1)p
(n−p)

]n
[2p + c1]n/p 24n+p+nn/p

(R − r)n
N∑
β=1

∫
B(x0 ,R)

(max{vβ; 0})p


1/p
 (3.9)

for every α = 1, ..., N and for every r, R with 0 < r < R and B(x0, R) ⊂ Ω.

Proof of Lemma 3.2 Let us consider balls B(x0, r1) and B(x0, r2) with 0 < r1 < r2 and B(x0, r2) ⊂ Ω. Let
η : Rn → R be the standard cut-o� function such that 0 ≤ η ≤ 1, η ∈ C10(B(x0, (r1 + r2)/2)), with η = 1 in
B(x0, r1). Moreover, |Dη| ≤ 4/(r2 − r1) in Rn. Let us set

AαL,r =: {x ∈ B(x0, r) : vα > L}.
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Then, using Hölder inequality, Sobolev embedding and the properties of the cut-o� function,

∫
AαL,r1

(vα − L)p ≤

 ∫
AαL,r1

(vα − L)p
*


p/p*

|AαL,r1 |
1−(p/p*) =

 ∫
AαL,r1

[η(vα − L)]p
*


p/p*

|AαL,r1 |
1−(p/p*) =

 ∫
B(x0 ,r1)

[η(max{vα − L; 0})]p
*


p/p*

|AαL,r1 |
1−(p/p*) ≤

 ∫
B(x0 ,(r1+r2)/2)

[η(max{vα − L; 0})]p
*


p/p*

|AαL,r1 |
1−(p/p*) ≤

c2
∫

B(x0 ,(r1+r2)/2)

|D[η(max{vα − L; 0})]|p|AαL,r1 |
1−(p/p*) =

c2
∫

B(x0 ,(r1+r2)/2)

|(Dη)(max{vα − L; 0}) + ηD(max{vα − L; 0})|p|AαL,r1 |
1−(p/p*) =

c2
∫

AαL,(r1+r2)/2

|(Dη)(vα − L) + ηDvα|p|AαL,r1 |
1−(p/p*) ≤

c2 2p

 ∫
AαL,(r1+r2)/2

|(Dη)(vα − L)|p +
∫

AαL,(r1+r2)/2

|ηDvα|p

 |AαL,r1 |1−(p/p*) ≤

c2 2p

4p ∫
AαL,(r1+r2)/2

(
vα − L
r2 − r1

)p
+

∫
AαL,(r1+r2)/2

|Dvα|p

 |AαL,r1 |1−(p/p*) (3.10)

where c2 = [(n − 1)p/(n − p)]p. Now we sum upon α from 1 to N obtaining

N∑
α=1

∫
AαL,r1

(vα − L)p ≤

c2 2p
N∑
α=1

4p ∫
AαL,(r1+r2)/2

(
vα − L
r2 − r1

)p
+

∫
AαL,(r1+r2)/2

|Dvα|p

 |AαL,r1 |1−(p/p*) ≤

c2 2p
N∑
α=1

4p ∫
AαL,(r1+r2)/2

(
vα − L
r2 − r1

)p
+

∫
AαL,(r1+r2)/2

|Dvα|p


 N∑
β=1
|AβL,r1 |

1−(p/p*)

. (3.11)

In order to control
∑∫

|Dvα|p we use our assumption (3.8) with s = (r1 + r2)/2 and t = r2: we get

N∑
α=1

∫
AαL,r1

(vα − L)p ≤

c2 2p

4p N∑
α=1

∫
AαL,(r1+r2)/2

(
vα − L
r2 − r1

)p
+ c12p

N∑
α=1

∫
AαL,r2

(
vα − L
r2 − r1

)p
 N∑
β=1
|AβL,r1 |

1−(p/p*)

≤
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c2 2p[4p + c12p]

 N∑
α=1

∫
AαL,r2

(
vα − L
r2 − r1

)p
 N∑
β=1
|AβL,r1 |

1−(p/p*)

. (3.12)

We want to estimate |AβL,r1 | by means of
∫
(vβ − L)p. We are able to do that for a lower level L̃. Indeed, for

L > L̃ ≥ L0, we have

|AβL,r1 | =
1

(L − L̃)p
(L − L̃)p|AβL,r1 | =

1
(L − L̃)p

∫
AβL,r1

(L − L̃)p ≤

1
(L − L̃)p

∫
AβL,r1

(
vβ − L̃

)p
≤ 1
(L − L̃)p

∫
Aβ
L̃,r1

(
vβ − L̃

)p
≤ 1
(L − L̃)p

∫
Aβ
L̃,r2

(
vβ − L̃

)p
. (3.13)

Note that
1 − (p/p*) = p/n. (3.14)

Inserting (3.14) and (3.13) into (3.12) we deduce

N∑
α=1

∫
AαL,r1

(vα − L)p ≤

c2 2p[4p + c12p]
(r2 − r1)p (L − L̃)pp/n

 N∑
α=1

∫
AαL,r2

(
vα − L

)p


N∑
β=1

∫
Aβ
L̃,r2

(
vβ − L̃

)p

p/n

. (3.15)

We want to estimate
∫
(vα − L)p with

∫
(vα − L̃)p. Since L > L̃, we have∫

AαL,r2

(
vα − L

)p ≤ ∫
AαL,r2

(
vα − L̃

)p ≤ ∫
Aα
L̃,r2

(
vα − L̃

)p . (3.16)

Inserting (3.16) into (3.15) we get

N∑
α=1

∫
AαL,r1

(vα − L)p ≤ c2 2p[4p + c12p]
(r2 − r1)p (L − L̃)pp/n


N∑
β=1

∫
Aβ
L̃,r2

(
vβ − L̃

)p


1+(p/n)

. (3.17)

Now we �x 0 < r < R, with B(x0, R) ⊂ Ω, and we take the following sequence of radii

ρi = r +
R − r
2i

(3.18)

for i = 0, 1, 2, ...; then ρ0 = R and ρi − ρi+1 = (R − r)/2i+1 > 0, so ρi strictly decreases and r < ρi ≤ R.
Let us �x a level d ≥ L0 and we take the following sequence of levels

ki = 2d
(
1 − 1

2i+1

)
(3.19)

for i = 0, 1, 2, ...; then k0 = d and ki+1 − ki = d/2i+1 > 0, so ki strictly increases and L0 ≤ d ≤ ki < 2d. We can
use (3.17) with levels L = ki+1 > ki = L̃ and radii r1 = ρi+1 < ρi = r2:

N∑
α=1

∫
Aαki+1 ,ρi+1

(vα − ki+1)p ≤
c2 2p[4p + c12p]

((R − r)/2i+1)p (d/2i+1)pp/n

 N∑
β=1

∫
Aβki ,ρi

(
vβ − ki

)p
1+(p/n)

=
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c2 4p[2p + c1]2(i+1)p 2(i+1)pp/n

(R − r)p dpp/n

 N∑
β=1

∫
Aβki ,ρi

(
vβ − ki

)p
1+(p/n)

. (3.20)

Let us set

Ji =:
N∑
α=1

∫
Aαki ,ρi

(vα − ki)p; (3.21)

then (3.20) can be written as follows

Ji+1 ≤
c2 4p[2p + c1]2(1+(p/n))p

(R − r)p dpp/n
(
2(1+(p/n))p

)i
(Ji)1+(p/n) . (3.22)

We would like to get
lim
i→∞

Ji = 0; (3.23)

this is true provided

J0 ≤
(
c2 4p[2p + c1]2(1+(p/n))p

(R − r)p dpp/n

)−n/p (
2(1+(p/n))p

)−nn/(pp)
, (3.24)

as Lemma 7.1 says at page 220 in [13]. Let us try to check (3.24): we �rst rewrite it as follows

N∑
α=1

∫
Aαk0 ,ρ0

(vα − k0)p ≤
(
c2 4p[2p + c1]2(1+(p/n))p

(R − r)p dpp/n

)−n/p (
2(1+(p/n))p

)−nn/(pp)
; (3.25)

we keep in mind that k0 = d and ρ0 = R; so, (3.25) can be written in the following way(
c2 4p[2p + c1]2(1+(p/n))p

(R − r)p

)n/p (
2(1+(p/n))p

)nn/(pp) N∑
α=1

∫
Aαd,R

(vα − d)p ≤ dp . (3.26)

Note that d ≥ L0 ≥ 0 so, when vα > d, we have vα − d ≤ vα = max{vα; 0}; then∫
Aαd,R

(vα − d)p ≤
∫
Aαd,R

(max{vα; 0})p ≤
∫

B(x0 ,R)

(max{vα; 0})p . (3.27)

Using (3.27), we get the following su�cient condition when checking (3.26):(
c2 4p[2p + c1]2(1+(p/n))p

)n/p
2(1+(p/n))nn/p

(R − r)n
N∑
α=1

∫
B(x0 ,R)

(max{vα; 0})p ≤ dp . (3.28)

Then, we �x d verifying (3.28) and L0 ≤ d; then (3.24) is satis�ed and (3.23) holds true. We keep in mind that
r < ρi and ki < 2d, so we can use (3.16) with r2 = r < ρi, L = 2d and L̃ = ki:∫

{vα>2d}∩B(x0 ,r)

(vα − 2d)p ≤
∫

{vα>ki}∩B(x0 ,r)

(vα − ki)p ≤
∫

{vα>ki}∩B(x0 ,ρi)

(vα − ki)p , (3.29)

so that

0 ≤
N∑
α=1

∫
{vα>2d}∩B(x0 ,r)

(vα − 2d)p ≤
N∑
α=1

∫
{vα>ki}∩B(x0 ,ρi)

(vα − ki)p = Ji; (3.30)

since (3.23) holds true, we have limi Ji = 0, so
N∑
α=1

∫
{vα>2d}∩B(x0 ,r)

(vα − 2d)p = 0; (3.31)



S. Leonardi et al., Butterfly support | 681

this means that |{vα > 2d} ∩ B(x0, r)| = 0, so that

vα ≤ 2d almost everywhere in B(x0, r). (3.32)

Level d can be selected as follows

d = max

L0;

(
c2 4p[2p + c1]2(1+(p/n))p

)n/p
2(1+(p/n))nn/p

(R − r)n
N∑
β=1

∫
B(x0 ,R)

(max{vβ; 0})p


1/p

and claim (3.9) is proved after noting that (4p 2(1+(p/n))p)n/p 2(1+(p/n))nn/p = 24n+p+nn/p and c2 = [(n − 1)p/(n −
p)]p. This ends the proof of Lemma 3.2.

STEP 3. Proof of Theorem 2.3

Caccioppoli inequality proved in Lemma 3.1 allows us to use Lemma 3.2 with vα = |uα|, p = 2 and c1 =
16c2n4N4

ν2 : this gives estimate (2.3) and the proof of Theorem 2.3 ends here.

Remark 3.3. In the present work we used a test function φ that modi�es every component of u; this gives the
summation on the index α in Caccioppoli’s inequality (3.1). In [4], [1] and [3] only one component of u is modi�ed
and a Caccioppoli’s inequality without the summation on α is proved.

Moreover, the Caccioppoli’s inequality proved in [4] and [1] has an exponent p* on the right–hand side in
contrast with the same p that we have on both sides of (3.8), see also [30], [9], [2], [5], [14], [15], [16].

Remark 3.4. In [22] it is used max{uα − L; 0} in the test function φ, see Figure 2 (left), while in the present
paper we use GL(uα) instead, see Figure 2 (right). Such a function GL(uα) allows us to deal with support larger
than in [22] for o� diagonal coe�cients.

L uα L−L uα

Fig. 2: (left) graph of uα → max{uα − L; 0}; (right) graph of uα → GL(uα).
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