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New light fundamental fields are natural candidates for all or a fraction of dark matter. Self-gravitating
structures of such fields might be common objects in the universe, and could comprise even galactic halos. These
structures would interact gravitationally with black holes, a process of the utmost importance since it dictates
their lifetime, the black hole motion and possible gravitational radiation emission. Here, we study the dynamics
of a black hole piercing through a much larger fully relativistic boson star, made of a complex minimally coupled
massive scalar without self-interactions. As the black hole pierces through the bosonic structure, it is slowed
down by accretion and dynamical friction, giving rise to gravitational-wave emission. Since we are interested in
studying the interaction with large and heavy scalar structures, we consider mass ratios up to q ∼ 10 and length
ratios L ∼ 62. Somewhat surprisingly, for all our simulations, the black hole accretes more than 95% of the
boson star material, even if an initially small black hole collides with large velocity. This is a consequence of an
extreme “tidal capture” process, which binds the black hole and the boson star together, for these mass ratios.
We find evidence of a “gravitational atom” left behind as a product of the process.

I. INTRODUCTION

The nature of the matter making up most of the universe
is unknown. There is overwhelming evidence for the exis-
tence of dark matter (DM) of an unknown nature and prop-
erties, which nevertheless interacts gravitationally [1–4]. Ef-
forts to determine the properties of such matter and to place
it in a theoretical framework have so far been unsuccessful,
but will continue vigorously for years to come [5, 6]. If the
standard model of particle physics is a good guide, one can
expect new “dark stars” of various types (depending on the
number and properties of the putative new elementary parti-
cles passing as dark matter), which can make up a significant
fraction of astrophysical environments. The scales at which
such new structures will appear depend, in particular on the
fundamental scale dictated by the fundamental constituents of
the, hitherto invisible, new fields.

Here we entertain the possibility that there are new fun-
damental, scalar degrees of freedom minimally coupled to
gravity, and that these form localized, self-gravitating objects.
It is well known that for complex scalar fields—such as the
ones we focus on—boson stars (BSs) form rather generically
as a consequence of gravitational collapse [7–11]. For real
scalars, similar objects exist and form (see Refs. [9, 12] and
work cited therein; the extension to vector degrees of free-
dom can also be considered [13]). In the absence of self-
interactions, the maximum mass Mmax of such configura-
tions is dictated by the mass of the fundamental boson µ, as
Mmax = 0.8M� × (10−10 eV/µ) [14]. For sufficiently light
fields, BSs can therefore have stellar masses, or even galactic-
scale masses. Indeed, there are indications that such solutions
describe well dark matter cores in halos. These models are
often referred to as fuzzy DM models, and require ultralight
bosonic fields (we refer the reader to Refs. [15–22], but the
literature on the subject is very large and growing).

Dark stars have so far gone undetected, but the advent of

gravitational-wave (GW) astronomy may also mark the be-
ginning of the illumination of such dark components of our
Universe [23–26]. Understanding the behavior of dark mat-
ter when moving perturbers drift by, or when a binary inspi-
rals within a DM medium is crucial for attempts at detecting
DM via GWs. In the presence of a nontrivial environment ac-
cretion, gravitational drag and the self-gravity of the medium
contribute to a small, but potentially observable, change of the
GW phase [21, 27–35].

When the length scales between different objects are sim-
ilar, numerical relativity can be used to extract accurate pre-
dictions for the dynamics of the objects and of gravitational
waveforms [36–39]. When the scales are too different, one
needs to rely on other methods. The tidal deformability of
BSs leaves an imprint in gravitational waveforms and was
considered recently [37, 40, 41]. Dynamical friction in scalar
structures was also studied recently and allows us to under-
stand the slowdown of bodies moving within scalar struc-
tures [16, 21, 35, 42]. The evolution of a compact binary
within a large scale BS was studied within a pointlike approx-
imation for the binary [21], and it predicts a−6-PN dephasing
effect, potentially observable.

Here, we wish to bridge the gap between these two types of
results, and consider the motion of a small black hole (BH) as
it “pierces” a large BS structure fully nonlinearly. The small
BH will be subjected to friction, it accretes a portion of the
scalar material from the BS, and it emits GWs carrying energy
and momentum. Likewise, as a consequence of the BH mo-
tion, the BS itself will move and be nonlinearly perturbed—or
even destroyed entirely.

We use units where the speed of light, Newton’s constant
and reduced Planck’s constant are all set to unity, c = G =
~ = 1.
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II. BOSON STAR CONSTRUCTION

We consider a minimally coupled, complex scalar field Φ
described by the Einstein-Klein-Gordon action,

S =

∫
d4x
√−g

[ R
16π
−
(
gab∇aΦ∇bΦ∗ + µ2ΦΦ∗

)]
,

where gab is the spacetime metric, R is the Ricci scalar, µ is
the mass of the scalar field and ∗ denotes complex conjuga-
tion. From the action, the equations of motion are

Rab −
1

2
Rgab = 8πTab , (1)

gab∇a∇bΦ = µ2Φ , (2)

with the stress-energy tensor

T ab = ∇aΦ∇bΦ∗+∇aΦ∗∇bΦ−gab
(
∇cΦ∇cΦ∗ + µ2ΦΦ∗

)
.

(3)
Following Ref. [9], we derive equilibrium equations in

spherical symmetry by assuming a harmonic ansatz for the
scalar field and a stationary geometry,

Φ(r, t) = φ(r)eiωt , (4)

ds2 = −α(r)2dt2 + a(r)2dr2 + r2dΩ2
2 . (5)

Then, the spherically symmetric Einstein-Klein-Gordon sys-
tem can be written as three ordinary differential equations

a′ =
a

2

{
1− a2

r
+ 8πr

[(
ω2

α2
+ µ2

)
a2φ2 + (φ′)2

]}
,

α′ =
α

2

{
a2 − 1

r
+ 8πr

[(
ω2

α2
− µ2

)
a2φ2 + (φ′)2

]}
,

φ′′ = −
{

1 + a2 − 8πr2a2µ2φ2
} φ′
r
−
(
ω2

α2
− µ2

)
φa2 ,

where primes stand for radial derivatives. In order to obtain a
physical solution, the following boundary conditions must be
imposed on this system.

φ(0) = φ0 , φ′(0) = 0 , a(0) = 1 , (6a)
lim
r→∞

φ(r) = 0 , (6b)

lim
r→∞

α(r)a(r) = 1 . (6c)

Here, φ0 can be specified arbitrarily, and it roughly determines
the mass of the boson star. We can find a simpler system by
rescaling the variables in the following manner,

φ̃ ≡
√

8πφ, r̃ ≡ µr, t̃ ≡ ωt, α̃ ≡ (µ/ω)α .

Then the equations become

a′ =
a

2

{
1− a2

r̃
+ r̃

[(
1

α̃2
+ 1

)
a2φ̃2 + (φ̃′)2

]}
,

α̃′ =
α̃

2

{
a2 − 1

r̃
+ r̃

[(
1

α̃2
− 1

)
a2φ̃2 + (φ̃′)2

]}
,

φ̃′′ = −
{

1 + a2 − r̃2a2φ̃2
} φ̃′
r̃
−
(

1

α̃2
− 1

)
φ̃a2 .

(7)

where primes stand for the derivatives with respect to r̃. Note
that both µ and ω drop out of the equations. We will use the
mass parameter µ as our unit.

To integrate these equations, we need to understand their
asymptotic behavior. At the origin, r̃ = 0, we can expand all
quantities in a Taylor series to find

a(r̃) = 1 +
r̃2(α̃2

0 + 1)φ̃2
0

6α̃2
0

+O(r̃4) ,

α̃(r̃) = α̃0 −
r̃2(α̃2

0 − 2)φ̃2
0

6α̃0
+O(r̃4) ,

φ̃(r̃) = φ̃0 +
r̃2(α̃2

0 − 1)φ̃0

6α̃2
0

+O(r̃4) ,

where φ̃(0) = φ̃0, α̃(0) = α̃0. Notice that the form of the
metric in Eq. (5) is consistent with the Schwarzschild metric
at large distances where

a(r) =

(
1− 2M

r

)− 1
2

, (8)

with M the ADM mass of the spacetime. This allows us to
define a more general mass aspect function

M(r) =
r

2

(
1− 1

a2(r)

)
, (9)

which measures the total mass contained in a sphere of ra-
dius r. Furthermore, we can use boundary condition Eq. (6c)
together with Eq. (8) to get α(r) at large distances

α(r) =

(
1− 2M

r

) 1
2

. (10)

We are now ready to solve for the boson star structure using a
shooting method to solve Eqs. (7): we fix φ̃0 and shoot for α̃0

using boundary conditions Eqs. (6a) and (6b), so as to have an
asymptotically flat spacetime. There are many possibilities for
α̃0, which correspond to different excited states of the boson
star. Once we have solved for a, α̃ and φ̃ we can recover ω by
using Eq. (6c). In practice, since we use a finite grid, we use
the values of α and a at the last radial grid point of the solution
we have (see below for details on how good the agreement is
with the Schwarzschild metric at r ∼ 100).

Finally, to perform numerical evolutions in the absence of
symmetries, isotropic coordinates are preferred. In isotropic
coordinates, the spherically symmetric metric can be written
as [9]

ds2 = −α(R)2dt2 + ψ(R)4
(
dR2 +R2dΩ2

)
, (11)

where ψ is the conformal factor. A change of the radial co-
ordinate R = R(r) can transform the solution obtained in
Schwarzschild coordinates into isotropic ones, in particular,

dR

dr
= a

R

r
. (12)

In a boson star the scalar field decays exponentially, and
therefore the solution quickly asymptotes to a Schwarzschild
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exterior. We can thus integrate Eq. (12) by imposing a
Schwarzschild exterior of mass M at large distances, with

r(R) = M +
M2

4R
+R . (13)

We perform the coordinate transformation (12) numerically
where Eq. (13) is used when r > rmax. We solve this equa-
tion via a shooting method, where we integrate outwards; we
therefore need to understand the behavior R(r) for small r.
Taylor expanding at r̃ = 0, i.e., R(r) =

∑
nR

(n)rn/n!, we
find

R(r) = cr − cr3(1 + α2
0)φ2

0

12α2
0

+O(r5) . (14)

Then, R′(0) = c is a free parameter which we determine
by shooting to the exterior solution (13). In practice we set
rmax ∼ 100 and we can verify that we effectively recover the
Schwarzschild metric from this point onward: |φ| < 10−16,
|a(r) − (1− 2M/r)

− 1
2 | < 10−16. Hence, our solution is

smoothly connected.
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FIG. 1. Configuration describing an isolated BS with mass M =
0.53 in isolation, corresponding to a value of the scalar field at the
center φ0 = 0.02, α0 = 0.873, ω = 0.936. Top: scalar field and
metric components as a function of the radial coordinate. Bottom:
Hamiltonian constraint along the R axis. The red curve has been
multiplied by 16, the expected factor for fourth-order convergence.
We use mesh refinement, and ∆ represents dx , dy, and dz of the
coarsest level.

In the following, we use a ground-state BS with mass
M = 0.53 in isolation, corresponding to BS parameters
µ = 1, φ0 = 0.02, α0 = 0.873, ω = 0.936. The solution is
summarized in the top panel of Fig. 1. Note that R98 = 12.39
is the radius of the isolated BS solution which encloses 98%
of the BS mass. A measure of the correctness of this solution
can be assessed by the violation of the Hamiltonian constraint
(introduced in the next section, see Eq. (20)), shown in the
bottom panel of Fig. 1. Notice that when the resolution in-
creases, the constraint violation decreases in accordance with
the expected fourth-order convergence of our results (we use
fourth-order accurate finite-difference operators throughout).

When the BS is dilute, the relevant equations governing the
structure of isolated BSs reduce to the Schrodinger-Poisson

equations [21, 43]. In this limit, all BS solutions are related
via simple scaling relations, and accurate fits are given by ex-
pressions (45)-(50) in Ref. [21]. In this regime, the radiusR98

(defined by the areal radius containing 98% of the BS mass)
can be related to the total mass via Mµ ' 9.1/R98µ. The BS
that we use as a reference is not fully within the Newtonian
regime.

III. DYNAMICAL BH-BS SPACETIMES

A. 3+1 decomposition and evolution procedure

Our strategy to perform numerical evolutions makes use of
the standard 3+1 decomposition [44, 45], whereby a 3-metric
γab is introduced via

γab = gab + nanb , (15)

where na denotes a unit timelike vector normal to a space-
like hypersurface. The full spacetime metric gab can then be
written in the form

ds2 = gabdx
adxb

= −
(
α2 − βiβi

)
dt2 + 2βi dt dx

i + γij dx
i dxj , (16)

where α and β are the usual lapse and shift gauge functions,
and the indices i, j, . . . run from 1 to 3.

To write the evolution equations in this formalism we intro-
duce the extrinsic curvature Kij ,

Kij = − 1

2α
(∂t − Lβ) γij , (17)

and the “conjugate momentum” of the complex scalar field Φ,

KΦ = − 1

2α
(∂t − Lβ) Φ , (18)

where L denotes the Lie derivative. The evolution equations
then take the form

∂tγij = −2αKij + Lβγij , (19a)

∂tKij = −Di∂jα+ α
(

3Rij − 2KikK
k
j +KKij

)
+ LβKij + 4πα [(S − ρ)γij − 2Sij ] , (19b)

∂tΦ = −2αKΦ + LβΦ , (19c)

∂tKΦ = α

(
KKΦ −

1

2
γijDi∂jΦ +

1

2
µ2Φ

)
− 1

2
γij∂iα∂jΦ + LβKΦ , (19d)

which is subject to the following constraints

H ≡ 3R−KijK
ij +K2 − 16πρ = 0 , (20)

Mi ≡ DjKij −DiK − 8πji = 0 . (21)
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where K ≡ γijKij , Di and 3Rij denote, respectively, the
covariant derivative and Ricci tensor with respect to the 3-
metric, and the source terms are given by

ρ ≡ T abnanb ,
ji ≡ −γiaT abnb ,
Sij ≡ γaiγbjTab ,
S ≡ γijSij .

(22)

For the numerical simulations we rewrite the evolu-
tion equations above in the Baumgarte-Shapiro-Shibata-
Nakamura form [46–48], as detailed in Ref. [49], and use
the Einstein Toolkit infrastructure [50–52] for the evolutions.
We use Carpet [53] for mesh refinement capabilities, AHFind-
erDirect [54, 55] for finding and tracking apparent horizons,
and QuasiLocalMeasures [56] for extracting BH mass. The
spacetime metric and scalar field variables are evolved in time
using the LeanBSSNMoL and ScalarEvolve codes, which are
freely available as part of the Canuda library [57].

For our simulations we use two refinement centers, one cen-
ter corresponding to the location of the BH and the other to the
location of the BS, which sits initially at the origin of the nu-
merical domain. We use up to 10 refinement levels for the BH
and 3 refinement levels for the BS. We always use at least 25
points to cover the BH, thus ensuring enough grid points for an
acceptable resolution. During the evolution, the mesh refine-
ment around the BH moves, and the mesh refinement resolv-
ing BSs are fixed at the origin of the numerical domain. To
avoid redundant calculations, we assume reflection symmetry
on the x = 0 and y = 0 planes (the collision will always be
along the z axis).

Throughout the code, derivatives are approximated using
fourth-order-accurate finite-differencing stencils but there are
also lower-order elements in the code, such as prolongation
operations, which are only second-order accurate in time. We
use the method of lines with Runge-Kutta 4 to evolve the
equations in time with outgoing (radiative) boundary condi-
tions and the usual 1 + log and Gamma-driver gauge condi-
tions [45].

B. Diagnostics

To understand and characterize some of the physics more
precisely, we monitor the scalar field around the moving BH,
in a frame comoving with the BH.

We simply consider a sphere with constant coordinate ra-
dius r̄ around the BH, as measured with the numerical coor-
dinates introduced above, and we extract the multipole mode
of the scalar field on the sphere, which is defined as

φlm(t, r̄) =

∫
SBH

d2ΩY ∗lm(Ω)Φ(t, r̄,Ω) , (23)

where SBH is the sphere around the BH with radius r̄. For the
small Lorentz boosts considered in this work, such a sphere is
also a constant-radius sphere in the BH frame.

In addition, we monitor the energy Erad and momentum
P rad radiated in GWs, which can be be calculated as [58],

dErad(t)

dt
= lim
r→∞

[
r2

16π

∫
Ω

∣∣∣∣∫ t

−∞
Ψ4dt̃

∣∣∣∣2 dΩ

]
, (24)

dP rad
i (t)

dt
= − lim

r→∞

[
r2

16π

∫
Ω

`i

∣∣∣∣∫ t

−∞
Ψ4dt̃

∣∣∣∣2 dΩ

]
, (25)

where `i = (− sin θ cosφ,− sin θ sinφ,− cos θ), and Ψ4 is
the Newman-Penrose scalar, which is defined in Appendix C
of Ref. [59].

Besides, we also monitor the energy density and momen-
tum flux of the scalar field into the BH horizon. For any vector
field, we have

Q =

∫
Ω

d3xα
√
γT t

a ξ
a , (26)

where Tab is the energy-momentum tensor, γ is the determi-
nation of the 3-metric, and α is the lapse function. When
ξa = ( ∂∂t )

a we denote Q by Qt, and for ξa = ( ∂∂z )a we
denote Q by Qz . Even though ξ is not a Killing vector, the
charge defined in Eq. (26) is a good measure of the scalar
field energy, and it has been adopted by other authors (e.g.
Ref. [60]).

C. Initial data

For our evolution procedure, the relevant initial data
amount to specifying the spatial profile of the 3-metric, ex-
trinsic curvature, lapse and shift, as well as the scalar field,
at a given time slice. We have described in Sec. II our con-
struction of stationary BS spacetimes. Isolated BH spacetimes
are known analytically, and to construct spacetimes contain-
ing both objects we superpose these two solutions using a pro-
cedure analogous to the one outlined in Ref. [61], which we
can summarize as follows. The spacetime is described by

Kij = K
(BH)
ij +K

(BS)
ij + δKij , (27a)

ψ = ψ(BH) + ψ(BS) − 1 + δψ , (27b)

γij = ψ4 diag(1, 1, B2) , (27c)

B2 = Γ2
[
1− v2(3− ψ(BH) + ψ(BS))2ψ−6

]
, (27d)

where Γ ≡ 1/
√

1− v2, v is the speed of the BH, K(BH)
ij and

K
(BS)
ij are the extrinsic curvatures of the BH and BS respec-

tively, while ψ(BH) and ψ(BS) are the conformal factors of the
BH and BS solutions, respectively. In the above system δKij

and δψ are correction terms, which should be solved for by
solving the appropriate elliptic system. For simplicity, here
we set δKij = 0 and δψ = 0. This means that these ini-
tial data do not satisfy the constraint equations (20) and (21).
While not ideal, the constraint violation incurred is small for
large initial distances, and such a construction has been stan-
dard practice in studies of BS binaries [62–64].
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One can find explicit expressions for the metric and extrin-
sic curvature of a boosted BH in Ref. [61]. For the spherically
symmetric BS solutions that we consider, K(BS)

ij = 0 and

K
(BS)
Φ = − 1

2α
∂tΦ = − iωφ

2α
,

where α is the lapse function obtained previously for BSs in
isolation; ω and φ are defined in Eq. (4). Finally, we fix the
initial conditions for the gauge variables by choosing α =
ψ−2, and βi = 0.

We place the BS at the center of our coordinates, and we
keep its parameters fixed in all our simulations: as we dis-
cussed above, we consider a BS which in isolation is charac-
terized by a total mass M = 0.53, corresponding to a value of
the scalar field at the center, φ0 = 0.02, α0 = 0.873, ω =
0.936, as shown in Fig. 1. Hereafter we fix units where
µ = 1—all our results will be shown and discussed in these
units.

TABLE I. List of simulations analyzed for collisions between a BH
of mass parameter MBH and a BS of mass M = 0.53. The BH
has initial velocity v0 along the z axis, and starts from position z0.
The BS is characterized by a frequency ω = 0.936 and values at
the origin φ0 = 0.02, α0 = 0.873. The total energy is Mtot =
ΓMBH + M − ΓMBHM/z0 with Γ the Lorentz factor. The total
momentum of the boosted BH is ΓMBHv0. We define a mass ratio
q = M/MBH and a length ratio L = R98/(2MBH). Notice that at
the initial time the mass parameter MBH is equal to the irreducible
mass Mirr within better than 0.5% and the irreducible mass is given
by A = 16πM2

irr, where A is the area of the apparent horizon.

Run MBH L v0 z0 Mtot Ptot

IA 1 6 10−4 -50 1.52 0
IB 1 6 0.5 -200 1.68 0.577
IIA 0.4 16 10−4 -50 0.93 0
IIB 0.4 16 0.5 -200 0.99 0.231
IIIA 0.2 31 10−4 -50 0.73 0
IIIB 0.2 31 0.5 -200 0.76 0.115
IVA 0.1 62 10−4 -50 0.63 0
IVB 0.1 62 0.5 -200 0.65 0.086

What we vary in the initial data are the BH parameters, in
particular, its initial velocity and mass. We have studied a
variety of initial conditions, summarized in Table I. Our ini-
tial data include a BS-BH mass ratio q = M/MBH ranging
from 0.2 to 2, and a length ratio L = R98/(2MBH) from 6
to 62. These ratios are far from those expected for galactic
halos [21], but they are the only ones possible with current
infrastructure. They could be appropriate to describe the in-
teractions between BHs and DM roaming “lumps,” or even
as a starting point to understand how to extrapolate to other,
more extreme ratios.

We also consider two different initial BH velocities. One
describes slow infalls, for which we take an almost static BH
with v0 = 10−4 at z0 = −50. We also consider high velocity
collisions, for which v0 = 0.5 at z0 = −200. In all cases, the
BH is initially well outside the BS, z0 � R98.

IV. RESULTS

A. Dynamics and accretion during collision process

We mostly look at results in the “lab frame,” where the BS
is at rest, and the BH—initially at (0, 0, z0)—is moving along
z axis to eventually collide and interact with it.

The numerical convergence of our results is consistent
with the discretization scheme we used, as discussed in Ap-
pendix A. The outcome of our numerical simulations are sum-
marized in Figs. 2-6 and Table II.

Snapshots of the scalar field absolute value |Φ| =
√

ΦΦ∗

are shown in Figs. 2–3, for initial data IB and IVB. The
contour in pink marks the contour of constant lapse function
α = 0.2, which is a good indication of the BH apparent hori-
zon location. It is clear from Fig. 2 that, in this frame, during
the collision the BS moves towards the BH as it approaches.
If we define the collision as the instant when the BH crosses
R98, it is clear from these snapshots that even prior to colli-
sion the BS is tidally distorted. Tidal Love numbers of BSs
are positive and relatively large as compared to compact sys-
tems [40, 66], hence the deformation is along the BH-BS axis
and visible. The tidal deformation is clear for nearly equal
mass objects, as the effects are much stronger in this regime.
For the purpose of our study, the case IVB in Fig. 3 is more
interesting, for it describes a very small BH plunging through
a large BS. Tidal effects are now less obvious on length scales
of the boson star; however, they become visible and will play
a crucial role once the BH pierces through the BS, as we ex-
plain below.

It is also evident from the snapshots that the BS is almost
entirely swallowed by the BH, which continues moving—
albeit with a smaller velocity by momentum conservation—
after the interaction with the BS. We find that the BS is nearly
totally accreted for all the initial data in Table I; an extreme
example concerns simulation IVB: even a BH which is 62
times smaller than the BS and moving at half the speed of
light, ends up “eating” all of the BS material. This is seen, in
particular, in Fig. 4 where we show the BH irreducible mass
(estimated with the help of the horizon area) as function of
coordinate time. After a relatively short timescale ∼ 1000,
and after the BH has had time to interact with the BS, the final
BH mass is at least 95 % of the total initial energy. We have
further quantified accretion by computing the scalar energy in
the initial and final spacetime slices [cf. definition (26)]; our
results are shown in Table II and are consistent with total or
nearly total accretion of the BS onto the BH, even for such
length ratios as L = 62 of run IVB.

Accretion onto a nonmoving BH placed at the center of
a Newtonian BS proceeds at a stationary rate Ṁ ∼ 8π ×
10−2(µMBH)(µMBS)4 [67]. For simulation IV this amounts
to Ṁ ∼ 2× 10−4, roughly 2 orders of magnitude below what
we observe numerically. We can estimate the effective ab-
sorption cross section σ from our results, letting Ṁ = σρv0.
For simulation IVB one finds σ ∼ 400 at the peak of accre-
tion, corresponding to an absorbing disk with radius 2 orders
of magnitude larger than the BH scale [68]. We do not under-
stand the origin of such large accretion rates, but we suspect
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FIG. 2. Snapshots of evolution, depicting the scalar field absolute value |Φ| for the initial data IB in Table I. From left to right, the snapshots
are taken at instants t = 0.0, 300.8, 380.8, 390.4 in the top row, and at t = 396.8, 406.4, 416.0, 448.0 in the bottom row. Pink lines depict
contours of constant lapse function α = 0.2, which are a good approximation for the location of the horizon, further indicated by arrows.
Notice how the BS is tidally distorted as it approaches the BH and how it eventually is almost totally swallowed up by the BH. Animations are
available online [65], and also as ancillary files in this submission.

they are related to a transient stage. Unfortunately, our setup
does not allow us to simulate more extreme length scales;
hence, we never see past the transient and into the stationary
regime.

For simulations with smaller BH masses, the residual scalar
field outside the BH increases by several orders of magnitude
as seen in Table II, although it is still but a small fraction of
the total energy. One can expect that for even smaller BH
masses the BH can pierce through without ”eating” the entire
BS. Unfortunately, as we said, in order to evolve such a small
BH, one would need too large an amount of computational
resources.

B. Black hole motion and tidal capture

To interpret our results and to compare them with simple
estimates, consider first the motion, in Newtonian dynamics,
of two pointlike particles of mass m1 at z = z1(t) and m2 at
z = z2(t). We thus neglect tidal effects (although they are ap-
parent in our results, cf. Fig. 2) and relativistic effects. Defin-

ing d = z2 − z1 and using Newtonian dynamics (or equiva-
lently, energy and momentum conservation), one finds

d̈ = −m1 +m2

d2
, z̈1 =

m2

d2
. (28)

For our system, we take m1 = MBH, m2 = M , and we in-
tegrate them with initial conditions appropriate for the initial
data. For IB, z1(0) = −200, d = 200. We find that the BH
and BS are separated by a distance d = 5 when the BS sits at
z2 = −7.7, which is consistent with the left bottom panel in
Fig. 2.

The BH velocity can be estimated from our numerical re-
sults, using the puncture trajectory. These estimates are shown
in Fig. 5 for simulations IB and IVB, and also in Table II.
Due to our initial gauge condition β = 0, the puncture veloc-
ity is zero at the initial time, but it will reach v0 over a period
of time (see Appendix B). Notice that the BH velocity after
interaction with the BS agrees well with simple momentum-
conservation estimates. For extreme length ratios, the agree-
ment is not as good due to the extreme requirements neces-
sary; our simulation is not yet accurate enough, and we would
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FIG. 3. Snapshots of evolution, depicting the scalar field absolute value |Φ| for the initial data IVB in Table I. From left to right, the snapshots
are taken at instants t = 0.0, 349.6, 389.6, 408.8 in the top row, and at t = 415.2, 436.8, 450.4, 480.8 in the bottom row. Pink lines depict
contours of constant lapse function α = 0.2, which, as in the previous figure, indicate the horizon location; this region is much smaller (and
difficult to see) than the corresponding one of Fig. 2 since the BH is much smaller. Notice how the BS pulls back the BH during the collision
process (panels 5 and 6), and eventually is swallowed up by the BH. Animations are available online [65], and also as ancillary files in this
submission.

require larger resolutions to fully capture the dynamics to the
necessary level of precision.

Nevertheless, there are interesting details in how the
asymptotic velocities are achieved, which require a deeper
analysis. We find that the BH pierces through the boson star
and produces a tidal “stretching,” with a significant amount
of energy deposited in such a configuration. A point of near-
maximum distortion is shown in the lower left panel of Fig. 3.
At this instant, the velocity of the BH is close to zero, and the
tidally distorted cloud is slowly moving in the positive z di-
rection. Thus, the cloud pulls the BH, which then acquires a
velocity in the negative z direction, as seen in Fig. 5. The pull
is significant and can make the BH velocity large, but nega-
tive. As the cloud relaxes from this tidal pull, it is accreted
by the BH and transfers all its positive momentum to the BH,
which then reaches its asymptotic value, consistent with mo-
mentum conservation. This momentarily retrograde motion is
directly responsible for the different accretion peaks in Fig. 4,
and for the features in GW emission that we discuss below.

In other words, what we find is an extreme example of “tidal

capture” [69, 70], which in our setup leads to the subsequent
accretion of the entire boson star. As discussed in Ref. [69],
the maximum tidal oblateness that can be induced is of order
MBH/M for a BH sitting at the BS “radius.” The associated
tidal energy is ∼ M2

BH/R98. Since the BH mass grows by
the time it reaches the other BS extreme, this quantity can
be a sizable fraction of the initial kinetic energy, leading to
the stoppage of the BH. To prevent the BH backward motion,
smaller BH masses need to be considered, or more dilute bo-
son stars. Unfortunately, either choice requires more extreme
length ratios, which we are unable to study at this point.

One of our original motivations was to study dynami-
cal friction in a full nonlinear realistic setup. Dynamical
friction is of order 4πMρ/v2 for a constant density boson
star [16, 21, 35, 71]. We can estimate when dynamical friction
is dominant with respect to gravitational acceleration; both ef-
fects will impart similar accelerations (albeit of different sign)
when

4

3
πρr ∼ 4πMBHρ

v2
, (29)
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TABLE II. Summary of the results of the dynamical evolution of the initial data in Table I. Here, Mf is the final BH irreducible mass, and vf
is the final BH velocity as calculated from the puncture trajectory; in parentheses we show the expected value MBHv0/Mtot from momentum
conservation, assuming that the entire BS is accreted onto the BH (notice the good agreement between these two estimates). Note thatErad and
P rad are the energy and momentum radiated in GWs, respectively. They are calculated from ψ4 and compared to a Newtonian, quadrupolar
approximation which includes no accretion (number in parentheses, see main text for further details). Finally the total momentum and energy
flux of the scalar field into the BH horizon are the last two entries. The junk radiation exists in all cases and we neglect it.

Run MBH Mf v0 vf 104Erad 104P rad
z Qinitial

t Qfinal
t Qinitial

z Qfinal
z

IA 1.0 1.56 10−4 −2.9× 10−4 (0) 2.9 (11.7) −0.24 0.53 7.7× 10−5 0 4.1× 10−8

IB 1.0 1.64 0.5 0.33 (0.30) 12.5 (35.6) 4.1 0.54 3.9× 10−4 0 −7.4× 10−5

IIA 0.4 0.94 10−4 −1.6× 10−3 (0) 0.63 (1.9) 6.5× 10−3 0.52 2.6× 10−3 0 −3.1× 10−6

IIB 0.4 1.01 0.5 0.20 (0.20) 5.5 (5.7) 1.5 0.54 4.0× 10−3 0 −6.4× 10−4

IIIA 0.2 0.73 10−4 −2.5× 10−3 (0) 0.20 (0.47) 9.0× 10−3 0.51 4.2× 10−3 0 −1.6× 10−4

IIIB 0.2 0.78 0.5 0.12 (0.13) 2.2 (1.4) 0.47 0.54 1.1× 10−2 0 −1.3× 10−3

IVA 0.1 0.61 10−4 −7.1× 10−3 (0) 0.10 (0.12) 4.7× 10−3 0.51 1.5× 10−2 0 −1.0× 10−3

IVB 0.1 0.64 0.5 0.064 (0.077) 0.75 (0.36) 0.11 0.53 2.2× 10−2 0 −1.2× 10−3

2

4

6

M
ir

r
/M

B
H

IB

IVB

0 200 400 600 800

t

0.00

0.02

0.04

0.06

d
M

ir
r
/d
t

FIG. 4. Accretion of scalar onto the BH. Top panel: normalized BH
irreducible mass Mirr/MBH for simulations IB and IVB. The gray
lines are the total mass Mtot normalized by the initial mass MBH

given in Table I. At late times the BH mass approaches Mtot, thus
the BH ends up accreting the entire BS. Bottom panel: accretion rate
for the two different initial data. Notice that there are two accretion
stages for simulation IVB, which we argue to be due to tidal effects.
The accretion rate is larger than expected for a stationary regime, see
main text.

where energy conservation requires that the BH velocity, in
the constant-BH-mass approximation, satisfies v2 = v2

R +
4πρ/3(R2

98−r2). Here vR is the BH velocity when it reaches
the BS radius. Even in the most favorable situation when the
BH starts from rest at infinity, v2

R = 2M/R98, and therefore
we find that dynamical friction dominates only at distances

r . γR98 , (30)

where γ is defined by MBH = γM . Thus, we see how chal-
lenging it is to perform simulations of self-gravitating objects
where dynamical friction can be isolated.

−40

−20

0

z

IB

IVB

360 380 400 420 440 460 480 500

t

0.0

0.2

0.4

v

FIG. 5. Location z and the speed v of the BH for IB and IVB, as
read from the puncture location. The interaction between the BH and
the BS is clear from these data, and it translates into a deceleration
starting at t ∼ 400 and lasting for 20, roughly the time taken to cross
the bulk of the BS. Notice also that the BH velocity is negative for a
small amount of time in simulation IVB: the BH is tidally captured
by the boson star.

C. Gravitational-wave emission

When the BS is Newtonian and the BH velocity is non-
relativistic, we can use the quadrupole approximation to es-
timate waveforms and radiated fluxes. In addition, when the
BH mass MBH is much smaller than that of the BS mass M ,
one can find simple solutions to the dynamics of the system
and consequent GW emission. In such a setup, the BH simply
follows a spacetime geodesic parametrized by a radial posi-
tion r(t), in a background whose geometry is dictated by a
BS fixed at the center of coordinates. The quadrupole approx-
imation yields

dE

dt
=

8

15
M2

BH (3ṙr̈ + r
...
r )

2
. (31)
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We first approximate the BS as a scalar blob of constant den-
sity and radius R98, with vacuum outside. In this Newtonian
setup the motion of the BH in the exterior can be calculated
using energy conservation,

ṙ2 − 2M/r = v2
0 , (32)

where v0 is the asymptotic velocity at large distances. In the
interior, one needs an accurate description of the BS gravi-
tational potential. In the approximation of constant density
ρ = 3M/(4πR3), one finds

ṙ2 +
4

3
πρ
(
r2 −R2

98

)
= v2

R (33)

in the interior, where R98 is the BS radius and vR the velocity
at R98 which can be obtained from (32).

Consider first infalls from rest. Integrating the quadrupole
formula in the exterior, one then finds (using dt = dr/ṙ to
perform a radial integration)

Eext
rad =

16
√

2

105

(
M

R98

)5/2
M2

BH

R98
. (34)

In the interior one finds instead

Eint
rad =

(
63 cot−1

(√
2
)

√
2

− 7

)
Eext

rad . (35)

For finite velocity or realistic matter density, a numerical
integration of the equation of motion, along with that of the
quadrupole formula is necessary. The result of such an inte-
gration is shown in Table II, where we use the fully relativis-
tic boson star solution, and a slow motion approximation. We
truncate the integration at the origin when v0 = 0, but we as-
sume that the BH plunges through and emerges on the other
side for v0 = 0.5.

700 750 800 850 900 950 1000

t

0

1

2

3

4

5

6

F

×10−5

IB

10× IVB

FIG. 6. Energy flux F = dErad(t)
dt

of the GW, which is the integra-
tion of Ψ4 on the sphere r = 500. The blue dashed line is multiplied
by 10.

Our fully relativistic results for GW emission are shown in
Table II and Fig. 6. We compute the energy and momentum

flux of GWs at r = 500. There is a pulse of “junk” radia-
tion in the initial data, which is easily distinguished from the
physical pulse [72]. Hence we are able to discard nonphysi-
cal contributions to the total radiated fluxes and energies. As
seen in Table II, our Newtonian estimate is in good agree-
ment with the full relativistic results, especially if one con-
siders how simple the Newtonian model is, with no accretion
included. The flux of energy in GWs for extreme length ra-
tios, Fig. 6, shows three emission peaks, which are caused by
the BH tidally induced retrograde motion and accretion and
momentum-induced forward motion described above.

Table II also shows the linear momentum carried by GWs.
Since radiation is forward focused, linear momentum in GWs
is along the direction of the BH motion, in the positive z direc-
tion. The only exception concerns simulation IA, for which
the collision happens from rest and the BS is less massive than
the BH. It is thus expected that this is best described by a BS
falling onto a BH, hence a negative total linear momentum ra-
diated. In any case, the linear momentum carried by GWs is
too small to influence any of the dynamics of the system.

D. Late-time decay of the scalar

The BH accretes most of the BS material in a violent ac-
cretion stage, as we saw. However, a small fraction of the
BS leftovers linger around the BH in a quasi-bound state co-
moving with the BH, as might be expected for massive scalars.
To understand if such states correspond to those in perturba-
tion theory [75], we use a spherical harmonic decomposition
in the BH frame, as explained in Sec. III B.

Figure 7 shows the monopolar (l = m = 0) component
of the scalar field on a sphere around the BH extracted close
to the BH for simulations IB and IVB. The field oscillates at
a frequency µ, as expected for massive fields. We also see a
clear exponential decay of the field after the collision, indi-
cating that the system is relaxing in one of its characteristic
modes of vibration, corresponding to the so-called “gravita-
tional atom” (with a BH “nucleus” and the light scalar field as
the “electron”) [75–77].

To test this picture and to compare with the decay timescale
of a bound state within perturbation theory, we calculate the
quasi-bound states of massive scalars in a fixed Schwarzschild
geometry, using Leaver’s continued fraction method [75, 78].
In other words, the field is assumed to be quasistationary
φ ∼ eiωt and evolving on a fixed BH background. The char-
acteristic frequencies ω = ωR + iωI . For simulation IA, for
example the final BH mass Mf ∼ 1.56, and the decay rate
seen in the time evolution is close to that predicted by mode
calculations, at ωI = −0.13. For simulations IB and IVB,
we find a similar behavior, although the agreement with lin-
earized mode calculations is not as good, nor as clean, since
the BH is still accreting at late times (which changes its mass,
and the quasi-bound state frequencies are very sensitive to the
precise value of the BH mass).

The quasi-bound states decay exponentially, and eventu-
ally may give way to power-law tails. For massive scalars,
the tail stage is dominated at intermediate times by a behav-
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FIG. 7. Real part of the l = m = 0 multipole of the scalar field on sphere r = rBH + 1 around the BH for IB and IVB, where the origin is
the position of the BH and rBH is the BH horizon radius. The dashed gray line indicates a “merger instant,” (somewhat arbitrarily) defined as
the instant where |φ00| > 10−2 on the sphere r = rBH + 1. The monopolar component grows once the BH plunges into the BS, after which
we see an exponentially decaying stage of a rate (ωI ∼ −0.15 for IB and ωI ∼ −0.075 for IVB, in rough agreement with expectations from
the quasi-bound state calculation within a linearized approach). Our calculations indicate that this is the first overtone and that a “gravitational
atom” was created. At late times, we see a power-law decay, φ00 ∼ t−1.5 for simulations IB, as expected for massive fields [73, 74]. For
simulation IVB we do not have clear control on the very-late-time behavior: this would require a longer simulation, which for these extreme
values is very challenging to achieve, while keeping precision under control.

ior φ00 ∼ t−3/2 for spherically symmetric modes [73, 74].
This behavior is independent of the presence of the BH and
is already present in Minkowski: it is a characteristic of mas-
sive fields. Our results for the late-time behavior, seen for
example in Fig. 7, are consistent with a decay close to the
theoretical power-law tail t−3/2, characteristic of intermediate
times [73, 74]. We note that this behavior is consistent with
what we see in runs IA, IVA, and IB. For simulation IVB we
do not have any indication that the field settled to its late-time
value yet (by the time the simulation finishes, the BH is still
accreting). At very late times, one expects a slightly different
behavior, φ00 ∼ t−5/6, for which we have no evidence. There
are several possible reasons for this, one of them being that
we are not able to evolve the spacetime long enough for this
decay to dominate.

V. CONCLUSION

We have performed some of the most challenging simula-
tions to date involving BHs and BSs, with length ratios as
large as ∼ 62. Our goal was to understand how bosonic
structures—which could describe dark matter—interact with
BHs, and which dynamical friction or accretion they in-
duce on the black holes. Our fully relativistic results are in
good agreement with Newtonian estimates for the motion and
asymptotic velocities of the objects, as well as for GW emis-
sion. To our surprise, even at the most extreme length ratios
we considered, the boson star is entirely accreted by the BH.
The reason, we believe, is that the BH is tidally captured by
the boson star. This seems to be an extreme case of tidal cap-

ture not reported previously. At late times, a “gravitational
atom” is formed, where a massive BH is surrounded by a
quasi-bound state of the scalar field, the BS remnant.

One of our goals was to see the fate of a boson star which
had been pierced by a high-velocity BH, and how dynamical
friction on the BH compares to estimates in the literature. Un-
fortunately, because of tidal capture, the BS is swollen and
dynamical friction turns out to be strongly enhanced due to
transient accretion. We estimate in Sec. IV B that very chal-
lenging simulations need to be done, if tidal friction is to be
identified at the full nonlinear level in self-gravitating struc-
tures.

In our configuration, the BS is kept fixed in all scenarios,
but we believe the results would be similar for other BS pa-
rameters. We focus on spherically symmetric, neutral config-
urations, but there are obviously new phenomena when one
extends the initial data to spinning or charged configurations
(see also Ref. [63] for a possible similar end state with spin).
We are currently starting these studies.
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Appendix A: Numerical convergence

To check the convergence of our numerical results, we de-
fine the usual convergence factor

Qn =
f∆c − f∆m

f∆m
− f∆h

=
∆n
c −∆n

m

∆n
m −∆n

h

(A1)

where n is the order of the finite difference scheme used, and
f∆c

, f∆m
, and f∆h

are the numerical solutions obtained for a
given function f at resolutions ∆c, ∆h and ∆h, respectively.
For these tests we performed simulations for configuration IB
(see Table I) with resolutions ∆c = 2.4M , ∆m = 2M and
∆h = 1.6M .

As explained in the main text, we use a simple super-
position procedure to build initial data. The Hamiltonian
constraint is therefore expected to converge to a small, but
nonzero, value. This is shown in Fig. 8, where a fourth-
order convergence can be seen. We experimented with other
methods for the superposition operation, but saw no notice-
able advantage. For the future, we intend to try the method of
Ref. [80], or a similar method, to check if any improvement is
observed.

We also monitor the `2-norm of the constraint violations
during the evolution (see Fig. 9) to confirm these do not grow
with time.

Finally, we plot in Fig. 10 the convergence analysis for the
l = 0, m = 2 multipole of Ψ4, extracted at r = 500M , for
configuration IB. The results are compatible with a conver-
gence order between third and fourth order.
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FIG. 8. Top: convergence of the Hamiltonian constraint violation
at t = 0 for IB. The green line is multiplied by Q4 = 1.82, the
expected factor for fourth-order convergence. Bottom: Richardson
extrapolation used to obtain the value of the Hamiltonian constraint
as ∆→ 0.
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FIG. 9. Violation of the Hamiltonian and momentum constraints as
functions of time for run IB.
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FIG. 10. Convergence analysis of the l = 0,m = 2 multipole of Ψ4,
extracted at r = 500M . The blue line shows the expected result for
third-order convergence (Q3 = 1.49), while the green line shows the
expected result for fourth-order convergence (Q4 = 1.82).
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Appendix B: Boosted BH simulation

Since we set β = 0 at the initial time, the puncture speed
is (initially) zero. Here we discuss the effect of this initial
gauge condition. Figure 11 shows a simulation of an isolated
boosted BH with M = 1 and v = 0.5. One can see that the
puncture speed (as measured by the zero of the shift vector β)
of the boosted BH approaches the speed of BH v = 0.5 after
a period of time and eventually stays at v = 0.5. This means
that the instantaneous puncture speed before the collision can
be used to gauge the speed of the BH.

100 200 300 400 500 600 700 800

t

0.1

0.2

0.3

0.4

0.5

v

FIG. 11. Puncture velocity of a single boosted BH with M = 1 and
v = 0.5. The dashed gray line is v = 0.5.
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