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The Ellis-Bronnikov solution provides a simple toy model for the study of various aspects of wormhole 
physics. In this work we solve the Klein-Gordon equation in this background and find an exact solution 
in terms of Heun’s function. This may describe ‘scalar clouds’ (i.e. localized, particle-like configuration) 
or scalar waves. However, in the former case, the radial derivative of the scalar field is discontinuous at 
the wormhole’s throat (except for the spherical case). This pathology is absent for a suitable scalar field 
self-interaction, and we provide evidence for the existence of spherically symmetric and spinning Q-balls 
in a Ellis-Bronnikov wormhole background.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The study of (classical) solutions of a field theory in a given spacetime background is an important step towards various more compli-
cated studies. For example, in the field quantization one starts usually with the field modes construction [1]; also, in black hole physics, a 
number of ‘no-hair’ theorems can be established at the level of matter field equations, without the use of gravity equations [2], [3].

A particularly interesting type of spacetime geometry which is allowed by the Einstein’s field equations is provided by the (Lorentzian) 
traversable wormholes (WHs). These are ‘topological handles’ connecting separated regions of a single Universe or “bridges” joining two 
different spacetimes. As such, they are (at least) interesting solutions of the General Relativity (with its various extensions), being a useful 
tool to probe the limits of the theory. The study of WHs started in with the work of Flamm in 1916 [4] together with the Einstein and 
Rosen paper in 1935 [5]. After several decades of (relatively) slow progress (see, however, Wheeler’s work [6], [7]), a fresh interest in 
the topic of WHs has been reawaken by the work of Morris and Thorne [8], the field branching off into diverse directions. Among other 
results, the work [8] has clarified that some form of exotic matter violating the energy conditions is necessary in order to keep the throat 
of the WH open.

One of the simplest (and an early) example of traversable WHs in General Relativity has been found in 1973 by Ellis [9] and Bronnikov 
[10]. This is a solution of the Einstein equations minimally coupled with a massless phantom scalar field (i.e. with a wrong sign in front 
of its kinetic term). The Ellis-Bronnikov solution is an archetypal example of a WH geometry, with a large number of papers investigating 
its properties (here we mention only the results in [11] establishing that this configuration is unstable).

In the context of this study, the Ellis-Bronnikov geometry is of interest mainly because of its simple form, which allows for a more 
systematic study of the solutions of a field theory model. For simplicity, in this work we shall consider the simplest case of a massive 
scalar field, which may possess a self-interacting potential.
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The initial motivation for this study came from this simple observation that removing a sphere from Minkowski spacetime allows for 
everywhere regular scalar multipoles, with a finite total mass. For concreteness, let us consider the Laplace equation for a static scalar 
field, ∇2� = 0. In flat spacetime, its general solution is described by a multipolar expansion, with � = ∑

�,m R�(r)Y m
� (θ, ϕ), where Y m

�

are spherical harmonics and R�(r) = c1r� + c2/r�+1 ((r, θ, ϕ) being the usual spherical coordinates). Thus, any non-trivial solution diverges 
either at the origin or at infinity. However, the situation changes if we restrict the domain of existence of the field outside a sphere of 
radius rB , and take c1 = 0. Then any field mode is finite, with a nonzero total mass.

In some sense, a WH provides an explicit realization of this scenario; since the two sphere possesses a minimal nonzero size, and one 
can predict the existence in this case of scalar clouds (i.e. particle-like, localized configurations with finite mass). Indeed, this is confirmed 
by the analysis in Section 3 of this paper, where we find closed form solutions of the Klein-Gordon equation in a Ellis-Bronnikov WH 
background which can be interpreted as ‘scalar clouds’. However, they fail generically to satisfy the Klein-Gordon equation at the throat, 
with a discontinuity in the first radial derivative of the field, the only exception being the spherically symmetric configuration. Physically 
reasonable solutions are found to exist for scalar waves, only.

When turning on the scalar field self-interaction, we find in Section 4 that this cures the pathological behavior of the scalar clouds at 
the throat. Focusing on a complex massive scalar field with quartic plus hexic self-interactions, we find numerical evidence is given for 
the existence of spherically symmetric and axially symmetric spinning Q-ball-type solutions in Ellis-Bronnikov WH background.

2. The model

We consider the action for a complex scalar field � with a self-interaction potential U

S = −
∫ [

1

2
gμν

(
�∗

,μ�,ν + �∗
, ν�,μ

)
+ U (|�|)

]√−gd4x , (2.1)

where the asterisk denotes complex conjugation and �,μ = ∂�/∂xμ .
Variation of (2.1) with respect to the scalar field leads to the (non-linear) Klein-Gordon equation

∇2� = ∂U

∂ |�|2 � . (2.2)

The stress-energy tensor Tμν of the scalar field is

Tμν =
(
�∗

,μ�,ν + �∗
, ν�,μ

)
− gμν

[
1

2
gαβ

(
�∗

,α�,β + �∗
, β�,α

)
+ U (|�|)

]
. (2.3)

In the above relations gμν is taken to be the metric tensor of the Ellis-Bronnikov solution, with the following parametrization

ds2 = dr2 + (r2 + r2
0)

(
dθ2 + sin2 θdϕ2

)
− dt2 , (2.4)

θ and ϕ being spherical coordinates with the usual range, while r and t are the radial and time coordinates, respectively. This geometry 
consists in two different regions 
±; the ‘up’ region (
+) is found for 0 < r < ∞, while the ‘down’ region (
−) has −∞ < r < 0. These 
regions are joined at r = 0, which is the position of the spherical throat, which is a minimal surface of area 4πr2

0 .
For the geometry (2.4), the equation (2.2) takes the form

∂2�

∂r2
+ 2r

r2 + r2
0

∂�

∂r
+ 1

r2 + r2
0

[
∂2�

∂θ2
+ cot θ

∂�

∂θ
+ 1

sin2 θ

∂2�

∂ϕ2

]
− ∂2�

∂t2
− ∂U

∂ |�|2 � = 0. (2.5)

The model is invariant under the global phase transformation � → �eiα , leading to the conserved current

jμ = −i
[
(�)∗∂μ� + �∂μ�∗] , ∇μ jμ = 0 . (2.6)

This implies the existence of a conserved Noether charge (corresponding to particle number), which is the integral of jt on spacelike 
slices,

Q ± =
∫


±

d3x
√−g jt . (2.7)

Moreover, for particle-like solutions (scalar clouds) one can assign a mass in both ‘up’and ‘down’ regions

E± = −
∫


±

d3x
√−g T t

t . (2.8)

One should note that these masses E± are assigned to the scalar field itself and they do not refer to the gravitational masses that can be 
computed for the Ellis-Bronnikov WH background in each asymptotic region.
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3. The non-selfinteracting case

For the case of a massive scalar field with

U (|�|) = μ2|�|2, (3.9)

(where μ ≥ 0 is the boson mass), one may separate the variables as

� = R�(r)Y m
� (θ,ϕ)e−iωt , (3.10)

with ω the field frequency and Y m
� Laplace’s spherical harmonics (where � ≥ 0 and −� ≤ m ≤ �). Then, after replacing in (2.5) one finds 

the following equation for the radial amplitude R�(r)

1

r2 + r2
0

d

dr

[
(r2 + r2

0)
dR�

dr

]
+

[
ω2 − μ2 − �(� + 1)

r2 + r2
0

]
R� = 0 . (3.11)

This equation possesses an exact solution in terms of Heun confluent functions [12]

R�(r) = c1 H1(r) + c2 H2(r) , (3.12)

where

H1(r) = HeunC

[
0,−1

2
,0,

(μ2 − ω2)r2
0

4
,
(ω2 − μ2)r2

0

4
− �2 + � − 1

4
,− r2

r2
0

]
, (3.13)

H2(r) = r HeunC

[
0,

1

2
,0,

(μ2 − ω2)r2
0

4
,
(ω2 − μ2)r2

0

4
− �2 + � − 1

4
,− r2

r2
0

]
,

c1, c2 being arbitrary constants. Let us remarks that H1, H2 are an even and odd functions of r, respectively, such that in general R� has 
no definite parity.

Let us also remark that, with the change of function

R�(r) = y(r)√
r2 + r2

0

,

the eq. (3.11) can be cast into a Schrodinger-like form

−d2 y

dr2
+ V (r)y = (ω2 − μ2)y, with V (r) = 1

r2 + r2
0

(
�(� + 1) − r2

0

r2 + r2
0

)
.

3.1. The ω2 = μ2 limit

The HeunC function possesses a rather complicated expression; thus, to study the solutions’ properties we have used the software 
MAPLE, calculating series expansions and evaluating them numerically for various values of the parameters.

However, the solution (3.12) greatly simplifies for ω2 = μ2, a case which captures also the basic properties of the solutions with 
ω2 < μ2. The radial amplitude in this case reads

R�(r) = c1LP (�, ir/r0) + c2LQ (�, ir/r0) , (3.14)

where LP and LQ are Legendre functions of first and second kind respectively, the explicit form for the first values of � being

R0(r) = c1 + c2 arctan(
r

r0
), R1(r) = c1

r

r0
+ c2(

r

r0
arctan(

r

r0
) + 1),

R2(r) = c1(
1

3
+ r2

r2
0

) + c2

(
(

1

3
+ r2

r2
0

)arctan(
r

r0
) + r

r0

)
, (3.15)

R3(r) = c1(
r

r0
+ 5r3

3r3
0

) + c2

(
(

r

r0
+ 5r3

3r3
0

)arctan(
r

r0
) + 5r2

3r2
0

+ 4

9

)
.

We are interested in localized, particle-like solutions, with a radial amplitude which is continuous and f inite everywhere (in particular 
as r → ±∞). These requirements are satisfied by the � = 0 mode, the radial profile R0(r) approaching constant values on each asymptotic 
region of the wormhole. However, one can see that for � ≥ 1 the solution necessarily diverges as r → ∞ or as r → −∞. Let us exemplify 
this for � = 1, in which case

R1 → (2c1 + c2π)
r + O (1/r2) as r → ∞, and R1 → (−2c1 + c2π)

r + O (1/r2) as r → −∞. (3.16)

2r0 2r0

3
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Fig. 1. Left panel: The profiles of the � = 0, 1, 2, 3, 4 radial amplitudes (3.18) with ω2 = μ2. Right panel: A wave-like solution is shown for a � = 2 configuration with c1 = 1, 
c2 = 0 (H1(r)) and c1 = 0, c2 = 0.9 (H2(r)) in the near-throat expansion (3.24). The inset shows the general solution.

The only way to cure this pathology is to consider R1 to be the union of two separate solutions, R(+)
1 (r) valid for r ≥ 0 (with R(+)

1 → 0 as 
r → ∞), and R(−)

1 (r) (with r ≤ 0 and R(−)
1 → 0 as r → −∞), which are joined at r = 0. That is for R(+)

1 (r) one takes c1 = −c2π/2, while 
for R(−)

1 (r) the choice is c1 = c2π/2. This results in1

R(+)
1 (r) = 1 + r

r0

(
arctan(

r

r0
) − π

2

)
, R(−)

1 (r) = 1 + r

r0

(
arctan(

r

r0
) + π

2

)
, (3.17)

The total mass of this solution is E± = π2r0/3.
The same procedure works for any value of �, and one finds with the following generic expression

R(+)
� (r) = f�(r) + g�(r)

(
arctan(

r

r0
) − π

2

)
, R(−)

� (r) = (−1)�+1
(

f�(r) + g�(r)

(
arctan(

r

r0
) + π

2

))
(3.18)

where f�(−r) = (−1)�+1 f�(r), g�(−r) = (−1)� g�(r). such that R(+)
� (r) = R(−)

� (−r). The functions f� , g� are polynomials, with

� = 2k : f�(r) =
k−1∑
j=0

c j(
r

r0
)2 j+1, g�(r) =

k∑
j=0

c̄ j(
r

r0
)2 j, (3.19)

� = 2k + 1 : f�(r) =
k∑

j=0

d j(
r

r0
)2 j, g�(r) =

k∑
j=0

d̄ j(
r

r0
)2 j+1, (3.20)

where k = 0, 1, . . . and c j, ̄c j, d j, ̄d j real coefficients.
One finds e.g .

f0 = 0, f1 = 1, f2 = r

r0
, f3 = 4

9
+ 5r2

3r2
0

, f4 = 55r

9r0
+ 35r3

3r3
0

, f5 = 64

225
+ 49r2

15r2
0

+ 21r4

5r4
0

, (3.21)

g0 = 1, g1 = r

r0
, g2 = 1

3
+ r2

r2
0

, g3 = r

r0
+ 5r3

3r3
0

, g4 = 1 + 10r2

3r2
0

+ 35r4

3r4
0

, g5 = 1 + r

r
+ 14r3

3r3
0

+ 21r5

5r5
0

,

The profile of the first four radial amplitudes are shown in Fig. 1 (left panel).
However, the solution above is not fully satisfactory, since the derivatives of R(+)

� and R(−)
� do not match at the throat (although 

R(+)
� (0) = R(−)

� (0)). One finds e.g . dR(+)
0

dr

∣∣
r=0+ = − dR(−)

0
dr

∣∣
r=0− = 1

r0
, dR(+)

1
dr

∣∣
r=0+ = − dR(−)

1
dr

∣∣
r=0− = − π

2r0
, and dR(+)

2
dr

∣∣
r=0+ = − dR(−)

2
dr

∣∣
r=0− = 4

3r0
. 

That is, the Klein-Gordon equation fails to be satisfied at the throat.2

The only exception here is the � = 0 mode, where the generic solution in (3.15) (with the same choice for c1, c2 for all range of r) 
has smooth derivatives at the throat, and approaches a constant nonzero value at least in one of the asymptotic regions, with R0 →

1 Note that the solution is defined up to an arbitrary multiplying constant which is set to one in eqs. (3.17), (3.18).
2 This can be seen by integrating the equation for the radial amplitude (3.11) (multiplied with (r2 + r2

0 )) between −ε and ε; then the l.h.s. is just the difference between 
radial derivatives of R±

� evaluated at ±ε , while the r.h.s. vanishes as ε → 0 (since R� is continuous). However, for a real scalar field (i.e. ω = m = 0), one can get a physically 
more reasonable picture by supplementing (2.1) with a boundary term

S B = −2σ

∫
d4x

√−g�δ(r) , (3.22)

(where σ = dR(+)
�

dr

∣∣
r=0+ − dR(−)

�

dr

∣∣
r=0− ), which acts as a thin shell source term for the Klein-Gordon equation located at the throat. A similar situation occurs for WHs in 

Einstein-Gauss-Bonnet-dilaton theory, see Ref. [13].
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c1 + c2
π
2 + O (1/r) as r → ∞, and R0 → c1 − c2

π
2 + O (1/r) as r → −∞. One remarks that this radial function cannot vanish in both 

asymptotic regions. The case of a � = 0 solution with R0 → 0 as r → ±∞ is contained in the general expression (3.18) (see also Fig. 1). 
However, then the first derivative of R0 is discontinuous at r = 0.

3.2. The general case

Let us start with configurations satisfying the bound state condition ω2 < μ2, in which case on may expect the existence of smooth 
scalar clouds. However, we have found that all properties of the � > 0 solutions discussed above hold also on this case. The emerging 
picture can be summarized as follows. When fixing the constants c1 and c2, both functions H1 and H2 in the general solution (3.12)
diverge for |r| → ∞ and generic values of the parameters. However, it is possible to fine tune c1, c2 to get the solutions going to zero 
as r → ∞, but then they are divergent as r → −∞ (or viceversa). In this case, the solutions are smooth at the throat, in particular with 
R�(0+) = R�(0−).

As with the solutions in Section 3.1, it is possible to construct a solution R� which goes to zero as r → ±∞, by choosing a different 
relation between c1 and c2 for each sign of r. However, then a discontinuous derivative of R� is unavoidable at r = 0.

The absence of smooth C1 solutions with ω2 < μ2 can be seen from the following simple argument, which does not require an explicit 
form of the solution. After multiplying the eq. (3.11) with R� , rearranging and integrating it, one finds that the solutions should satisfy 
the following identity:

(r2 + r2
0)R�

dR�

dr

∣∣∣∣
∞

−∞
=

∞∫
−∞

dr

[
(r2 + r2

0)

(
dR�

dr

)2

+
(
(r2 + r2

0)(μ2 − ω2) + �(� + 1)
)

R2
�

]
. (3.23)

The l.h.s. vanishes identically (since R� ∼ e−√
μ2−ω2|r|/|r| as r → |∞|); however, for ω2 < μ2 the r.h.s. is strictly positive. Thus we conclude 

the absence of physically reasonable scalar clouds in a Ellis-Bronnikov background (note that for ω 
= 0 this holds also for the � = 0 mode).

The picture is rather different for ω2 > μ2, in which case the solution is a smooth wave-like function. The asymptotic analysis re-
veals that the radial amplitude tends to zero as |r → ∞|, with the following far field regime behavior R� ∼ 1

|r| (a1 cos
√

ω2 − μ2r +
a2 sin

√
ω2 − μ2r). At the throat, the solution possesses a power series expansion, the first term being

R�(r) = c1

(
1 +

(
1

2
(μ2 − ω2) + �(� + 1)

2r2
0

)
r2 + . . .

)
+ c2

(
r +

(
1

4
(μ2 − ω2) + (� − 1)(� + 2)

4r2
0

)
r3 + . . .

)
. (3.24)

The profile of typical wave-like radial amplitudes is shown in Fig. 1 (right panel). In particular, one can notice that H1 and H2 are even 
and odd functions of r, respectively. The inset there shows the general solution (the sum of H1 and H2), which possesses no parity.

4. A self-interacting scalar field: Q-balls in Ellis-Bronnikov

One may ask if the non-smooth behavior found for clouds in the previous Section can be cured by turning on the scalar field self-
interaction. The answer is positive, as shown by the existence of the following exact solution for a static, spherically symmetric real scalar 
field with a sextic potential3

� = c0√
r2 + r2

0

, U (�) = β�6, where β = − r2
0

3c4
0

. (4.26)

This describes a smooth, even-parity configuration (with �′(0) = 0), possessing a finite mass E± = 2c2
0π

2

3r0
. However, this solution does not 

seem to possess generalizations with nonzero ω and μ.

Therefore, to better understand the issue of non-linear clouds in a WH background, we shall consider for the rest of this Section a 
more complicated scalar potential with quadratic, quartic and sextic terms

U (|�|) = μ2|�|2 − λ|�|4 + β|�|6. (4.27)

with λ, β positive constants. As discussed for the first time by Coleman in Ref. [14], this potential allows for nontopological soliton 
solutions in a flat spacetime background –the Q-balls. Such configurations have a rich structure and found a variety of physically interesting 
applications, see e.g . the review work [15], [16]. Here we shall focus on the simplest Q-balls, corresponding to spherically symmetric and 
spinning (even parity) configurations, and show that the known flat space solutions possess generalizations in a Ellis-Bronnikov WH 
background. Moreover, as expected, the nonlinearities cure the pathological behavior of the scalar field at the throat, leading to smooth, 
finite mass solutions.

3 The solution (4.26) has a generalization with

� = c0

(r2 + r2
0)

1
k

, U (�) = λ1�k+2 + λ2�2k+2, with λ1 = 4(2 − k)

k2(k + 2)ck
0

, λ2 = − 4r2
0

k2(k + 1)c2k
0

. (4.25)

However, its mass is finite for k = 1, 2, 3 only.
5
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Fig. 2. Left panel: The profile of typical spherical Q-balls. Right panel: The mass-frequency diagram is shown for spherical Q-balls with several values of the throat radius r0.

Also, following the usual conventions in the literature, the numerical solutions reported here have been found for the following param-
eters in the potential (4.27))

μ2 = 1, λ = 2, β = 1. (4.28)

4.1. Spherically symmetric Q-balls

The simplest Q-balls are spherically symmetric, with a scalar field Ansatz

� = φ(r)e−iωt , (4.29)

where φ(r) is a real field amplitude (which is an even function of r, such that E+ = E−), and ω > 0 is the frequency. Close to the throat, 
one finds the following approximate solution,

φ(r) = φ0 + φ2r2 + . . . , where φ2 = 1

2
φ0(3φ4

0 − 2φ2
0λ + μ2 − ω2), (4.30)

(note that no discontinuities occur at r = 0), while the field vanishes asymptotically, φ ∼ c0e−√
μ2−ω2|r|/|r|.

The solutions connecting the above asymptotics are found numerically, the equation for φ(r) being solved by using a standard Runge-
Kutta solver and implementing a shooting method. Some results of the numerical integration are shown in Fig. 2. In the left panel we 
display the profile of the radial amplitude for several frequencies (keeping fixed other parameters of the problem). The frequency-mass 
diagram is shown in the right panel, for several values of the throat parameter r0. One can see that the picture found for a Minkowski 
spacetime background is generic, the solutions existing for finite range of frequencies, ωmin < ω < μ. At the ends of this interval, the mass 
E increases without bounds. A similar behavior is found for the Noether charge4 Q .

It is the non-linear self-interaction which circumvents the non-existence result (3.23) (with � = 0 and R0 ≡ φ). Although the l.h.s. there 
still vanishes for Q-balls, the term (μ2 − ω2)φ2 on the r.h.s. of that equation is replaced with (μ2 − ω2)φ2 − 2λφ4 + 3βφ6, which has no 
definite sign (and in fact takes negative values for some range of r). Also, following the standard scaling arguments in the literature [18], 
[19], one can show that these solutions satisfy the virial identity

∞∫
−∞

dr
[
(r2 − 2rr0 − r2

0)φ′2 + (3r2 − 2rr0 + r2
0)(U (φ) − ω2)

]
= 0. (4.31)

One can see that, different from the flat spacetime case, the r-factor in front of the kinetic term becomes negative for small enough r. 
This relation has been used as a further test of numerical accuracy.

4.2. Spinning Q-balls

Solutions with a non-zero angular momentum exist as well, they being found for a scalar field ansatz

� = φ(r, θ)ei(mϕ−ωt) , (4.32)

where φ is a real function and m = ±1, ±2 . . . is the azimuthal harmonic index. Note that the (t, ϕ)-dependence of � occurs as a phase 
factor only, such that the energy-momentum tensor depends on (r, θ), only (however, m and ω still enter the expression of Tμν ). These 
solutions possess a nonzero angular momentum density T t

ϕ = 2mωφ2 = mjt , and a total angular momentum

4 A discussion (from a different perspective) of the spherically symmetric Q-balls in the Ellis-Bronnikov WH background can be found in Ref. [17].
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Fig. 3. Left panel: The scalar amplitude of a typical spinning Q-ball is shown for several angular values. Right panel: The mass-frequency diagram is shown for spinning Q-balls 
with several values of the throat radius r0.

J± =
∫


±

d3x
√−g T t

ϕ. (4.33)

Interestingly, the proportionality between angular momentum and Noether charge found for a Minkowski spacetime background [20], [21]
still holds for a WH background,

J± = mQ ±, (4.34)

such that angular momentum is still quantized.
With the ansatz ((2.4), (4.32), the Klein-Gordon equation (2.2) reduces to

φ,rr + 1

r2 + r2
0

(
φ,θθ + 2rφ,r + cot θφ,θ − m2

sin2 θ
φ

)
− (μ2 − ω2 − 2λφ2 + 3βφ4)φ = 0 (4.35)

We are interested in localized, particle-like solutions of this equation, with a finite scalar amplitude φ and a regular energy density 
distribution. In our approach, Q -clouds are found by solving the equation (2.5) with suitable boundary conditions, by using a professional 
package, based on the iterative Newton-Raphson method [22], the input parameters being {ω, m; μ, λ, β}. The mass-energy and angular 
momentum are computed from the numerical output. The boundary conditions result from the study of the solutions on the boundary 
of the integration domain. The scalar field vanishes as |r| → ∞, while the existence of a bound state requires ω < μ. Also, the regularity 
of solutions imposes that the scalar field vanishes on the symmetry axis (θ = 0, π ). This behavior holds also in the flat spacetime limit; 
however, the boundary conditions at r = 0 are different. While in Minkowski spacetime the scalar field vanishes at the origin (as imposed 
by the finiteness of various physical quantities), the condition for a WH is ∂rφ|r=0 = 0, while the field does not vanish at the throat. As 
such, the configurations possess a reflection symmetry w.r.t . to the throat, φ(−r) = φ(r) and E+ = E− , J+ = J− .

We restrict our study to configurations which are invariant under a reflection in the equatorial plane θ = π/2. Also, we shall restrict 
our study to configuration whose scalar amplitude φ(r, θ) has no nodes.

The profile of a typical solution is displayed in Fig. 3 (left panel), where the field amplitude φ is shown5 as a function of r for several 
values of the polar angle θ . The ω-dependence of solutions’ mass is qualitatively similar with that found in the spherically symmetric 
case, and we shall not exhibit it here. We plot instead the mass dependence on the throat parameter r0 for several values of the field 
frequency. One can see that, rather counter-intuitive, this dependence is non-monotonic, with the existence of local extrema.

5. Further remarks. Conclusions

For a wormhole (WH) geometry, a two sphere possesses a minimal nonzero size, which connects two asymptotically flat regions. This 
property suggests that the usual r = 0 divergence of the solutions of a (linear) field theory model is absent in this case. The main purpose 
of this paper was to investigate this aspect for the simplest case of a scalar field and a Ellis-Bronnikov wormhole geometry.

Our results can be summarized as follows. For a free complex massive scalar field, the Klein-Gordon equation has a general exact 
solution that can be expressed in terms of Heun’s functions, with two distinct classes of configurations. For ω2 > μ2 (with ω and μ the 
field’s frequency and mass, respectively), one finds wave-like solutions, which propagates from one asymptotic region to another, being 
smooth everywhere. The solutions with ω2 ≤ μ2 are ‘scalar clouds’, the field amplitude vanishing asymptotically. However, the Klein-
Gordon equation fails to be satisfied at the throat, with a discontinuity in the radial derivative of the scalar field. The only exception is 
found for the spherically symmetric mode with ω2 = μ2, which, in fact, has the same functional dependence on the radial coordinate as 
the phantom field that sources the Ellis-Bronnikov solution [9], [10]. The pathological behavior of the � > 0 scalar clouds strongly suggests 
the absence of multipolar deformation of the Ellis-Bronnikov WH, and can be viewed as a ‘no-hair’ theorem.

5 Note that, due to the self-interaction, the field amplitude can be thought as a superposition of infinite set of fundamental modes, φ(r, θ) = ∑∞
j=0 R j(r)Pm

2 j+m(cos θ) , 
with Pm

j the associated Legendre functions.
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In the second part of this work we addressed the question on how the field’s non-linearities may cure the scalar clouds’ pathology 
found in the linear model. Considering a specific self-interacting potential which in flat spacetime allows for particle-like solutions (the Q-
balls), we have provided numerical evidence for the existence of smooth solitonic configurations in a Ellis-Bronnikov WH background. Two 
different classes of solutions have been considered, corresponding to spherically symmetric and axially symmetric spinning configurations 
which are invariant w.r.t . a reflection in the equatorial plane. However, negative parity solutions should also exist, their flat space limit 
being considered in [20], [23]. Also, on general grounds we predict the existence of a general tower of solutions (Q-ball ‘chains’ and 
‘molecules’ [24]) corresponding to regularized versions of the generic (�, m, w)-scalar clouds discussed in Section 3.1.

Another interesting question concerns the generality of the results reported in this work. Although a systematic work is clearly neces-
sary, we expect some of the qualitative results reported above to hold for a generic spherically symmetric WH, in particular those found 
for linear waves and Q -balls.
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