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I. INTRODUCTION

By using methods from operator theory, in this paper,
inspired by the work [14], we will consider a boundary-
transmission problem for the Helmholtz equation which arises
within the context of wave diffraction theory [3]–[5], [7]–[19],
[20], [21] and [24]–[28] on a finite strip [9], [10] and [15] with
impedance boundary conditions [7] and [9].

Was A. Sommerfeld the first one to consider canonical
boundary value problems for time-harmonic waves governed
by the Helmholtz equation in the famous work entitled Math-
ematische Theorie der Diffraction, [29]. Since then, a great
number of researchers have made such a study their priority
and a great number of different approaches have been pre-
sented and developed in the applied mathematics literature for
studying canonical problems of plane wave diffraction. The
most known and efficient methods and procedures to study
such kind of problems are based on the classical Wiener-Hopf
technique and the Maliushinets method [21], [28].

In the present work we will consider a Sommerfeld type
problem where the geometry comprises a strip facing higher
order imperfect boundary conditions. We want to understand
better what are the operators behind such a problem. Thus,
one of the main goals of the present work is the use of an
operator theoretical machinery that will translate the problem
into the study of properties of certain known types of operators
associated to the problem.

To be more concrete, we will consider Wiener-Hopf oper-
ators and convolution type operators on finite intervals with
semi-almost periodic Fourier symbol matrices. Convolution
type operators W on finite intervals I,

Wϕ(x) = cϕ(x) +

∫
I
K(x− y)ϕ(y) dy, x ∈ I.

are one-dimensional linear integral operators where the inte-
gration kernels K depend on the difference of the arguments
and the domain of integration as well as the range of the
independent variable are given by the same interval. In a
constructive way, we will obtain this type of operators in
Sobolev and Lebesgue spaces. This is because we will consider
the problem formulated between Bessel potential spaces and
defined with a complex wave number k which also allows a
certain freedom in the corresponding smoothness orders.

II. PRELIMINARIES AND FORMULATION OF THE PROBLEM

In this section we establish the notation and some pre-
liminary concepts in view of presenting the mathematical
formulation of the problem.

We denote by S (Rn) the Schwartz space of all rapidly de-
creasing functions and by S ′ (Rn) the dual space of tempered
distributions on Rn. As mentioned in the previous section,
we will develop our study in a framework of Bessel potential
spaces Hs defined by the elements ϕ ∈ S ′ (Rn) such that

‖ϕ‖Hs(Rn) :=
∥∥∥F−1(1 + |ξ|2)s/2 · Fϕ

∥∥∥
L2(Rn)

< +∞,

with s ∈ R and where F = Fx7→ξ is the Fourier transformation
in Rn defined by

(Fφ) (ξ) =

∫
Rn

eiξ·xφ(x)dx, ξ ∈ Rn.

For a given Lipschitz domain D, on Rn, by H̃s(D) we
mean the closed subspace of Hs(Rn) whose elements have
supports in D, and by Hs(D) the space of distributions on
D which have extensions into Rn belonging to Hs(Rn).
The space H̃s(D) is endowed with the subspace topology,
and on Hs(D) we introduce the norm of the quotient space
Hs(Rn)/H̃s(Rn\D). Throughout the paper we will use the
notation

Rn± := {x = (x1, . . . , xn−1, xn) ∈ Rn : ±xn > 0}.

Adopting cartesian axes Oxyz with the y-axis vertically
upwards, we will consider a perpendicular time-harmonic
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electromagnetic plane wave incident on a strip Σ in R3

where the material is considered to be invariant under the
z-axis direction. Thus, the geometry of the problem is two
dimensional and the strip will be therefore represented by

Σ :=]0, a[ for 0 < a <∞.

We are now in position to formulate our impedance bound-
ary conditions problem.

For Ω := R2\Σ and given n ∈ N0, we are interested in
studying the properties of an element u ∈ H1+ε(Ω), for some
ε ≥ 0, which satisfies the Helmholtz equation(

∂2

∂x2
+

∂2

∂y2
+ k2

)
u = 0 in Ω,

together with the impedance boundary condition{
p+u+

n+1 + q+u+
n = h+

p−u−n+1 + q−u−n = h−
on Σ, (1)

where the wave number k ∈ C is given, as well as the
impedance parameters p±, q± ∈ C,

u±n :=

(
∂nu

∂yn

)
|y=±0

denote the traces of u on the upper and lower banks of
Σ, respectively, and h± ∈ H− 1

2−n+ε (Σ) are arbitrarily given
elements. For instance, is well known that for n = 0 and n = 1
we have u±n as the traditional Dirichlet and Neumann traces,
respectively.

III. REDUCTION OF THE PROBLEM TO A SYSTEM OF
CONVOLUTION TYPE OPERATORS

In this section we will use operator techniques in view of
a characterization of the problem by means of finite interval
convolution type operators. In the next section, such character-
ization of the problem, will be used to present certain extension
methods in view to obtain corresponding operator relations,
between the operator related to the problem and new Wiener-
Hopf operators.

We will consider the densities ϑ and ϕ defined by[
ϑ
ϕ

]
=

[
u+

1 − u
−
1

u+
0 − u

−
0

]
∈ H̃− 1

2 +ε (Σ)× H̃ 1
2 +ε (Σ) .

For an integer j, it follows

u+
j = (−1)jF−1tj · Fu+

0

and
u−j = F−1tj · Fu−0 ,

where

t(ξ) = (ξ2 − k2)
1
2 = t+(ξ)t−(ξ)

with t± the squareroot functions

t±(ξ) = (ξ ± k)
1
2 = |ξ ± k|

1
2 e

1
2 i arg(ξ±k),

ξ ∈ R, with branch cuts Γ∓ = {±k ± it, t ≥ 0}, respectively,

arg(ξ − k) ∈
]
−3π

2
,
π

2

[

and
arg(ξ + k) ∈

]
−π

2
,

3π

2

[
.

Using these formulas, we can define an invertible convo-
lution operator

BΦB ,Σ := F−1ΦB · F

which maps H̃− 1
2 +ε (Σ) × H̃ 1

2 +ε (Σ) into H̃− 1
2−n+ε (Σ) ×

H̃ 1
2−n+ε (Σ) as

BΦB ,Σ

[
ϑ
ϕ

]
=

[
u+
n+1 − u

−
n+1

u+
n − u−n

]
, (2)

with Fourier symbol

ΦB =
1

2

[
(1 + (−1)n)tn (1− (−1)n)tn+1

(1− (−1)n)tn−1 (1 + (−1)n)tn

]
.

Now, by the use of (2), it is possible to rewrite the boundary
condition (1) as

CΦC ,Σ

[
u+
n+1 − u

−
n+1

u+
n − u−n

]
=

[
h+

h−

]
(3)

where we define a convolution type operator

CΦC ,Σ := rΣF−1ΦC · F

which maps the spaces H̃− 1
2−n+ε (Σ)×H̃ 1

2−n+ε (Σ) into the
spaces H− 1

2−n+ε (Σ)×H− 1
2−n+ε (Σ) with Fourier symbol

ΦC =
1

2

[
p+ − q+t−1 −p+t+ q+

−p− − q−t−1 −p−t− q−
]
. (4)

Throughout the paper, we are using rΣ to denote the
restriction operator to Σ ⊂ R and in the particular case of
rR+

we will simply write r+ for this restriction.

From (2) and (3), we obtain

CΦC ,ΣBΦB ,Σ

[
ϑ
ϕ

]
=

[
h+

h−

]
.

Our immediate goal will be to extend this last convolution
type operator on a finite interval into a convolution type
operator on the half-line. In view of this, we will need to
consider some extension operator relations.

IV. EXTENSION METHODS AND RELATIONS BETWEEN
OPERATORS

We will now perform some operator extension procedures
in view of obtaining corresponding operator relations between
the operators presented in the last section and new Wiener-
Hopf operators. These operator relations will be used in the
last section to study the Fredholm property of the operators
associated with the problem.

Definition 4.1: [15] Let us consider two operators

A : X1 → Y1

and
B : X2 → Y2,

acting between Banach spaces.
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(i) The operators A and B are said to be algebraically
equivalent after extension if there exist additional Ba-
nach spaces Z1 and Z2 and invertible linear operators

E : Y2 × Z2 → Y1 × Z1

and
F : X1 × Z1 → X2 × Z2

such that[
A 0
0 IZ1

]
= E

[
B 0
0 IZ2

]
F. (5)

(ii) If, in addition to (i), the invertible and linear operators
E and F in (5) are bounded, then we will say that
A and B are topologically equivalent after extension
operators, or simply say that A and B are equivalent
after extension operators, [1].

(iii) A and B are said to be equivalent operators in the
particular case when

A = EB F,

for some bounded invertible linear operators

E : Y2 → Y1

and
F : X1 → X2.

The above notion of topological equivalence after extension
relation is equivalente to the concept of matricial coupling [1].
We refer to [4], [6] and [15] for a discussion on the differences
between algebraic and topological equivalence after extension
relations between convolution type operators.

We will now apply some results of [6] to our convolution
type operator CΦC ,Σ.

Theorem 4.1: The convolution type operator CΦC ,Σ

with Fourier symbol (4) is algebraically equivalent after
extension to the Wiener-Hopf operator CΦC,R+

which
maps H̃− 1

2−n+ε(R+) × H̃ 1
2−n+ε(R+) × H̃− 1

2−n+ε(R+) ×
H̃− 1

2−n+ε(R+) into H− 1
2−n+ε(R+) × H 1

2−n+ε(R+) ×
H− 1

2−n+ε(R+)×H− 1
2−n+ε(R+) given by

CΦC,R+
:= r+F−1ΦC · F ,

and with ΦC being the Fourier symbol defined by

ΦC(ξ)=


e−iξa 0 0 0

0 e−iξa 0 0
1
2 (p+ − q+t−1(ξ)) 1

2 (−p+t(ξ) + q+) eiξa 0
1
2 (−p− − q−t−1(ξ)) 1

2 (−p−t(ξ)− q−) 0 eiξa

 .
So, there are Banach spaces X1 and Y1 and linear homeomor-
phisms E1 and F1 such that[

CΦC ,Σ 0
0 IZ1

]
= E1

[
CΦC,R+

0
0 IZ2

]
F1.

The proof is omitted in here because is a well-known result
addressed in [22]. For some generalizations see [6], [23].

Due to the use of the lifting procedure, and choosing
convenient auxiliary bounded invertible operators, we now

obtain a new operator relation for an operator acting between
Lebesgue spaces – which is presented in the next result.

We will use the notation L2
+ (R) := H̃0 (R+).

Theorem 4.2: The Wiener-Hopf operator CΦC,R+
defined

above between Bessel potential spaces is equivalent to the
Wiener-Hopf operator

ĈΦĈ,R+
:= r+F−1ΦĈ · F :

[
L2

+ (R)
]4 → [

L2 (R+)
]4
,

where ΦĈ has the block matricial representation

ΦĈ(ξ) =

[
A(ξ) 02

C(ξ) B(ξ)

]
(6)

where

A(ξ) =

[
ζ−

1
2−n+ε(ξ)e−iξa 0

0 ζ
1
2−n+ε(ξ)e−iξa

]
,

B(ξ) =

[
ζ−

1
2−n+ε(ξ)eiξa 0

0 ζ−
1
2−n+ε(ξ)eiξa

]
,

C(ξ) =

[
C11(ξ) C12(ξ)
C21(ξ) C22(ξ)

]
,

with

C11(ξ) =
1

2
(p+ζ−

1
2−n+ε(ξ)− q+ζ−n+ε(ξ)(ξ − k)−1),

C12(ξ) =
1

2
(−p+ζ−n+ε(ξ) + q+ζ−

1
2−n+ε(ξ)(ξ + k)−1),

C21(ξ) =
1

2
(−p−ζ− 1

2−n+ε(ξ)− q−ζ−n+ε(ξ)(ξ − k)−1),

C22(ξ) =
1

2
(−p−ζ−n+ε(ξ)− q−ζ− 1

2−n+ε(ξ)(ξ + k)−1),

ζ(ξ) = ξ−k
ξ+k = λ−

λ+
, ξ ∈ R and 02 denotes the 2 × 2 zero

matrix.

Proof: The equivalence relation can be directly obtained
by computing the following operator composition

CΦC,R+ = WΦE ,R+ l0 ĈΦĈ,R+ l0WΦF ,R+ ,

where
l0 :
[
L2 (R+)

]4 → [
L2

+ (R)
]4

denotes de zero extension operator and where WΦE ,R+ l0 is
defined between the spaces

[
L2 (R+)

]4
and H− 1

2−n+ε(R+)×
H 1

2−n+ε(R+)×H− 1
2−n+ε(R+)×H− 1

2−n+ε(R+) by

WΦE ,R+ l0 := r+F−1ΦE · F l0

with

ΦE(ξ)=


λ

1
2 +n−ε
− 0 0 0

0 λ
− 1

2 +n−ε
− 0 0

0 0 λ
1
2 +n−ε
− 0

0 0 0 λ
1
2 +n−ε
−


and l0WΦF ,R+

is defined between H̃− 1
2−n+ε(R+) ×

H̃ 1
2−n+ε(R+)×H̃− 1

2−n+ε(R+)×H̃− 1
2−n+ε(R+) and

[
L2

+ (R)
]4

by
l0WΦF ,R+

:= l0r+F−1ΦF ·F
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with

ΦF (ξ)=


λ
− 1

2−n+ε
+ 0 0 0

0 λ
1
2−n+ε
+ 0 0

0 0 λ
− 1

2−n+ε
+ 0

0 0 0 λ
− 1

2−n+ε
+

 .
Notice that the bounded operators WΦE ,R+ l0 and l0WΦF ,R+

are invertible as pointed out in [30, §2.10.3].

V. FREDHOLM ANALYSIS

Our main goal is to study and characterize the Fredholm
property of the finite interval convolution type operator CΦC ,Σ

for general ε. We will use different factorization procedures
applied to the operators introduced in the last section. We start
by recalling the definition of Fredholm operator.

Definition 5.1: Let X , Y be two Banach spaces and A :
X → Y a bounded linear operator with closed image. The
operator A is called a Fredholm operator if

n(A) := dim KerA <∞

and
d(A) := dim Y/ImA <∞.

If A is a Fredholm operator, then the Fredholm index of
A is the integer defined by

IndA = n(A)− d(A).

Theorem 5.1: Let ΦĈ be defined by (6) and

detC(±∞) 6= 0.

The operator ĈΦĈ,R+
presented in the last theorem admits the

factorization

ĈΦĈ,R+ = ŴΦ̂−,R+
C̃ΦC̃,R+ ŴΦ̂+,R+

where ŴΦ̂−,R+
and ŴΦ̂+,R+

are invertible operators having
Fourier symbols

Φ̂−(ξ) =


−1 0
0 −1

−e−iaξτ−(ξ)

0 0
0 0

−1 0
0 −1


and

Φ̂+(ξ) =


0 0
0 0

1 0
0 1

1 0
0 1

eiaξτ+(ξ)

 ,
which admit bounded analytic extensions in =mξ < 0 and
=mξ > 0, respectively, and with

τ−(ξ) =
1− S(ξ)

2
C−1(−∞) +

1 + S(ξ)

2

[
eiπ(−1−2n+2ε) 0

0 eiπ(1−2n+2ε)

]
C−1(+∞)

and

τ+(ξ) =
1− S(ξ)

2
C−1(−∞) +

1 + S(ξ)

2

[
eiπ(−1−2n+2ε) 0

0 eiπ(−1−2n+2ε)

]
C−1(+∞)

where S : C → C is the normalized sine-integral function
given by

S(ξ) =
2

π

∫ ξ

0

sinx

x
dx

and where C−1(−∞) and C−1(+∞) are defined by

C−1(−∞) =

[ 1
p+ − 1

p−

− 1
p+ − 1

p−

]
and

C−1(+∞) =

[
1
p+ e

iπ(1+2n−2ε) − 1
p− e

iπ(1+2n−2ε)

− 1
p+ e

iπ(2n−2ε) − 1
p− e

iπ(2n−2ε)

]
if

detC(−∞) = −p
+p−

2
6= 0

and
detC(+∞) = −p

+p−

2
eiπ(−1−4n+4ε) 6= 0,

respectively.

The Fourier symbol ΦC̃ belongs to PC4×4(
•

R), the space
of four by four matrix-valued functions with piecewise con-
tinuous entries on

•

R= R ∪ {∞}, and is given by

ΦC̃(ξ) =

[
A(ξ) B(ξ)

D(ξ) −C(ξ)

]
(7)

where

A(ξ)=

([
ζ−

1
2−n+ε(ξ) 0

0 ζ
1
2−n+ε(ξ)

]
−τ−(ξ)C(ξ)

)
τ+(ξ)+

τ−(ξ)

[
ζ−

1
2−n+ε(ξ) 0

0 ζ−
1
2−n+ε(ξ)

]
,

B(ξ)=e−iaξ
(
τ−(ξ)C(ξ)−

[
ζ−

1
2−n+ε(ξ) 0

0 ζ
1
2−n+ε(ξ)

])
,

D(ξ)=eiaξ
(
C(ξ)τ+(ξ)−

[
ζ−

1
2−n+ε(ξ) 0

0 ζ−
1
2−n+ε(ξ)

])
.

The proof of the last result can be done by direct compu-
tation and therefore is here omitted. Anyway, we have,

lim
ξ→±∞

(
τ−(ξ)C(ξ)−

[
ζ−

1
2−n+ε(ξ) 0

0 ζ
1
2−n+ε(ξ)

])
=0, (8)

lim
ξ→±∞

(
C(ξ)τ+(ξ)−

[
ζ−

1
2−n+ε(ξ) 0

0 ζ−
1
2−n+ε(ξ)

])
=0. (9)

These last two results are a consequence of the fact that we
agree that

lim
ξ→−∞

ζσ(ξ) = 1

and
lim

ξ→+∞
ζσ(ξ) = ei2πσ,
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for σ ∈ R.

In order to continue, let us consider, for Φ ∈ PCn×n(
•

R),
the function

Φ :
•

R ×[0, 1]→ Cn×n

defined by

Φ(ξ, µ) := (1− µ)Φ(ξ − 0) + µΦ(ξ + 0),

(ξ, µ) ∈
•

R ×[0, 1], where

Φ(∞− 0) := Φ(+∞)

and
Φ(∞+ 0) := Φ(−∞).

The following result [2, Theorem 5.9] helps us to study the
Fredholm property for the operator CΦC ,Σ.

Theorem 5.2: For Φ ∈ PCn×n(
•

R), it follows that

det Φ(ξ, µ) 6= 0

for all (ξ, µ) ∈
•

R ×[0, 1] if and only if

WΦ,R+ := r+F−1Φ · F :
[
L2

+ (R)
]n → [

L2 (R+)
]n

is a Fredholm operator.

In case of having the Fredholm property, the Fredholm
index of WΦ,R+

is given by

IndWΦ,R+ = −wind(det Φ),

where wind denotes the winding number.

Finally, we are able to present the Fredholm characteriza-
tion to our operator CΦC ,Σ and, consequently, to our initial
problem.

Theorem 5.3: The finite interval convolution type operator
CΦC ,Σ is a Fredholm operator with zero Fredholm index if
and only if

ε 6= q

2
for q ∈ Z. (10)

Proof: First of all, we notice that from Theorems 4.1–5.1
we conclude that the operator CΦC ,Σ is algebraically equi-
valent after extension to the operator

C̃ΦC̃,R+ := r+F−1ΦC̃ · F :
[
L2

+ (R)
]4 → [

L2 (R+)
]4

where ΦC̃ is given by (7). Therefore, in view to obtain the
desired conclusion, that CΦC ,Σ is a Fredholm operator, we start
by deducing the conditions which characterize the Fredholm
property of C̃ΦC̃,R+

.

Letting

ΦC̃(ξ, µ) = (1− µ)ΦC̃(ξ − 0) + µΦC̃(ξ + 0)

and
ΦC̃(∞± 0) := ΦC̃(∓∞),

by Theorem 5.2, we have that

det ΦC̃(ξ, µ) 6= 0

for (ξ, µ) ∈
•

R ×[0, 1] if and only if the operator C̃ΦC̃,R+
has

the Fredholm property. Additionally, from Theorem 5.1, we
already know that the Fourier symbol ΦC̃ can be written as

ΦC̃(ξ) = Φ̂−1
− (ξ)ΦĈ(ξ)Φ̂

−1
+ (ξ).

Thus, for any ξ ∈ R we have

det ΦC̃(ξ ± 0) = det ΦĈ(ξ)

because ΦĈ(ξ) has no discontinuities on the real line, det Φ̂−1
±

also have no discontinuities on the real line and, moreover,
det Φ̂−1

± ≡ 1. Therefore,

det ΦC̃(ξ, µ) = det
[
(1− µ)ΦĈ(ξ) + µΦĈ(ξ)

]
= det ΦĈ(ξ)

= ζ−1−4n+4ε(ξ)

6= 0,

in the case of ξ ∈ R.

For ξ =∞, we have,

det ΦC̃(∞, µ) = det
[
(1− µ)ΦC̃(+∞) + µΦC̃(−∞)

]
.

Appealing to the limits (8)–(9), we obtain

ΦC̃(−∞) =

[
C−1(−∞) 02

02 −C(−∞)

]
and

ΦC̃(+∞) =

[
AC−1(+∞)B 02

02 −C(+∞)

]
,

with

A =

[
eiπ(−1−2n+2ε) 0

0 eiπ(1−2n+2ε)

]
,

and

B =

[
eiπ(−1−2n+2ε) 0

0 eiπ(−1−2n+2ε)

]
.

Thus, by direct computation, we have

ΦC̃(−∞) =


1
p+ − 1

p− 0 0

− 1
p+ − 1

p− 0 0

0 0 − 1
2p

+ 1
2p

+

0 0 1
2p
− 1

2p
−


and

ΦC̃(+∞) =

 a11 a12 0 0
a21 a22 0 0
0 0 a33 a34

0 0 a43 a44

 ,
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with

a11 =
1

p+
eiπ(−1−2n+2ε),

a12 = − 1

p−
eiπ(−1−2n+2ε),

a21 = − 1

p+
eiπ(−2n+2ε),

a22 = − 1

p−
eiπ(−2n+2ε),

a33 = −p
+

2
eiπ(−1−2n+2ε),

a34 =
p+

2
eiπ(−2n+2ε),

a43 =
p−

2
eiπ(−1−2n+2ε),

a44 =
p−

2
eiπ(−2n+2ε).

Finally, the last results, tell us that

det ΦC̃(∞, µ) =

∣∣∣∣∣∣∣
b11 b12 0 0
b21 b22 0 0
0 0 b33 b34

0 0 b43 b44

∣∣∣∣∣∣∣ ,
where

b11 =
1−µ
p+

eiπ(−1−2n+2ε)+
µ

p+
,

b12 = −1−µ
p−

eiπ(−1−2n+2ε)− µ

p−
,

b21 = −1−µ
p+

eiπ(−2n+2ε)− µ

p+
,

b22 = −1−µ
p−

eiπ(−2n+2ε)− µ

p−
,

b33 = − (1−µ)p+

2
eiπ(−1−2n+2ε)−µp

+

2
,

b34 =
(1−µ)p+

2
eiπ(−2n+2ε)+

µp+

2
,

b43 =
(1−µ)p−

2
eiπ(−1−2n+2ε)+

µp−

2
,

b44 =
(1−µ)p−

2
eiπ(−2n+2ε)+

µp−

2
.

So,

det ΦC̃(∞, µ) =[
(1− µ)eiπ(−1−2n+2ε) + µ

]2 [
(1− µ)eiπ(−2n+2ε) + µ

]2
.

As a consequence, C̃ΦC̃,R+
is a Fredholm operator if and

only if

(1− µ)eiπ(−1−2n+2ε) + µ 6= 0 (11)

and

(1− µ)eiπ(−2n+2ε) + µ 6= 0, (12)

µ ∈ [0, 1].

Since the sets

S1 =
{

(1− µ)eiπ(−1−2n+2ε) + µ : µ ∈ [0, 1]
}

and

S2 =
{

(1− µ)eiπ(−2n+2ε) + µ : µ ∈ [0, 1]
}

define the line segments joining 1 to eiπ(−1−2n+2ε) and 1 to
eiπ(−2n+2ε), respectively, for holding the inequalities in (11)
and (12), we need that

eiπ(−1−2n+2ε) /∈ R−

and
eiπ(−2n+2ε) /∈ R−.

Thus
π(−1− 2n+ 2ε) 6= π + 2πq

and
π(−2n+ 2ε) 6= π + 2πq,

q ∈ Z, i.e.,

ε 6= 1 + n+ q and ε 6= 1

2
+ n+ q, q ∈ Z.

So, we have ε 6= q
2 , q ∈ Z.

Therefore, from the operator identities provided by both
the above mentioned algebraic and topological equivalence
relations, given in Theorems 4.1–5.1, we conclude that C̃ΦC̃,R+

and CΦC ,Σ are Fredholm operators if and only if condition
(10) holds, and that the corresponding defect spaces of these
operators have the same dimensions. From this, and since
by [1, Theorem 3] Fredholm operators in Banach spaces are
equivalent after extension if and only if their corresponding
defect spaces have equal dimensions, we even arrive at the
conclusion that C̃ΦC̃,R+

and CΦC ,Σ are not only algebraically
equivalent after extension but also topologically equivalent
after extension.

Finally, jointing the last conclusion with Theorem 5.2, we
obtain the following result for the Fredholm index of CΦC ,Σ,

IndCΦC ,Σ = Ind C̃ΦC̃,R+

= −wind
(
det ΦC̃(ξ, µ)

)
= − 1

2π

([
arg det ΦC̃(ξ, µ)

]
R +

[
arg det ΦC̃(∞, µ)

]
[0,1]

)
= − 1

2π

([
arg det ΦC̃(ξ)

]
R +

[
arg det ΦC̃(∞, µ)

]
[0,1]

)
,

where [f(ξ)]R denotes the increment of f(ξ) when ξ varies
through R from −∞ to +∞ and [f(∞, µ)][0,1] is the increment
of f(∞, µ) when µ varies through R from 0 to 1. Directly,
we obtain [

arg det ΦC̃(ξ)
]
R = π(−2− 8n+ 8ε)

and [
arg det ΦC̃(∞, µ)

]
[0,1]

= π(2 + 8n− 8ε).

So, we have the desired result IndCΦC ,Σ = 0.
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VI. CONCLUSION

In the present paper we were able to characterize the
Fredholm property of particular operators associated with an
impedance boundary problem which are a generalization of the
results presented in [14]. For practical and theoretical reasons,
with the Fredholm property we are able to answer further
questions about this kind of diffraction problems in particular
the invertibility and the image normalization of the operators
related with the problem. We plan to do this in future works.
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[2] A. Böttcher, Yu. I. Karlovich, and I. M. Spitkovsky, Convolution Opera-
tors and Factorization of Almost Periodic Matrix Functions, Birkhäuser
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