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Abstract
In this paper we establish a multiplicity result for a class of unilateral, nonlinear, nonlo-
cal problems with nonsmooth potential (variational-hemivariational inequalities), using the
degree map of multivalued perturbations of fractional nonlinear operators of monotone type,
the fact that the degree at a local minimizer of the corresponding Euler functional is equal
one, and controlling the degree at small balls and at big balls.
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1 Introduction

Over the past few years, nonlocal operators have taken increasing importance, due to the
fact that they appear in a number of applications, in such fields as game theory, finance,
image processing, and optimization, see [2, 7, 9, 41] and the references therein.

One of these operators is the fractional p-Laplacian, with p ∈ (1,∞), a nonlinear and
nonlocal operator, defined by

(−�)sp u(x) = 2 lim
ε→0+

∫
RN \Bε(x)

|u(x) − u(y)|p−2(u(x) − u(y))

|x − y|N+ps
dy, (1.1)
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for s ∈ (0, 1) and any sufficiently smooth function u : RN → R and all x ∈ R
N . In the

linear case, p = 2, the (1.1) gives the fractional Laplacian up to a dimensional constant
C(N, p, s) > 0 (see [8, 19]).

In [44] Teng studies hemivariational inequalities driven by nonlocal elliptic operator
and he shows the existence of two nontrivial solutions, by applying critical point theory
for nonsmooth functionals, while in [42] Servadei and Valdinoci prove Lewy-Stampacchia
type estimates for variational inequalities driven by nonlocal operators. In [45] Xiang con-
siders a variational inequality involving nonlocal elliptic operators, proving the existence
of one solution, by exploiting variational methods combined with a penalization technique
and Schauder’s fixed point theorem. In [1] Aizicovici, Papageorgiou and Staicu study the
degree theory for the operator ∂Cϕ + ∂ψ , where ∂Cϕ is the Clarke generalized subdifferen-
tial of a locally Lipschitz functional ϕ, and ∂ψ is the subdifferential in the sense of convex
analysis of a proper, convex and lower semicontinuous functional ψ . Their result regards
the degree of an isolated minimizer for Euler functionals of the form ϕ + ψ and allows
to study nonlinear variational inequalities with a nonsmooth potential function (variational-
hemivariational inequalities). In the last decade hemivariational inequalities have been
actively studied through employing the techniques of nonlinear analysis (including degree
theory and minimax methods), see [11, 31, 35, 36, 39] and the references therein. Further-
more hemivariational inequalities can be naturally applied in problems of mechanics and
engineering, taking into account more realistic laws which involve multivalued (nonsmooth
potential) and nonmonotone (nonconvex potential) operators, see [35].

A natural obstacle problem is given by an elastic membrane, with vertical movement u

on a domain �, which is bound to its boundary (u = 0 along ∂�) and it is forced to stay
below some obstacle (u ≥ γ ). Afterwards, at the equilibrium, everytime the membrane
does not come into contact with the obstacle, the elasticity provides a balance of the tension
of the membrane, that, geometrically, reflects into a balance of the principal curvatures
of the surface described by u. At the same time, whenever the membrane sticks to the
obstacle, its principal curvatures are supposed to adapt to those of γ . In addition, when an
external force w appears, the elastic tension of the membrane will balance up the force.
These physical arguments are reflected in the following variational inequality in the case of
Laplacian operator∫

�

∇u(x)(∇v(x) − ∇u(x)) dx ≥
∫

�

w(x)(v(x) − u(x)) dx (1.2)

for any test function v, with v ≥ γ and v = 0 along ∂� (see [42]). While in the case of
p-Laplacian operator, looking at nonlinear elastic reactions of the membrane, the inequality
becomes the following∫

�

|∇u|p−2∇u(x)(∇v(x) − ∇u(x)) dx ≥
∫

�

w(x)(v(x) − u(x)) dx

with p ∈ (1,∞) (see [1, 13, 40]). Likewise, one may take into account the long range
interactions of particles, changing the local elastic reaction in (1.2) with a nonlocal one, for
example substituting the Laplacian with the fractional Laplacian, hence (1.2) becomes the
following nonlocal variational inequality∫

R2N

(u(x) − u(y))(v(x) − v(y) − u(x) + u(y))

|x − y|N+2s
dxdy ≥

∫
�

w(x)(v(x) − u(x)) dx.

These type of obstacle problems have been intensively investigated in [10, 32, 43] and in
[29, 30, 42] for other integrodifferential kernels.
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Motivated by the above mentioned works, in this paper we study the following obstacle
problem at zero driven by the fractional p-Laplacian operator⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫
R2N

(u(x)−u(y))p−1(v(x)−v(y)−u(x)+u(y))

|x−y|N+ps dxdy

≥ ∫
�

w(x)(v(x) − u(x)) dx for all v ∈ W
s,p

0 (�)+,
w(x) ∈ N(u) = {w̃ ∈ Lp′

(�) : w̃(x) ∈ ∂Cj (x, u(x)) for a.e. x ∈ �},
u ∈ W

s,p

0 (�)+,
(
1
p

+ 1
p′ = 1

)
,

(1.3)

where � ⊆ R
N , N > 1, is a bounded domain with a C1,1−boundary ∂�, j is a nonsmooth

potential that satisfies suitable assumptions (see (H) from Section 4), and W
s,p

0 (�) is the
fractional Sobolev space (that will be defined later). The main result of this paper is the
following:

Theorem 1.1 If assumptions (H) hold, then the problem (1.3) admits at least two nontrivial
solutions u0, û ∈ W

s,p

0 (�).

In order to prove it we used a combination of degree theory, based on the degree map
for specific multivalued perturbations of (S)+− nonlinear operators (see [1, 23]), and vari-
ational methods, we are able to prove that problem (1.3) admits at least two nontrivial
solutions.

The paper has the following structure: in Section 2 we collect some basic notions from
nonsmooth critical point theory, as well as some useful results on the degree theory, while
in Section 3 we gather the results concerning the fractional weighted eigenvalue problem.
In Section 4 we consider the obstacle problem at zero and we show our main result.

2 Preliminaries

In this section, we collect some basic definitions and results from nonsmooth and nonlinear
analysis, as well as some useful results on the degree theory, which we will be required for
our purposes (see [1, 3, 14, 16, 17, 21, 46]).

Let (X, ‖·‖) be a reflexive Banach space and (X∗, ‖·‖∗) be its topological dual. We
denote by 〈·, ·〉 the duality pairing between X∗ and X, and by 2X \ {∅} the family of all
nonempty subsets of X.

By 	0(X) we indicate the cone of all proper (not identically +∞), convex and lower
semicontinuous functions ψ : X → R ∪ {+∞}.

Let C be a nonempty, closed convex subset of X, the indicator function of C is defined
by

iC : X → R ∪ {+∞} iC(u) =
{
0 if u ∈ C,

+∞ if u /∈ C.

If C �= ∅, then iC ∈ 	0(X).
Given ψ ∈ 	0(X), the subdifferential of ψ in the sense of convex analysis is the

multifunction ∂ψ : X → 2X∗
given by

∂ψ(u) = {
u∗ ∈ X∗ : 〈

u∗, v − u
〉 ≤ ψ(v) − ψ(u) for all v ∈ X

}
.

Regarding the properties of the subdifferential of ψ in the sense of convex analysis, we
refer the reader to [33] and the references therein. We stress that if ψ ∈ 	0(X) is Gâteaux
differentiable at u ∈ X, then ∂ψ(u) = {

ψ ′(u)
}
. Moreover we note that the subdifferential
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in the sense of convex analysis ∂ψ : X → 2X∗
of a function ψ ∈ 	0 (X) is a maximal

monotone operator.
If ψ coincides with iC , the indicator function of C ⊆ X, then we obtain a closed convex

cone, called the normal cone to C at u, defined by

∂iC(u) =
{
u∗ ∈ X∗ : 〈

u∗, u
〉 = σ(u∗; C) = sup

v∈C

〈
u∗, v

〉}
.

A function ϕ : X → R is said to be locally Lipschitz, if for every u ∈ X there exist a
neighborhood U of u and L > 0 such that

|ϕ (v) − ϕ (w)| ≤ L ‖v − w‖ for all v, w ∈ U .

For such function ϕ, we define the generalized directional derivative of ϕ at u along v ∈ X

in the following way

ϕ0 (u; v) = lim sup
u′→u,λ→0+

ϕ
(
u′ + λv

) − ϕ
(
u′)

λ
,

(see [21, Propositions 1.3.7]). The Clarke generalized subdifferential of ϕ at u is the set

∂Cϕ(u) = {
u∗ ∈ X∗ : 〈u∗, v〉 ≤ ϕ◦(u; v) for all v ∈ X

}
.

If ϕ is continuous and convex, then ϕ is locally Lipschitz and the generalized and convex
subdifferentials coincide.

We say that u is a critical point of ϕ if 0 ∈ ∂Cϕ(u). The following Lemma states some
useful properties about ∂Cϕ, see [21, Propositions 1.3.8-1.3.12].

Lemma 2.1 If ϕ, ψ : X → R are locally Lipschitz continuous, then

(i) ∂Cϕ(u) is convex, closed and weakly∗ compact for all u ∈ X;
(ii) the multifunction ∂Cϕ : X → 2X∗

is upper semicontinuous with respect to the weak∗
topology on X∗;

(iii) if ϕ ∈ C1(X), then ∂Cϕ(u) = {ϕ′(u)} for all u ∈ X;
(iv) ∂C(λϕ)(u) = λ∂Cϕ(u) for all λ ∈ R, u ∈ X;
(v) ∂C(ϕ + ψ)(u) ⊆ ∂Cϕ(u) + ∂Cψ(u) for all u ∈ X;
(vi) if u is a local minimizer (or maximizer) of ϕ, then 0 ∈ ∂Cϕ(u).

In the sequel we focus on the study of critical points of the functional ϕ + ψ , for this
purpose we mention the following facts (see [28, 34]).

Definition 2.2 Let ϕ : X → R be a locally Lipschitz functional and ψ : X → R ∪ {∞} be
proper, convex and lower semicontinuous. We say that u ∈ X is a critical point of ϕ + ψ if

ϕ0(u; v − u) + ψ(v) − ψ(u) ≥ 0 ∀v ∈ X,

where ϕ0(u; z) is the generalized directional derivative of ϕ at the point u ∈ X in the
direction z ∈ X.

Proposition 2.3 An element u ∈ X is a critical point of ϕ + ψ if and only if 0 ∈ ∂Cϕ(u) +
∂ψ(u), where ∂Cϕ is the Clarke generalized subdifferential and ∂ψ is the subdifferential in
the sense of convex analysis.

Now, we introduce the degree map that we will use in the sequel. For a fuller treatment
we refer the reader to [1, 6, 23, 33] and the references therein.
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Since X is a reflexive Banach space, by the Troyanski renorming theorem (see [21, The-
orem A.3.9]), we can equivalently renorm X in such a way that both X and X∗ are
locally uniformly convex with Fréchet differentiable norms. Therefore, in the following, we
suppose that both X and X∗ are reflexive and locally uniformly convex.

From [33, Theorem 2.46, Proposition 2.70], the duality map F : X → X∗, defined by

F(u) =
{
u∗ ∈ X∗ : 〈

u∗, u
〉 = ‖u‖2 = ∥∥u∗∥∥2∗

}
,

is single-valued, strictly monotone, a homeomorphism and a (S)+- operator.
An operator A : X → X∗ satisfies the (S)+-property if for every sequence (un)n ⊆ X

such that
un ⇀ u in X and lim sup

n→∞
〈A(un), un − u〉 ≤ 0,

it follows that
un → u in X.

A multifunction G : X → 2X∗
belongs to class (P ) if it is upper semicontinuous with

closed, convex nonempty values and such that

G(A) =
⋃
u∈A

G(u)

is relatively compact in X∗ for any bounded subset U of X.
Let U be a bounded open subset in X, S : U → X∗ a bounded, demicontinuous operator

of type (S)+ and A : D(A) ⊆ X → 2X∗\ {∅} a maximal monotone operator with 0 ∈ A(0),
then for every λ > 0, the operator S + Aλ is a bounded, demicontinuous operator of type
(S)+. For every u∗ /∈ (S + A)(∂U), deg0(S + A,U, u∗) is defined by

deg0(S + A,U, u∗) = deg(S)+(S + Aλ, U, u∗)

for all sufficiently small λ > 0, where Aλ(u) = − 1
λ
F(v − u) is everywhere defined, single

valued, bounded and monotone.
In addition we have a multifunction G in the class (P ), then for u∗ /∈ (S + A + G)(∂U),

deg(S + A + G,U, u∗) is defined by
deg(S + A + G,U, u∗) = deg0(S + A + gε, U, u∗)

for ε > 0 small, where gε is a continuous ε−approximate selection of G (see [12, Cellina’s
approximate selection Theorem], [24, Theorem 4.41]).

Concerning the degree maps deg(S)+ and deg0 we refer the reader to [6], while for the
degree map deg we refer to [23]. The degree map preserves the usual properties: normal-
ization, domain additivity, homotopy invariance, excision and solution property. One of
such properties is the homotopy invariance with respect to a certain class of admissible
homotopies. Now we introduce the admissible homotopies for the maps S, A and G (see
[1]).

Definition 2.4 The admissible homotopies for the maps S, A and G are defined in the
following way.

• A one-parameter family {St }t∈[0,1] of maps from U into X∗ is a homotopy of class
(S)+, if for any (un)n ⊆ U such that un ⇀ u in X, and for any (tn)n ⊆ [0, 1] with
tn → t for which

lim sup
n→∞

〈
Stn(un), un − u

〉 ≤ 0,

we have that un → u in X and Stn(un) ⇀ St (u) in X∗.
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• A family {At }t∈[0,1] of maximal monotone maps from X into X∗ such that (0, 0) ∈
GrAt (graph of At ) for all t ∈ [0, 1] is a pseudomonotone homotopy, if it satisfies the
following mutually equivalent conditions

– if tn → t in [0, 1], un ⇀ u in X, u∗
n ⇀ u∗ in X∗, u∗

n ∈ Atn(un) and

lim sup
n→∞

〈
u∗

n, un − u
〉 ≤ 0,

then (u, u∗) ∈ GrAt and
〈
u∗

n, un

〉 → 〈u∗, u〉;
– (t, u∗) �→ ξ(t, u∗) = (

At + F
)−1

(u∗) is continuous from [0, 1] × X∗ into
X, where both X and X∗ are equipped with their respective norm topologies;

– for every u∗ ∈ X∗, t �→ ξ(t, u∗) = (
At + F

)−1
(u∗) is continuous from

[0, 1] into X endowed with the norm topology;
– if tn → t in [0, 1] and u∗ ∈ At(u), then there exist sequences (un)n and (u∗

n)n
such that u∗

n ∈ Atn(un), un → u in X and u∗
n → u∗ in X∗.

• A one-parameter family {Gt }t∈[0,1] of multifunctions Gt : U → 2X∗\ {∅} is a homo-
topy of class (P ) if (t, u) �→ Gt(u) is usc from [0, 1] × U into 2X∗\ {∅}, for every
(t, u) ∈ [0, 1] × U , Gt(u) ⊆ X∗ is closed and convex and

⋃ {
Gt(u) : t ∈ [0, 1], u ∈ U

}

is compact in X∗.

Therefore the homotopy invariance of the degree map “deg”, can be expressed in the
following way.

If {St }t∈[0,1] is a homotopy of class (S)+ such that each St is bounded, {At }t∈[0,1] is a
pseudomonotone homotopy of maximal monotone operators with 0 ∈ At(0) for all t ∈
[0, 1], {Gt }t∈[0,1] is a homotopy of class (P ) and u∗ : [0, 1] → X∗ is a continuous map
such that

u∗
t /∈ (St + At + Gt) (∂U)

for all t ∈ [0, 1], then deg(St + At + Gt, U, u∗
t ) is independent of t ∈ [0, 1]. (This is the

meaning of admissible homotopy for us in this paper.)
Now, we identify another class of pseudomonotone homotopies (see [1, Lemma 15]).

Lemma 2.5 Let A : X → X∗ be a bounded demicontinuous operator of type (S)+ and
ψ ∈ 	0(X). Then

(t, u) �→ h(t, u) = A(u) + t∂ψ(u), (t, u) ∈ [0, 1] × X

is a pseudomonotone homotopy.

3 Fractional Weighted Eigenvalue Problems

Let � ⊆ R
N(N > 1), be a bounded domain with a C1,1−boundary ∂�, p > 1 and

s ∈ (0, 1) are real numbers such that N > ps. In this section we focus on the study of the
following weighted fractional eigenvalue problem (see [15, 22]){

(−�)sp u = λm(x)|u|p−2u in �,

u = 0 on �c,
(3.1)
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where m ∈ L∞(�)+, m �= 0 is a weight function, λ a real parameter and �c = R
N \ �.

The Dirichlet boundary condition is given in �c and not simply on ∂�, accordingly with the
nonlocal character of the operator (−�)sp . For all 1 ≤ q ≤ ∞, ‖ · ‖q denotes the standard

norm of Lq(�) (or Lq(RN)), which will be clear from the context.
As a first step, we fix a functional-analytical framework. For all measurable functions

u : RN → R we set

[u]ps,p =
∫
R2N

|u(x) − u(y)|p
|x − y|N+ps

dxdy.

Then we define the fractional Sobolev spaces (see [19]) as follows

Ws,p(RN) = {u ∈ Lp(RN) : [u]s,p < ∞},
W

s,p

0 (�) = {u ∈ Ws,p(RN) : u(x) = 0 a.e. in �c},
this last one is a separable, uniformly convex (hence, reflexive) Banach space, endowed
with the norm ||u|| = [u]s,p . We denote by (W−s,p′

(�), || · ||∗) the topological dual of
(W

s,p

0 (�), || · ||) and by 〈·, ·〉 the duality pairing between W−s,p′
(�) and W

s,p

0 (�). The

critical exponent is defined as p∗
s = Np

N−ps
, and the embedding W

s,p

0 (�) ↪→ Lq(�) is
continuous for all q ∈ [1, p∗

s ] and compact for all q ∈ [1, p∗
s ) (in particular, we will use

q = p), see [19, Corollary 7.2]. Furthermore, we introduce the positive order cone

W
s,p

0 (�)+ = {u ∈ W
s,p

0 (�) : u(x) ≥ 0 for a.e. x ∈ �},
which has an empty interior with respect to the W

s,p

0 (�)− topology.

Remark 3.1 Since W
s,p

0 (�) is a reflexive Banach space, applying the Troyanski’s renorm-

ing theorem, such space can be equivalently renormed so that both W
s,p

0 (�) and W−s,p′
(�)

are locally uniformly convex (and thus also strictly convex) and with Fréchet differentiable
norms.

The operator (−�)sp can be represented by the nonlinear operator A : W
s,p

0 (�) →
W−s,p′

(�) defined for all u, v ∈ W
s,p

0 (�) by

〈A(u), v〉 =
∫
R2N

(u(x) − u(y))p−1(v(x) − v(y))

|x − y|N+ps
dxdy. (3.2)

Moreover, we define the operators J̃λ,Km : W
s,p

0 (�) → W−s,p′
(�) by

〈Km(u), v〉 =
∫

�

m(x)|u(x)|p−2u(x)v(x) dx, with m ∈ L∞(�)+,m �= 0, (3.3)

〈J̃λ(u), v〉 = 〈A(u) − λKm(u), v〉, with λ ∈ R, (3.4)

for any v ∈ W
s,p

0 (�). In the sequel we will change the function m in (3.3) with a suitable
function, but the definition of the operator K(·) remains the same. In the following lemma
some important features of such operators are stated.

Lemma 3.2 The operators A,Km, J̃λ : W
s,p

0 (�) → W−s,p′
(�), defined above, satisfy the

following properties:

(i) A : W
s,p

0 (�) → W−s,p′
(�) is a maximal monotone, bounded and continuous

operator of type (S)+,
(ii) Km : W

s,p

0 (�) → W−s,p′
(�) is a bounded, continuous and compact operator,
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(iii) J̃λ : W
s,p

0 (�) → W−s,p′
(�) is a bounded, continuous operator that satisfies the

condition (S)+ .

Proof We start proving the first assertion. The operator A is odd, (p − 1)− homogeneous,
and satisfies for all u ∈ W

s,p

0 (�)

〈A(u), u〉 = ||u||p, ||A(u)||∗ ≤ ||u||p−1.

Hence, A is bounded (see [25]). Since W
s,p

0 (�) is uniformly convex, by [37, Proposition
1.3], A is an operator of type (S)+. Now we show that A is a continuous operator. In order
to do this, we define a support mapping f (u) = A(u)

||u||p−2 for every u ∈ ∂B1(0) ⊂ W
s,p

0 (�)

(for definition and properties we refer the reader to [18]). Recalling Remark 3.1, we obtain
that the norm of W−s,p′

(�) is Fréchet differentiable and, applying [18, Theorem 1], we
obtain that f : ∂B1(0) ⊂ W

s,p

0 (�) → ∂B1(0) ⊂ W−s,p′
(�) is continuous. Hence, by

definition of f , A is continuous in W
s,p

0 (�) \ {0}. Indeed, we suppose that vn = un||un||
strongly converges to v = u

||u|| in W
s,p

0 (�). Hence,

A(un) = A(||un||vn) = ||un||p−1A(vn) = ||un||p−1f (vn) → ||u||p−1f (v)

= ||u||p−1f
(

u
||u||

)
= ||u||p−2f (u) = A(u)

as n goes to infinity. The continuity in the origin is trivial, then A is continuous in the whole
space W

s,p

0 (�). By [38, Lemma 3.3], A is strictly monotone and by [21, Corollary 1.4.2] it
is maximal monotone.

Now we show the second point. By Schwarz and Hölder inequalities, we get
|〈Km(u), v〉| ≤ ||m||∞||u||p−1||v||, hence ||Km(u)||∗ ≤ c||u||p−1. Therefore, Km is
bounded. Let (un)n ⊂ W

s,p

0 (�) be bounded, we may assume, passing to a subsequence,
un ⇀ u in W

s,p

0 (�), un → u in Lp(�), hence, by [5, Theorem 4.9], up to a subsequence,
un(x) → u(x) a.e. on � and |un(x)| ≤ h(x) a.e. on �, with h ∈ Lp(�). Now, applying the
dominated convergence Theorem, we obtain that

〈Km(un), v〉 → 〈Km(u), v〉 as n → ∞.

Hence, Km is compact. Similarly, we see that Km is also continuous.
Using the previous fact, we get the third assertion. From (i) and (ii) we obtain that J̃λ is

a bounded, continuous operator. Moreover, by [20, Lemma 1.2] and using again (i)-(ii) we
get that J̃λ is an operator of type (S)+.

Definition 3.3 A function u ∈ W
s,p

0 (�) is called a (weak) solution of (3.1) if for all v ∈
W

s,p

0 (�), we have

〈A(u), v〉 = λ〈Km(u), v〉.
In an equivalent way, u ∈ W

s,p

0 (�) solves (3.1) if J̃λ(u) = 0 in W−s,p′
(�).

We say that λ is an eigenvalue of (−�)sp related to the weight m if (3.1) has a nontrivial
solution u ∈ W

s,p

0 (�) \ {0} and such solution u is called an eigenfunction corresponding
to the eigenvalue λ. In the following proposition we focus on the properties of the first
eigenpair of (3.1), that will be required in the sequel to prove our main result (see [15, 22]).



The Obstacle Problem at Zero for the Fractional p-Laplacian

Proposition 3.4 Let m ∈ L∞(�)+, m �= 0. The first eigenvalue is given by

λ1(m) = inf
u∈W

s,p
0 (�)\{0}

||u||p∫
�

m(x)|u|p dx
.

Then,

(i) λ1(m) is positive, simple, isolated and it is attained by some positive a.e. eigenfunc-
tion u1 ∈ W

s,p

0 (�) such that
∫
�

m(x)u
p

1 dx = 1;
(ii) if u is an eigenfunction of (3.1) associated with an eigenvalue λ > λ1(m), then u

must be nodal (sign-changing);
(iii) the first eigenfunction satisfies the so-called unique continuation property (u.c.p.)

and hence, we have the strict monotonicity of the map m �→ λ1(m).

Proof We refer to [15, 22] for the proof of i) and ii).
We show the third point. Let m1,m2 ∈ L∞(�)+ be such that m1, m2 �= 0, m1(x) ≤

m2(x) for a.e. x ∈ �, m1 �≡ m2. Let u1 and u2 be the first eigenfunctions corresponding to
the weights m1 and m2, respectively. By i) such eigenfunctions are positive a.e., hence u1
and u2 clearly satisfy the u.c.p. From the definition of λ1, we obtain

λ1(m1) = ||u1||p∫
�

m1(x)u
p

1 dx
>

||u1||p∫
�

m2(x)u
p

1 dx
≥ λ1(m2),

so λ1(m1) > λ1(m2).

When m ≡ 1 we will just write λ1(1) = λ1.
The following result about the degree of the operator J̃λ is fundamental for the sequel,

whose proof closely follows that of [20, Theorem 3.7]. Moreover we point out that J̃λ is a
monotone map, so we can apply the properties of the degree for generalized monotone maps
(see [20]).

Proposition 3.5 Let A, Km, J̃λ : W
s,p

0 (�) → W−s,p′
(�) be defined by (3.2), (3.3), (3.4)

and δ > 0. Then

deg(J̃λ, Br(0), 0) = 1 for λ ∈ (0, λ1(m)),

and

deg(J̃λ, Br(0), 0) = −1 for λ ∈ (λ1(m), λ1(m) + δ).

Proof From the variational characterization of λ1(m) we have that

〈J̃λ(u), u〉 > 0,

for λ ∈ (0, λ1(m)) and any u ∈ W
s,p

0 (�) with ||u|| �= 0. Hence, by [20, Theorem 1.5],
the degree deg(J̃λ, Br(0), 0) is well defined for any λ ∈ (0, λ1(m)) and any ball Br(0) ⊂
W

s,p

0 (�), moreover, applying [20, Theorem 1.6], we obtain

deg(J̃λ, Br(0), 0) = 1 for λ ∈ (0, λ1(m)).

Now we show that deg(J̃λ, Br(0), 0) = −1 for λ ∈ (λ1(m), λ1(m) + δ). On account of
Proposition 3.4 there exists δ > 0 such that the interval (λ1(m), λ1(m)+δ) does not include
any eigenvalue for the problem (3.1). Therefore the degree deg(J̃λ, Br(0), 0) is well defined
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also for λ ∈ (λ1(m), λ1(m) + δ). Let us compute Ind(J̃λ, 0) for λ ∈ (λ1(m), λ1(m) + δ).
We introduce a function φ : R → R by setting

φ(t) =
{
0 if t ≤ k
2δ

λ1(m)
(t − 2k) if t ≥ 3k,

for a fixed number k > 0. We note that φ(t) is continuously differentiable, positive and
strictly convex in (k, 3k).

Now we can introduce the functional

�λ(u) = 1

p
〈A(u), u〉 − λ

p
〈Km(u), u〉 + φ

(
1

p
〈A(u), u〉

)
,

that is Fréchet differentiable and its critical point u0 ∈ W
s,p

0 (�) coincides to a solution of
the equation

A(u0) − λ

1 + φ′
(
1
p
〈A(u0), u0〉

)Km(u0) = 0.

Nevertheless, since λ ∈ (λ1(m), λ1(m) + δ), the only nontrivial critical points of �λ turn
up if

φ′
(
1

p
〈A(u0), u0〉

)
= λ

λ1(m)
− 1. (3.5)

Owing to the definition of φ it follows that 1
p
〈A(u0), u0〉 ∈ (k, 3k) and because of (3.5)

and the simplicity of λ1(m), it deduces that either u0 = −u1 or u0 = u1, where u1 > 0 is
the first eigenfunction (which is not necessarily normed by 1). Therefore, we may conclude
that for λ ∈ (λ1(m), λ1(m)+ δ) the derivative �′

λ has precisely three isolated critical points
{−u1, 0, u1} (in the sense of [20, Definition 1.2]).

We now show that �λ is weakly lower semicontinuous. Indeed, suppose that un ⇀ ũ0
in W

s,p

0 (�). Owing to the compactness of Km, we get

〈Km(un), un〉 → 〈Km(ũ0), ũ0〉, (3.6)

and recalling that lim infn→∞ ||un|| ≥ ||ũ0||, (3.6) holds, and φ is nondecreasing, we obtain

lim inf
n→∞

[
1

p
〈A(un), un〉 − λ

p
〈Km(un), un〉 + φ

(
1

p
〈A(un), un〉

)]
≥ �λ(ũ0).

Furthermore, �λ is coercive, i.e. lim||u||→∞ �λ(u) = ∞. Indeed, we get

�λ(u) = 1

p
〈A(u), u〉 − λ1(m)

p
〈Km(u), u〉 + λ1(m) − λ

p
〈Km(u), u〉 + φ

(
1

p
〈A(u), u〉

)

and, by the variational characterization of λ1(m),

〈A(u), u〉 − λ1(m)〈Km(u), u〉 ≥ 0 (3.7)

for any u ∈ W
s,p

0 (�). From (3.7) we have that

λ1(m) − λ

p
〈Km(u), u〉 + φ

(
1

p
〈A(u), u〉

)
≥ λ1(m) − λ

pλ1(m)
〈A(u), u〉 + φ

(
1

p
〈A(u), u〉

)

≥ − δ

pλ1(m)
〈A(u), u〉 + 2δ

λ1(m)

(
1

p
〈A(u), u〉 − 2k

)
→ ∞

for ||u|| → ∞ because of the definition of φ. Therefore we obtain the coercivity. We
observe that �λ is even, the minimum of �λ is achieved exactly in two points −u1, u1,
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while the origin is an isolated critical point, but it is not a minimum. Indeed, by definition
of �λ and φ, we get that

�λ(tu1) =
(
1

p
〈A(u1), u1〉 − λ

p
〈Km(u1), u1〉

)
tp + φ

(
tp

p
〈A(u1), u1〉

)

= tp

p
(λ1(m) − λ)〈Km(u1), u1〉 < 0 ∀t ∈ (0, t0).

In accordance with [20, Theorem 1.8] we get

Ind(�′
λ, −u1) = Ind(�′

λ, u1) = 1.

At the same time, we have 〈�′
λ(u), u〉 > 0 for any u ∈ W

s,p

0 (�), ||u|| = κ , with κ > 0
large enough. Indeed

〈�′
λ(u), u〉 = 〈A(u), u〉 − λ〈Km(u), u〉 + φ′

(
1

p
〈A(u), u〉

)
〈A(u), u〉

= 〈A(u), u〉 − λ1(m)〈Km(u), u〉 + φ′
(
1

p
〈A(u), u〉

)

⎛
⎝〈A(u), u〉 − λ − λ1(m)

φ′
(
1
p
〈A(u), u〉

) 〈Km(u), u〉
⎞
⎠

≥ 2δ

λ1(m)

(
〈A(u), u〉 − λ1(m)

p
〈Km(u), u〉

)
→ ∞ as ||u|| → ∞.

We again used the variational characterization of λ1(m) and the definition of φ. Then, [20,
Theorem 1.6] and 〈�′

λ(u), u〉 > 0 imply

deg(�′
λ, Bκ(0), 0) = 1.

We pick κ > 0 so large that ±u1 ∈ Bκ(0). By [20, Theorem 1.7] and Ind(�′
λ,−u1) =

Ind(�′
λ, u1) = 1, and deg(�′

λ, Bκ(0), 0) = 1, we have

Ind(�′
λ, 0) = −1. (3.8)

Furthermore, by the definition of φ, we have

deg(J̃λ, Br(0), 0) = Ind(�′
λ, 0) (3.9)

for r > 0 small enough. Then we deduce from (3.8), (3.9), that

Ind(J̃λ, 0) = −1 for λ ∈ (λ1(m), λ1(m) + δ).

It follows from the previous relations that

deg(J̃λ, Br(0), 0) = −1.

4 The Obstacle Problem at Zero

In this section, we study the obstacle problem at 0 and we show that such problem admits
at least two nontrivial solutions. In order to do this, we need to prove some facts about
the degree theory, extending the results proved in the nonlinear local case in [1]. For this
purpose, let � ⊆ R

N be a bounded domain with a C1,1−boundary ∂�, p > 1 and s ∈
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(0, 1) are real numbers such that N > ps, and recalling (3.2), we can rewrite the obstacle
problem (1.3) at 0 in the following way⎧⎪⎨

⎪⎩
〈A(u), v − u〉 ≥ ∫

�
w(x)(v(x) − u(x)) dx for all v ∈ W

s,p

0 (�)+,
w(x) ∈ N(u) = {w̃ ∈ Lp′

(�) : w̃(x) ∈ ∂Cj (x, u(x)) for a.e. x ∈ �},
u ∈ W

s,p

0 (�)+.
(4.1)

We assume the following hypotheses on the nonsmooth potential

(H): j : � × R → R is a function such that j (·, 0) = 0 a.e. on �, j (·, t) is measurable
in � for all t ∈ R, j (x, ·) is locally Lipschitz in R for a.e. x ∈ �. Moreover

(i) |ξ | ≤ a(x) + c|t |p−1 with a ∈ L∞(�)+, c > 0, for a.e. x ∈ �, all
t ∈ R, and all ξ ∈ ∂Cj (x, t),

(ii) there exists θ ∈ L∞(�)+ such that θ ≤ λ1, θ �≡ λ1, and

0 ≤ lim inf
t→+∞

ξ

tp−1
≤ lim sup

t→+∞
ξ

tp−1
≤ θ(x)

uniformly for a.e. x ∈ � and all ξ ∈ ∂Cj (x, t);
(iii) there exist η, η̂ ∈ L∞(�)+ such that λ1 ≤ η, η �≡ λ1, and

η(x) ≤ lim inf
t→0+

ξ

tp−1
≤ lim sup

t→0+

ξ

tp−1
≤ η̂(x)

uniformly for a.e. x ∈ � and all ξ ∈ ∂Cj (x, t).

Remark 4.1 We denote by λ1 the first eigenvalue of (−�)sp with Dirichlet conditions in �

(see Section 3), hence (H) (ii)-(iii) invoke nonuniform nonresonance conditions at +∞ and
at 0+. The condition at +∞ is from below λ1 and the condition at 0+ is from above with
respect to λ1.

Example 4.2 A nonsmooth locally Lipschitz potential satisfying hypotheses (H) is defined
as follows, which for simplicity we dropped the x−dependence:

j (t) =
{

η
p
|t |p − 1

p
cos |t |p if |t | ≤ 1,

θ
p
|t |p + η−θ

p
− 1

p
cos 1 if |t | > 1,

with θ < λ1 < η.

Now we define the integral functional Ĵ : Lp(�) → R by

Ĵ (u) =
∫

�

j (x, u(x)) dx for all u ∈ Lp(�). (4.2)

From (H) (i) such functional Ĵ is Lipschitz continuous on bounded sets, hence it is locally
Lipschitz (see [21, Theorem 1.3.10]).

Let N : Lp(�) → 2Lp′
(�) be defined by

N(u) = {w ∈ Lp′
(�) : w(x) ∈ ∂Cj (x, u(x)) a.e. on �}, u ∈ Lp(�).

Let us mention an important result about N , for the proof of the following proposition we
refer to [1, Proposition 3, Corollary 4].

Proposition 4.3 Let (H) (i) hold. Therefore
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• N has nonempty, weakly compact and convex values in Lp′
(�) and it is upper

semicontinuous from Lp(�) with the norm topology into Lp′
(�) with the weak

topology.

• Moreover, N : W
s,p

0 (�) → 2W−s,p′
(�) \ {∅} is a multifunction of class (P ).

For the second point we take into account that W
s,p

0 (�) is embedded compactly and

densely in Lp(�), and Lp′
(�) is embedded compactly and densely in W−s,p′

(�).
Now we can introduce the Euler functional associated to problem (4.1), which is given

for u ∈ W
s,p

0 (�) by

ϕ : W
s,p

0 (�) → R ∪ {+∞} ϕ(u) = ϕ̂(u) + ψ(u)

where

ϕ̂(u)= ||u||p
p

−
∫

�

j (x, u(x)) dx and ψ(u)= iWs,p
0 (�)+(u)=

{
0 if u ∈ W

s,p

0 (�)+
+∞ if u /∈ W

s,p

0 (�)+.

From (H) (i), ϕ̂ is locally Lipschitz (see [21, Theorem 1.3.10]). Furthermore, Ws,p

0 (�)+ ⊆
W

s,p

0 (�) is closed, convex, hence ψ ∈ 	0(W
s,p

0 (�)).
The next Lemma emphasizes the importance of the hypothesis (H) (ii) (for the proof we

refer to [27, Proposition 2.9]).

Lemma 4.4 Let θ ∈ L∞(�)+ be such that θ ≤ λ1, θ �≡ λ1, and ψ ∈ C1(W
s,p

0 (�)) be
defined by

τ(u) = ‖u‖p −
∫

�

θ(x)|u|p dx.

Then there exists θ0 ∈ (0,∞) such that for all u ∈ W
s,p

0 (�)

τ(u) ≥ θ0‖u‖p.

The next proposition shows the existence of a minimizer, which belongs to W
s,p

0 (�)+.

Proposition 4.5 Let (H) (i)-(ii) hold, then there exists u0 ∈ W
s,p

0 (�)+ such that

ϕ(u0) = inf
u∈W

s,p
0 (�)

ϕ(u).

Proof By (H) (ii), given ε > 0, there exists Mε > 0 such that for a.e. x ∈ �, all t ≥ Mε

and all ξ ∈ ∂Cj (x, t), we obtain

ξ ≤ (θ(x) + ε)tp−1. (4.3)

Moreover, by (H) (i), we can find βε ∈ L∞(�)+ such that for a.e. x ∈ � , all t ∈ [0, Mε]
and all ξ ∈ ∂Cj (x, t), we get

|ξ | ≤ βε(x). (4.4)

By Rademacher’s theorem for a.e. x ∈ �, j (x, ·) is differentiable almost everywhere and

d

dr
j (x, r) ∈ ∂Cj (x, r).
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Therefore, for a.e. x ∈ � and for all t ≥ 0, we have

j (x, t) =
∫ t

0

d

dr
j (x, r)dr

≤
∫ t

0
[(θ(x) + ε)rp−1 + βε(x)] dr (by (4.3), (4.4))

= 1

p
(θ(x) + ε)tp + βε(x)t . (4.5)

We stress that ϕ coincides with ϕ̂ for all u ∈ W
s,p

0 (�)+, sinceψ(u) = 0. Moreover, by (4.5)
we have for every u ∈ W

s,p

0 (�)+

ϕ(u) = 1

p
||u||p −

∫
�

j (x, u(x)) dx

≥ ‖u‖p

p
−

∫
�

(
βε(x)u + (θ(x) + ε)

|u|p
p

)
dx

≥ 1

p

(
‖u‖p −

∫
�

θ(x)|u|p dx
)

− ‖βε‖∞‖u‖1 − ε

p
‖u‖p

p

≥ 1

p

(
θ0 − ε

λ1

)
‖u‖p − c‖u‖ (θ0, c > 0),

where in the final passage we have used Lemma 4.4, and the continuous embedding
W

s,p

0 (�) ↪→ L1(�). If we choose ε ∈ (0, θ0λ1), the latter tends to +∞ as ‖u‖ → ∞,
hence ϕ is coercive in W

s,p

0 (�).
Moreover, recalling the definition of ϕ, the functional u �→ ‖u‖p/p is convex, hence

weakly lower semicontinuous in W
s,p

0 (�), while Ĵ is continuous in Lp(�), which, by the
compact embeddingW

s,p

0 (�) ↪→ Lp(�) and the Eberlein-Smulyan theorem, implies that Ĵ
is sequentially weakly continuous in W

s,p

0 (�). Hence, ϕ is sequentially weakly lower semi-
continuous on W

s,p

0 (�). Therefore, by the Weierstrass theorem, there exists u0 ∈ W
s,p

0 (�)

such that ϕ(u0) = infu∈W
s,p
0 (�) ϕ(u).

Remark 4.6 By Proposition 4.5 we observe that u0 is a minimizer of ϕ̂, hence, by Lemma
2.1 (vi) 0 ∈ ∂Cϕ̂(u0), i.e. there exists w ∈ N(u0) such that A(u0) = w in W−s,p′

(�). By
[27, Definition 2.4] u0 is a weak solution of (−�)sp u ∈ ∂Cj (x, u) in �, u = 0 in �c.
Moreover, exploiting (H) (i) and (iii), and arguing as in the proof of Proposition 4.8, we
deduce that

|ξ | ≤ c1|t |p−1 for some c1 > 0,

for a.a. x ∈ �, all t ∈ R and all ξ ∈ ∂Cj (x, t). Therefore, from [27, Lemma 2.5], we obtain
that u0 ∈ L∞(�), hence, w ∈ L∞(�). By [27, Lemma 2.7] there exist α ∈ (0, s], C > 0
such that u0 ∈ Cα(�) with ||u0||Cα(�) ≤ C(1+||u0||). In particular, by [26, Theorem 1.1],

if p ≥ 2 then u0 ∈ Cα
δ (�) and it holds the following estimate ||u0||Cα

δ (�) ≤ C(1 + ||u0||),
where Cα

δ (�) = {u ∈ Cα(�) : u/δs ∈ Cα(�)} with α ∈ (0, 1) and δ(x) = dist(x,�c).

A fundamental result for the sequel is a generalization of Amann’s theorem to operators
which are the sum of a Clarke generalized subdifferential and a subdifferential in the sense
of convex analysis, that allow us to know the degree in an isolated local minimum (see
[1, Theorem 8]). In order to do this, it is better clarifying some important facts. First of
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all, we observe that A is the Fréchet derivative of u �→ ||u||p
p

, viewed as a functional on

W
s,p

0 (�), moreover we know by Lemma 3.2 that A is a bounded, (S)+-operator. We set

J = Ĵ |Ws,p
0 (�) and ϕ̂ = ||u||p

p
− J , then it makes sense to talk about the degree of ∂Cϕ̂ =

A − N with

N = ∂CJ = ∂CĴ

(see [21, Proposition 1.3.17], for the last equality). Now we can state the extension of
Amann’s theorem for our problem.

Proposition 4.7 Let ϕ̂ : W
s,p

0 (�) → R ϕ̂(u) = ||u||p
p

− J (u) be locally Lipschitz and

ψ ∈ 	0(W
s,p

0 (�)), ψ ≥ 0. If u0 ∈ W
s,p

0 (�) is an isolated minimizer of ϕ̂ + ψ, then there
exists r > 0 such that

deg(∂Cϕ̂ + ∂ψ, Br(u0), 0) = 1.

Now, exploiting the hypothesis (H) (iii), we prove that for small balls the degree map of
∂Cϕ̂ + ∂ψ is equal to −1.

Proposition 4.8 Let (H) hold. Then there exists ρ0 > 0 such that for all 0 < ρ ≤ ρ0, we
obtain

deg(∂Cϕ̂ + ∂ψ, Bρ(0), 0) = −1.

Proof Let m ∈ L∞(�)+ be such that η(x) ≤ m(x) ≤ η̂(x) a.e. on �. Let look at the

homotopy h : [0, 1] × W
s,p

0 (�) → 2W−s,p′
(�) \ {∅} defined by

h(t, u) = A(u) − tN(u) − (1 − t)Km(u) + t∂ψ(u).

From Proposition 4.3 and Lemma 3.2 (i)-(ii), we obtain that h1(t, u) = A(u)−(1−t)Km(u)

for (t, u) ∈ [0, 1]×W
s,p

0 (�) is a (S)+− homotopy, h2(t, u) = −tN(u) for (t, u) ∈ [0, 1]×
W

s,p

0 (�) is a (P )− homotopy and h3(t, u) = t∂ψ(u) for (t, u) ∈ [0, 1] × W
s,p

0 (�) is a
pseudomonotone homotopy (see [1]), hence h is an admissible homotopy (see Section 2).

Claim There exists ρ0 > 0 such that for all t ∈ [0, 1], all 0 < ρ ≤ ρ0 and all u ∈ ∂Bρ(0) ⊆
W

s,p

0 (�) we get

0 /∈ h(t, u).

By contradiction, we can find (tn)n ⊆ [0, 1] and un ∈ W
s,p

0 (�)+, n ≥ 1, such that

tn → t in [0, 1], ||un|| → 0

and

0 ∈ A(un) − tnN(un) − (1 − tn)Km(un) + tn∂ψ(un), n ≥ 1. (4.6)

We set

vn = un

||un|| , n ≥ 1,

hence, passing to a suitable subsequence, we can deduce that

vn ⇀ v in W
s,p

0 (�), vn → v in Lp(�) and vn(x) → v(x) a.e. in �,

hence v ≥ 0 a.e. in �.
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From (4.6), we have that there exists wn ∈ N(un) such that

−A(un) + tnwn + (1 − tn)Km(un) ∈ tn∂ψ(un),

therefore,

〈A(un), v̄ − un〉 − tn

∫
�

wn(v̄ − un) dx − (1 − tn)

∫
�

m|un|p−2un(v̄ − un) dx ≥ 0.

for all v̄ ∈ W
s,p

0 (�)+. Dividing the last inequality with ||un||p , we have

〈A(vn), v̂ − vn〉 − tn

∫
�

wn

||un||p−1
(̂v − vn) dx − (1 − tn)

∫
�

m|vn|p−2vn(̂v − vn) dx ≥ 0,

(4.7)
for all v̂ ∈ W

s,p

0 (�)+.
By (H) (iii), there exists δ > 0 such that for a.e. x ∈ �, all t with |t | < δ and all

ξ ∈ ∂Cj (x, t), we obtain
|ξ | ≤ (̂η(x) + 1)|t |p−1. (4.8)

While, from (H) (i), for a.e. x ∈ �, and all t ∈ R with |t | ≥ δ and all ξ ∈ ∂Cj (x, t) we get

|ξ | ≤ a(x) + c|t |p−1 ≤
(

a(x)

δp−1
+ c

)
|t |p−1. (4.9)

The expressions (4.8) and (4.9) imply that for a.e. x ∈ �, all t ∈ R and all ξ ∈ ∂Cj (x, t),
we obtain

|ξ | ≤ c1|t |p−1 for some c1 > 0. (4.10)

Therefore, from (4.10), we deduce that
(

wn

||un||p−1

)
n

⊆ Lp′
(�) is bounded and, passing to a

subsequence, we can state that
wn

||un||p−1
⇀ f0 in Lp′

(�).

For every ε > 0 and n ≥ 1, we define the set

C+
ε,n =

{
x ∈ � : un(x) > 0, η(x) − ε ≤ wn(x)

(un(x))p−1
≤ η̂(x) + ε

}
.

Since ||un|| → 0, we may suppose (at least for a subsequence) that

un(x) → 0 a.e. on � as n → ∞.

Hence, by (H) (iii), we get

χC+
ε,n

(x) → 1 a.e. on {v > 0}.
We observe that ∥∥∥∥

(
1 − χC+

ε,n

) wn(x)

||un||p−1

∥∥∥∥
Lp′

({v>0})
→ 0,

then

χC+
ε,n

wn(x)

||un||p−1
⇀ f0 in Lp′

({v > 0}).
Recalling the definition of the set C+

ε,n, we obtain

χC+
ε,n

(x)
wn(x)

||un||p−1
= χC+

ε,n
(x)

wn(x)

(un(x))p−1
(vn(x))p−1,
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therefore

χC+
ε,n

(x)(η(x) − ε)(vn(x))p−1 ≤ χC+
ε,n

(x)
wn(x)

||un||p−1

≤ χC+
ε,n

(x)(̂η(x) + ε)(vn(x))p−1 a.e. on �.

Passing to weak limits in Lp′
({v > 0}) and applying Mazur’s lemma, we have

(η(x) − ε)(v(x))p−1 ≤ f0(x) ≤ (̂η(x) + ε)(v(x))p−1 a.e. on {v > 0}.
Since ε > 0 is arbitrary, we let ε → 0 and get

η(x)(v(x))p−1 ≤ f0(x) ≤ η̂(x)(v(x))p−1 a.e. on {v > 0}. (4.11)

Further, from (4.10), we get that

f0(x) = 0 a.e. on {v = 0}. (4.12)

Hence, the conditions (4.11) and (4.12) imply that

f0(x) = g0(x)|v(x)|p−2v(x) a.e. on �,

with g0 ∈ L∞(�)+ such that η(x) ≤ g0(x) ≤ η̂(x) a.e. on �. In addition, if we set v̂ = v

in (4.7), then since ∫
�

wn(x)

||un||p−1
(vn(x) − v(x)) dx → 0

and ∫
�

m(x)|vn(x)|p−2vn(x)(v(x) − vn(x)) dx → 0,

from (4.7) we deduce

lim sup
n→∞

〈A(vn), vn − v〉 ≤ 0,

then

vn → v in W
s,p

0 (�)

(we are using the fact that A is a (S)+-map). Hence, if n goes to ∞ in (4.7), we have

〈A(v), v̂ − v〉 − t

∫
�

g0|v|p−2v(̂v − v) dx − (1 − t)

∫
�

m|v|p−2v(̂v − v) dx ≥ 0

for all v̂ ∈ W
s,p

0 (�)+. We set

ĝt = tg0 + (1 − t)m,

hence we can rephrase the last inequality as

〈A(v), v̂ − v〉 −
∫

�

ĝt (x)(v(x))p−1(̂v(x) − v(x)) dx ≥ 0 for all v̂ ∈ W
s,p

0 (�)+. (4.13)

Let w ∈ W
s,p

0 (�)+ and set v̂ = v + w, then we can rewrite (4.13) as

〈A(v),w〉 ≥
∫

�

ĝt (x)(v(x))p−1w(x) dx for all w ∈ W
s,p

0 (�)+.

Hence, applying the strong maximum principle [25, Proposition 2.2], we obtain that v > 0
a.e. in �.
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Let z ∈ W
s,p

0 (�), ε > 0 and consider (v + εz)+ = v + εz + (v + εz)−. We take
v̂ = (v + εz)+ ∈ W

s,p

0 (�)+ in (4.13) and we get〈
A(v) − Kĝt (v), (v + εz)+ − v

〉 ≥ 0,

hence 〈
A(v) − Kĝt (v), εz

〉 ≥ − 〈
A(v) − Kĝt (v), (v + εz)−

〉
. (4.14)

We observe that

− 〈
A(v) − Kĝt (v), (v + εz)−

〉 = − 〈
A(v), (v + εz)−

〉 +
∫

�

ĝt (x)v(x)(v(x) + εz(x))− dx

and, since ĝt , v ≥ 0, we have that∫
�

ĝt v(v + εz)− dx ≥ 0.

Now, we want to study the sign of − 〈
A(v), (v + εz)−

〉
. In order to do this, we introduce the

sets

�−
ε ={v+εz<0} and Qε ={(x, y)∈�×R

ε : v(x)+εz(x)<0≤v(y)+εz(y), v(x)>v(y)}.
By applying definition of A (3.2), we have that

− 〈
A(v), (v + εz)−

〉 = −
∫
R2N

(v(x) − v(y))p−1((v + εz)−(x) − (v + εz)−(y))

|x − y|N+ps
dxdy

=
∫

�−
ε ×�−

ε

(v(x) − v(y))p−1(v(x) + εz(x) − v(y) − εz(y))

|x − y|N+ps
dxdy

+
∫

�−
ε ×(�\�−

ε )

(v(x) − v(y))p−1(v(x) + εz(x))

|x − y|N+ps
dxdy

−
∫

(�\�−
ε )×�−

ε

(v(x) − v(y))p−1(v(y) + εz(y))

|x − y|N+ps
dxdy

+
∫

�−
ε ×�c

(v(x)−v(y))p−1(v(x)+εz(x))

|x − y|N+ps
dxdy−

∫
�c×�−

ε

(v(x)−v(y))p−1(v(y)+εz(y))

|x − y|N+ps
dxdy

=
∫

�−
ε ×�−

ε

|v(x) − v(y)|p
|x − y|N+ps

dxdy + ε

∫
�−

ε ×�−
ε

(v(x) − v(y))p−1(z(x) − z(y))

|x − y|N+ps
dxdy

+
∫

�−
ε ×(�−

ε )c

(v(x) − v(y))p−1(v(x) + εz(x))

|x − y|N+ps
dxdy

−
∫

(�−
ε )c×�−

ε

(v(x) − v(y))p−1(v(y) + εz(y))

|x − y|N+ps
dxdy

=
∫

�−
ε ×�−

ε

|v(x) − v(y)|p
|x − y|N+ps

dxdy + ε

∫
�−

ε ×�−
ε

(v(x) − v(y))p−1(z(x) − z(y))

|x − y|N+ps
dxdy

+ 2
∫

�−
ε ×(�−

ε )c

(v(x) − v(y))p−1(v(x) + εz(x))

|x − y|N+ps
dxdy

≥ ε

∫
�−

ε ×�−
ε

(v(x)−v(y))p−1(z(x)−z(y))

|x − y|N+ps
dxdy+2

∫
Qε

(v(x)−v(y))p−1(v(x) + εz(x))

|x − y|N+ps
dxdy

= o(1)ε as ε → 0+.
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In the last passage we use the fact that |�−
ε | → 0 as ε → 0+ for the first integral, while for

the second integral we note that for every (x, y) ∈ Qε

0 < v(x) − v(y) < ε(z(y) − z(x))

and

0 > v(x) + εz(x) ≥ v(x) + εz(x) − (v(y) + εz(y))

= (v(x) − v(y)) + ε(z(x) − z(y)) > ε(z(x) − z(y)).

Then,
|(v(x) − v(y))p−1(v(x) + εz(x))| ≤ εp|z(x) − z(y)|p,

integrating,∫
Qε

|(v(x) − v(y))p−1(v(x) + εz(x))|
|x − y|N+ps

dxdy ≤ εp

∫
R2N

|(z(x) − z(y)|p
|x − y|N+ps

dxdy = o(ε).

Going back to (4.14), we have that

ε
〈
A(v) − Kĝt (v), z

〉 ≥ o(1)ε,

hence, taking the limit when ε → 0, we get〈
A(v) − Kĝt (v), z

〉 ≥ 0.

Since z ∈ W
s,p

0 (�) is arbitrary, it follows that A(v) − Kĝt (v) = 0, hence

A(v) = Kĝt (v),

therefore {
(−�)sp v(x) = ĝt (x)|v(x)|p−2v(x) in �

v(x) = 0 on �c.
(4.15)

Since ||v|| = 1, we deduce that v �= 0 and hence v is an eigenfunction of the weighted
eigenvalue problem (4.15), with weight ĝt ∈ L∞(�)+. Since

ĝt (x) ≥ η(x) a.e. on �,

by exploiting Proposition 3.4, we have that

λ1(ĝt ) ≤ λ1(η) < λ1(λ1) = 1,

so we discover that v cannot be the principal eigenfunction of the weighted eigenvalue prob-
lem with weight ĝt ∈ L∞(�)+, hence, v must be nodal, but v ∈ W

s,p

0 (�)+, a contradiction.
Therefore, the claim is true.

Applying the homotopy invariance property of the degree map, we deduce that

deg(A − N + ∂ψ, Bρ(0), 0) = degS+(A − Km,Bρ(0), 0)

for all 0 < ρ ≤ ρ0.
But from Proposition 3.5, we know that

deg(S)+(A − Km,Bρ(0), 0) = −1.

Therefore, we get
deg(∂Cϕ̂ + ∂ψ, Bρ(0), 0) = −1

for all 0 < ρ ≤ ρ0.

Analogously, we show a corresponding result for big balls.
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Proposition 4.9 Let (H) hold. Therefore there exists R0 > 0 such that for all R ≥ R0, we
obtain

deg(∂Cϕ̂ + ∂ψ, BR(0), 0) = 1.

Proof We take into account the homotopy

h(t, u) = A(u) − tN(u) + t∂ψ(u) for (t, u) ∈ [0, 1] × W
s,p

0 (�).

From Proposition 4.3 and Lemma 2.5, we have that ĥ(t, u) = −tN(u) for (t, u) ∈ [0, 1] ×
W

s,p

0 (�) is a (P )−homotopy and h̃(t, u) = A(u) + t∂ψ(u) for (t, u) ∈ [0, 1] × W
s,p

0 (�)

is a pseudomonotone homotopy, hence h(t, u) is an admissible homotopy.

Claim There exists R0 ≥ 0 such that for all t ∈ [0, 1], all R ≥ R0 and all u ∈ ∂BR(0), we
have

0 /∈ h(t, u).

By contradiction, we can find (tn)n ⊆ [0, 1] and un ∈ W
s,p

0 (�)+, n ≥ 1, such that

tn → t in [0, 1], ||un|| → ∞ and 0 ∈ h(tn, un), n ≥ 1.

Hence, there exists wn ∈ N(un) such that

−A(un) + tnwn ∈ tn∂ψ(un), ∀n ≥ 1,

then

〈A(un), v̄ − un〉 − tn

∫
�

wn(x)(v̄(x) − un(x)) dx ≥ 0 for all v̄ ∈ W
s,p

0 (�)+. (4.16)

Set vn = un||un|| , n ≥ 1 and, passing to a subsequence, we can suppose that

vn ⇀ v in W
s,p

0 (�), vn → v in Lp(�) and vn(x) → v(x) a.e. in �,

hence v ≥ 0 a.e. in �. Dividing (4.16) by ||un||p, we have
〈A(vn), v̂ − vn〉 − tn

∫
�

wn(x)

||un||p−1
(̂v(x) − vn(x)) dx ≥ 0 (4.17)

for all v̂ ∈ W
s,p

0 (�)+. Using (4.10), we obtain that
(

wn

||un||p−1

)
n

⊆ Lp′
(�) is bounded,

hence, we can suppose that
wn

||un||p−1
⇀ f∞ in Lp′

(�), as n → ∞.

For every ε > 0 and n ≥ 1, we define the set

D+
ε,n =

{
x ∈ � : un(x) > 0,−ε ≤ wn(x)

(un(x))p−1
≤ θ(x) + ε

}
.

From (H) (ii), we get
χD+

ε,n
(x) → 1 a.e. on {v > 0}.

We observe that ∥∥∥∥
(
1 − χD+

ε,n
(x)

) wn

||un||p−1

∥∥∥∥
Lp′

({v>0})
→ 0,

therefore,

χD+
ε,n

(x)
wn

||un||p−1
⇀ f∞ in Lp′

({v > 0}).
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By the definition of D+
ε,n, we get that

χD+
ε,n

(x)(−ε)(vn(x))p−1 ≤ χD+
ε,n

(x)
wn(x)

||un||p−1
= χD+

ε,n
(x)

wn(x)

(un(x))p−1 (vn(x))p−1

≤ χD+
ε,n

(x)(θ(x) + ε)(vn(x))p−1 a.e. on �.

Passing to weak limits in Lp′
({v > 0}) and applying Mazur’s lemma, we have

−ε(v(x))p−1 ≤ f∞(x) ≤ (θ(x) + ε)(v(x))p−1 a.e. on {v > 0}.
Let ε → 0, we obtain

0 ≤ f∞(x) ≤ θ(x)(v(x))p−1 a.e. on {v > 0}.
While, by (4.10), we obtain that

f∞(x) = 0 a.e. on {v = 0}.
Since � = {v > 0} ∪ {v = 0} (recalling that v ∈ W

s,p

0 (�)+), we get

0 ≤ f∞(x) ≤ θ(x)(v(x))p−1 a.e. on �,

hence
f∞ = g∞vp−1 with g∞ ∈ L∞(�)+, g∞(x) ≤ θ(x) a.e. on �.

Since v ∈ W
s,p

0 (�)+, then in (4.17) we can set v̂ = v to obtain

〈A(vn), vn − v〉 ≤ tn

∫
�

wn(x)

||un||p−1
(vn(x) − v(x)) dx,

therefore
lim sup
n→∞

〈A(vn), vn − v〉 ≤ 0,

and since A is of type (S)+,
vn → v in W

s,p

0 (�).

If n goes to ∞ in (4.17), we get

〈A(v), v̂ − v〉 ≥ t

∫
�

g∞(x)(v(x))p−1(̂v(x) − v(x)) dx, ∀v̂ ∈ W
s,p

0 (�)+.

Set ĝt = tg∞(x). Using the test function v̂ = (v + εz)+ for any z ∈ W
s,p

0 (�) and ε > 0,
then, as in the proof of Proposition 4.8, we have〈

A(v) − Kĝt (v), z
〉 ≥ 0,

by the arbitrariety of z, it follows that

A(v) = Kĝt (v),

therefore {
(−�)sp v = tg∞(x)|v|p−2v in �,

v = 0 on �c.
(4.18)

Since ||v|| = 1, we deduce that v �= 0 and hence v is an eigenfunction of the weighted
eigenvalue problem (4.18), with weight tg∞ ∈ L∞(�)+. Since

0 ≤ tg∞ ≤ g∞ ≤ θ,

by Proposition 3.4, we obtain

λ1(tg∞) ≥ λ1(g∞) ≥ λ1(θ) > λ1(λ1) = 1.

Then from (4.18) we deduce that v = 0, a contradiction.
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Therefore, from the homotopy invariance of the degree map, we obtain that

deg(A − N + ∂ψ, BR(0), 0) = degS+(A,BR(0), 0)for all R ≥ R0. (4.19)

We take the (S)+−homotopy (see [33, Proposition 4.41])

h1(t, u) = tA(u) + (1 − t)F(u) for all (t, u) ∈ [0, 1] × W
s,p

0 (�).

We have that 〈h1(t, u), u〉 �= 0 for all u �= 0 and hence, by the homotopy invariance of
deg(S)+ , we have

deg(S)+(A, BR(0), 0) = deg(S)+(F , BR(0), 0) = 1. (4.20)

(The last passage follows from the normalization property). From (4.19) and (4.20), we can
state that

deg(∂Cϕ̂ + ∂ψ, BR(0), 0) = 1

for all R ≥ R0.

Now, we can prove our main result Theorem 1.1, which states that if assumptions (H)

hold, then the problem (1.3) admits at least two nontrivial solutions u0, û ∈ W
s,p

0 (�).

Proof of Theorem 1.1 By Proposition 4.5, there exists u0 ∈ W
s,p

0 (�) such that

ϕ(u0) = inf
u∈W

s,p
0 (�)

ϕ(u). (4.21)

Since u0 is a minimizer, by applying Proposition 4.7, there exists r > 0 such that

deg(∂Cϕ̂ + ∂ψ, Br(u0), 0) = 1. (4.22)

Therefore, (4.22) and Proposition 4.8 imply u0 �= 0. We choose ρ0 > 0 small such that

Br(u0) ∩ Bρ0(0) = ∅

and R0 > 0 large such that
Bρ0(0), Br(u0) ⊆ BR0(0).

Exploiting the additivity of the domain property of the degree map and applying Proposi-
tions 4.7, 4.8 and 4.9, we get

deg(∂Cϕ̂ + ∂ψ, BR0(0), 0) = deg(∂Cϕ̂ + ∂ψ, Br(u0), 0) + deg(∂Cϕ̂ + ∂ψ, Bρ0(0), 0)

+ deg(∂Cϕ̂ + ∂ψ, BR0(0) \ (Br(u0) ∪ Bρ0(0)), 0),

therefore
1 = deg(∂Cϕ̂ + ∂ψ, BR0(0) \ (Br(u0) ∪ Bρ0(0)), 0).

Hence, by the existence property of the degree map we deduce that there exists

û ∈ BR0(0) \ (Br(u0) ∪ Bρ0(0))

hence û �= u0, û �= 0, such that

0 ∈ ∂Cϕ̂(̂u) + ∂ψ(̂u) = A(̂u) − N(̂u) + ∂ψ(̂u),

namely, there exists w ∈ N(̂u) such that

−A(̂u) + w ∈ ∂ψ(̂u).
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From the latter we deduce

〈A(̂u), v − û〉 −
∫

�

w(x)(v(x) − û(x)) dx ≥ 0 for all v ∈ W
s,p

0 (�)+,

hence û ∈ W
s,p

0 (�) is a nontrivial solution of (4.1).
Now we have to show that u0 is a critical point of ϕ and it is a second nontrivial solution

of (4.1). By (4.21), for all λ > 0 and all v ∈ W
s,p

0 (�) one has

0 ≤ ϕ(u0 + λv) − ϕ(u0) = ϕ̂(u0 + λv) − ϕ̂(u0) + ψ(u0 + λv) − ψ(u0)

hence

0 ≤ 1
λ
(ϕ̂(u0 + λv) − ϕ̂(u0)) + 1

λ
(ψ(u0 + λv) − ψ(u0))

≤ 1
λ
[ϕ̂(u0 + λv) − ϕ̂(u0)] + (ψ(u0 + v) − ψ(u0))

(since ψ is convex). When λ goes to 0, we get

0 ≤ ϕ̂0(u0; v) + ψ(u0 + v) − ψ(u0). (4.23)

Let z ∈ W
s,p

0 (�), we set v = z − u0 in (4.23) and we obtain

0 ≤ ϕ̂0(u0; z − u0) + ψ(z) − ψ(u0).

Therefore, by Definition 2.2, u0 ∈ W
s,p

0 (�) is a critical point of ϕ = ϕ̂ + ψ , hence, by
Proposition 2.3

0 ∈ ∂Cϕ̂(u0) + ∂ψ(u0).

Therefore we can deduce that there exists w ∈ N(u0) such that

−A(u0) + w ∈ ∂ψ(u0),

hence

〈A(u0), v − u0〉 −
∫

�

w(x)(v(x) − u0(x)) dz ≥ 0 for all v ∈ W
s,p

0 (�)+.

Consequently u0 ∈ W
s,p

0 (�) is a second nontrivial solution of (4.1).

Remark 4.10 In the linear case (p = 2), a solution û of problem (1.3) belongs to C(�),
under the additional assumptions that � satisfies the exterior ball condition and w ∈ N(̂u)

such thatw ∈ L2(�)withN < 4s (see [4, Proposition 2.12]). Regularity results of solutions
of (1.3) can be obtained by strengthening the assumptions of w, moreover, in the case of
a general obstacle it is necessary that such obstacle has some regularity properties (see
[4, Proposition 2.12] and the references therein).
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