Research Article

Salvatore Leonardi*, Francesco Leonetti, Eugenio Rocha, and Vasile Staicu

Butterfly support for off diagonal coefficients and boundedness of solutions to quasilinear elliptic systems

https://doi.org/10.1515/anona-2021-0205
Received April 21, 2021; accepted August 5, 2021.

Abstract

We consider quasilinear elliptic systems in divergence form. In general, we cannot expect that weak solutions are locally bounded because of De Giorgi's counterexample. Here we assume that off-diagonal coefficients have a "butterfly support": this allows us to prove local boundedness of weak solutions.

Keywords: Quasilinear, elliptic, system, weak, solution, regularity
MSC: Primary: 35J47; Secondary: 35B65, 49N60

1 Introduction

This paper deals with quasilinear elliptic systems in divergence form

$$
\begin{equation*}
-\operatorname{div}(a(x, u(x)) D u(x))=0, \quad x \in \Omega, \tag{1.1}
\end{equation*}
$$

where $u: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{N}$ and $a: \Omega \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N^{2} n^{2}}$ is matrix valued with components $a_{i, j}^{\alpha, \beta}(x, y)$ where $i, j \in\{1, \ldots, n\}$ and $\alpha, \beta \in\{1, \ldots, N\}$.

On the coefficients $a_{i, j}^{\alpha, \beta}(x, y)$ we set the usual conditions, that is they are measurable with respect to x, continuous with respect to y, bounded and elliptic. When $N=1$, that is in the case of one single equation, the celebrated De Giorgi-Nash-Moser theorem ensures that weak solutions $u \in W^{1,2}(\Omega)$ are locally bounded and even Hölder continuous, see section 2.1 in [27].

But in the vectorial case $N \geq 2$, the aforementioned result is no longer true due to the De Giorgi's counterexample, see [6], section 3 in [27] and the recent paper [29]; see also [32] and [20].

So it arises the question of finding additional structural restrictions on the coefficients $a_{i, j}^{\alpha, \beta}$ that keep away De Giorgi's counterexample and allow for local boundedness of weak solutions u, see Section 3.9 in [28].

In the present work we assume a condition on the support of off-diagonal coefficients: there exists $L_{0} \in$ $[0,+\infty)$ such that $\forall L \geq L_{0}$, when $\alpha \neq \beta$,

$$
\begin{equation*}
\left(a_{i, j}^{\alpha, \beta}(x, y) \neq 0 \text { and }\left|y^{\alpha}\right|>L\right) \Rightarrow\left|y^{\beta}\right|>L, \tag{1.2}
\end{equation*}
$$

(see Figure 1 and note that the support has the shape of a butterfly in the plane $y^{\beta}-y^{\alpha}$).

[^0]Under such a restriction we are able to prove local boundedness of weak solutions. All the necessary assumptions and the result will be listed in section 2 while proofs will be performed in section 3.

It is worth to stress out that systems with special structure have been studied in [33], [26] and off-diagonal coefficients with a particular support have been successfully used when proving maximum principles in [21], L^{∞}-regularity in [22], when obtaining existence for measure data problems in [23], [24] and, for the degenerate case, in [7].

Higher integrability has been studied as well in [10] when off-diagonal coefficients are small and have staircase support and in [11] when off-diagonal coefficients are proportional to diagonal ones.

Let us mention as well that when the ratio between the largest and the smallest eigenvalues of $a_{i, j}^{\alpha, \beta}$ is close to 1 , then regularity of u is studied at page 183 of [12]; see also [31], [18], [17], [19].

Let us also say that proving boundedness for weak solutions could be an important tool for getting fractional differentiability, see the estimate after (4.15) in [8]. In the present paper we deal with local boundedness of solutions. If the reader is interested in regularity up to a rough boundary it could be worth looking at [25].

2 Assumptions and Result

Assume Ω is an open bounded subset of \mathbb{R}^{n}, with $n \geq 3$. Consider the system of $N \geq 2$ equations

$$
\begin{equation*}
-\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(\sum_{\alpha, \beta=1}^{N} \sum_{j=1}^{n} a_{i, j}^{\alpha, \beta}(x, u) \frac{\partial}{\partial x_{j}} u^{\beta}\right)=0 \text { in } \Omega \text {, for } \alpha=1, \ldots, N . \tag{2.1}
\end{equation*}
$$

Note that u^{β} is the β component of $u=\left(u^{1}, u^{2}, \ldots, u^{N}\right)$. We list our structural conditions.
(A) For all $i, j \in\{1, \ldots, n\}$ and all $\alpha, \beta \in\{1, \ldots, N\}$, we require that $a_{i, j}^{\alpha, \beta}: \Omega \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ satisfies the following conditions:
$\left(\mathcal{A}_{0}\right) x \mapsto a_{i, j}^{\alpha, \beta}(x, y)$ is measurable and $y \mapsto a_{i, j}^{\alpha, \beta}(x, y)$ is continuous;
$\left(\mathcal{A}_{1}\right)$ (boundedness of all the coefficients) for some constant $c>0$, we have

$$
\left|a_{i, j}^{\alpha, \beta}(x, y)\right| \leq c
$$

for almost all $x \in \Omega$ and for all $y \in \mathbb{R}^{N}$;
$\left(\mathcal{A}_{2}\right)$ (ellipticity of all the coefficients) for some constant $v>0$, we have

$$
\sum_{\alpha, \beta=1}^{N} \sum_{i, j=1}^{n} a_{i, j}^{\alpha, \beta}(x, y) \xi_{i}^{\alpha} \xi_{j}^{\beta} \geq v|\xi|^{2}
$$

for almost all $x \in \Omega$, for all $y \in \mathbb{R}^{N}$ and for all $\xi \in \mathbb{R}^{N \times n} ;$
$\left(\mathcal{A}_{3}\right)$ ("butterfly" support of off-diagonal coefficients) there exists $L_{0} \in[0,+\infty)$ such that $\forall L \geq L_{0}$, when $\alpha \neq \beta$,

$$
\left(a_{i, j}^{\alpha, \beta}(x, y) \neq 0 \text { and }\left|y^{\alpha}\right|>L\right) \Rightarrow\left|y^{\beta}\right|>L,
$$

(see Figure 1).

Fig. 1: Assumption $\left(\mathcal{A}_{3}\right)$: off-diagonal coefficients $a_{i, j}^{\alpha, \beta}$ vanish on the white part of the picture; they might be non zero only on the grey part.

Remark 2.1. Assumption $\left(\mathcal{A}_{3}\right)$ guarantees equality (3.2): such an equality is a basic tool for proving boundedness of solutions.

Example 2.2. An example of coefficients which readily satisfy the aforementioned assumptions are defined as follows:

$$
a_{i, j}^{\alpha, \beta}(x, y)=a_{i, j}^{\alpha, \beta}(y)= \begin{cases}\delta_{i j} \frac{\max \left(\left|y^{\beta}\right|-\left|y^{\alpha}\right|, 0\right)}{1+2|y|} & \text { if } \alpha \neq \beta \\ \delta_{i j} & \text { if } \alpha=\beta\end{cases}
$$

where $\alpha, \beta=1,2$ and $i, j=1, \ldots, n$ with $n \geq 3$ and $N=2$. In this case we have $c=1, v=1 / 2$ and we can pick for instance $L_{0}=0$.

We say that a function $u: \Omega \rightarrow \mathbb{R}^{N}$ is a weak solution of the system (2.1), if $u \in W^{1,2}\left(\Omega, \mathbb{R}^{N}\right)$ and

$$
\begin{equation*}
\int_{\Omega} \sum_{\alpha, \beta=1}^{N} \sum_{i, j=1}^{n} a_{i, j}^{\alpha, \beta}(x, u(x)) D_{j} u^{\beta}(x) D_{i} \varphi^{\alpha}(x) d x=0 \tag{2.2}
\end{equation*}
$$

for all $\varphi \in W_{0}^{1,2}\left(\Omega, \mathbb{R}^{N}\right)$.
Theorem 2.3. Let $u \in W^{1,2}\left(\Omega, \mathbb{R}^{N}\right)$ be a weak solution of system (2.1) under the set (\mathcal{A}) of assumptions. Then $u \in L_{\text {loc }}^{\infty}\left(\Omega, \mathbb{R}^{N}\right)$ and we have the following estimate

$$
\begin{equation*}
\sup _{B\left(x_{0}, r\right)}\left|u^{\alpha}\right| \leq 2 \max \left\{L_{0} ;\left(\frac{\left[\frac{2(n-1)}{(n-2)}\right]^{n}\left[4+\frac{16 c^{2} n^{4} N^{4}}{v^{2}}\right]^{n / 2} 2^{4 n+2+n n / 2}}{(R-r)^{n}} \sum_{\beta=1}^{N} \int_{B\left(x_{0}, R\right)}\left|u^{\beta}\right|^{2}\right)^{1 / 2}\right\} \tag{2.3}
\end{equation*}
$$

for every $\alpha=1, \ldots, N$ and for every r, R with $0<r<R$ and $B\left(x_{0}, R\right) \subset \Omega$, where c is the constant involved in assumption $\left(\mathcal{A}_{1}\right), v$ is given in $\left(\mathcal{A}_{2}\right)$ and L_{0} appears in $\left(\mathcal{A}_{3}\right)$.

Remark 2.4. The present local L^{∞}-regularity result improves on [22] since assumption $\left(\mathcal{A}_{3}\right)$ allows off diagonal coefficients to have a larger support than in [22].

Remark 2.5. "Butterfly" support $\left(\mathcal{A}_{3}\right)$ has been used in [7] when proving the existence of at least one globally bounded solution to a (possibly) degenerate problem with zero boundary value problem. In the present work we prove local boundedness of every solution to a non degenerate system regardless of boundary values.

3 Proof of the result

The proof of Theorem 2.3 will be performed in several steps

STEP 1. Caccioppoli inequality

Lemma 3.1. (Caccioppoliinequality on superlevelsets) Let $u \in W^{1,2}\left(\Omega, \mathbb{R}^{N}\right)$ be a weak solution of system (2.1) under assumptions $\left(\mathcal{A}_{0}\right)$, $\left(\mathcal{A}_{1}\right)$, $\left(\mathcal{A}_{2}\right)$, ($\left.\mathcal{A}_{3}\right)$. For $0<s<t$, let $B\left(x_{0}, s\right)$ and $B\left(x_{0}, t\right)$ be concentric open balls centered at x_{0} with radii s and t respectively. Assume that $B\left(x_{0}, t\right) \subset \Omega$ and $L \geq L_{0}$. Then

$$
\begin{equation*}
\sum_{\alpha=1}^{N} \int_{\left\{\left|u^{\alpha}\right|>L\right\} \cap B\left(x_{0}, s\right)}|D| u^{\alpha}| |^{2} d x \leq \frac{16 c^{2} n^{4} N^{4}}{v^{2}} \sum_{\alpha=1}^{N} \int_{\left\{\left|u^{\alpha}\right|>L\right\} \cap B\left(x_{0}, t\right)}\left(\frac{\left|u^{\alpha}\right|-L}{t-s}\right)^{2} d x \tag{3.1}
\end{equation*}
$$

where c is the constant involved in assumption $\left(\mathcal{A}_{1}\right), v$ is given in $\left(\mathcal{A}_{2}\right)$ and L_{0} appears in $\left(\mathcal{A}_{3}\right)$.
Proof of Lemma 3.1 Let $u \in W^{1,2}\left(\Omega, \mathbb{R}^{N}\right)$ be a weak solution of system (2.1). Let $\eta: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be the standard cut-off function such that $0 \leq \eta \leq 1, \eta \in C_{0}^{1}\left(B\left(x_{0}, t\right)\right.$, with $B\left(x_{0}, t\right) \subset \Omega$ and $\eta=1$ in $B\left(x_{0}, s\right)$. Moreover, $|D \eta| \leq 2 /(t-s)$ in \mathbb{R}^{n}. For every level $L \geq L_{0}$, consider

$$
T_{L}(s)=\left\{\begin{array}{ccc}
-L & \text { if } & s<-L \\
s & \text { if } & -L \leq s \leq L \\
L & \text { if } & s>L
\end{array}\right.
$$

and

$$
G_{L}(s)=s-T_{L}(s)
$$

We define $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{N}$ with $\varphi=\left(\varphi^{1}, \ldots, \varphi^{N}\right)$, where

$$
\varphi^{\alpha}:=\eta^{2} G_{L}\left(u^{\alpha}\right), \quad \text { for all } \alpha \in\{1, \ldots, N\}
$$

Then

$$
D_{i} \varphi^{\alpha}=\eta^{2} 1_{\left\{\left|u^{\alpha}\right|>L\right\}} D_{i} u^{\alpha}+2 \eta\left(D_{i} \eta\right) 1_{\left\{\left|u^{\alpha}\right|>L\right\}} G_{L}\left(u^{\alpha}\right) \quad \text { for all } i \in\{1, \ldots, n\} \text { and } \alpha \in\{1, \ldots, N\}
$$

Using this test function in the weak formulation (2.2) of system (2.1), we have

$$
\begin{aligned}
& 0=\int_{\Omega} \sum_{\alpha, \beta=1}^{N} \sum_{i, j=1}^{n} a_{i, j}^{\alpha, \beta} D_{j} u^{\beta} D_{i} \varphi^{\alpha} d x= \\
& \int_{\Omega} \sum_{\alpha, \beta=1}^{N} \sum_{i, j=1}^{n} a_{i, j}^{\alpha, \beta} D_{j} u^{\beta} \eta^{2} 1_{\left\{\left|u^{\alpha}\right|>L\right\}} D_{i} u^{\alpha} d x+\int_{\Omega} \sum_{\alpha, \beta=1}^{N} \sum_{i, j=1}^{n} a_{i, j}^{\alpha, \beta} D_{j} u^{\beta} 2 \eta\left(D_{i} \eta\right) 1_{\left\{\left|u^{\alpha}\right|>L\right\}} G_{L}\left(u^{\alpha}\right) d x .
\end{aligned}
$$

Now, assumption $\left(\mathcal{A}_{3}\right)$ guarantees that

$$
\begin{equation*}
a_{i, j}^{\alpha, \beta}(x, u(x)) 1_{\left\{\left|u^{\alpha}\right|>L\right\}}(x)=a_{i, j}^{\alpha, \beta}(x, u(x)) 1_{\left\{\left|u^{\beta}\right|>L\right\}}(x) 1_{\left\{\left|u^{\alpha}\right|>L\right\}}(x) \tag{3.2}
\end{equation*}
$$

when $\beta \neq \alpha$ and $L \geq L_{0}$. It is worthwhile to note that (3.2) holds true when $\alpha=\beta$ as well; then

$$
\begin{align*}
& \int_{\Omega} \sum_{\alpha, \beta=1}^{N} \sum_{i, j=1}^{n} a_{i, j}^{\alpha, \beta} 1_{\left\{\left|u^{\beta}\right|>L\right\}} D_{j} u^{\beta} \eta^{2} 1_{\left\{\left|u^{\alpha}\right|>L\right\}} D_{i} u^{\alpha} d x \\
& \quad=-\int_{\Omega} \sum_{\alpha, \beta=1}^{N} \sum_{i, j=1}^{n} a_{i, j}^{\alpha, \beta} 1_{\left\{\left|u^{\beta}\right|>L\right\}} D_{j} u^{\beta} 2 \eta\left(D_{i} \eta\right) 1_{\left\{\left|u^{\alpha}\right|>L\right\}} G_{L}\left(u^{\alpha}\right) d x . \tag{3.3}
\end{align*}
$$

Now we can use ellipticity assumption $\left(\mathcal{A}_{2}\right)$ with $\xi_{i}^{\alpha}=1_{\left\{\left|u^{\alpha}\right|>L\right\}} D_{i} u^{\alpha}$ and we get

$$
\begin{equation*}
v \int_{\Omega} \eta^{2} \sum_{\alpha=1}^{N} 1_{\left\{\left|u^{\alpha}\right|>L\right\}}\left|D u^{\alpha}\right|^{2} d x \leq \int_{\Omega} \sum_{\alpha, \beta=1}^{N} \sum_{i, j=1}^{n} a_{i, j}^{\alpha, \beta} 1_{\left\{\left|u^{\beta}\right|>L\right\}} D_{j} u^{\beta} \eta^{2} 1_{\left\{\left|u^{\alpha}\right|>L\right\}} D_{i} u^{\alpha} d x \tag{3.4}
\end{equation*}
$$

Moreover

$$
\begin{equation*}
\left|G_{L}\left(u^{\alpha}\right)\right|=\left|u^{\alpha}\right|-L \text { where }\left|u^{\alpha}\right|>L \tag{3.5}
\end{equation*}
$$

and

$$
\begin{array}{r}
-\int_{\Omega} \sum_{\alpha, \beta=1}^{N} \sum_{i, j=1}^{n} a_{i, j}^{\alpha, \beta} 1_{\left\{\left|u^{\beta}\right|>L\right\}} D_{j} u^{\beta} 2 \eta\left(D_{i} \eta\right) 1_{\left\{\left|u^{\alpha}\right|>L\right\}} G_{L}\left(u^{\alpha}\right) d x \leq \\
\int_{\Omega} c \sum_{\beta=1}^{N} \sum_{j=1}^{n} 1_{\left\{\left|u^{\beta}\right|>L\right\}}\left|D_{j} u^{\beta}\right| \sum_{\alpha=1}^{N} \sum_{i=1}^{n} 2 \eta\left|D_{i} \eta\right| 1_{\left\{\left|u^{\alpha}\right|>L\right\}}\left|G_{L}\left(u^{\alpha}\right)\right| d x \leq \\
\int_{\Omega} c \sum_{\beta=1}^{N} n 1_{\left\{\left|u^{\beta}\right|>L\right\}}\left|D u^{\beta}\right| \sum_{\alpha=1}^{N} n 2 \eta|D \eta| 1_{\left\{\left|u^{\alpha}\right|>L\right\}}\left|G_{L}\left(u^{\alpha}\right)\right| d x \leq \\
\int_{\Omega} c n^{2} \epsilon \eta^{2}\left(\sum_{\beta=1}^{N} 1_{\left\{\left|u^{\beta}\right|>L\right\}}\left|D u^{\beta}\right|\right)^{2}+\int_{\Omega} \frac{c n^{2}}{\epsilon}|D \eta|^{2}\left(\sum_{\alpha=1}^{N} 1_{\left\{\left|u^{\alpha}\right|>L\right\}}\left|G_{L}\left(u^{\alpha}\right)\right|\right)^{2} d x \leq \\
\int_{\Omega} c n^{2} N^{2} \epsilon \eta^{2} \sum_{\beta=1}^{N} 1_{\left\{\left|u^{\beta}\right|>L\right\}}\left|D u^{\beta}\right|^{2}+\int_{\Omega} \frac{c n^{2} N^{2}}{\epsilon}|D \eta|^{2} \sum_{\alpha=1}^{N} 1_{\left\{\left|u^{\alpha}\right|>L\right\}}\left|G_{L}\left(u^{\alpha}\right)\right|^{2} d x \tag{3.6}
\end{array}
$$

where we used the inequality $2 a b \leq \epsilon a^{2}+b^{2} / \epsilon$, provided $\epsilon>0$. Merging (3.5), (3.4) and (3.6) into (3.3) we get

$$
\begin{array}{r}
v \int_{\Omega} \eta^{2} \sum_{\alpha=1}^{N} 1_{\left\{\left|u^{\alpha}\right|>L\right\}}\left|D u^{\alpha}\right|^{2} d x \leq \\
\int_{\Omega} c n^{2} N^{2} \epsilon \eta^{2} \sum_{\beta=1}^{N} 1_{\left\{\left|u^{\beta}\right|>L\right\}}\left|D u^{\beta}\right|^{2}+\int_{\Omega} \frac{c n^{2} N^{2}}{\epsilon}|D \eta|^{2} \sum_{\alpha=1}^{N} 1_{\left\{\left|u^{\alpha}\right|>L\right\}}\left(\left|u^{\alpha}\right|-L\right)^{2} d x .
\end{array}
$$

We choose $\epsilon=v /\left(2 c n^{2} N^{2}\right)$ and we have

$$
\frac{v}{2} \int_{\Omega} \eta^{2} \sum_{\alpha=1}^{N} 1_{\left\{\left|u^{\alpha}\right|>L\right\}}\left|D u^{\alpha}\right|^{2} d x \leq \int_{\Omega} \frac{2 c^{2} n^{4} N^{4}}{v}|D \eta|^{2} \sum_{\alpha=1}^{N} 1_{\left\{\left|u^{\alpha}\right|>L\right\}}\left(\left|u^{\alpha}\right|-L\right)^{2} d x
$$

Using the properties of the cut off function η we deduce

$$
\begin{equation*}
\sum_{\alpha=1}^{N} \int_{\left\{\left|u^{\alpha}\right|>L\right\} \cap B\left(x_{0}, s\right)}\left|D u^{\alpha}\right|^{2} d x \leq \frac{16 c^{2} n^{4} N^{4}}{v^{2}} \sum_{\alpha=1}^{N} \int_{\left\{\left|u^{\alpha}\right|>L\right\} \cap B\left(x_{0}, t\right)}\left(\frac{\left|u^{\alpha}\right|-L}{t-s}\right)^{2} d x \tag{3.7}
\end{equation*}
$$

Note that

$$
\left|D_{i}\right| u^{\alpha}| |=\left|D_{i} u^{\alpha}\right| ;
$$

this ends the proof of Lemma 3.1.

STEP 2. Sup estimate for general vectorial functions

In the next Lemma we state and prove a general result that holds true for some general vectorial function $v \in W^{1, p}\left(\Omega, \mathbb{R}^{N}\right)$. Eventually, we will use such a result with $v=\left(\left|u^{1}\right|, \ldots,\left|u^{N}\right|\right)$ and $p=2$.

Lemma 3.2. Assume that Ω is a bounded open subset of \mathbb{R}^{n} and $v=\left(v^{1}, \ldots, v^{N}\right) \in W^{1, p}\left(\Omega, \mathbb{R}^{N}\right)$ with $1<p<n$. We require the existence of constants $c_{1}>0$ and $L_{0} \geq 0$ such that

$$
\begin{equation*}
\sum_{\alpha=1}^{N} \int_{\left\{v^{\alpha}>L\right\} \cap B\left(x_{0}, s\right)}\left|D v^{\alpha}\right|^{p} d x \leq c_{1} \sum_{\alpha=1}^{N} \int_{\left\{v^{\alpha}>L\right\} \cap B\left(x_{0}, t\right)}\left(\frac{v^{\alpha}-L}{t-s}\right)^{p} d x \tag{3.8}
\end{equation*}
$$

for every s, t, L, where $0<s<t, B\left(x_{0}, t\right) \subset \Omega$ and $L \geq L_{0}$. Then,

$$
\begin{equation*}
\sup _{B\left(x_{0}, r\right)} v^{\alpha} \leq 2 \max \left\{L_{0} ;\left(\frac{\left[\frac{(n-1) p}{(n-p)}\right]^{n}\left[2^{p}+c_{1}\right]^{n / p} 2^{4 n+p+n n / p}}{(R-r)^{n}} \sum_{\beta=1}^{N} \int_{B\left(x_{0}, R\right)}\left(\max \left\{v^{\beta} ; 0\right\}\right)^{p}\right)^{1 / p}\right\} \tag{3.9}
\end{equation*}
$$

for every $\alpha=1, \ldots, N$ and for every r, R with $0<r<R$ and $B\left(x_{0}, R\right) \subset \Omega$.

Proof of Lemma 3.2 Let us consider balls $B\left(x_{0}, r_{1}\right)$ and $B\left(x_{0}, r_{2}\right)$ with $0<r_{1}<r_{2}$ and $B\left(x_{0}, r_{2}\right) \subset \Omega$. Let $\eta: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be the standard cut-off function such that $0 \leq \eta \leq 1, \eta \in C_{0}^{1}\left(B\left(x_{0},\left(r_{1}+r_{2}\right) / 2\right)\right)$, with $\eta=1$ in $B\left(x_{0}, r_{1}\right)$. Moreover, $|D \eta| \leq 4 /\left(r_{2}-r_{1}\right)$ in \mathbb{R}^{n}. Let us set

$$
A_{L, r}^{\alpha}=:\left\{x \in B\left(x_{0}, r\right): v^{\alpha}>L\right\}
$$

Then, using Hölder inequality, Sobolev embedding and the properties of the cut-off function,

$$
\begin{align*}
& \int_{A_{L, r_{1}}^{\alpha}}\left(v^{\alpha}-L\right)^{p} \leq\left(\int_{A_{L, r_{1}}^{\alpha}}\left(v^{\alpha}-L\right)^{p^{*}}\right)^{p / p^{*}}\left|A_{L, r_{1}}^{\alpha}\right|^{1-\left(p / p^{*}\right)}= \\
& \left(\int_{A_{L, r_{1}}^{\alpha}}\left[\eta\left(v^{\alpha}-L\right)\right]^{p^{*}}\right)^{p / p^{*}}\left|A_{L, r_{1}}^{\alpha}\right|^{1-\left(p / p^{*}\right)}=\left(\int_{B\left(x_{0}, r_{1}\right)}\left[\eta\left(\max \left\{v^{\alpha}-L ; 0\right\}\right)\right]^{p^{*}}\right)^{p / p^{*}}\left|A_{L, r_{1}}^{\alpha}\right|^{1-\left(p / p^{*}\right)} \leq \\
& \left(\int_{B\left(x_{0},\left(r_{1}+r_{2}\right) / 2\right)}\left[\eta\left(\max \left\{v^{\alpha}-L ; 0\right\}\right)\right]^{p^{*}}\right)^{p / p^{*}}\left|A_{L, r_{1}}^{\alpha}\right|^{1-\left(p / p^{*}\right)} \leq \\
& c_{2} \int_{B\left(x_{0},\left(r_{1}+r_{2}\right) / 2\right)}\left|D\left[\eta\left(\max \left\{v^{\alpha}-L ; 0\right\}\right)\right]\right|^{p}\left|A_{L, r_{1}}^{\alpha}\right|^{1-\left(p / p^{*}\right)}= \\
& c_{2} \int_{B\left(x_{0},\left(r_{1}+r_{2}\right) / 2\right)}\left|(D \eta)\left(\max \left\{v^{\alpha}-L ; 0\right\}\right)+\eta D\left(\max \left\{v^{\alpha}-L ; 0\right\}\right)\right|^{p}\left|A_{L, r_{1}}^{\alpha}\right|^{1-\left(p / p^{*}\right)}= \\
& c_{2} \int A_{L,\left(r_{1}+r_{2}\right) / 2}\left|(D \eta)\left(v^{\alpha}-L\right)+\eta D v^{\alpha}\right|^{p}\left|A_{L, r_{1}}^{\alpha}\right|^{1-\left(p / p^{*}\right)} \leq \\
& c_{2} 2^{p}\left(\int_{A_{L,\left(r_{1}+r_{2}\right) / 2}^{\alpha}}\left|(D \eta)\left(v^{\alpha}-L\right)\right|^{p}+\int_{A_{L,\left(r_{1}+r_{2}\right) / 2}^{\alpha}}\left|\eta D v^{\alpha}\right|^{p}\right)\left|A_{L, r_{1}}^{\alpha}\right|^{1-\left(p / p^{*}\right)} \leq \\
& c_{2} 2^{p}\left(4^{p} \int_{A_{L,\left(r_{1}+r_{2}\right) / 2}^{\alpha}}\left(\frac{v^{\alpha}-L}{r_{2}-r_{1}}\right)^{p}+\int_{A_{L,\left(r_{1}+r_{2}\right) / 2}^{\alpha}}\left|D v^{\alpha}\right|^{p}\right)\left|A_{L, r_{1}}^{\alpha}\right|^{1-\left(p / p^{*}\right)} \tag{3.10}
\end{align*}
$$

where $c_{2}=[(n-1) p /(n-p)]^{p}$. Now we sum upon α from 1 to N obtaining

$$
\begin{gather*}
\sum_{\alpha=1}^{N} \int_{A_{L, r_{1}}^{\alpha}}\left(v^{\alpha}-L\right)^{p} \leq \\
c_{2} 2^{p} \sum_{\alpha=1}^{N}\left(4^{p} \int_{A_{L,\left(r_{1}+r_{2}\right) / 2}^{\alpha}}\left(\frac{v^{\alpha}-L}{r_{2}-r_{1}}\right)^{p}+\int_{A_{L,\left(r_{1}+r_{2}\right) / 2}^{\alpha}}\left|D v^{\alpha}\right|^{p}\right)\left|A_{L, r_{1}}^{\alpha}\right|^{1-\left(p / p^{*}\right)} \leq \\
c_{2} 2^{p} \sum_{\alpha=1}^{N}\left(4_{A_{L,\left(r_{1}+r_{2}\right) / 2}^{p}}^{\int}\left(\frac{v^{\alpha}-L}{r_{2}-r_{1}}\right)^{p}+\int_{A_{L,\left(r_{1}+r_{2}\right) / 2}^{\alpha}}\left|D v^{\alpha}\right|^{p}\right)\left(\sum_{\beta=1}^{N}\left|A_{L, r_{1}}^{\beta}\right|\right)^{1-\left(p / p^{*}\right)} . \tag{3.11}
\end{gather*}
$$

In order to control $\sum \int\left|D \nu^{\alpha}\right|^{p}$ we use our assumption (3.8) with $s=\left(r_{1}+r_{2}\right) / 2$ and $t=r_{2}$: we get

$$
\begin{gathered}
\sum_{\alpha=1}^{N} \int_{A_{L, r_{1}}^{\alpha}}\left(v^{\alpha}-L\right)^{p} \leq \\
c_{2} 2^{p}\left(4^{p} \sum_{\alpha=1}^{N} \int_{A_{L,\left(r_{1}+r_{2}\right) / 2}}^{N}\left(\frac{v^{\alpha}-L}{r_{2}-r_{1}}\right)^{p}+c_{1} 2^{p} \sum_{\alpha=1}^{N} \int_{A_{L, r_{2}}^{\alpha}}\left(\frac{v^{\alpha}-L}{r_{2}-r_{1}}\right)^{p}\right)\left(\sum_{\beta=1}^{N}\left|A_{L, r_{1}}^{\beta}\right|\right)^{1-\left(p / p^{*}\right)} \leq
\end{gathered}
$$

$$
\begin{equation*}
c_{2} 2^{p}\left[4^{p}+c_{1} 2^{p}\right]\left(\sum_{\alpha=1}^{N} \int_{A_{L, r_{2}}^{\alpha}}\left(\frac{v^{\alpha}-L}{r_{2}-r_{1}}\right)^{p}\right)\left(\sum_{\beta=1}^{N}\left|A_{L, r_{1}}^{\beta}\right|\right)^{1-\left(p / p^{*}\right)} \tag{3.12}
\end{equation*}
$$

We want to estimate $\left|A_{L, r_{1}}^{\beta}\right|$ by means of $\int\left(\nu^{\beta}-L\right)^{p}$. We are able to do that for a lower level \tilde{L}. Indeed, for $L>\tilde{L} \geq L_{0}$, we have

$$
\begin{align*}
& \left|A_{L, r_{1}}^{\beta}\right|=\frac{1}{(L-\tilde{L})^{p}}(L-\tilde{L})^{p}\left|A_{L, r_{1}}^{\beta}\right|=\frac{1}{(L-\tilde{L})^{p}} \int_{A_{L, r_{1}}^{\beta}}(L-\tilde{L})^{p} \leq \\
& \frac{1}{(L-\tilde{L})^{p}} \int_{A_{L, r_{1}}^{\beta}}\left(v^{\beta}-\tilde{L}\right)^{p} \leq \frac{1}{(L-\tilde{L})^{p}} \int_{A_{\tilde{L}, r_{1}}^{\beta}}\left(v^{\beta}-\tilde{L}\right)^{p} \leq \frac{1}{(L-\tilde{L})^{p}} \int_{A_{\tilde{L}, r_{2}}^{\beta}}\left(v^{\beta}-\tilde{L}\right)^{p} . \tag{3.13}
\end{align*}
$$

Note that

$$
\begin{equation*}
1-\left(p / p^{\star}\right)=p / n \tag{3.14}
\end{equation*}
$$

Inserting (3.14) and (3.13) into (3.12) we deduce

$$
\begin{gather*}
\sum_{\alpha=1}^{N} \int_{A_{L, r_{1}}^{\alpha}}\left(v^{\alpha}-L\right)^{p} \leq \\
\frac{c_{2} 2^{p}\left[4^{p}+c_{1} 2^{p}\right]}{\left(r_{2}-r_{1}\right)^{p}(L-\tilde{L})^{p p / n}}\left(\sum_{\alpha=1}^{N} \int_{A_{L, r_{2}}^{\alpha}}\left(v^{\alpha}-L\right)^{p}\right)\left(\sum_{\beta=1}^{N} \int_{A_{\tilde{L}, r_{2}}^{B}}\left(v^{\beta}-\tilde{L}\right)^{p}\right)^{p / n} \tag{3.15}
\end{gather*}
$$

We want to estimate $\int\left(v^{\alpha}-L\right)^{p}$ with $\int\left(v^{\alpha}-\tilde{L}\right)^{p}$. Since $L>\tilde{L}$, we have

$$
\begin{equation*}
\int_{A_{L, r_{2}}^{\alpha}}\left(v^{\alpha}-L\right)^{p} \leq \int_{A_{L, r_{2}}^{\alpha}}\left(v^{\alpha}-\tilde{L}\right)^{p} \leq \int_{A_{\tilde{L}, r_{2}}^{\alpha}}\left(v^{\alpha}-\tilde{L}\right)^{p} . \tag{3.16}
\end{equation*}
$$

Inserting (3.16) into (3.15) we get

$$
\begin{equation*}
\sum_{\alpha=1}^{N} \int_{A_{L, r_{1}}^{\alpha}}\left(v^{\alpha}-L\right)^{p} \leq \frac{c_{2} 2^{p}\left[4^{p}+c_{1} 2^{p}\right]}{\left(r_{2}-r_{1}\right)^{p}(L-\tilde{L})^{p p / n}}\left(\sum_{\beta=1}^{N} \int_{A_{\tilde{L}, r_{2}}^{\beta}}\left(v^{\beta}-\tilde{L}\right)^{p}\right)^{1+(p / n)} \tag{3.17}
\end{equation*}
$$

Now we fix $0<r<R$, with $B\left(x_{0}, R\right) \subset \Omega$, and we take the following sequence of radii

$$
\begin{equation*}
\rho_{i}=r+\frac{R-r}{2^{i}} \tag{3.18}
\end{equation*}
$$

for $i=0,1,2, \ldots$; then $\rho_{0}=R$ and $\rho_{i}-\rho_{i+1}=(R-r) / 2^{i+1}>0$, so ρ_{i} strictly decreases and $r<\rho_{i} \leq R$.
Let us fix a level $d \geq L_{0}$ and we take the following sequence of levels

$$
\begin{equation*}
k_{i}=2 d\left(1-\frac{1}{2^{i+1}}\right) \tag{3.19}
\end{equation*}
$$

for $i=0,1,2, \ldots$; then $k_{0}=d$ and $k_{i+1}-k_{i}=d / 2^{i+1}>0$, so k_{i} strictly increases and $L_{0} \leq d \leq k_{i}<2 d$. We can use (3.17) with levels $L=k_{i+1}>k_{i}=\tilde{L}$ and radii $r_{1}=\rho_{i+1}<\rho_{i}=r_{2}$:

$$
\sum_{\alpha=1}^{N} \int\left(v_{A_{k_{i+1}, \rho_{i+1}}^{\alpha}} \int_{i+1}\right)^{p} \leq \frac{c_{2} 2^{p}\left[4^{p}+c_{1} 2^{p}\right]}{\left((R-r) / 2^{i+1}\right)^{p}\left(d / 2^{i+1}\right)^{p p / n}}\left(\sum_{\beta=1}^{N} \int_{A_{k_{i}, \rho_{i}}^{\beta}}\left(v^{\beta}-k_{i}\right)^{p}\right)^{1+(p / n)}=
$$

$$
\begin{equation*}
\frac{c_{2} 4^{p}\left[2^{p}+c_{1}\right] 2^{(i+1) p} 2^{(i+1) p p / n}}{(R-r)^{p} d^{p p / n}}\left(\sum_{\beta=1}^{N} \int_{A_{k_{i} p_{i}}^{\beta}}\left(v^{\beta}-k_{i}\right)^{p}\right)^{1+(p / n)} \tag{3.20}
\end{equation*}
$$

Let us set

$$
\begin{equation*}
J_{i}=: \sum_{\alpha=1}^{N} \int_{A_{k_{i}, p_{i}}^{\alpha}}\left(v^{\alpha}-k_{i}\right)^{p} \tag{3.21}
\end{equation*}
$$

then (3.20) can be written as follows

$$
\begin{equation*}
J_{i+1} \leq \frac{c_{2} 4^{p}\left[2^{p}+c_{1}\right] 2^{(1+(p / n)) p}}{(R-r)^{p} d^{p p / n}}\left(2^{(1+(p / n)) p}\right)^{i}\left(J_{i}\right)^{1+(p / n)} \tag{3.22}
\end{equation*}
$$

We would like to get

$$
\begin{equation*}
\lim _{i \rightarrow \infty} J_{i}=0 \tag{3.23}
\end{equation*}
$$

this is true provided

$$
\begin{equation*}
J_{0} \leq\left(\frac{c_{2} 4^{p}\left[2^{p}+c_{1}\right] 2^{(1+(p / n)) p}}{(R-r)^{p} d^{p p / n}}\right)^{-n / p}\left(2^{(1+(p / n)) p}\right)^{-n n /(p p)}, \tag{3.24}
\end{equation*}
$$

as Lemma 7.1 says at page 220 in [13]. Let us try to check (3.24): we first rewrite it as follows

$$
\begin{equation*}
\sum_{\alpha=1}^{N} \int_{A_{k_{0}, \rho_{0}}^{\alpha}}\left(v^{\alpha}-k_{0}\right)^{p} \leq\left(\frac{c_{2} 4^{p}\left[2^{p}+c_{1}\right] 2^{(1+(p / n)) p}}{(R-r)^{p} d^{p p / n}}\right)^{-n / p}\left(2^{(1+(p / n)) p}\right)^{-n n /(p p)} ; \tag{3.25}
\end{equation*}
$$

we keep in mind that $k_{0}=d$ and $\rho_{0}=R$; so, (3.25) can be written in the following way

$$
\begin{equation*}
\left(\frac{c_{2} 4^{p}\left[2^{p}+c_{1}\right] 2^{(1+(p / n)) p}}{(R-r)^{p}}\right)^{n / p}\left(2^{(1+(p / n)) p}\right)^{n n /(p p)} \sum_{\alpha=1}^{N} \int_{A_{d, R}^{\alpha}}\left(v^{\alpha}-d\right)^{p} \leq d^{p} \tag{3.26}
\end{equation*}
$$

Note that $d \geq L_{0} \geq 0$ so, when $v^{\alpha}>d$, we have $v^{\alpha}-d \leq v^{\alpha}=\max \left\{v^{\alpha} ; 0\right\}$; then

$$
\begin{equation*}
\int_{A_{d, R}^{\alpha}}\left(v^{\alpha}-d\right)^{p} \leq \int_{A_{d, R}^{\alpha}}\left(\max \left\{v^{\alpha} ; 0\right\}\right)^{p} \leq \int_{B\left(x_{0}, R\right)}\left(\max \left\{v^{\alpha} ; 0\right\}\right)^{p} . \tag{3.27}
\end{equation*}
$$

Using (3.27), we get the following sufficient condition when checking (3.26):

$$
\begin{equation*}
\frac{\left(c_{2} 4^{p}\left[2^{p}+c_{1}\right] 2^{(1+(p / n)) p}\right)^{n / p} 2^{(1+(p / n)) n n / p}}{(R-r)^{n}} \sum_{\alpha=1}^{N} \int_{B\left(x_{0}, R\right)}\left(\max \left\{v^{\alpha} ; 0\right\}\right)^{p} \leq d^{p} \tag{3.28}
\end{equation*}
$$

Then, we fix d verifying (3.28) and $L_{0} \leq d$; then (3.24) is satisfied and (3.23) holds true. We keep in mind that $r<\rho_{i}$ and $k_{i}<2 d$, so we can use (3.16) with $r_{2}=r<\rho_{i}, L=2 d$ and $\tilde{L}=k_{i}$:

$$
\begin{equation*}
\int_{\left\{v^{\alpha}>2 d\right\} \cap B\left(x_{0}, r\right)}\left(v^{\alpha}-2 d\right)^{p} \leq \int_{\left\{v^{\alpha}>k_{i}\right\} \cap B\left(x_{0}, r\right)}\left(v^{\alpha}-k_{i}\right)^{p} \leq \int_{\left\{v^{\alpha}>k_{i}\right\} \cap B\left(x_{0}, \rho_{i}\right)}\left(v^{\alpha}-k_{i}\right)^{p}, \tag{3.29}
\end{equation*}
$$

so that

$$
\begin{equation*}
0 \leq \sum_{\alpha=1}^{N} \int_{\left\{v^{\alpha}>2 d\right\} \cap B\left(x_{0}, r\right)}\left(v^{\alpha}-2 d\right)^{p} \leq \sum_{\alpha=1}^{N} \int_{\left\{v^{\alpha}>k_{i}\right\} \cap B\left(x_{0}, \rho_{i}\right)}\left(v^{\alpha}-k_{i}\right)^{p}=J_{i} \tag{3.30}
\end{equation*}
$$

since (3.23) holds true, we have $\lim _{i} J_{i}=0$, so

$$
\begin{equation*}
\sum_{\alpha=1}^{N} \int_{\left\{v^{\alpha}>2 d\right\} \cap B\left(x_{0}, r\right)}\left(v^{\alpha}-2 d\right)^{p}=0 \tag{3.31}
\end{equation*}
$$

this means that $\left|\left\{v^{\alpha}>2 d\right\} \cap B\left(x_{0}, r\right)\right|=0$, so that

$$
\begin{equation*}
v^{\alpha} \leq 2 d \quad \text { almost everywhere in } B\left(x_{0}, r\right) . \tag{3.32}
\end{equation*}
$$

Level d can be selected as follows

$$
d=\max \left\{L_{0} ;\left(\frac{\left(c_{2} 4^{p}\left[2^{p}+c_{1}\right] 2^{(1+(p / n)) p}\right)^{n / p} 2^{(1+(p / n)) n n / p}}{(R-r)^{n}} \sum_{\beta=1}^{N} \int_{B\left(x_{0}, R\right)}\left(\max \left\{v^{\beta} ; 0\right\}\right)^{p}\right)^{1 / p}\right\}
$$

and claim (3.9) is proved after noting that $\left(4^{p} 2^{(1+(p / n)) p}\right)^{n / p} 2^{(1+(p / n)) n n / p}=2^{4 n+p+n n / p}$ and $c_{2}=[(n-1) p /(n-$ $p)]^{p}$. This ends the proof of Lemma 3.2.

STEP 3. Proof of Theorem 2.3

Caccioppoli inequality proved in Lemma 3.1 allows us to use Lemma 3.2 with $v^{\alpha}=\left|u^{\alpha}\right|, p=2$ and $c_{1}=$ $\frac{16 c^{2} n^{4} N^{4}}{v^{2}}$: this gives estimate (2.3) and the proof of Theorem 2.3 ends here.

Remark 3.3. In the present work we used a test function φ that modifies every component of u; this gives the summation on the index α in Caccioppoli's inequality (3.1). In [4], [1] and [3] only one component of u is modified and a Caccioppoli's inequality without the summation on α is proved.

Moreover, the Caccioppoli's inequality proved in [4] and [1] has an exponent p^{*} on the right-hand side in contrast with the same p that we have on both sides of (3.8), see also [30], [9], [2], [5], [14], [15], [16].

Remark 3.4. In [22] it is used $\max \left\{u^{\alpha}-L ; 0\right\}$ in the test function φ, see Figure 2 (left), while in the present paper we use $G_{L}\left(u^{\alpha}\right)$ instead, see Figure 2 (right). Such a function $G_{L}\left(u^{\alpha}\right)$ allows us to deal with support larger than in [22] for off diagonal coefficients.

Fig. 2: (left) graph of $u^{\alpha} \rightarrow \max \left\{u^{\alpha}-L ; 0\right\}$; (right) graph of $u^{\alpha} \rightarrow G_{L}\left(u^{\alpha}\right)$.

Acknowledgement: Leonardi has been supported by Piano della Ricerca di Ateneo 2020-2022-PIACERI: Project MO.S.A.I.C. "Monitoraggio satellitare, modellazioni matematiche e soluzioni architettoniche e urbane per lo studio, la previsione e la mitigazione delle isole di calore urbano".

Leonetti acknowledges the support from RIA-UNIVAQ.
Leonardi and Leonetti have been partially supported by the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

Rocha and Staicu acknowledge the partial support by the Portuguese Foundation for Science and Technology (FCT), through CIDMA - Center for Research and Development in Mathematics and Applications, within project UID/MAT/04106/2019(CIDMA).

Conflict of interest statement. Authors state no conflict of interest.

References

[1] M. Carozza, H. Gao, R. Giova, F. Leonetti: A boundedness result for minimizers of some polyconvex integrals, J. Optim. Theory Appl. 178 (2018), 699-725.
[2] A. Cianchi: Local boundedness of minimizers of anisotropic functionals, Ann. Inst. H. Poincaré, Anal. Non Lineaire 17 (2000), 147-168.
[3] G. Cupini, M. Focardi, F. Leonetti, E. Mascolo: On the Hölder continuity for a class of vectorial problems, Adv. Nonlinear Anal., 9 (2020), no. 1, 1008-1025.
[4] G. Cupini, F. Leonetti, E. Mascolo: Local boundedness for minimizers of some polyconvex integrals, Arch. Ration. Mech. Anal. 224 (2017), 269-289.
[5] G. Cupini, P. Marcellini, E. Mascolo: Regularity of minimizers under limit growth conditions, Nonlinear Anal. 153 (2017), 294-310.
[6] E. De Giorgi: Un esempio di estremali discontinue per un problema variazionale di tipo ellittico, Boll. Un. Mat. Ital. (4) 1 (1968) 135-137.
[7] P. Di Geronimo, F. Leonetti, M. Macrì, P. V. Petricca: Existence of bounded solutions for some quasilinear degenerate elliptic systems, Minimax Theory and its Applications, 6 n. 2 (2021) 321-340.
[8] L. Esposito, F. Leonetti, G. Mingione: Regularity for minimizers of functionals with p - q growth, NoDEA Nonlinear Differential Equations Appl., 6 (1999) 133-148.
[9] N. Fusco, C. Sbordone: Some remarks on the regularity of minima of anisotropic integrals, Comm. Partial Differential Equations, 18 (1993) 153-167.
[10] H. Gao, M. Huang, H. Deng, W. Ren: Global integrability for solutions to quasilinear elliptic systems, Manuscripta Math. 164 (2021) 23-37.
[11] H. Gao, H. Deng, M. Huang, W. Ren: Generalizations of Stampacchia Lemma and applications to quasilinear elliptic systems, Nonlinear Anal. 208 (2021).
[12] M. Giaquinta: Multiple integrals in the calculus of variations and nonlinear elliptic systems, Princeton, Princeton Univ. Press, (1983).
[13] E. Giusti: Direct methods in the calculus of variations, World Scientific Publishing Co., Inc., River Edge, NJ (2003).
[14] T. Granucci, M. Randolfi: Local boundedness of quasi-minimizers of fully anisotropic scalar variational problems, Manuscripta Math. 160 (2019) 99-152.
[15] J. Hirsch, M. Schaffner: Growth conditions and regularity: an optimal local boundedness result, Commun. Contemp. Math. 23 (2021) https://doi.org/10.1142/S0219199720500297
[16] A. Karppinen, M. Lee: to appear.
[17] A. I. Koshelev: Regularity problem for quasilinear elliptic and parabolic systems, Springer, Berlin (1995).
[18] J. Kottas: Interior regularity for the quasilinear elliptic systems with nonsmooth coefficients, Comm. Math. Univ. Carolinae 28 (1997) 95-102.
[19] S. Leonardi, J. Kottas, J. Stara: Hölder regularity of the solutions of some classes of elliptic systems in convex nonsmooth domains, Nonlinear Anal. 60 (2005) 925-944.
[20] S. Leonardi: On constants of some regularity theorems. De Giorgi's type counterexample, Math. Nachr. 192 (1998) 191204.
[21] S. Leonardi, F. Leonetti, C. Pignotti, E. Rocha, V. Staicu: Maximum principles for some quasilinear elliptic systems, Nonlinear Anal. 194 (2020), doi.org/10.1016/j.na.2018.11.004
[22] S. Leonardi, F. Leonetti, C. Pignotti, E. Rocha, V. Staicu: Local boundedness for weak solutions to some quasilinear elliptic systems, Minimax Theory and its Applications, 6, n. 2 (2021) 365-372.
[23] F. Leonetti, E. Rocha, V. Staicu: Quasilinear elliptic systems with measure data, Nonlinear Anal. 154 (2017) 210-224.
[24] F. Leonetti, E. Rocha, V. Staicu: Smallness and cancellation in some elliptic systems with measure data, J. Math. Anal. Appl. 465 (2018) 885-902.
[25] S. Liang, S. Zheng, Gradient estimate of a variable power for nonlinear elliptic equations with Orlicz growth, Adv. Nonlinear Anal., 10 (2021), no. 1, 172-193
[26] M. Meier: Boundedness and integrability properties of weak solutions of quasilinear elliptic systems, J. Reine Angew. Math. 333 (1982) 191-220.
[27] G. Mingione: Regularity of minima: an invitation to the dark side of the calculus of variations, Appl. Math. 51 (2006) 355426.
[28] G. Mingione, V. Radulescu: Recent developments in problems with nonstandard growth and nonuniform ellipticity, J. Math. Anal. Appl. 501 (2021), no. 1, 125197, 41 pp.
[29] C. Mooney, O. Savin: Some singular minimizers in low dimensions in the calculus of variations, Arch. Rational Mech. Anal. 221 (2016) 1-22.
[30] G. Moscariello, L. Nania: Hölder continuity of minimizers of functionals with non standard growth conditions, Ricerche Mat. 40 (1991), 259-273.
[31] J. Necas: On the regularity of weak solutions to nonlinear elliptic systems of partial differential equations, Lectures at Scuola Normale Superiore, Pisa (1979).
[32] P. Podio Guidugli: De Giorgi's counterexample in elasticity, Quart. Appl. Math. 34 (1977) 411-419.
[33] Z. Q. Yan: Everywhere regularity for solutions to quasilinear elliptic systems of triangular form, Partial differential equations (Tianjin, 1986), Lecture Notes in Math., 1306, Springer, Berlin, 1988, 255-261.

[^0]: *Corresponding Author: Salvatore Leonardi, DMI - Department of Mathematics and Informatics, University of Catania, Viale A. Doria 6, 95125 Catania, Italy, E-mail: leonardi@dmi.unict.it
 Francesco Leonetti, DISIM - Department of Information Engineering, Computer Science and Mathematics, University of L'Aquila, Via Vetoio snc - Coppito, 67100 L’Aquila, Italy, E-mail: leonetti@univaq.it
 Eugenio Rocha, Vasile Staicu, CIDMA - Center for Research and Development in Mathematics and Applications, Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal, E-mail: eugenio@ua.pt, vasile@ua.pt

