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Abstract

Berth allocation problems are amongst the most important problems occurring in port ter-
minals, and they are greatly affected by several unpredictable events. As a result, the study of
these problems under uncertainty has been a target of more and more researchers. Following
this research line, we consider the berth allocation problem under uncertain handling times. A
distributionally robust two-stage model is presented to minimize the worst-case of the expected
sum of delays with respect to a set of possible probability distributions of the handling times.
The solutions of the proposed model are obtained by an exact decomposition algorithm for which
several improvements are discussed. An adaptation of the proposed algorithm for the case where
the assumption of relatively complete recourse fails is also presented. Extensive computational
tests are reported to evaluate the effectiveness of the proposed approach and to compare the
solutions obtained with those resulting from the stochastic and robust approaches.
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1 Introduction

Port operations play a key role in supply chain efficiency because they are responsible for
connecting sea and land transportation. Among the port operations, berth allocation is the first to
take place, and it influences all the subsequent operations. The berth allocation problem (BAP) has
been studied for decades [21]. Berthing operations are frequently affected by several uncertainty
sources such as weather conditions and mechanical failures. These unpredictable events may lead
to delays on load/unload operations that can then propagate to other port operations. Thus, it
is crucial to take uncertainty into account in the planning phase to prevent major disruptions
caused by such events. During the last decade and half, we have witnessed an increase of studies

1



on the BAP under uncertainty. In this paper, we consider the continuous BAP under uncertain
handling times. In the continuous BAP, the vessels are allowed to berth in any place over the
wharf. We propose a distributionally robust two-stage model, where the berth allocation decisions
are the first-stage decisions (also known as here-and-now decisions), and the scheduling decisions
- the start servicing times of the vessels and the delays from the requested departure times - are
the second-stage decisions, which are adjustable to the observed handling times. The objective
is to determine the berth plan that minimizes the expected sum of delays when the worst-case
distribution of the handling times occurs.

The main purpose of this paper is to investigate the application of distributionally robust opti-
mization (DRO) to the BAP under uncertainty. In particular, we intend to discuss implementation
issues, to provide managerial insights, and to establish comparisons with the related and the most
used methodologies: robust optimization (RO) and stochastic programming (SP).

Contrary to stochastic programming, where the uncertain parameters follow a specified proba-
bility distribution, in DRO, it is assumed that the uncertain parameters follow a distribution that
lies in a set of probability distributions, known as the ambiguity set. In this paper, we consider the
well-known Kantorovich ambiguity set, defined by all the probability distributions whose distance
to a reference distribution is bounded by a model parameter. The 1-Wasserstein metric is used
to compute the distance between the distributions, and the reference distribution is defined by a
set of scenarios of handling times with equal probability of occurrence. Unlike robust optimization
(RO), where the aim is to obtain the optimal solution when the worst-case scenario occurs, in the
DRO the objective is to optimize the expected value of the objective function for the worst-case
probability distribution within the ambiguity set. Following [5], we propose a decomposition algo-
rithm for the BAP under uncertainty where, in each iteration, a first-stage solution is obtained by
solving a master problem, then a subproblem is solved to determine the second-stage solution for
each scenario, and, finally, the worst-case distribution is determined by solving a transportation
problem. If a probability distribution leading to a worst expected value of the objective function
is found, then an optimality cut is added to the master problem and the procedure is repeated.

In addition to the main goal of comparing the solutions resulting from DRO, SP, and RO,
this paper pursues a secondary goal which consists on providing a detailed analysis of the solution
procedure. This is extremely relevant because DRO is still a recent technique and little is known
on the weaknesses, strengths, and impact of the assumptions of the purposed solution procedures.
In particular, we propose several improvement strategies to overcome weaknesses of the proposed
algorithm and analyse the impact of the relatively recourse property on the solution procedure,
which may not hold when hard deadlines for departure times are imposed.

Our contributions are as follows:

i. We provide the first distributionally robust two-stage model for the berth allocation problem
under uncertain handling times.

ii. An exact decomposition algorithm is introduced to solve the problem.

iii. The impact of the model assumptions in the solution procedure is discussed and an adaptation
of the solution procedure to the case where the problem does not have the relatively complete
recourse property is presented.

iv. Strategies to improve the performance of the solution procedure are discussed.

v. Computational tests are reported to analyse the performance of the purposed decomposi-
tion algorithm and to compare the solutions obtained with the distributionally robust model
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against those obtained from the stochastic and robust models.

The paper outline is as follows. In Section 2, we review the most relevant literature related
to berth allocation under uncertainty. The deterministic berth allocation model is described in
Section 3, while the distributionally robust two-stage model is given in Section 4. In Section 5, we
introduce the decomposition algorithm, discuss the adaptation of the algorithm to the case where
the relatively complete recourse property fails, and provide several improvement strategies. The
computational results are reported in Section 6 and final conclusions and future research directions
are discussed in Section 8.

2 Literature review

In this section, we relate our paper with the existing literature. Berth allocation problems have
been intensively studied in the past. The deterministic problem was proven to be NP-hard by
Lim [21]. BAPs under uncertainty have received significant attention during the last fifteen years
since the seminal works of Moorthy and Theo [26] and Zhou et al. [45]. A review on BAPs under
uncertainty can be extracted from [29], where a recent survey on berth allocation and quay crane
assignment/scheduling problems under uncertainty is provided. Here we follow the terminology
proposed in that survey.

Most of the papers on BAP under uncertainty consider the arrival times and/or the handling
times as uncertain (see details on [29]). In this paper, we assume the arrival times are certain and
the handling times are uncertain. The reasons for this option can be summarized as follows: (i) the
certainty assumption of the arrival times does not limit the proposed approach because a delay in
an arrival either it has no impact on the planned solution or it can be converted into a similar delay
in the handling time; (ii) it makes it possible to ease the notation and presentation; (iii) assuming
uncertainty in handling times leads a better and more flexible approximation to more complex
problems where berth allocation and quay crane scheduling decisions are integrated. The reason
is that possible conflicts occurring in the allocation of cranes to vessels can be easily captured as
delays in the handling times. Nevertheless, we note that the approach proposed here can be easily
extended to the case of uncertain arrival times.

The approaches for BAPs under uncertainty have been classified into different categories,
namely, proactive, reactive, and proactive/reactive. In the proactive approaches, the operations
plan is established before the events (e.g. arrival of vessels) take place; however, the uncertainty is
taken into account to construct such a plan. An example of a proactive approach is to devise a plan
that remains feasible for all possible realizations of the uncertain parameters. Proactive approaches
have been widely studied in the past [4, 7, 8, 12, 19, 20, 22, 38, 44]. Reactive approaches are usually
employed for rescheduling the operations when an unpredicted event forces the planner to deviate
from a given baseline plan. These approaches were proposed in [3, 32, 34]. The proactive/reactive
approaches combine the planning of decisions that are fixed or act as a baseline plan during the exe-
cution phase with reactive decisions to be taken in the execution phase when uncertainty is revealed.
Proactive/reactive approaches can be found in [9, 16, 23, 24, 25, 27, 31, 33, 35, 37, 40, 41, 42]. A
trend can be observed over the last 15 years: while the first approaches were mostly proactive,
in the recent years, we can observe an increase of the publications proposing proactive/reactive
approaches. In this paper, we propose a proactive/reactive approach, where the berth allocation
positions are determined before the execution phase (corresponding to static decisions) and the
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scheduling of operations - recourse decisions - are adjustable to the observed handling times. Note
that the berth allocation decisions are proactive because they take into account the uncertainty.

According to [29], four different classes of models have been proposed for solving BAPs under
uncertainty: stochastic programming, robust optimization, fuzzy theory, and deterministic models.
The DRO model proposed here belongs to a new class of models whose, to the best of our knowl-
edge, have never been used before for solving BAPs under uncertainty. The most related models
to the one presented here are stochastic programming and robust optimization models. Stochastic
programming models for BAPs under uncertainty can be found in [19, 31, 40, 37], while robust
optimization models were proposed in [25, 39, 40, 41]. These two modeling approaches were com-
pared in [25, 40, 44]. Zhen [44] considered the BAP with periodical vessel arrivals under uncertain
handling times. A sample average approximation method is used to approximate the expected cost
for handling potential conflicts between vessels and derived a robust model based on dualization
techniques. Liu et al. [25] and Xiang and Liu [40] presented several scenario-based robust and
stochastic models for the BAP under uncertain arrival and handling times. In robust optimization
models, uncertainty sets are frequently described by scenarios [25, 39, 40, 41]. For stochastic pro-
gramming models, the uncertain parameters are usually assumed to follow a normal distribution
[19, 25, 31, 40] and/or a uniform distribution [37, 40]. Decomposition approaches have also been
proposed to BAPs. In the most related work, Xiang and Liu [40] combined a decomposition algo-
rithm with a rolling horizon heuristic for solving large size instances. In their approach, multiple
uncertainty sets are constructed by applying K-means clustering techniques and the problem is
solved by an exact column-and-row generation algorithm.

Distributionally robust optimization (DRO) is a recent technique lying in the intersection of RO
and SP. Although some authors claim that Scarf [30] was the first to employ this technique, just
recently it became popular. DRO assumes that the exact probability distribution of the param-
eters is not known, but a partial knowledge of that distribution is known (e.g. some information
regarding the model parameters). The true distribution is assumed to belong to the ambiguity set.
The solutions are evaluated for the worst-case of the expected value considering all probability dis-
tributions of the uncertain parameters within the ambiguity set. If the ambiguity set contains only
one distribution, then DRO coincides with SP. If the ambiguity set contains all possible probability
distributions on a given support, then DRO coincides with RO. Thus, DRO generalizes both SP and
RO. This relation is explored in our computational results. For a recent and very complete survey
on DRO see [17]. An important issue in the DRO methodology is the choice of the ambiguity set.
Here we assume a discrepancy-based ambiguity set, which includes all the probability distributions
that are within a predefined maximum distance to a reference distribution. As distance metric, we
use the Wasserstein metric of order 1. This ambiguity set, also known as the Kantorovich ambiguity
set, has been intensively studied in recent years, both from theoretical and practical points of view.
Some works combine both because the presented theoretical contributions are applied to practical
problems such as the portfolio optimization [10, 15, 18]. In addition, one can find applications
of distributionally robust approaches, using the Kantorovich ambiguity set, to other optimization
problems, such as the telecommunication network expansion problem [43] and the strategic energy
planning [14]. See [17] for an overview of the ambiguity sets and [11] for a discussion of the advan-
tages of using this metric. From the practical point of view, the use of the Kantorovich ambiguity
set has the advantage of requiring the control of a single non-negative parameter that limits the
distance of the probability distribution to the reference distribution. Moreover, the stochastic and
robust models are obtained for particular values of this parameter which helps to provide intuition
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on the performance of the solution procedure when tuning the parameter. To solve the DRO model
we follow the decomposition approach proposed by [5] where convergence is proved for families of
ambiguity sets such as the moment matching set and the Kantorovich set. For the reasons explained
above we use the Kantorovich set, but the methodology used in this paper could be easily adapted
for the moment matching set.

3 The formulation for the deterministic BAP

In this section, we present a formulation for the deterministic continuous BAP based on the time-
space diagram, known as the Relative Position Formulation [13]. Consider a set of N heterogeneous
vessels, a time horizon of M time periods, and assume that the wharf is divided into J + 1 berth
sections. Let us define the following sets: V = {1, . . . , N} the set of vessels, T = {1, . . . ,M} the
set of time periods, and B = {0, . . . , J} the set of berth positions.

The length of each vessel k ∈ V - measured in number of berth sections - is given by Lk, the
estimated handling time is given by Hk, the nominal arrival time is Ak, and the requested departure
time is Dk. We assume that the requested departure time may not be satisfied and, in that case,
there may occur delays. To prevent undesirable unbalanced cases where some vessels may have
quite large delays while other vessels are served on time, we impose a limit C on the maximum
allowed delay for each vessel. To ensure safety, it is also imposed a temporal gap of F time periods
between the finishing time of a vessel and the start time of the next arriving vessels sharing common
berth positions with it. The berthing position, berthing time, and delay of each vessel k ∈ V are
decision variables of the problem, represented by bk, tk, ck, respectively. Additionally, to establish
spacial and temporal relations between each pair of vessels, we consider the binary variables xk` and
yk`. Variables xk` assume value one when ship ` berths after ship k had departed, while variables
yk` assume value one when ship ` berths below the berth position of ship k. With these decision
variables, the deterministic continuous BAP can then be formulated as follows:

min
∑
k∈V

ck (1)

s.t. x`k + xk` + y`k + yk` ≥ 1, k, ` ∈ V, k < `, (2)

x`k + xk` ≤ 1, k, ` ∈ V, k < `, (3)

y`k + yk` ≤ 1, k, ` ∈ V, k < `, (4)

bk ≥ b` + L` + J(yk` − 1), k, ` ∈ V, k 6= `, (5)

bk ≤ J − Lk, k ∈ V, (6)

bk ∈ Z+
0 , k ∈ V, (7)

xk`, yk` ∈ {0, 1}, k, ` ∈ V, k 6= ` (8)

t` ≥ tk +Hk + F +M(xk` − 1), k, ` ∈ V, k 6= `, (9)

ck ≥ tk +Hk −Dk, k ∈ V, (10)

ck ≤ C, k ∈ V, (11)

tk ≥ Ak, k ∈ V, (12)

tk, ck ≥ 0, k ∈ V. (13)

The objective function (1) minimizes the sum of the delays over all vessels, henceforward referred
to as tardiness. This objective was chosen because it is one of the objectives most frequently used
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in literature [29]; however, we would like to note that the algorithm proposed in this paper can be
directly applied to BAPs with different objective functions. Constraints (2)-(8) model the berth
allocation, while constraints (9)-(13) model the start time of the operations on the vessels and
the delays. Constraints (2)-(4) are the usual constraints ensuring no overlap between each pair
of vessels either in time or in space. Constraints (5) relate the berth position variables bk with
variables ykl. Constraints (6) and (7) define the domain of the variables bk. Constraints (8) define
the binary variables. Constraints (9) relate the time variables of two vessels with the variables
xkl. Constraints (10) define the delay from the requested departure times, while constraints (11)
impose a maximum allowed delay for each vessel. Constraints (12) ensure that each vessel starts
to be served after its arrival, and constraints (13) define the domain of the continuous variables
ck and tk. We note that model (1)-(13) can be strengthened by using the discretized formulation
proposed in [2], which makes it possible to avoid the big-M constraints (5) and (9).

4 A distributionally two-stage robust formulation

The deterministic model for the BAP described in the previous section assumes that the arrival
and the handling times of all vessels are exactly known in advance. However, this assumption is
not true in most practical problems because both times may be uncertain due to several factors
such as weather conditions and mechanical failures. In this paper, we assume the arrival times are
certain and the handling times are uncertain; however, our approach can be easily extended to the
case of uncertain arrival times.

To take the uncertainty in the handling times into account, we propose a two-stage model for
the distributionally robust BAP (DRBAP). In the proposed two-stage model, the berth positions
of the vessels - defined by variables x, y, and b - are the first-stage decisions, that is, decisions that
must be taken before the uncertainty is revealed, while the service start times and delays - defined
by variables t and c, respectively - are second-stage decisions taken after the uncertain handling
times are revealed. We assume the handling time of each vessel k ∈ V is a random variable defined
by a probability distribution P with finite support Ω. The probability distribution P = {Ω, πP }
- where πP = (π1

P , ..., π
|Ω|
P ) and πωP denotes the probability of scenario ω ∈ Ω under probability

distribution P - is not known with certainty, but it is assumed to belong to the ambiguity set P.
Moreover, Hω

k represents the handling time of vessel k ∈ V in scenario ω ∈ Ω, and it is assumed
that any possible handling time of a given vessel is compatible with its maximum allowed delay
and with the time horizon, that is, the following assumption holds:

Assumption 1: We assume Ak +Hω
k ≤ min{Dk + C,M}, ∀k ∈ V, ω ∈ Ω.

Unlike stochastic programming, where the expected value of a given function is optimized under
a specific probability distribution, distributionally robust optimization (DRO) aims to optimize the
expected value of a function for the worst probability distribution in an ambiguity set. Hence, the
distributionally robust formulation for the BAP under uncertain handling times is as follows:

min

{
max
P∈P

EP [Q(x, y, b)] | (2)− (8)

}
⇔ min

{
max
P∈P

∑
ω∈Ω

πωPQω(x, y, b) | (2)− (8)

}
. (14)

For any scenario ω ∈ Ω, the recourse function Qω(x, y, b) gives the minimum delay that can occur
when the allocation decisions are fixed and scenario ω is realized. The recourse function is itself
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an optimization problem and to define it, new second-stage variables tωk and cωk depending on the
scenario must be considered. These variables have the same meaning of the corresponding variables
in the deterministic model. The recourse function Qω(x, y, b) is then given by:

Qω(x, y, b) = min
∑
k∈V

cωk (15)

s.t. tω` − tωk ≥ Hω
k + F +M(xk` − 1), k, ` ∈ V, k 6= `, (16)

tωk ≥ Ak, k ∈ V, (17)

cωk − tωk ≥ Hω
k −Dk, k ∈ V, (18)

cωk ≤ C, k ∈ V, (19)

tωk , c
ω
k ≥ 0, k ∈ V. (20)

An important observation on the recourse function is the absence of the relatively complete
recourse property due to the constraints (19). This means that the feasibility of the second-stage
problem (15)-(20) is not guaranteed for any first-stage solution, which has a great impact in the
derivation of the algorithm proposed for solving the DRBAP. We elaborate on this in the next
section. For the particular BAP we consider in this paper, only the variables x are required to
determine the value of the recourse function. Hence, we could simply write Qw(x) instead of
Qw(x, y, b).

Problem (14) includes three optimization problems because each recourse function is itself an
optimization problem. In what follows, we refer to the problem of determining the value of the
recourse function for a specific scenario as a second-stage problem. Note that the second-stage
problems are solved assuming the first-stage decision variable are fixed. The inner maximization
problem in (14) is called the distribution separation problem, and it consists of determining the
probability distribution that maximizes the expected value of function Q(x, y, b) with the first-stage
decisions fixed.

For the proposed DRO model, we use the well-known Kantorovich ambiguity set [5]. Let us
denote by P = {Ω, πP } an unknown general probability distribution and by P ∗ = {Ω, πP ∗} a known
reference probability distribution. A natural choice for the reference probability distribution is, for
instance, the empirical distribution where all scenarios have the same probability of occurrence,
that is, πωP ∗ = 1/|Ω|, ω ∈ Ω. For a given parameter ε > 0, the Kantorovich set can be written as
follows [5]:

Kε =

{
πP ∈ R|Ω| :

∑
ω∈Ω

∑
ω′∈Ω

‖ ω − ω′ ‖1 kωω′ ≤ ε (21)∑
ω′∈Ω

kωω′ = πωP , ω ∈ Ω, (22)∑
ω∈Ω

kωω′ = πω
′

P ∗ , ω′ ∈ Ω, (23)∑
ω∈Ω

πωP = 1, (24)

πωP ≥ 0, ω ∈ Ω, (25)

kωω′ ≥ 0, ω, ω′ ∈ Ω}. (26)
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Through the paper, we assume the support Ω is fixed, thus the set of the unknown probability
distributions is given by P = {P = {Ω, πP } : πP ∈ Kε}.

The Kantorovich ambiguity set defines the space of the allowed probability distributions in
terms of the distance to the reference probability distribution. The dimension of such space is
controlled by the parameter ε. When ε = 0, kωω′ = 0, for all ω, ω′ ∈ Ω such that ω 6= ω′. As
a result, πωP = πωP ∗ for all ω ∈ Ω and the Kantorovich set reduces to the singleton that includes
the reference probability distribution, that is, K0 = {πωP ∗}. Hence, the DRBAP defined over the
set K0 reduces to the stochastic BAP. When ε = ∞, constraints (21) become redundant. As a
result, the Kantorovich set will be defined by all probability distributions with support Ω, that
is, K∞ = {πP ∈ R|Ω| :

∑
ω∈Ω π

ω
P = 1, πωP ≥ 0, ω ∈ Ω}. In particular, the set K∞ includes all

degenerated probability distributions where the corresponding probability vector πP is composed
by a single value 1 and |Ω| − 1 values zeros. This corresponds to the case where a single scenario
is considered. Hence, the DRBAP defined over the set K∞ reduces to the robust BAP.

When the Kantorovich set is used, the distribution separation problem

max

{∑
ω∈Ω

πωPQω(x, y, b) | πP ∈ Kε

}
(27)

which aims to find the probability distribution πP that maximizes the inner maximization problem
in (14), where πP is sufficiently close to the reference distribution πP ∗ . The distance between the
two distributions can be viewed as transportation problem (whose transportation plan is given by
the value of the variables kωω′) for moving the probability mass from πP ∗ to πP . The transportation
cost is given by

∑
ω∈Ω

∑
ω′∈Ω ‖ ω − ω′ ‖1 kωω′ and bounded by ε, see [10] for details.

5 Exact decomposition algorithm

In this section, we present an exact decomposition algorithm for solving the DRBAP under
uncertain handling times. The algorithm proposed is an iterative procedure inspired in Bansal et
al. [5]. In their work, the authors consider three important assumptions: i) the feasible region
defined by the first-stage variables is non-empty; ii) the model considered has relatively complete
recourse (RCR), that is, for any feasible first-stage solution there is at least one feasible second-
stage solution; and iii) the set Ω is finite. Although the first and the third assumptions hold in our
case, the second assumption does not hold due to the presence of constraints (19). However, the
RCR property can be guaranteed for our problem by defining parameter C as a sufficiently large
value such that constraints (19) become redundant. For ease of presentation and understanding,
we start by presenting the exact decomposition algorithm for the DRBAP assuming that C is
a sufficiently large value and, consequently, the two-stage BAP has relatively complete resource.
Next, in Section 5.1, we explain the importance of the RCR assumption and redefine the proposed
algorithm for solving the DRBAP for any value of C, that is, for the case where this assumption
does not hold.

The DRBAP can be rewritten using the epigraph reformulation as follows:
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min θ (28)

s.t. (2)− (8) (29)

θ ≥ max

{∑
ω∈Ω

πωPQω(x, y, b) : P ∈ P

}
. (30)

The proposed algorithm follows a Benders decomposition where constraint (30) is replaced by
a set of optimality cuts that avoid to use explicitly the subproblems Qω(x, y, b). For each first-
stage solution (x, y, b), an optimality cut can be devised using the optimal dual multipliers of
the corresponding subproblem Qω(x, y, b), for each scenario ω. This leads to an exponential set
of optimality cuts. The decomposition algorithm is an iterative procedure that solves, at each
iteration, a relaxation of the model (28)-(30) - called master problem - where only a small subset
of optimality cuts is considered. Then, for the (first-stage) solution of the master problem, a
separation problem is solved to identify a violated optimality cut or to show that no such a cut
exists. If a violated cut is found, it is added to the master problem and the process is repeated.
Otherwise, the algorithm terminates.

This algorithm - called the distributionally robust L-shaped algorithm - consists on solving three
problems at each iteration. The master problem is the first to be solved to provide a first-stage
solution. With that solution, we solve the second-stage problems that consist of determining the
recourse function Qω(x, y, b) for each ω ∈ Ω. The values of the recourse functions are then used
to solve the distribution separation problem, making it possible to identify the worst vector of
probabilities in the ambiguity set with respect to the current first-stage solution. Lastly, such a
vector of probabilities is used together with the optimal dual solutions of the second-stage problems
to generate a new cut for the master problem. The optimal value of the distribution separation
problem is an upper bound for the optimal value of the DRBAP, while the master problem provides
lower bounds for such a value. Both bounds are successively improved from iteration to iteration
until they coincide. When it happens, the process ends, ensuring that the optimal solution was
found.

Now, we explain in more detail how the optimality cuts are obtained. Given a first-stage solution
(θ, x, y, b) to the master problem and considering a scenario ω ∈ Ω, the recourse function Qω(x, y, b)
is given by the linear problem (15)-(20), which can be solved in polynomial time. Assigning the
dual variables uωk`, k, ` ∈ V, k 6= `, rωk , k ∈ V, zωk , k ∈ V, and vωk , k ∈ V to constraints (16), (17), (18),
and (19), respectively, the dual problem associated with scenario ω ∈ Ω is as follows:

max
∑

k,`∈V,k 6=`
(Hω

k + F +M(xk` − 1))uωk` +
∑
k∈V

Akr
ω
k +

∑
k∈V

(Hω
k −Dk)z

ω
k +

∑
k∈V

(−C)vωk (31)

s.t. zωk − vωk ≤ 1, k ∈ V, (32)

rωk −
∑

`∈V,` 6=k
uωk` +

∑
`∈V,` 6=k

uω`k − zωk ≤ 0, k ∈ V, (33)

rωk , z
ω
k , v

ω
k ≥ 0, k ∈ V, (34)

uωk` ≥ 0, k, ` ∈ V, k 6= `. (35)

Assume this dual problem has an optimal solution. Denoting by uωk`, r
ω
k , z

ω
k , and vωk the optimal
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value of the dual variables, the following equality holds

Qω(x, y, b) =
∑

k,`∈V,k 6=`
(Hω

k + F +M(xk` − 1))uωk` +
∑
k∈V

Akr
ω
k +

∑
k∈V

(Hω
k −Dk)z

ω
k +

∑
k∈V

(−C)vωk ,

and, consequently, the following optimality cut is obtained

θ ≥
∑
ω∈Ω

πωP

 ∑
k,`∈V,k 6=`

(Hω
k + F +M(xk` − 1))uωk` +

∑
k∈V

Akr
ω
k +

∑
k∈V

(Hω
k −Dk)z

ω
k +

∑
k∈V

(−C)vωk


(36)

where the probabilities πωP , ω ∈ Ω, are obtained by solving the distribution separation problem. If
(36) is not satisfied by the current solution of the master problem, then the cut is added to the
master problem to obtain a new first-stage solution.

The full description of the decomposition algorithm is given in Algorithm 1. The first master
problem to solve - denoted by M0 - does not include any optimality cut.

Algorithm 1 Distributionally Robust L-shaped method for the BAP.

1: Initialize i← 0; LB ← −∞; UB ← +∞ and construct the initial master problem M0

2: Solve the master problem M0. Let (x0, y0, b0) be the optimal solution
3: Define the initial solution as the best solution found: (x∗, y∗, b∗) = (x0, y0, b0)
4: for each scenario ω ∈ Ω do
5: Solve the second-stage problem Qω(xi, yi, bi)
6: end for
7: while UB > LB do
8: Solve the distribution separation problem (transportation problem (27)) considering the first-

stage solution (xi, yi, bi), and Qω(xi, yi, bi) for all ω ∈ Ω. Let πωP , ω ∈ Ω, be the resulting
probabilities

9: if UB >
∑

ω∈Ω π
ω
PQω(xi, yi, bi) then

10: UB ←
∑

ω∈Ω π
ω
PQω(xi, yi, bi)

11: Update the best solution found: (x∗, y∗, b∗) = (xi, yi, bi)
12: end if
13: if UB ≤ LB then
14: STOP
15: end if
16: Set i← i+ 1
17: Construct master problem Mi by adding the optimality cut (36) to Mi−1

18: Solve the master problem Mi

19: Set (xi, yi, bi) to the optimal solution of Mi and LB to its value
20: end while
21: Return the optimal solution (x∗, y∗, b∗) and its cost LB (=UB)

Although the convergence of the L-shaped algorithm was proven in [5] for the case where both
the master problem and the second-stage problems are linear, the proof holds true when only the
second-stage problems are linear.
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5.1 The case of no relatively complete recourse

As remarked before, the L-shaped algorithm presented is valid for two-stage problems with
relatively complete recourse (RCR), which is not the case of our problem for all values of C. In
this section, we start by explaining why the RCR property is important. Then, we explain how to
adapt the algorithm presented in the absence of the RCR property.

The optimality cuts added to the master problem are based on the dual optimal solutions of
the second-stage problems defined for each scenario. If the RCR property does not hold, some
second-stage problems may be infeasible, and, consequently, by linear programming theory, the
corresponding dual problem may be either infeasible or unbounded. As we will see in the next
section, we can show that this dual becomes unbounded. Thus, it is not possible to derive any cut
for the master problem. In addition, finding an optimality cut requires to solve the distribution
separation problem, which in turn requires the determination of the recourse functions Qω(x, y, b)
associated with all second-stage problems. When the RCR property does not hold, it may not
be possible to obtain the value of the recourse function for all scenarios because some resulting
problems may be infeasible.

The RCR property is important to ensure the validity and convergence of the Algorithm 1;
however, we can also ensure such validity and convergence by replacing the RCR property by a
weaker property. In fact, it is enough to guaranty that any solution generated by the master
problem is feasible for all scenarios considered. This means that we can restrict the solution space
of the master problem to the set of robust solutions, that is, to the set of solutions that are feasible
for all the scenarios considered. A possible way of doing this is to include the time constraints
associated with the second-stage problem of each scenario into the master problem. The drawback
of this approach is that it may lead to large size complex models. However, such a robust model
can be approached using efficient techniques such as decomposition algorithms that generate only
a subset of scenarios, see [28] for such an example. For simplicity, here we follow an intermediate
approach that consists of including only the constraints of the second-stage problems associated
with the non-dominated scenarios [1]. To the best of our knowledge, this approach is new in the
context of decomposition algorithms for distributionally robust optimization. In our case, the non-
dominated scenarios are those where a maximum number of delays occurs and the size of those
delays is larger. Hence, denoting by Ξ ⊂ Ω the set of non-dominated scenarios and by RHS Cutj
the right-hand side of the optimality cut (36) derived at iteration j, the master problem Mi at each
iteration i > 0 is as follows:

Mi = min θ (37)

s.t. (2)− (8) (38)

θ ≥ RHS Cutj , j = 1, ..., i (39)

tω` − tωk ≥ Hω
k + F +M(xk` − 1), k, ` ∈ V, k 6= `, ω ∈ Ξ (40)

tωk ≥ Ak, k ∈ V, ω ∈ Ξ (41)

cωk − tωk ≥ Hω
k −Dk, k ∈ V, ω ∈ Ξ (42)

cωk ≤ C, k ∈ V, ω ∈ Ξ (43)

tωk , c
ω
k ≥ 0, k ∈ V, ω ∈ Ξ (44)

θ ≥ 0. (45)

The first master problem solved, M0, corresponds to the robust model and it is defined by the
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objective function (37), by the constraints (38) and (40)-(45), and by the additional constraints
θ ≥

∑
k∈V c

ω
k , ω ∈ Ξ. With this reformulated master problem, Algorithm 1 converges to the

optimal solution of the DRBAP for any value of the parameter C. As a consequence, in what
follows, we consider Algorithm 1 with the master problem (37)-(45). In section 6, we explain in
detail how to obtain the set Ξ for the BAP considered.

5.2 Dual problem seen as a flow problem

In this section, we analyse in detail the dual problem (31)-(35) to derive important results. We
start by introducing the following proposition, whose proof is given in the Appendix B.

Proposition 5.1. In any optimal solution of the dual problem, inequalities (33) are satisfied at
equality.

Based on Proposition 5.1, we can assume that inequalities (33) are replaced by the following
equations in the dual problem

rωk +
∑

`∈V,` 6=k
uω`k =

∑
`∈V,` 6=k

uωk` + zωk , k ∈ V. (46)

Replacing constraints (33) by constraints (46), it is possible to observe that the dual problem
without constraints (32) has the structure of a flow problem in an auxiliary network where the set
of nodes is V ′ = V ∪ {O,D}. Node O is an artificial origin and node D is an artificial destination.
There is an arc between O and each k ∈ V, an arc between k and ` whenever xk` = 1, and
an arc between each k ∈ V and D. The flow associated with each type of arc is represented by
variables rωk , u

ω
`k, and zωk , respectively, and the corresponding objective function coefficients are

given by Ak, H
ω
k +F +M(xk` − 1), and Hω

k −Dk. Equalities (46) can be seen as flow conservation
constraints on this auxiliary graph. Therefore, we can use the fact that the coefficients matrix is
totally unimodular (TUM) and that the RHS are integral to derive the following proposition used
in the following section, whose proof is given in the Appendix C.

Proposition 5.2. Any basic solution of the dual problem associated with scenario ω ∈ Ω is integral.

In addition, it is important to note that variables uωkl are not bounded and, consequently, they
may assume integer values larger than one.

Example 5.3. In Figure 1, we present an example of a solution of the dual problem when vωk =
0,∀k ∈ V, that is, the case where C is large and no hard deadlines are imposed. In this example,
we omit the ω from the variables for simplicity.

12
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Figure 1: Example of a dual solution on a network for a dual problem, where the value associated
with each arc represents the value of the corresponding variable.

There are four paths in Figure 1: i) P1 : O → 1 → 6 → 4 → D, corresponding to r1 =
u16 = u64 = z4 = 1; ii) P2 : O → 2 → 5 → D, corresponding to r2 = u25 = z5 = 1; iii) P3 :
O → 3 → 8 → 7 → D ; and iv) P4 : O → 3 → 8 → 7 → 9 → D. Paths P3 and P4 share some
arcs and the dual variables associated with those arcs count the number of paths crossing each arc.
Thus, r3 = 2, u38 = 2, u87 = 2, u79 = 1, z7 = 1, z9 = 1.

The objective function value of the dual problem corresponding to each path - assuming that
variables xk` associated with variables uk` are equal to one - is:
Path P1 : η1 = A1 + (H1 + F ) + (H6 + F ) + (H4 −D4)
Path P2 : η2 = A2 + (H2 + F ) + (H5 −D5)
Path P3 : η3 = A3 + (H3 + F ) + (H8 + F ) + (H7 −D7)
Path P4 : η4 = A3 + (H3 + F ) + (H8 + F ) + (H7 + F ) + (H9 −D9)
Each path has a clear interpretation. For example, path P1 is associated with the delay of ship 4
(denoted by η1) that occurs when this ship is operated after ship 6, which in turn is operated after
ship 1. With this dual solution, composed of four paths, constraint (36) for a single scenario with
probability 1 becomes

θ ≥ A1 + (H1 + F ) +M(x16 − 1) + (H6 + F ) +M(1− x64) + (H4 −D4)

+A2 + (H2 + F ) +M(1− x25) + (H5 −D5) +A3 + (H3 + F )

+M(1− x38) + (H8 + F ) +M(1− x87) + (H7 −D7)

+A3 + (H3 + F ) +M(1− x38) + (H8 + F ) +M(1− x87) + (H7 + F ) +M(1− x79) + (H9 −D9).

Setting the first-stage variables xkl = 1 to the corresponding paths, we are imposing the constraint:

θ ≥ η1 + η2 + η3 + η4.

Next we discuss the role of variables vωk .

Proposition 5.4. The dual problem associated with scenario ω ∈ Ω is either unbounded or has an
optimal solution with vωk = 0, ∀k ∈ V.

13



The proof of proposition 5.4 is given in the Appendix D. The arguments used in the proof also
show that in case multiple optimal solutions exist, then the solutions with vωk > 0 cannot be basic.

In the case of relatively complete recourse, the first-stage solution must be feasible for each
scenario. This means that the critical path associated with each vessel has a delay lower than or
equal to C. Thus, only Case 2 in the proof of Proposition 5.4 can occur. If the first-stage solution
is obtained without guaranteeing feasibility for each possible scenario, then a violation can be
identified by the unbounded dual subproblem.

5.3 Improvement strategies

Preliminary tests showed that the convergence of Algorithm 1 can be quite slow, providing
consecutive lower bounds equal to zero. In order to improve the proposed algorithm, it is important
to look deeper into the optimality cuts and understand why they may be inefficient. Consider again
the first-stage solution (x, y, b) of the master problem, a scenario ω ∈ Ω, the recourse function
Qw(x, y, b) given by the linear problem (15)-(20), and its dual problem given by (31)-(35).

In each iteration of Algorithm 1, an optimality cut (36) with some variables uωk` taking a positive
integer value is added, see Proposition 5.2. As these variables have coefficient Hω

k +F +M(xk`−1),
it is easy to see that any alternative first-stage solution with xk` = 0 makes this term to take a large
negative value and, consequently, the optimality cut (36) is satisfied with θ = 0. As a result, with
the exception of the first master problem M0, several subsequent master problems may provide
lower bounds equal to zero. This indicates that several alternative first-stage feasible solutions are
found without repeating at least one of the variables xk` set to one in the previous iterations. Given
that the master problem has typically many alternative feasible solutions, the number of iterations
leading to lower bounds equal to zero may be large, which may result in a slow convergence of the
proposed L-shaped algorithm. The previous analysis of the dual problem and the optimality cuts
make it possible to understand some convergence issues associated with the proposed L-shaped
algorithm. To improve its efficiency, we propose four improvement strategies.

Replace M by a tighter value
The first improvement strategy consists of replacing the M value by a tighter value in con-

straints (40) and in the optimality cut (36). With this strategy, we aim to increase the coefficient
of variable uωkl in the optimality cut without losing optimality. This may speed up the convergence
of the algorithm by increasing the value of the master problem faster. For the BAP considered, we
can take Mkl = max{min{M,Dk + C} + F − A`}, 0}, for each k, l ∈ V, k 6= l. To show that the
tightened inequality

tω` ≥ tωk +Hω
k + F +Mk`(xk` − 1),

is valid for the set of feasible solutions under scenario ω ∈ Ω, we consider the case xk` = 0 because
the case xk` = 1 is trivial. In addition, the proof is only presented for the case Mkl = Dk+C+F−A`
because the remaining ones are trivial.

From constraints (42) and (43), it follows that tωk +Hω
k −Dk−C ≤ 0. Combining this inequality

with tω` ≥ A`, we have tω` ≥ A` + (tωk +Hω
k −Dk − C). This implies

tω` ≥ tωk +Hω
k + F − F +A` −Dk − C ⇒ tω` ≥ tωk +Hω

k + F − (Dk + C + F −A`)

⇒ tω` ≥ tωk +Hω
k + F −Mk` ⇒ tω` ≥ tωk +Hω

k + F +Mk`(xk` − 1).

14



Reduce the number of alternative optimal solutions
The second enhancement consists of reducing the number of alternative solutions of the master

problem by using the following set of constraints:

x`k = 0, k, l ∈ V : Ak < A`.

These constraints - that we refer to as non-overlapping constraints - prevent situations where the
vessel k arrives before vessel `, but the operations on vessel k start after the vessel ` has been
processed. They do not avoid the case where the start time of vessel k is lower than the finishing
time of vessel `; however, it is important to note that these constraints may cut some feasible
solutions. In such a case, the proposed algorithm may provide a heuristic solution.

To prove that the final solution obtained with the non-overlapping constraints is optimal or
to derive an optimal solution from it, we can apply again Algorithm 1 with some modifica-
tions. Such modifications consist of replacing the non-overlapping constraints by the constraint∑

k∈V |Ak<A`
x`k ≥ 1 and setting the initial upper bound equal to the value of the final solution

obtained. This second execution of the algorithm ensures that either the solution obtained with
the non-overlapping constraints or the new solution obtained is optimal. Some preliminary tests
not reported here revealed that this two-phase procedure is, in general, not faster than applying
Algorithm 1 only once without imposing the non-overlapping constraints. As a result, when this
strategy is used in the computational experiments reported in Section 6, the second execution of
the algorithm mentioned here is not considered.

Tighten of inequalities (36)
A third improvement strategy is the tighten of inequalities (36). First, observe that we can

drop the term in vωk , since we are interested only in the case where the dual problem has a finite
optimal solution, see Proposition 5.4. The inequality can be written as follows.

θ ≥
∑
ω∈Ω

πωP

Sω +
∑

k,`∈V,k 6=`
M(xk` − 1)uωk`

 (47)

where
Sω =

∑
k,`∈V,k 6=`

(Hω
k + F )uωk` +

∑
k∈V

Akr
ω
k +

∑
k∈V

(Hω
k −Dk)z

ω
k .

As explained in Section 5.2, the term inside the parenthesis appearing in the RHS of inequalities (47)
is the cost of the aggregation of paths using arcs that correspond to first-stage solutions with xk` = 1
and uωk` > 0. If xk` = 0, a value Muωk` is subtracted to the RHS to ensure that for such scenario
ω the corresponding term in not positive, given that uωk` is an integer positive value. Now, let us
define the set of arcs used in such paths with uωk` > 0 :

Uω = {(k, `) ∈ V × V : k 6= ` ∧ uωk` > 0} ,

and set
Xω =

∑
(k,`)∈Uω

xk`.

Hence, inequalities (47) can be tighten as follows:

θ ≥
∑
ω∈Ω

πωP (Sω − Sω(|Uω| −Xω)). (48)
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Formally, we state the validity of the new inequalities in the following proposition, whose proof is
presented in the Appendix E.

Proposition 5.5. Given a first-stage solution (x, y, b), for each ω ∈ Ω let (rωk , u
ω
k`, z

ω
k , 0) denote a

dual solution to Qω(x, y, b) and let πP be a probability distribution belonging to the ambiguity set.
Then, inequality (48) is valid for the feasible region of the master problem.

Readjustment of the first-stage solution
By taking the definition of the first-stage variables into account, we can see that if the berth

position of vessel ` does not intersect the berth position of vessel k, then we can either set yk` to
1 (if vessel ` berths below vessel k) or y`k to 1 (if vessel k berths below vessel `). In this case, the
optimal value of the variables xk` and x`k can be either set to one or zero. The choice is of main
importance in this problem for two reasons. The first follows from the observation made above
that only the variables x are required to determine the value of the recourse function. Setting an
x variable to 1 implies to add a new constraint (40) to the problem Qω(x, y, b). Such a constraint
not only complicates the problem Qω(x, y, b), by adding an unnecessary constraint, but it also may
affect the second-stage solution because it restricts the berthing time of a ship and, consequently, it
may have an impact on the delay of that ship. For this reason, this strategy must be used whenever
the decomposition algorithm is applied because otherwise the solution of each second-stage problem
may not be optimal (as needed). The second reason follows from another observation, made in the
second enhancement strategy, stating that alternative first-stage solutions with different sets of
variables xk` fixed to one will generate additional iterations of Algorithm 1. Hence, when multiple
first-stage solutions exist we should choose a solution with a minimal set of x variables set to one.
For these two reasons, whenever a first-stage solution is generated with xk` = 1, if there is no
intersection between the berth positions occupied by vessels k and `, then we flip the value of
variable xk` to zero and set the corresponding variable y to one.

Additionally, since the readjustment increases the number of x variables equal to zero, we use
the following property to fix dual variables uωk` to zero in the dual problems.

Proposition 5.6. In any optimal solution of the dual problem, uωk` = 0 for all k, l ∈ V, ω ∈ Ω such
that xk` = 0 in the current first-stage solution of the master problem.

The proof of Proposition 5.6 comes directly from the fact that if xk` = 0, then the coefficient
of uωk` in the objective function (31) (which is Hω

k +F −M) is a large negative number because M
acts as a big-M constant. This means that uωk` = 0 in any optimal dual solution.

6 Computational Results

In this section, we report extensive computational results having three main goals in mind: i)
to investigate the performance of the decomposition algorithm and the effect of the improvement
strategies discussed in Section 5.3; ii) to explore in detail the structure of the distributionally robust
solutions; and iii) to compare the DRO solutions with stochastic and robust solutions.

Our experiments are conducted on the set of 100 instances1 used in [28]. The instances are
labelled as R N i, where N ∈ {6, 7, ..., 15} is the number of vessels and i ∈ {1, ..., 10} is a number

1online available at http://sweet.ua.pt/aagra/
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that identifies the instance. The instances were originally designed for the berth allocation and
quay crane scheduling problem and consequently, several modifications were applied to make them
suitable for the BAP. We kept the original arrival times and length of the vessels. The time horizon
considered is one week (128 hours) and each time period represents two hours. Hence, we consider
M = 128

2 = 84. We assume that the quay area is divided into 21 berth sections, which makes it
possible to operate 3 vessels simultaneously at the port. Lower numbers of berths may lead to
infeasible problems because some deadlines may not be respected, while greater values may lead to
problems where there are no interferences among vessels. The deterministic handling time of vessel
k ∈ V is defined by Hk = Qk/1.5c1, where Qk is the total cargo of vessel k and c1 is the processing
rate of the first crane (both values are the ones reported in the original instances provided in [28]).
The coefficient 1.5 is used to compute the handling times because it makes it possible to obtain a
range of handling times from 4 hours to 2 days, which reflects real-world situations. The scenarios
for the uncertain handling times that form set Ω are generated through the multiple constrained
budget (MCB) uncertainty set used in [28] and defined as follows.

Ω =

Hω : Hω
k = Hk + [Ĥkδk], 0 ≤ δk ≤ 1, k ∈ N,

min{(j+1)[N/G],N}∑
k=1+j[N/G]

[δk] ≤ Γj , j ∈ {0, 1, . . . , G− 1}


In this uncertainty set, Hk and Ĥk are, respectively, the deterministic handling time and the
maximum allowed delay in the handling time of vessel k. The round operator [·] is used to ensure
that only integer handling times are obtained. This uncertainty set groups the vessels into G groups
according to their arrival times and associates a budget constraint to each group. The vessels in the
first group are the ones with the lowest arrival times and the first budget constraint imposes that
at most Γ0 of those vessels can suffer delays on the handling times. In this paper, the parameters in
the uncertainty set are the same used in [28]: Ĥk = 2, k ∈ V , G = 3, and Γj = 1, j = 0, 1, 2. This
means that the vessels are grouped into three sets according to their arrival times, and at most
one vessel in each group can suffer a delay by either one or two time periods on its handling time.
As a result, the number of scenarios considered for each instance only depends on the number of
existing vessels, see Table 1.

Table 1: Number of scenarios for each instance in terms of the number of vessels
N 6 7 8 9 10 11 12 13 14 15

|Ω| 125 175 245 343 441 567 729 891 1089 1331

For each vessel k ∈ V , the requested departure time is defined as Dk = Ak+max
ω∈Ω
{Hω

k }+0.2Hk,

and the maximum allowed delay C is fixed to 10. Over this section, we are going to use the master
problem defined by (37)-(45) in the proposed decomposition algorithm (Algorithm 1). This master
problem involves the definition of the set Ξ of the non-dominated scenarios. In the BAP, any delay
may have a negative impact on the objective function value, and such impact increases with the
magnitude of the delay. In the scenarios defined in Ω, any vessel can either suffer no delays or
suffer a delay of one or two time periods. As a consequence, the non-dominated scenarios are the
ones where the number of vessels delayed is the maximum allowed and all of them have a delay of
two time periods.

For the experiments, we use the Xpress Optimizer Version 27.01.02 with the default options on
a computer with a CPU Intel(R) Core i7, with 16GB RAM.
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6.1 The effect of the improvement strategies

In this section, we test the improvement strategies defined in Section 5.3 on a subset of 10
instances: instances R j 1, j ∈ {6, 7, ..., 15}. For the experiments, we consider ε = 5. As mentioned
before, the last improvement strategy - which consists of readjusting the first-stage variables x -
is a crucial strategy in our procedure because the second-stage problems solved at each iteration
only use the value of variables x. If the readjustment of the variables x is not applied, then the
solution of each second-stage problem may not be optimal (as required). For this reason, the last
improvement strategy is included in all the computational results reported.

Hence, we only test the first three strategies that are summarized as follows.
SM : Replace the value M by a tighter value;
Sx : Use of the non-overlapping constraints;
Sc : Replace inequalities (36) by the tighten inequalities (48).
The running times, in seconds, resulting from the combination of the different improvement

strategies are displayed in Table 2. The first row identifies the strategy or the combination of
strategies used. The second column, identified by “−”, corresponds to the case where none of the
improvements strategies is used. The lowest computational times for each instance are marked in
bold.

Table 2: Performance of the improvement strategies
Strategies − SM Sc Sx SM + Sx Sx + Sc SM + Sc SM + Sx + Sc
R 6 1 0 0 0 0 0 0 0 0
R 7 1 1 0 0 0 0 0 0 0
R 8 1 7 5 10 7 5 10 8 9
R 9 1 32 15 25 21 14 19 21 16
R 10 1 655 261 629 287 135 278 560 188
R 11 1 105 34 78 77 40 49 80 37
R 12 1 9676 5252 5601 5021 2610 3776 5595 3361
R 13 1 132 91 122 56 35 12 238 12
R 14 1 43459 28921 43322 6553 1799 3430 32215 3354
R 15 1 25484 8241 11311 5656 1534 3431 11101 3388

The results in columns 3-5 show the individual performance of each improvement strategy, and
they clearly show that strategies SM and Sx drastically reduce the total running time. Strategy Sc
seems not to be very efficient, specially when combined with strategy SM . The shortest running
times are consistently obtained when strategies SM and Sx are combined.

It is important to recall that while strategies SM and Sc keep the optimality of the obtained
solutions, strategy Sx may cut some feasible solutions and, consequently, it may eliminate optimal
solutions. To understand the impact on the optimal solution caused by the strategy Sx, we display,
in Table 3, the optimality gaps associated with the solutions obtained by this strategy, with respect
to the optimal solutions for the 10 instances considered.

Table 3: Optimality gaps associated with the solutions obtained by using strategy Sx
Instance R 6 1 R 7 1 R 8 1 R 9 1 R 10 1 R 11 1 R 12 1 R 13 1 R 14 1 R 15 1

Gap(%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 31.03 0.00 0.00
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The obtained results show that with the strategy Sx it was possible to obtain optimal solutions
for 9 of the 10 instances considered. This means that the non-overlapping constraints do not
frequently cut optimal solutions. In fact, the additional results reported in the Appendix F show
that strategy Sx does not cut optimal solutions in around 85% of the cases.

The preliminary tests reported in this section can be summarized as follows: Both strategies
SM and Sx clearly contribute to reduce the computational time. The strategy Sx may cut optimal
solutions, but it seems that this is not the most frequent case. The strategy Sc does not contribute
to reduce the computational time in the presence of both strategies SM and Sx. Hence, in what
follows, all the results were obtained by using the combination of the strategies Sx + SM .

6.2 An illustrative example

This section provides a detailed discussion about a specific instance, the instance R 10 1. The
parameters of this instance - arrival time, length, deterministic handling time, and requested de-
parture time for each vessel k ∈ V - are displayed in Table 4.

Table 4: Parameters of instance R 10 1
k 1 2 3 4 5 6 7 8 9 10

Ak 10 13 13 15 19 21 24 30 41 50
Lk 5 7 6 5 5 6 6 6 6 6
Hk 5 9 8 11 5 3 6 3 5 4
Dk 18 26 25 30 27 27 33 36 49 57

The parameter ε used in the Kantorovich ambiguity set strongly affects the structure and the
cost of the distributionally robust solutions. The cost of the resulting solutions increases as the
value of the parameter ε increases. The case ε = 0 corresponds to the stochastic case, where
it is assumed that the distribution of the uncertain handling times is the reference probability
distribution considered. In our experiments, the reference probability distribution is the empirical
distribution, which is described by a set Ω of scenarios, all having the same probability of occurrence.
The case ε = ∞ corresponds to the robust case, where only the worst-case scenario is considered.
This robust solution can be obtained by using finite values for ε, and such values can vary from
instance to instance. For the instance R 10 1, the robust solution is obtained for any ε ≥ 5 as
shown in Figure 2.

The behaviour of the cost of the DRO solutions in terms of the parameter ε is similar to the
behaviour of the parameter Γ used in the budget uncertainty set proposed by Bertsimas and Sim [6],
which is known as the price of robustness.
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Figure 2: Cost of the distributionally robust solution as a function of the parameter ε.

The stochastic solutions, distributionally robust solutions, and robust solutions can be struc-
turally very different, as happens in this particular instance. In Figures 3, 4, and 5, we provide
the graphical representation of the stochastic solution, of the distributionally robust solution (with
ε = 1), and of the robust solution, respectively. Each vessel is represented by a rectangle whose
height corresponds to the length of the vessel and the width corresponds to the deterministic han-
dling time. Each 1×1 black rectangle represents the requested departure time of a specific vessel.
In the three figures presented, vessels 9 and 10 are omitted to make the representation of the
remaining vessels clearer. There is a large temporal slack between the arrivals of vessels 9 and
10 and the departures of the remaining vessels, and vessels 9 and 10 occupy the same space-time
position in all the three solutions presented. Remember that, in our case, the function to optimize
is the sum of the delays of the vessels with respect to the requested departure times, that is, the
tardiness. Additionally, as stated before, the MCB uncertainty set considers G = 3 sets of vessels:
G1 = {1, 2, 3}, G2 = {4, 5, 6}, and G3 = {7, 8, 9, 11}. In each one of these groups at most one delay
of one or two time periods in a single vessel can occur.
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Figure 3: Stochastic solution (ε = 0).  

 

 

  

Figure 4: Distributionally robust solution (ε = 1).
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 Figure 5: Robust solution (ε =∞).

Figures 3, 4, and 5 clearly show that the solutions obtained by stochastic programming, robust
optimization, and DRO can be structurally very different. Such differences occur because these
approaches were projected to optimize specific different situations.

Stochastic programming was especially designed to optimize an expected function assuming a
specific reference probability distribution, the empirical probability distribution in our case. Fig-
ure 3 shows a solution that has no delays in the deterministic case. However, one can observe that
for vessels 5 and 7 there are no buffers, that is, the ending time in the deterministic case is equal
to the requested departure time. Additionally, for vessel 6 the buffer is just one time period. This
means that delays in handling the vessels can easily lead to delays at their departure. In particular,
the berth allocation of vessels 2, 5, 7 can easily generate large delays since a delay in handling
vessel 2 can propagate to vessels 6 and 7, and a delay in handling vessel 6 can propagate to vessel
7. By setting a delay of 2 periods on the handling time of vessels 2, 5, and 6 we get a tardiness
value of 9, which is in fact the worst-case scenario for this solution. Nevertheless, considering all
the possible scenarios of delays with equal probability, this is the optimal solution when the goal is
to minimize the expected tardiness value.

DRO assumes that the distribution of the uncertain parameters can deviate from the reference
probability distribution and, as a result, it optimizes the expectation of a function assuming the
worst possible probability distribution defined by the ambiguity set. Figure 4 shows a solution
where a delay of one period is assumed for vessel 5. Comparing this solution with the stochastic
one we observe that, except for vessel 5, all the remaining vessels have a buffer of at least one
period. This minimizes the impact of the possible propagation of delays. The worst-case scenario
will occur when a delay of 2 periods occurs in the handling times of vessels 3, 5, and 7, which gives
a tardiness of 8.

Robust optimization aims to optimize the worst-case scenario, that is, to optimize a function
considering the scenario of uncertainty that leads to the worst value of such a function. Since this
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procedure disregards the deterministic scenario (because in our case it cannot be the worst-case
scenario), we see from Figure 5 that the robust solution assumes a delay of 3 periods even in the
case where no handling operations are delayed. However, the solution generates large buffers for
the remaining vessels, with the exception of vessel 6 for which the buffer is one, and avoids the
situations that occurred in the two previous solutions where three vessels share the same berthing
positions and no slack time between the handling operations is considered to avoid the propagation
of delays. In this case, a worst-case scenario will occur when the handling of vessels 3 and 4 suffers
a delay of 2 periods each, giving a tardiness value of 7.

Next, we summarize some performance measures for the three reported solutions when evaluated
under four different situations: i) deterministic scenario - we compute the tardiness assuming that
the deterministic handling times occur; ii) worst-case scenario - we compute the tardiness on the
scenario leading to the highest tardiness; iii) empirical distribution - we compute the expected
tardiness assuming the empirical distribution occurs; and iv) worst-case distribution - we compute
the expected tardiness assuming the worst distribution in the Kantorovich ambiguity set K1 occurs.
The obtained results are reported in Table 5.

Table 5: Evaluation of the obtained solutions under different situations
Situation Stochastic DRO Robust

Deterministic scenario 0.00 1.00 3.00
Worst-case scenario 9.00 8.00 7.00
Empirical distribution 2.43 2.54 4.28
Worst-case distribution 4.16 3.91 5.29

Table 5 clearly show that each approach leads to the best solution regarding the situation for
which it was designed, that is: i) stochastic programming provides solutions with the lowest ex-
pected tardiness in the empirical distribution; ii) DRO generates solutions with the lowest expected
tardiness for the worst probability distribution in the ambiguity set; and iii) robust optimization
derives solutions with the lowest tardiness when the worst-case scenario occurs. Another interesting
observation is that DRO provided a solution that - in terms of quality - is in the middle of the
solutions obtained by stochastic programming and robust optimization, when evaluated in terms
of the worst-case scenario, the deterministic scenario, and the empirical distribution. Hence, the
solution obtained by DRO is, simultaneously, less conservative than the robust solution in terms of
the expected value, and more protected against worst-case scenarios and worst-case distributions
than the stochastic solution.

6.3 Main results

In this section, we present results for all the instances considered, except for the instances R 14 3
and R 14 7 because they are infeasible for the parameters considered. The results are presented
in an aggregated way such that all instances having the same number of vessels are grouped. For
each N ∈ {6, ..., 15}, we denote by R N ∗ the set of instances R N i, i ∈ {1, ..., 10}. This section
is divided into two parts. In the first part, we analyse the impact of parameter ε in the obtained
solutions. In the second part, we present a comparative study between distributionally robust
optimization, stochastic programming, and robust optimization.
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6.3.1 The impact of parameter ε

Parameter ε is used in the Kantorovich ambiguity set to control the range of probability distri-
butions allowed for the uncertain parameters, and it has a great impact on the obtained solutions.
We start by analysing the impact of the parameter ε in the average computational times associated
with all sets of instances considered. The obtained results are displayed in Table 6 for three distinct
values of ε: 1, 5, and 10. The first column identifies the set of instances. Columns M , SS, and DS
report the average total computation time spent on solving the master problems, the second-stage
problems, and the distribution separation problems, respectively. The columns Total report the
total computational time.

Table 6: Average computational times (in seconds)
ε = 1 ε = 5 ε = 10

M SS DS Total M SS DS Total M SS DS Total

R 6 ∗ 0 0 0 0 0 0 0 0 0 0 0 0
R 7 ∗ 0 0 1 1 0 0 0 1 0 0 0 0
R 8 ∗ 0 0 1 1 0 0 1 1 0 1 1 2
R 9 ∗ 1 1 3 5 1 1 3 6 1 1 3 5
R 10 ∗ 16 6 15 38 18 6 13 37 12 5 12 29
R 11 ∗ 97 22 63 182 16 9 24 50 12 8 21 42
R 12 ∗ 285 46 124 455 286 43 112 441 199 32 94 325
R 13 ∗ 1015 95 287 1397 621 88 242 951 519 72 211 802
R 14 ∗ 5367 249 732 6347 2552 198 572 3322 1902 163 472 2537
R 15 ∗ 10845 632 1729 13207 10925 645 1528 13099 9284 572 1388 11244

The obtained results indicate that the computational time required to solve the instances in-
creases as the number of vessels increases, and it decreases as the value of ε increases. For the larger
instances, the time spent on solving the second-stage problems is lower than the time required to
solve the distribution separation problem, which in turn is much lower than the time required
for solving the master problems. In fact, the percentage of the total time required for solving all
second-stage problems, distribution separation problems, and master problems is, respectively, 5%,
14%, and 81%.

Table 7 reports average objective function values for all the sets of instances in terms of the
parameter ε. In particular, we consider the cases ε = 0 (stochastic case), ε = 1, ε = 5, ε = 10,
and ε =∞ (robust case). Also in this table, we present the average number of iterations required
to obtain the final solutions for the cases ε = 1, 5, 10. The solutions of stochastic and robust
approaches can be obtained directly by using Algorithm 1 with ε equal to zero and with ε equal
to a sufficiently large value, respectively; however, for the particular case of the BAP, this is not
the most efficient way of obtaining such solutions. A more efficient way consists of solving a single
model that includes all the scenarios considered. The model used for the robust case is exactly the
first master problem solved, that is, M0. The model used for the stochastic case is given in the
Appendix A. Considering these single models, it was possible to obtain all stochastic and robust
solutions with an average computational time for each set of instances R k ∗, with k = 6, . . . , 15,
lower than 250 seconds.
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Table 7: Average objective function value and average number of iterations for the instances con-
sidered.

Objective function value Iterations
ε = 0 ε = 1 ε = 5 ε = 10 ε =∞ ε = 1 ε = 5 ε = 10

R 6 ∗ 0.9 1.1 1.2 1.2 1.2 2 2 2
R 7 ∗ 0.9 1.3 2.1 2.1 2.1 5 3 3
R 8 ∗ 1.2 1.6 2.4 2.4 2.4 5 5 6
R 9 ∗ 2.0 2.9 4.3 4.5 4.5 9 10 10
R 10 ∗ 1.5 2.1 3.5 3.5 3.5 26 26 24
R 11 ∗ 5.1 6.3 8.2 8.4 8.4 41 27 24
R 12 ∗ 4.7 5.7 7.7 7.9 7.9 73 70 61
R 13 ∗ 3.3 4.2 5.7 6.0 6.0 114 98 85
R 14 ∗ 5.4 8.3 10.8 11.3 11.3 192 149 124
R 15 ∗ 6.5 8.1 10.8 11.2 11.2 297 282 239

The obtained results clearly show that the average objective function value increases as the
value of ε increases. For most of the instances, the case ε = 10 is equivalent to the case ε =∞, and
consequently, the costs in both cases are the same. For this reason, the case ε = 10 will be omitted
in the next section. We can also see that the average number of iterations tends to decrease as the
value of ε increases, which may justify why the average total computational time tends to decrease
as the value of ε increases.

The results in Table 7 are used to understand the impact of the parameter ε in the value of the
obtained solutions. As mentioned before, the results were all obtained by using strategy Sx that,
although speed up the algorithm a lot, may cut optimal solutions. For this reason, the optimality
gaps of the obtained solutions and the percentage of instances for which the optimal solution was
found are reported in the Appendix F.

6.3.2 A comparative study

In this section, we compare the distributionally robust solutions obtained with ε = 1 and ε = 5,
denoted by DRO1 and DRO5, respectively, with the stochastic and robust solutions (SP = DRO0

and RO = DRO∞, respectively). The solutions for all instances and approaches are initially
obtained in a first phase by using the proposed L-shaped algorithm. Such solutions are then
evaluated in particular probability distributions in a second phase and their corresponding value
- the expected tardiness - is computed. As in the previous section, the instances are grouped by
the number of vessels. The probability distributions used for evaluating the solutions in the second
phase correspond to the worst probability distributions belonging to the following Kantorovich
ambiguity sets:

i) Kantorovich set K0. This is the case where a single probability - the empirical probability -
is considered;

ii) Kantorovich set K1;

iii) Kantorovich set K5;

iv) Kantorovich set K∞. This is the case where a single scenario - the worst-case scenario - is
considered.
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Our experiments - reported in Figure 6 - aim to investigate the impact of obtaining distribu-
tionally robust solutions with ambiguity sets different from the ones in which the solutions are
evaluated. It is important to note that the average value of the solutions is the best (the lowest),
when the same value of ε - and consequently the same Kantorovich ambiguity set - is used in both
phases. Hence, to better visualize the results, we compute the average gap of the obtained solutions
with respect to the solutions of the best approach. For example, when the solutions are evaluated
in the ambiguity set K1, we compute the gaps with respect to the solutions obtained with ε = 1.
To do so, we use the formula Gap =

DROj−DRO1

DRO1
× 100, where DROj is the average cost of the

solutions obtained with ε = j, for j = 0, 1, 5,∞. These gaps are zero when j = 1 and consequently,
the line associated with the approach DRO1 does not appear in the graphic associated with K1

because it coincides with the horizontal axis.
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Figure 6: Evaluation of the distributionally robust solutions in different ambiguity sets.

The obtained results show that DRO1 outperforms SP = DRO0 when the uncertainty is high,
that is, when the Kantorovich sets K5 and K∞ are considered. The DRO1 cannot be better
than SP when evaluated in the empirical distribution; however, our experiments indicate that

26



both approaches lead to solutions with the same average objective function value for the largest
instances, the ones with N = 12, 13, 14, 15. In addition, we can conclude that DRO1 clearly
outperforms RO = DRO∞ when the uncertainty is low, that is, when the ambiguity set used to
evaluate the solutions is K0 and K1. The approach DRO5 outperforms RO when the uncertainty
is low. When the worst-case scenario is considered, the average cost of both approaches is the same
for all sets of instances, except for the instances with 10 vessels. DRO5 is clearly outperformed by
SP when the uncertainty is low; however, this behaviour is inverted when the uncertainty is high.

A general conclusion that can be drawn from the reported results is that the distributionally
robust solutions are never worse than the stochastic and robust solutions simultaneously. Saying
different, the value of the distributionally robust solutions is better than or equal to the value of
the stochastic solution or to the value of the robust solution.

Now, we present the minimum and maximum differences between the value of the distribu-
tionally robust solutions and the value of the stochastic and robust solutions when evaluated on
the different Kantorovich ambiguity sets considered. The minimum and maximum differences were
computed considering the full set of 98 instances. The obtained results are displayed in Table 8.
The first column identifies the ambiguity set used to evaluate the solutions. The second and third
columns report the minimum and maximum difference between the value of the stochastic solutions
and the value of the distributionally robust solutions obtained with ε = 1. The fourth and fifth
columns report the minimum and maximum differences between the value of the robust solutions
and the value of the distributionally robust solutions with ε = 1. The last four columns report
equivalent results for the distributionally robust solutions obtained with ε = 5. Positive values
indicate a better performance of the distributionally robust solutions.

Table 8: Minimum and maximum differences between the distributionally robust solutions and the
stochastic and robust solutions

SP −DRO1 RO −DRO1 SP −DRO5 RO −DRO5

Min Max Min Max Min Max Min Max

K0 -0.5 0.0 -0.1 2.6 -1.7 0.0 -0.3 2.6
K1 0.0 0.2 0.0 2.1 -1.0 0.2 -0.2 2.1
K5 0.0 2.0 -2.5 1.5 0.0 2.8 0.0 1.5
K∞ 0.0 2.0 -4.0 0.0 0.0 4.0 -1.0 0.0

The obtained results indicate thatDRO1 is always better than SP when the last three ambiguity
sets are considered and it can reduce the expected tardiness in at most 2 time periods (4 hours). For
the first ambiguity set, where SP is the best approach, the gains obtained by SP with respect to
DRO1 are at most 0.5 time periods (1 hour). Hence, we can conclude that DRO1 usually performs
better than SP . DRO1 also performs better than RO in the first two ambiguity sets and the total
reduction in the expected tardiness is at most 2.6; however, when the last two sets are considered,
RO can reduce the expected tardiness in 4 time periods (8 hours) in relation to DRO1.

DRO5 performs better than SP when the last two ambiguity sets are considered and it can
reduce the expected tardiness in at most 4 time periods. When the uncertainty is low, SP can
decrease the expected tardiness in at most 1.7 time periods. Taking the four ambiguity sets consid-
ered into account, we can see the following: when DRO5 performs better than RO, the reduction
in the expected tardiness is at most 2.6 time periods, but when DRO5 performs worse than RO,
the increase in the expected tardiness is no more than 1 time period. This means that DRO5 is a
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nice alternative approach to RO.

In the experiments reported before, we used Kantorovich ambiguity sets to evaluate the ob-
tained solutions, all having the same set of scenarios as basis. With the next experiments, we aim
to investigate how the SP , DRO1, DRO5, and RO solutions react when different scenarios are
considered. To do so, we randomly generate a sample of 1000 scenarios of uncertainty, where the
handling time of each vessel can vary between its deterministic handling time and its deterministic
handling time plus τ time periods. This means that the increase on the handling time of each
vessel is given by a Uniform distribution in [0, τ ]. We tested the values τ = 2 and τ = 3. It is
important to note that in these experiments infeasible scenarios may be generated because our
BAP has not relatively complete recourse. Hence, after evaluating the obtained solutions in the
new generated scenarios, we computed the following performance measures: the average tardiness
in all the feasible scenarios (Average), the tardiness in the worst feasible scenario (Worst-case),
and the rate of infeasible scenarios (%Infeasible). The reported results are displayed in Tables 9
and 10.

Table 9: Evaluation of the obtained solution with scenarios from the distribution U(0,2)
Average Worst-Case %Infeasible

SP DRO1 DRO5 RO SP DRO1 DRO5 RO SP DRO1 DRO5 RO

R 6 ∗ 1.0 1.0 1.0 1.0 9.0 9.0 9.0 9.0 2.2 2.2 2.2 2.2
R 7 * 1.5 1.5 1.5 1.5 9.0 9.0 9.0 9.0 0.0 0.0 0.0 0.0
R 8 * 1.8 1.7 1.7 1.9 10.0 10.0 10.0 12.0 2.5 2.5 2.5 2.5
R 9 * 3.8 3.8 3.8 3.8 11.0 11.0 11.0 13.0 0.0 0.0 0.0 0.0
R 10 * 3.1 3.0 3.1 3.3 22.0 22.0 22.0 22.0 0.0 0.0 0.0 0.0
R 11 * 8.7 8.5 8.7 8.9 38.0 38.0 38.0 38.0 4.1 4.1 4.1 4.1
R 12 * 8.2 8.2 8.4 8.8 46.0 46.0 46.0 48.0 2.0 2.0 2.0 2.0
R 13 * 7.3 7.0 7.1 7.4 36.0 35.0 36.0 37.0 0.6 0.0 0.6 1.1
R 14 * 14.6 14.6 14.5 14.9 50.0 50.0 50.0 50.0 5.0 5.2 7.8 5.8
R 15 * 15.4 15.4 15.5 16.0 50.0 51.0 50.0 55.0 9.2 9.2 8.9 10.3

Table 10: Evaluation of the obtained solution with scenarios from the distribution U(0,3)
Average Worst-Case %Infeasible

SP DRO1 DRO5 RO SP DRO1 DRO5 RO SP DRO1 DRO5 RO

R 6 * 1.4 1.4 1.4 1.4 10.0 10.0 10.0 10.0 2.2 2.2 2.2 2.2
R 7 * 2.6 2.6 2.6 2.5 15.0 15.0 15.0 15.0 0.0 0.0 0.0 0.0
R 8 * 2.9 2.7 2.7 3.1 15.0 15.0 15.0 22.0 5.0 5.0 5.0 5.0
R 9 * 6.8 6.6 6.6 6.5 23.0 23.0 23.0 25.0 0.0 0.0 0.0 0.0
R 10 * 5.5 5.5 5.6 5.6 32.0 32.0 32.0 32.0 0.0 0.0 0.0 0.0
R 11 * 12.0 11.3 11.5 11.7 47.0 47.0 45.0 45.0 14.0 16.6 16.7 16.1
R 12 * 12.4 12.4 12.3 13.0 49.0 49.0 49.0 54.0 12.8 12.8 12.7 11.5
R 13 * 13.4 12.6 12.7 12.7 51.0 51.0 50.0 52.0 8.2 7.2 8.7 10.5
R 14 * 22.1 21.6 21.6 22.2 61.0 61.0 61.0 61.0 27.4 27.9 34.6 31.7
R 15 * 23.9 23.7 23.5 24.2 67.0 77.0 64.0 74.0 26.3 27.0 28.2 30.1
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Tables 9 and 10 indicate that the relative differences between the average costs of the solutions
obtained by the four approaches compared are not large. In fact, the average relative difference
between the cost of the solutions obtained by DRO1, DRO5, and RO with respect to the cost of the
solutions obtained by SP is, respectively, -1.3%, -0.0%, and +3.2% for Table 9 and -2.5%, -2.3%,
and +0.1% for Table 10. These small average relative differences can be explained by the following
fact. Each row of Tables 9 and 10 corresponds to a set of 10 instances (except row R 14 ∗) and,
in some of those instances, the congestion at the port is low because the vessel arrival times to the
port are spread over time. This results in slack times between vessels sufficiently large to mitigate
the impact of the uncertainty, and therefore, no significant differences between the approaches used
to deal with the uncertainty are observed. The existence of this kind of instances clearly explains
the small average relative differences between the average cost of the solutions obtained by the
different approaches. Note that there are several instances where the relative difference between
some approaches is larger than 100%.

The reported results also indicate that robust optimization frequently leads to overconservative
solutions because in both tables RO has the worst values for the quality parameters considered.
DRO1 is the approach that more consistently performs better for all the quality parameters consid-
ered when the distribution U(0,2) is used. In particular, this is the approach that, in general, leads
to the best values for each group of instances in terms of the quality parameter Average. However,
it is important to note that DRO1 does not outperforms SO for all the instances considered. SP
outperforms DRO1 in 20% of the instances, while DRO1 outperforms SO in 26% of the instances.
The better performance of DRO1 comparing to SO can easily be explained by the fact that the
solutions of the DRO1 were obtained taking into account an ambiguity set where several probability
distributions were considered and not only the reference probability distribution as in SO. Hence,
the solutions of DRO1 are expected to be more robust than the solutions of SO when evaluated
under different probability distributions.

We can also see that the best results in terms of the highest sum of delays for the 10 groups
of instances considered were always obtained by DRO5 when the distribution U(0,3) is considered.
A general conclusion that can be drawn from the reported results is that, in terms of the quality
parameters considered, there are very few groups of instances where the solutions obtained by
DRO1 and DRO5 are worst than the stochastic and robust solutions simultaneously.

7 Scalability analysis

In this section, we analyse the behaviour of the proposed decomposition algorithm in terms of
the size of the instances and the value of some parameters. The proposed decomposition algorithm
involves three optimization problems: the master problem, the second-stage problems, and the
distributionally separation problem. The hardness of the master problem is mainly affected by i)
the size of the instances considered (number of vessels and number of time periods), ii) the number
of non-dominated scenarios, and iii) the structure of the instances itself (in particular, instances
with a small number of berth positions where the arrivals of the vessels to the port are closer are
more difficult to solve). This last factor clearly explains why the master problems associated with
some instances with 12 vessels are harder to solve than the ones associated with some instances
with 15 vessels. Therefore, the hardness of the master problems does not necessarily increases
as the size of the instances increases. After solving the master problem, the second step of the
DA is to solve the second-stage problems, that is, to solve a linear programming problem for each
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scenario considered. Although also affected by the size of the instances, the speed of this step
mainly depends on the number of second-stage problems to solve, that is, the number of scenarios
considered. The distribution separation problem does not depend on the size of the instances, only
the number of scenarios is relevant.

This behaviour analysis indicates that increasing the size of the instances - in particular the
number of vessels - has a greater impact on the master problem than in both second-stage problems
and distribution separation problem. Hence, the main concern when solving large size instances is
defining strategies to reduce the time of the master problems. One of such strategies is to impose a
time limit when solving each master problem. As mentioned in Section 5.3, the convergence of the
decomposition algorithm may be slow because several optimality cuts added to the master problem
are satisfied with θ = 0. Hence, the increase of the lower bound is, in general, slow, which makes the
proof of the optimality slow as well (see Appendix F). In practice, we verified that, in general, the
optimal solution is found in the earlier iterations and most of the time of the DA is used to prove
the optimality of such a solution. To illustrate this, we ran the DA for the large instances with 14
and 15 vessels for 120 seconds and computed the average gaps between the obtained solution and
the optimal solution. The obtained results are reported in Table 11.

Table 11: Results of the decomposition algorithm with a time limit of 120 seconds for instances
with 14 and 15 vessels.

ε = 1 ε = 5 ε = 10 Average

Gap(%) 5.1 1.6 0.0 2.2

The results reported in Table 11 clearly show that small computational times (and consequently
few iterations) are usually needed to obtain optimal or near optimal solutions. Running the DA
just by 120 seconds made it possible to obtain heuristic solutions with average optimality gaps of
around 2.2%. Hence, imposing a global time limit on the DA for solving large size instances is a
reliable heuristic application of the proposed DA.

Table 12 reports results for large size instances with a number of vessels ranging from 20 to 60,
considering a global time limit of 3600 seconds and a time limit for each master problem of 100
seconds. Each row reports average results for a set of five randomly generated instances. Column
J indicates the number of berths defined for each set of instances. This number is kept equal to 21
for the instances with 20 and 30 vessels; however, this value increases to 41 for the instances with
more than 30 vessels because otherwise most of the instances are infeasible due to the fact that it
is not possible to meet all the hard deadlines of the vessels. Columns Cost report the average cost
of the obtained solutions, while columns TM and #it report, respectively, the average total time
spent on solving the master problems and the average number of global iterations performed. The
results were obtained by using a set of 50 scenarios randomly selected from the ones generated by
the MBC uncertainty set. Note that the total number of scenarios defined by the MBC uncertainty
set is greater than 3×1010 for instances with more than 30 vessels.
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Table 12: Results for large size instances.
ε = 1 ε = 5 ε = 10

N J Cost TM #it Cost TM #it Cost TM #it

20 21 7.5 2466 638 8.9 2603 597 9.0 2367 546
30 21 29.7 3469 385 33.2 3515 369 34.0 3276 377
40 41 3.9 3384 471 4.7 3386 478 5.6 3385 472
50 41 5.7 2106 156 6.7 2112 153 8.6 3171 145
60 41 36.3 3578 128 34.4 3464 139 43.2 3533 124

The results in Table 12 clearly show that the proposed DA can be successfully adapted for
solving large size instances by imposing a time limit on each master problem and a global time
limit. We can also see that several master problems - specially the ones associated with instances
with 20, 30, and 40 vessels - are solved to optimality before the imposed time limit because the total
number of iterations multiplied by the time limit is greater than the total time spent on solving
the master problems. Additionally, there are also two instances with 20 vessels and two instances
with 50 vessels that were solved to optimality.

8 Conclusions and future research

The BAP under uncertainty has been extensively studied in the literature under different ap-
proaches: stochastic programming, robust optimization, fuzzy theory, and deterministic approaches.
However, to the best of our knowledge, there are no studies on BAPs using distributionally robust
optimization. In this paper, we proposed a distributionally robust optimization model and an exact
decomposition algorithm for solving the BAP under uncertain handling times. A deep analysis of
the subproblems and assumptions associated with the proposed algorithm is carried out and several
improvement strategies to make the algorithm more efficient are discussed. Our experiments clearly
show the positive effect of using some of those improving strategies because they lead to a huge
reduction of the required computational time.

We consider the well-known Kantorovich ambiguity set where a parameter ε is used to control
the space of the allowed probability distributions in terms of the distance to a reference probability
distribution. We conducted extensive computational experiments on instances adapted from the
literature to understand the impact of the parameter ε in terms of the required computational
time, number of iterations, and cost of the obtained solutions. The results obtained show that the
number of iterations performed by the proposed algorithm decreases as the value of ε increases,
which may explain why the total computational time also decreases. As expected, the cost of the
obtained solutions has the opposite behaviour because it increases as the value of ε increases.

The distributionally robust optimization algorithm proposed makes it possible to establish di-
rect relations with stochastic programming, by setting ε = 0, and with robust optimization, by
setting ε = ∞. Hence, in this paper, we also compare distributionally robust optimization with
stochastic programming and robust optimization under different situations. We concluded that
these approaches can lead to structurally different solutions and, consequently, they can achieve
different performances in different situations. In general, we concluded that the distributionally
robust optimization makes it possible to obtain solutions that are simultaneously more protected
against uncertainty than the ones obtained by stochastic programming and that are less conservative
than the ones obtained by robust optimization. In particular, the distributionally robust approach
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with ε = 1 performs, in general, better than the stochastic approach, while the distributionally
robust approach with ε = 5 is very competitive when compared with the robust approach.

As future work, we aim to extend the proposed algorithm and approach to more complex
problems, such as the berth allocation and quay crane assignment/scheduling problem (BACASP);
however, such extension is not trivial. First, the proposed algorithm is only valid for problems
where the second-stage decisions are continuous variables, which is not the case of the BACASP.
Second, the proposed algorithm requires to compute at each iteration a second-stage solution for
each scenario of uncertainty, which is very time consuming, as reported in [28]. Lastly, each master
problem in the BACASP is much harder to solve than in the BAP. The hardness of the resulting
master problem increases as the number of iterations increases, which may be an obstacle to the
application of the proposed distributionally robust optimization algorithm to the BACASP.

To study strategies to reduce the number of global iterations performed by the proposed algo-
rithm and to study strategies to eliminate unnecessary probability distributions from the ambiguity
set would also be an interesting research direction. The development of methods, perhaps based on
machine learning techniques, to choose the most suitable parameter ε in the DRO model in terms
of the scenarios of uncertainty considered is also a research line that is worth to be explored.
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Appendix

A - Stochastic model

The stochastic model is defined as follows:
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min
1

|Ω|
∑
ω∈Ω

∑
k∈V

cωk (49)

s.t. x`k + xk` + y`k + yk` ≥ 1, k, ` ∈ V, k < `, (50)

x`k + xk` ≤ 1, k, ` ∈ V, k < `, (51)

y`k + yk` ≤ 1, k, ` ∈ V, k < `, (52)

bk ≥ b` + L` + J(yk` − 1), k, ` ∈ V, k 6= `, (53)

bk ≤ J − Lk, k ∈ V, (54)

bk ∈ Z+
0 , k ∈ V, (55)

xk`, yk` ∈ {0, 1}, k, ` ∈ V, k 6= ` (56)

tω` ≥ tωk +Hk + F +M(xk` − 1),k, ` ∈ V, k 6= `, ω ∈ Ω, (57)

cωk ≥ tωk +Hk −Dk, k ∈ V, ω ∈ Ω, (58)

cωk ≤ C, k ∈ V, ω ∈ Ω, (59)

tωk ≥ Ak, k ∈ V, ω ∈ Ω, (60)

tωk , c
ω
k ∈ R+

0 , k ∈ V, ω ∈ Ω. (61)

B - Proof of Proposition 5.1

Proof. Let (u, r, z, v) denote the optimal solution of the dual problem. Assume that, for a k ∈ V ,
inequality (33) is not satisfied in the equality, that is,

rωk +
∑

`∈V,` 6=k
uω`k < zωk +

∑
`∈V,` 6=k

uωk`.

The objective function coefficient of rωk , that is, Ak, is positive. Hence, because rωk has no upper
bound, we can increase its value by zωk +

∑
`∈V,` 6=k u

ω
k` − rωk −

∑
`∈V,` 6=k u

ω
`k and keep the remain-

ing variables unchanged. This makes it possible to obtain a better solution, contradicting the
assumption that (u, r, z, v) is optimal.

C - Proof of Proposition 5.2

Proof. The dual problem has the following matricial structure:

r u z v(
0 0 I −I
I B −I 0

)
Since equations (46) are flow conservation constraints, the submatrix

(
I B −I

)
is TUM.

Hence the sub matrix

(
0 0 I
I B −I

)
is also TUM because we are adding an identity matrix to a

TUM matrix. For similar arguments the complete matrix is TUM, see [36] for details.
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D - Proof of Proposition 5.4

Proof. First, we assume that in any dual solution, for each k ∈ V with zωk positive, the corresponding
constraint (32) is satisfied as equation because the objective function coefficient of variable vωk
is negative. Consider such a solution with value Z. Assume that for a given vessel k we have
vωk = κ > 0. Thus, from constraints (32), it follows that zωk = 1 + κ. Assume, from Proposition 5.2,
that κ is integer. Using the flow constraints (46) we can identify paths starting on O and ending
in D using the arc associated with zωk (that is, we can identify a set of dual variables with positive
integer value corresponding to those paths). Choose the path, that is, a flow of one unit, from node
O to node D, with highest sum of coefficients in the objective function. Let C∗ denote that sum.
Recalling that C is the coefficient of variables vωk , two cases can occur:

Case 1. C∗ > C. In this case we can increase the value of vωk and the value of the variables
associated with the path in one unit. The new solution has an objective function value Z ′ =
Z + (C∗ − C) > Z. The increase can be repeated without any bound. This means that a ray has
been identified and the solution is improved along this ray. Thus, the dual problem is unbounded.

Case 2. C∗ ≤ C. In this case, by decreasing the value of vωk and the value of the variables
associated with the path in one unit, we obtain a new solution to the dual problem with objective
function value Z ′ = Z−(C∗−C) ≥ Z. Thus, this solution is at least as good as the original one. The
process can be repeated until a solution with vωk = 0 is obtained (observe that zωk = 1 + vωk ). Note
that different paths can be used in each iteration but, by assumption, the sum of the coefficients
in the objective function of each one of these paths is at most C∗. Thus, in each iteration, the
value of the objective function does not decrease. Hence, either the final solution is improved or
an alternative optimal solution is obtained with vωk = 0.

E - Proof of Proposition 5.5

Proof. By construction, for each scenario ω, Xω ≤ |Uω|. Two cases can occur. Either Xω = |Uω|,
or Xω ≤ |Uω| − 1 because Xω is integer. In the first case, the term Sω is added to the RHS for
scenario ω, which is exactly the value obtained using the dual solution (rωk , u

ω
k`, z

ω
k , 0). This follows

directly from the definition of Sω. In the second case, Sω − Sω(|Uω| − Xω) ≤ 0. Thus, the term
associated with scenario ω is non positive, which is implied by the dual solution consisting of the
null vector (which leads to a term of zero associated to the scenario ω).

F - Results obtained without strategy Sx

Table 13 reports the results obtained for all instances with a number of vessels ranging from 6
to 13, and they show the impact of using strategy Sx. Columns Gap report the average optimality
gap, in percentage, between the solutions obtained without strategy Sx (optimal solutions) and the
solutions obtained with strategy Sx. Columns Opt report the percentage of instances for which the
use of strategy Sx made it possible to obtain the optimal solution. Columns Sx and Sx report the
average computation time, in seconds, required to obtain the final solution when the strategy Sx
is used and when it is not used, respectively.
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Table 13: The impact of using strategy Sx on instances with a small number of vessels.
ε = 1 ε = 5 ε = 10

N Gap Opt Sx Sx Gap Opt Sx Sx Gap Opt Sx Sx
6 2.2 90 0 0 2.2 90 0 0 2.2 90 0 0
7 0.0 100 0 1 0.0 100 1 1 0.0 100 0 0
8 0.0 100 1 2 0.0 100 1 2 0.0 100 2 2
9 0.7 90 6 11 2.9 80 6 9 2.9 80 5 8

10 0.5 90 33 110 5.8 80 37 103 5.8 80 29 90
11 6.1 80 44 137 5.0 80 50 150 5.3 80 42 148
12 5.6 70 434 1135 4.2 70 441 1231 3.1 70 325 822
13 6.0 70 1397 5160 6.4 80 951 4000 6.5 80 802 2605

The obtained results show that the percentage of instances for which the use of strategy Sx does
not cut optimal solutions is around 85%. In particular, the solutions obtained with and without
strategy Sx are the same for the 10 instances with 7 and 8 vessels. The average gaps between
the solutions obtained with strategy Sx and the solutions obtained without strategy Sx are around
3.3%. However, it is important to note that the total computational time is drastically reduced
when strategy Sx is used.

As mentioned before, the use of strategy Sx in the proposed DA makes the DA a heuristic
algorithm. A different strategy that can be used for solving hard instances with the proposed DA
consists of imposing a global time limit on the DA instead of using strategy Sx. This time limit
based heuristic (TL heuristic) makes it possible to determine not only an upper bound for the
optimal solution but also a lower bound. Table 14 reports results for all instances with 14 and 15
vessels for the three different values of ε tested. Columns LB and UB report the lower bounds and
the upper bounds obtained by using the TL heuristic, respectively. The time limit imposed for
the TL heuristic varies from instance to instance because, for fairness, it was defined as the same
time required for running the DA with strategy Sx until the end. Columns Sx report the value of
the solutions determined by the DA combined with strategy Sx. The best upper bounds for each
instance are marked in bold.
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Table 14: Comparison between the results obtained with strategy Sx and with the TL heuristic for
instances with 14 and 15 vessels.

ε=1 ε=5 ε=10
Inst. LB UB Sx LB UB Sx LB UB Sx

R 14 1 0.2 16.2 16.4 2.0 19.4 19.4 0.0 20.0 20.0
R 15 1 0.0 10.4 8.3 0.0 11.5 11.3 0.0 13.0 13.0
R 14 2 0.0 17.3 17.3 0.0 21.6 21.5 0.0 22.0 22.0
R 15 2 0.0 3.3 3.2 0.0 6.6 6.3 0.0 7.0 7.0
R 15 3 5.3 6.1 6.2 6.7 8.8 8.8 4.0 9.0 9.0
R 14 4 0.0 0.9 0.9 0.0 2.0 2.0 0.0 2.0 2.0
R 15 4 0.0 8.2 8.0 0.0 11.0 10.7 0.0 11.0 11.0
R 14 5 0.0 4.2 3.5 0.0 5.9 7.0 0.0 6.0 8.0
R 15 5 0.2 13.9 15.6 1.3 15.0 18.5 1.0 16.0 19.0
R 14 6 0.0 1.4 1.3 0.0 2.0 2.0 0.0 2.0 2.0
R 15 6 0.0 7.9 7.9 0.0 9.0 9.0 0.0 9.0 9.0
R 15 7 0.0 19.3 19.3 0.0 23.5 23.5 0.0 24.0 24.0
R 14 8 0.0 0.7 0.7 0.0 1.0 1.0 0.0 1.0 1.0
R 15 8 0.0 10.0 11.0 0.0 13.0 14.6 0.0 13.0 15.0
R 14 9 0.0 15.1 14.4 4.8 18.9 19.7 0.0 20.0 21.0
R 15 9 0.0 1.0 1.0 0.0 2.8 2.8 0.0 3.0 3.0
R 14 10 6.5 11.7 11.7 9.3 13.9 13.9 3.0 14.0 14.0
R 15 10 0.0 1.7 1.2 0.0 2.0 2.0 0.0 2.0 2.0

The obtained results do not clearly show which of the strategies is the best in terms of the
obtained upper bounds because each heuristic is outperformed by the other in some instances and
it outperforms the other in other instances. However, a clear conclusion that can be drawn from
the obtained results is that there are very few instances for which the lower bound obtained by the
TL heuristic is greater than zero. This means that the lower bounds generated by the TL heuristic
are not suitable values for determining the optimality gap of the obtained solutions.
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