
Universidade de Aveiro
2022

Carlos Manuel
Basílio Oliveira

Arquitectura de Software Escalável para
Sistemas de Apoio à Decisão para Entidades
Gestoras de Água

Towards a scalable Software Architecture for
Water Utilities’ Decision Support Systems

Universidade de Aveiro
2022

Carlos Manuel
Basílio Oliveira

Arquitectura de Software Escalável para
Sistemas de Apoio à Decisão para Entidades
Gestoras de Água

Towards a scalable Software Architecture for
Water Utilities’ Decision Support Systems

Dissertação apresentada à Universidade de Aveiro para cumprimento
dos requisitos necessários à obtenção do grau de Mestre em En-
genharia Informática, realizada sob a orientação científica do Doutor
André Zúquete, auxiliar do Departamento de Eletrónica, Telecomuni-
cações e Informática da Universidade de Aveiro, e do Doutor António
Gil D’Orey Andrade Campos (co-orientador), Professor auxiliar do De-
partamento de Engenharia Mecânica da Universidade de Aveiro.

This research was supported by project grants through the Regional Op-
erational Program of the Center Region (CENTRO2020) within project
I-RETIS-WATER (CENTRO-01-0247-FEDER-069857)

o júri / the jury

presidente / president Professor Doutor Joaquim Arnaldo Carvalho Martins
Professor Catedrático da Universidade de Aveiro

vogais / examiners committee Professor Doutor André Ventura da Cruz Marnôto Zúquete
Professor Auxiliar da Universidade de Aveiro (orientador)

Professora Doutora Isabel Sofia Sousa Brito
Professora Coordenadora do Instituto Politécnico de Beja - Escola Superior de
Tecnologia e Gestão - Departamento de Engenharia

agradecimentos Agradeço o apoio da minha família, amigos e colegas da SCUBIC, e
aos professores Zúquete e Gil Campos pela paciência e disponibilidade
estes últimos anos.

acknowledgments I wish to thank my family, friends and coworkers at SCUBIC for the sup-
port, as well as prof. Zúquete and prof. Gil Campos for the availability
and patience through these past years.

Palavras-chave Água, Arquitectura de Software, Sistemas de Apoio à Decisão, Enti-
dades Gestoras de Água, Nexus Água-Energia, Tarifas Electricidade,
Microserviços, Serverless

Resumo O fornecimento de água às populações é um serviço de qualquer
grande sociedade, desde o início da Civilização. Hoje em dia, enormes
quantidades de água são fornecidas constantemente a residências e
indústrias variadas utilizando motores eléctricos acopolados a bombas
de água que consomem vastas quantidades de energia eléctrica. Com
o recurso a tarifas de electricidade variáveis e dinâmicas, dados em
tempo real de sensores nas empresas de fornecimento de água e a
modelos da rede de distribuição de água, o software da SCUBIC con-
segue monitorizar e prever consumos de água e assim optimizar a op-
eração destas bombas por forma a baixar os custos operacionais das
empresas gestoras de água.
O software desenvolvido pela SCUBIC permite um conjunto de serviços
construídos numa fase embrionária da empresa que, por se manterem
inalterados ao longo dos anos, não se adequam ao plano de negócios
e aumento de requisitos por parte dos stakeholders. Daqui surge então
a necessidade de construir uma nova arquitectura de software capaz
de responder aos novos desafios numa indústria cada vez mais instru-
mentalizada e evoluída como a da Gestão de Água.
Recorrendo a métodos de engenharia de software, migração de arqui-
tecturas de software e planeamento cuidadoso, sugere-se neste tra-
balho uma nova arquitectura de software baseada em micro-serviços
e serverless.Esta arquitectura foi então avaliada de acordo com os
índices chave de DevOps e comparada com a solução antiga. Após
rever os resultados gerados pelos indicadores de performance, conclui-
se que a migração foi foi benéfica para os objectivos propostos.

Keywords Water, Software Architecture, Decision Support Systems, Water Utili-
ties, Water-Energy Nexus, Energy Tariffs, Microservices, Serverless

Abstract Water Supply is a staple of all civilizations throughout History. Nowa-
days, huge amounts of water are constantly supplied to homes and
businesses, requiring the use of electric pumps which consume vast
amounts of electric energy.
By using variable and dynamic electric tariffs, multiple real-time sen-
sor date fromWater Utilities and Water Network Modelling, the SCUBIC
software is able to monitor the water networks, predict water consump-
tion and optimize pump operation allowing the Water Utilities to lower
operational costs.
Built during an earlier phase of the company, the SCUBIC software is
a monolithic amalgamation of services, full of compromises that cannot
fulfill the latest requirements from the stakeholders and business plan.
Therefore, a need to build a more modular and scalable software ar-
chitecture for this software becomes apparent. Using careful planning,
software engineering knowledge and literature regarding software ar-
chitecture migration, a new software architecture was implemented.
Results from comparisons between the older and newer architectures
prove that the migration was a success and complies with the require-
ments set at the beginning of the project.

Table of contents

Table of contents i

List of figures v

List of tables vii

List of abbreviations ix

1 Introduction 1
1.1 Water Supply Systems . 1
1.2 Existing Decision Support System . 1
1.3 Objectives . 2
1.4 Structure of the Document . 3

2 State-of-the-Art 5
2.1 Cloud Computing . 5

2.1.1 Deployment models for cloud computing 5
2.2 Software-as-a-Service . 6

2.2.1 Security . 7
2.3 Software Engineering . 7

2.3.1 Defining Requirements . 8
2.4 Software Architecture . 8

2.4.1 Service-Oriented Architecture . 8
2.4.2 Modularity . 9
2.4.3 Reusing Software Components . 9
2.4.4 Cohesion and Coupling . 9
2.4.5 Monolithic and Modular Monolithic 10
2.4.6 Microservices . 11

2.5 DevOps . 14
2.5.1 Deployment Frequency . 14
2.5.2 Lead Time for Change . 14
2.5.3 Time to Restore Service . 14
2.5.4 Change Failure Rate . 14

i

Table of contents

2.6 Observability . 15
2.6.1 OpenTelemetry . 15
2.6.2 Telemetry . 16

3 Methodology 17
3.1 The Application . 17
3.2 The Old Architecture . 18

3.2.1 Overview . 19
3.2.2 Issues . 23
3.2.3 Observability . 29

3.3 Proposed New Architecture . 30
3.3.1 Solving the Deployment issues . 30
3.3.2 Solving the Scalability issues . 32
3.3.3 Replaceability . 34
3.3.4 Resiliency . 34
3.3.5 Temporal Coupling . 35
3.3.6 Implementation Coupling . 36
3.3.7 Testing . 36
3.3.8 New components . 38
3.3.9 Workers . 40
3.3.10 VPN and DNS . 41
3.3.11 Observability . 41
3.3.12 Finalized Proposed Version . 41

4 Results and Discussion 45
4.1 Scalability Improvements . 45

4.1.1 Cost Rundown . 45
4.1.2 Development and Deployment Issues 47
4.1.3 Ensuring Performance . 48

4.2 DevOps Improvements . 49
4.2.1 Deployment Frequency . 49
4.2.2 Lead Time for Change . 50
4.2.3 Time to Restore Service . 51
4.2.4 Change Failure Rate . 51

4.3 Observability Improvements . 51

5 Conclusion 55
5.1 Final Considerations . 55
5.2 Future Work . 56

References 57

ii

Table of contents

Appendices 61

A Appendix example 63
A.1 Logging Interfaces . 63

A.1.1 Google Cloud’s Log Explorer (Former Stackdriver) 63

iii

List of figures

1.1 DSS example. 2

2.1 Single-Process Monolith . 10
2.2 Modular Monolith . 11
2.3 Netflix Microservice Architecture Example 11
2.4 Example Microservice Architecture . 12

3.1 AWS VPC Overview . 19
3.2 Old Architecture’s Containers . 21
3.3 Internet access to the Client-facing services 22
3.4 Client CPU Usage Example . 27
3.5 Initially Proposed Architecture . 31
3.6 New Scalable Architecture . 33
3.7 Temporally-Decoupled and more Resilient Architecture 35
3.8 Load Balancing Example . 36
3.9 VPN Usage Example . 37
3.10 Service Naming Scheme . 38
3.11 Serverless Data Intake . 39
3.12 Main VPC Diagram . 42
3.13 Elastic File System . 43

4.1 Infrastructure Cost Per Client . 47
4.2 AWS EC2 Basic Monitoring . 52
4.3 AWS ECS Advanced Monitoring Example 53
4.4 AWS ECS Advanced Monitoring Example 2 54
4.5 AWS ECS Advanced Monitoring Example 3 54

A.1 Screenshot Google Cloud Log Monitoring 64

v

List of tables

4.1 Individual Cost of AWS Infrastructure used with the old architecture. Each
Month corresponds to 30 days. 45

4.2 Individual Cost of AWS ECS Fargate Containers used in the new architec-
ture. Each Month corresponds to 30 days. 46

4.3 Comparison between Water Forecast Task Duration (in seconds) for the
same period of 13 days in February. 48

4.4 Number of Deployments per Yearly Quarter for three Clients using the old
Application. 49

4.5 Number of monthly deployment events per service in the new architecture.
Data collected from March 3rd to June 23rd, 2022. 50

vii

List of abbreviations

API Application Programming Interface
AWS Amazon Web Services

CAPEX Capital Expenditure
CI/CD Continuous Integration/Continuous Deployment
CSV Comma-Separated Values
CTO Chief Technology Officer

DNS Domain Name System
DSS Decision Support System

EBS Elastic Block Storage
EC2 Elastic Compute Cloud
ECS Elastic Container Service
EFS Elastic File System
EIP Elastic IP
ENI Elastic Network Interface

FKM Four Key Metrics

HTTPS Secure Hypertext Transfer Protocol

KPI Key Performance Index

NIST National Institute of Standards and Technology

OPEX Operational Expenditure
ORM Object-Relational Mapper
OTel OpenTelemetry

SaaS Software-as-a-Service
SCADA Supervisory Control And Data Acquisition
SDK Software Development Kit
SFTP SSH File Transfer Protocol
SOA Service-Oriented Architecture
SRP Single-responsibility Principle

ix

List of abbreviations

SSH Secure Shell

TLS Transport Layer Security

vCPU Virtual CPU
VPC Virtual Private Cloud
VPN Virtual Private Network
VPS Virtual Private Server
VSD Variable-Frequency Drive

WSS Water Supply System
WU Water Utility

x

Chapter 1

Introduction

1.1 Water Supply Systems

The water supply systems that are prevalent in modern society play a very important
role in daily life, distributing water throughout the country from water reservoirs or wa-
ter treatment plants to the citizen’s houses and industries. These Water Supply Systems
(WSSs) can be quite complex and difficult to manage without proper processes that en-
sure the efficient operation of such networks including its environmental and economical
sustainability. For this reason nowadays, the use of specialized software to aid operators
or even automatically control the operation of these WSSs is of uttermost importance. It
must be highlighted that water has been a staple of all major human civilizations through-
out History, from ancient roman aqueducts to the current era.

Moving large quantities of water through large WSSs requires the use of large quantities
of mechanical work, which in turn requires high levels of electric energy. With the ever-
growing political, economic and environmental pressure to improve and optimize the use
of energy, and with the current geopolitical issues, the access to energy is getting more
expensive and regulated. This means that the need for the optimization of pumping
operations to reduce costs and, potentially reduce the energy use as well, is growing within
Water Utilities (WUs).

1.2 Existing Decision Support System

In order for the WU’s water pumps’ optimal operation, a Decision Support System
(DSS) is used by the WU’s pump operators and/or by automatic Supervisory Control And
Data Acquisition (SCADA) systems. Generally, this DSS is a web platform designed to
suggest which pumps to operate, when to operate, for how long to operate and in some
cases what speed their Variable-Frequency Drives (VSDs) should operate, as shown in
Figure 1.1. This figure is an example from one of SCUBIC’s1 Clients.

The existing software’s architecture can be summarized as a “Monolithic Modular”
1 https://scubic.tech

1

Chapter 1. Introduction

Figure 1.1: Example of a DSS interface from one of SCUBIC’s Clients.

software architecture (Newman, 2019). This architecture is composed of a set of Virtual
Private Servers (VPSs), one for each Client, where a set of Docker containers enclose
all the services needed for running the software for that Client. These services are also
configured and developed separately, each in a different code repository. This fact results
in an unsurmountable amount of code drift between the same services of the different
clients. Code drift happens when, despite being based on the same code, the codebases for
each Client follow different paths during software development. When there is a need to
implement a new feature or fix a bug common to both codebases, these differences increase
the amount of work. Apparently, this structure is not even remotely manageable for any
software development team. On Section 3.2, a complete analysis of this architecture is
provided and explained in detail.

1.3 Objectives

The main goal of this work is to make the migration from the old software architecture
of the DSS to a more efficient, improved software, considering the requirements from the
stakeholders while also improving the cost-performance ratio of the software without com-
promising the software’s functionality. This new architecture improves the performance,
reliability, resilience, security, scalability and observability in comparison to the old DSS
Architecture. The new software architecture brings improvements not just for the soft-
ware itself but also for the development team, allowing them to improve and maintain the
software easier and faster than ever before. By reducing the amount of work and time

2

Chapter 1. Introduction

the software development team spends on each maintenance action or new functionality,
it reduces cost to the software company as well. Infrastructure costs are also an important
aspect of this new architecture, where the adoption of more modular and independent
services means a more optimal use of compute resources, resulting in lowering such costs.
This new architecture also improves the Observability of the entire system, allowing for
quicker failure detection and to anticipate possible future problems with the system.

As such, the objectives can be summarized as three goals: Enable scalability of the
software (through multi-tenancy), improve DevOps’ Key Performance Indexes (KPIs) and
improve the Observability of the systems.

1.4 Structure of the Document

This document is composed by a total of 5 chapters.
In Chapter 1, the chapter presents the overall theme of this body of work. Firstly,

some context is given about the overall theme of this body of work and the motivation
behind it. Then, the objectives for dissertation are presented to the reader. Finally, at the
end of the chapter, some information regarding the content of each chapter is presented.

In Chapter 2, a bibliographical analysis is presented, divided into three parts. Firstly,
it’s presented a summary of the state-of-the-art on software architecture, cloud-based
software solutions, scalability and containerization of services. Secondly, some concepts
regarding DevOps’ origins and it’s influence in today’s software development paradigm
are presented as well as what KPIs are regarded as important for DevOps. Thirdly,
Observability is studied and presented, exploring how it can improve software development
in general and how it enables the developers and maintainers to gain insight into the system
internal state. Additionally, some text regarding the general technologies used throughout
the work is also analyzed whenever relevant to the topic in question.

Chapter 3 is divided into two sections. Firstly, a more detailed explanation of the old
architecture and its inherent flaws is presented. These flaws, which end up showcasing the
need for a new and improved software architecture, are related to the objectives established
in section 1.3. In this section, it’s explained how the old software architecture is flawed
and has problems with scalability, poor DevOps performance and low-to-non-existent Ob-
servability. Then, in a second section, the author proposes a new software architecture
that attempts to solve the problems aforementioned. In this later section, it’s shown how
the new architecture works, it’s key components and given multiple diagrams that help
explain said architecture. For each one of the flaws presented in the section before, it’s
presented how each aspect of the new architecture solves those flaws and the reasoning be-
hind the choices that lead to this new architecture. The procedures taken, the challenges
and decisions made throughout the implementation are shown and contextualized in this
section.

Chapter 4 analyzes how the new architecture manages to achieve the objectives set in
the introductory chapter of this document. Firstly, a cost-rundown report and simulated

3

Chapter 1. Introduction

costs are shown that prove the cost-effectiveness improvement. Secondly, it shows how, by
using the new architecture, the DevOps’ KPIss have improved. Lastly, an overview of the
result of implementing changes to the architecture to increase system observability and
how it relates to better error detection and increases the system’s behavior awareness.

Chapter 5 discusses the previous results and presents some conclusions from what has
been demonstrated on previous chapters.

Furthermore, attached to this document, is an appendix that contains some extra
results generated from the monitoring interface used internally to evaluate the new archi-
tecture.

4

Chapter 2

State-of-the-Art

2.1 Cloud Computing

Cloud Computing is a robust and scalable dynamic platform where configurable com-
pute resources are made available as a service, over regular Internet access (Alnumay,
2020). It can also be understood, as the U.S. National Institute of Standards and Tech-
nology (NIST) indicates as: (...) a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly provisioned and released with min-
imal management effort or service provider interaction (Mell and Grance, 2011).

According to the predictions in (IDC, 2021), ‘by the end of 2021, 80% of enterprises
will put a mechanism in place to shift to cloud-centric infrastructure and applications twice
as fast as before the [Sars-Cov2] pandemic.’

Incorrectly used as a synonym of on-demand computing, grid computing or even
Software-as-a-Service (SaaS) (Kim, 2009), Cloud Computing has become prevalent nowa-
days in academic, household and business environments, from small business to large
enterprises (Rezaei et al., 2014) with multiple deployment models:

2.1.1 Deployment models for cloud computing

2.1.1.1 Private Cloud

A Private Cloud is managed by a single entity, within a single organization. The uses
for Private Cloud can be for data privacy reasons, academic reasons, testing reasons or
even to utilize existing in-house resources of an organization. This deployment model has
the advantage of also allowing local data transfers, which are usually paid for when using
other deployment models.

2.1.1.2 Community Cloud

A Community Cloud is a Private Cloud where several organizations democratically
manage, construct, maintain and share the same cloud infrastructure. This allows for a

5

Chapter 2. State-of-the-Art

more economically stable experience.

2.1.1.3 Public Cloud

In the Public Cloud, the dominant form of Cloud Computing (Dillon et al., 2010), the
users are the general public and the owner and maintainer of the underlying infrastructure
and services is the cloud service provider. With this cloud, users are provided access to
cloud computing services and don’t have to worry about the infrastructure.

2.1.1.4 Virtual Private Cloud

A newer type of cloud deployment model has emerged in the last decade where users can
experience a mixture of Public and Private Cloud. A Virtual Private Cloud (VPC) enables
users to manage virtual infrastructure on top of public infrastructure. Cloud providers
such as Amazon, Google and Microsoft are the main providers of these VPCs (Aljamal
et al., 2018), where users can stipulate the amount and configuration of resources like they
were in a Private Cloud, ensuring low to non-existent data transfer limits and cost, more
privacy and personalized cloud experiences, while relying on the service provider’s public
cloud infrastructure.

2.1.1.5 Hybrid Cloud

This deployment model is a combination of one or more of the previous deployment
models, where data transfer or task handling can occur seamlessly between the different
clouds.

2.2 Software-as-a-Service

Nowadays, with the proliferation of faster Internet connections and the ever-growing
landscape of Cloud Computing (Dillon et al., 2010), software has become more accessible
to companies than before. By hosting and serving software through the use of Cloud
Computing, that software’s clients reduce both Capital Expenditure (CAPEX) and Op-
erational Expenditure (OPEX) by eliminating the need to buy and maintain the software
and underlying infrastructure (Alnumay, 2020).

SaaS allows users to access software and its data, usually hosted on cloud computing
services, through thin clients and/or web browsers (Mell and Grance, 2011; Ali et al.,
2017). The Multi-tenancy design structure of SaaS enables the software to serve multiple
users (tenants), from a central server. This design allows for more efficient use of both
computer resources and the human resources needed to maintain and manage them, which
lowers expenditures and is therefore an imperative for businesses. Through the use of SaaS
instead of traditional software, the Clients no longer require the arduous task of deploying
software to each one of the users, no longer dealing with varied user endpoint hardware
configurations. Cloud Computing enables ubiquitous access to SaaS, which in turn makes

6

Chapter 2. State-of-the-Art

its adoption by businesses more enticing to them. The use of SaaS allows not only for lower
CAPEX and OPEX for the Client, but also enables faster and more frequent updates of
the SaaS (since the software manufacturer has control over it), which increases safety and
security for the Client’s day-to-day operations (Cavusoglu et al., 2008).

2.2.1 Security

There have been multiple occasions where security breaches could be prevented had
the victims been using up-to-date software (Glenn, 2018). The amount of time and re-
sources needed for patching security vulnerabilities varies from company to company but
overall, can reach averages of 38 days (Rapid7, 2018). By relying on the SaaS provider to
patch vulnerabilities in a timely manner, Clients no longer need to allocate costly human
resources to this task, which lowers expenses and human error (Glenn, 2018).

The use of a SaaS solution enables the users to access the software and its data without
the use of complex networking such as Virtual Private Networks (VPNs) and locked-down
user endpoints, which have shown its faults when not properly managed, during the SARS-
CoV-2 pandemic (Adams et al., 2022). By moving the majority of the responsibility for
the system’s security to the SaaS provider who are more likely to employ security best-
practices, it eliminates security threats posed by the Client’s deficient security measures.

2.3 Software Engineering

Software Engineering is the application of engineering to software. It’s the ‘application
of a systematic, disciplined, quantifiable approach to the development, operation and main-
tenance of software’. Developing software is a process by which ‘user needs are translated
into a software product’ (“ISO/IEC/IEEE International Standard - Systems and software
engineering–Vocabulary” 2017).

According to the IEEE1, this software development process involves the following steps:

• Translating user needs into software requirements

• Transforming the software requirements into design

• Implementing the design in code

• Testing the code

• Optionally, installing and checking out software for operational use

By following these steps, proper software development can be done in a timely and
cost-effective manner.

1 Institute of Electrical and Electronics Engineers

7

Chapter 2. State-of-the-Art

2.3.1 Defining Requirements

Deciding on what and how to develop software is a difficult part of the software de-
velopment cycle (Pacheco et al., 2018). By properly defining what the software product
requirements are, many software problems can be avoided after the development of the
software finishes. Of all defects that software products can have, forty to fifty percent
of those defects arise from errors during the first phases of software development: Trans-
lating user needs into software requirements and then transforming those into software
design (Eugene Wiegers and Beatty, 2013).

Requirements specify implementation objectives. They are specifications of the sys-
tem’s behavior, attributes or properties or constraints during the development pro-
cess (Sommerville and Sawyer, 1997). Requirements elicitation should be performed during
the early stages of the software planning phase in order to prevent major refactoring of
code before it’s released, which would lead to significant costs for the software development
company.

Identifying Key Stakeholders

Before requirements elicitation, one of the most important steps is asking from whom
should such requirements be elicited from. This step is crucial to prevent functional (and
financial) success of the project about to be started (Lewellen, 2020).

2.4 Software Architecture

Designing the overall system structure, how the software systems integrate with the
infrastructure, how these systems interact with each other and with the users is a consider-
able challenge for large, complex software systems. Defining the software system, in terms
of components and connections between these, is describing the system’s software archi-
tecture (Hasselbring, 2018). Starting from the elicited requirements, and before putting
into action the development of the software’s code, the next step in software engineering is
Transforming the software requirements into design. This step allows for easier iteration,
since it’s a design phase of the software development process, and thus can be modified
in a easier and quicker way than performing those changes in an already implemented
design. By producing documentation regarding the software architecture, someone unfa-
miliar with the whole project can be quickly introduced to the overall structure of the
project, without needing to delve deep into the codebase.

2.4.1 Service-Oriented Architecture

There are multiple definitions of Service-Oriented Architecture (SOA) (Niknejad et
al., 2020), but for the context of this piece of work, the definition given in (Marks and
Bell, 2008) is the most adequate: ‘SOA is a conceptual business architecture where busi-
ness functionality, or application logic, is made available to SOA users, or consumers, as

8

Chapter 2. State-of-the-Art

shared, reusable services on an IT network. Services in an SOA are modules of business
or application functionality with exposed interfaces, and are invoked by messages’

2.4.2 Modularity

Since the early years of software development, there existed the concept of dividing soft-
ware into modules to improve its comprehensibility and flexibility, while carefully decom-
posing software in order not to generate too many inefficiencies with this approach (Parnas,
1972). Not only are comprehensibility and flexibility good qualities for the software to pos-
sess, but also dependability, maintainability. These qualities derive from proper software
architecture design and implementation and must be contemplated in this phase of software
development, as they are too integral to the core software design to be thought of during
the software implementation phase. By dividing the software into multiple components
and as long as they are not tightly coupled, different developer teams can independently
create those components, leading to increased flexibility in software development as well.

2.4.3 Reusing Software Components

By using modular software architectures, the modular software components are no
longer required to be built by the same development team nor being built specifically
for a single project. Code reuse is a common practice nowadays and, similarly, reusing
whole software components in a software architecture introduces the same advantages, by
reducing work to be done in order to create a new architecture and implement it and
easier and more cost-effective maintenance (Hasselbring, 2018). Additionally, it increases
system stability, security and reliability when reusing components that have been publicly
published and evaluated by the software development community. However, when dealing
with 3rd-party components, additional care must be taken to ensure that the evaluation
of that software is done on a constant basis and that any changes to that component only
reflect on the system after thorough review of said changes. Otherwise, external actors
may introduce malicious code in the component before publication and compromise the
security of those who rely on that component (Tal, 2022).

2.4.4 Cohesion and Coupling

In software development there two relevant goals during development: cohesion and
coupling, where the first is related to how code is grouped together in a logical unit, the
latter is related to how that code is dependent on each other. Ideally, developers nowadays
try to develop in order to obtain high cohesion and low coupling (Candela et al., 2016).
With high cohesion, developers need not perform code changes in multiple different places
to implement new features or fix a bug. With low coupling, those changes are less likely
to impact related code.

9

Chapter 2. State-of-the-Art

Types of Coupling

Coupling can happen in multiple, different, manners. Given two components, A and
B, if changing the implementation of A requires re-implementation of B, then there is
implementation coupling. This is a regular occurrence when two components share
the same database: if one component changes its database-schema structure, then those
changes need to be implemented simultaneously in all other components that rely on the
same database-schema structure. This is usually easy to fix, by requiring all components
to access the database through a single service, like an API. If the database-schema needs
change, then only the service that serves the database information needs to be changed.

Take component A and B, where A sends a syncronous message to B for it to perform
a task. If these components rely on synchronous calls to each other to operate, then to
perform those calls between each other they need to be up and running and reachable.
This is called temporal coupling. If something occurs that delays a message between A
and B or if one of them is unavailable, then calls that A makes to B will not be delivered
and will be lost. To avoid this, caching or asynchronous messages sent through a message
broker can be used. Caching would function for serving cached static content and using a
message broker would allow messages to be picked-up downstream as soon as the service
downstream was available.

2.4.5 Monolithic and Modular Monolithic

There are multiple design patterns for software architecture. The most common soft-
ware architecture, that is generally the first architecture used when developing a new
product in a prototype or academic environment is a monolithic architecture, as seen in
figure 2.1. In this kind of architecture, all (or a majority) of the functions of the software
are encapsulated in a single software application (Chen et al., 2017). This monolithic ap-
proach makes it easy to develop, test and deploy software, until the amount of functions it
encompasses stops being small. When that happens, when the number of functions grows,
evolving and updating the software becomes unwieldy. This is due to the high coupling
that accompanies monolithic software architectures. In monolithic software architectures,
the application’s modules cannot be executed independently, changes to a function require
the restart of the entire application, usually requiring considerable downtime.2

Monolithic
Application Database

Figure 2.1: A single-process monolith: all code is packaged into a single process (Newman,
2019).

When a monolithic application is composed of multiple modules, where these can
2 Time during which the Client doesn’t have access to the application

10

Chapter 2. State-of-the-Art

be developed independently but still need to be combined for deployment, it’s called a
modular monolith, as seen in Figure 2.2.

Monolithic
Application Database

Module A Module B

Module D Module E

Module C

Figure 2.2: Modular Monolith: application code broken down into modules (Newman,
2019).

2.4.6 Microservices

Splitting the software system into multiple, independently maintained, fine-grained
components, allows developers to deliver software faster and embracing new technologies
even faster. Although its higher complexity when compared to monolithic architectures,
as shown in the example in figure 2.3, there are advantages.

Figure 2.3: Netflix Senior Engineer Dave Hahn showing Netflix’s microservice architecture
at AWS re:Invent event in 2015.3

3 Available on https://www.youtube.com/watch?v=-mL3zT1iIKw

11

Chapter 2. State-of-the-Art

By resorting to microservices, new technologies can be tested and prototypes developed
in a blink of an eye. According to (Newman, 2015), ‘microservices are small, autonomous
services that work together’. While simplistic, this definition sums up quite well what mi-
croservices are. Transporting the Single-responsibility Principle (SRP) in (Martin, 2014)
from classes to microservices, having these fine-grained, independent services allows for
more cohesion. As Newman interprets Martin, ‘Gather together those things that change
for the same reason, and separate those things that change for different reasons.’.

Authentication

Authorization

User Settings

Simulation Service

Optimization Service

Water Consumption Forecasting Service

Solar Energy Forecasting Service

Weather Forecasting Service

TimeSeries Data Aggregator

Real Time Data Intake

Task Scheduler

Backend
Proxy

Frontend
Proxy

Figure 2.4: A partial example of a Microservice Architecture, with self-contained microser-
vices. Based on Fig.3 from (Newman, 2015).

According to IDC’s predictions (IDC, 2019), ‘by 2022, 90% of all new apps will feature
microservices architectures that improve the ability to design, debug, update, and leverage
third-party code; 35% of all production apps will be cloud-native’.

Key Benefits

In a monolithic architecture, the technologies used throughout the application need to
be compatible with each other. Developing an application in Java and C++ and Python
is not possible in such a monolithic architecture. By using microservices, developers can
now take advantage of Technology Heterogeneity. If an application is made up of
several, different services that can communicate using shared communication protocols,
then there is no reason they can’t use different technologies. The application can have

12

Chapter 2. State-of-the-Art

services providing, for example, real-time video encoding using CUDA4 and C, have ser-
vices performing data science tasks in Python, built for academic research in a production
environment, Java-based services providing text analysis, among other examples. The
goal with Technology Heterogeneity is to allow the development team to choose a technol-
ogy stack that best suits a particular problem to be solved. If, after implementation, the
technology stack is no longer ideal and needs to be replaced, it can happen much more
easily and quickly. When transitioning from a monolithic architecture to a microservices
architecture, this is ideal since it allows for the old technology stack to be transposed first,
while the team readjusts to the new architectural rules. By doing this, the development
team doesn’t require training in new technologies during the migration since it can be
done at a later time, and can implement the new architecture using the previous technol-
ogy stack. Then, when the team has more availability, individual services can be targeted
for upgrade to a better suited technology stack. By using microservices architecture, the
amount of work required to replace legacy code or to remove unused code is smaller since
the services are more granular and independent. Thus, the cost of replacing code is small
and Replaceability is optimized.

Unlike monolithic applications, a component failure doesn’t require the whole applica-
tion to be unavailable to the clients. Since the services are plenty and independent, failures
don’t propagate as easily and thus, service to the client can be somewhat maintained, in-
creasing the Resiliency of the application. This can also be transposed to deployment.
Deployment for a monolithic application is difficult, as it requires the entire application to
be deployed and thus, is highly impactful and prone to causing failure if just one compo-
nent fails. Since the microservice application is resilient, Deployments present a lower risk
of complete failure. Having less complex and more granular components, the microservice
application has Easier Deployments. This same low complexity and granularity also
makes Testing easier and able to be performed more regularly, decreasing the chances of
failure.

Microservices also allow for independence between development teams, as the coupling
between services is very low. This means that backend development teams don’t need to
meet and engage with frontend development teams as often since the impact of changes
to a backend service is also low.

During high usage spikes, a monolithic application would need to be scaled up in
order to respond to the inrush of user requests. This means that all the components
of the application would be scaled up, regardless of their importance to the high usage
spike. This creates two problems, one being the computing resources that would need
to be allocated to scale an entire application is much more challenging and the second
relates to the inefficient use of resources, since not all components of the application
would require the Scaling operation. By using microservices, individual services can be
scaled up (or down) independently, quickly and possibly automatically in order to better
suit the demands posed by the application’s users.

4 https://developer.nvidia.com/cuda-toolkit

13

Chapter 2. State-of-the-Art

2.5 DevOps

The portmanteau of Development and Operations — DevOps — is ‘(. . .) a set of
practices intended to reduce the time between committing a change to a system and
the change being placed into normal production, while ensuring high quality’, according
to (Bass et al., 2015). In (Sallin et al., 2021), the authors start by analyzing the use of
the Four Key Metrics (FKM) (Forsgren et al., 2019) for measuring developer performance
and DevOps adoption in software companies. Then, the authors evaluate how can these
metrics be measured automatically. These metrics are defined in the following subsections.

2.5.1 Deployment Frequency

Deployment frequency relates to the frequency at which code is pushed into produc-
tion. Generally, this is performed by making small changes and placing them in a pro-
duction environment regularly. This is usually achieved through good Continuous Inte-
gration/Continuous Deployment (CI/CD) practices. The smaller changes lead to fewer
potential issues arising during deployment to production and allow for more control over
changes.

2.5.2 Lead Time for Change

This is defined in (Forsgren et al., 2019) as the ‘the time it takes to go from code
committed to code successfully running in production’. Having the goal to minimize this
time leads to faster feedback after changes have been deployed, which in turn allow for
faster correction in case of failure. This also applies not only to changes that introduce
new features or modify them but also for potential bug fixing deployments. In some of
the articles mentioned in the analysis performed by the authors in (Sallin et al., 2021) it’s
mentioned that certain companies have used the commit into the version control system
as the start of the change procedure.

2.5.3 Time to Restore Service

The time it takes to restore service, equivalent to the time between the start of down-
time and its end, is an essential metric. With ever more complex systems and newer
technologies, system failure is bound to happen. How, and how quickly a situation is re-
solved, is an essential metric for the day-to-day operations of a software company providing
a product such as a SaaS.

2.5.4 Change Failure Rate

The rate at which deployments to production lead to system failure or impairment,
requiring remediation. This remediation can be in the form of a hot fix, a patch, a
rollback, among others. Some articles analyzed in (Sallin et al., 2021) also suggest dif-
ferent interpretations to this definition such as using the percentage of releases that were

14

Chapter 2. State-of-the-Art

performed as fixes or hotfixes, detecting failure through observability tools or manually
marking deployments as failed or successful.

2.6 Observability

Virtual Cloud Computing allows users to configure near limitless services, spanning
multiple types of resources and with a dynamic range of options for infrastructure. As
such, software that relies on VPSs’s elasticity can also become more complex than when
using private clouds. With the adoption of modular software design and the increase
in the use of micro-services and serverless compute services, the complexity of software
architecture has increased greatly (Niedermaier et al., 2019). Such complexity comes
at a cost however: Lower Observability. Taking a page from modern control system
theory (Gopal, 1993), Observability refers to the degree to which a system’s internal state
can be determined from its output. The ability to closely monitor a system’s internal state
is beneficial during software deployments as well as after them, as it allows stating whether
the system is running according to plan. While a few services can be easily monitored
by a single human resource inside a company, complex systems require huge efforts to
keep in check on a regular basis. Erratic or unexpected system behavior can be spotted
when certain patterns make themselves apparent through monitoring. These patterns
become difficult to spot when the amount of monitored metrics are inadequate for the
system’s complexity. As a means to increase transparency in these new distributed and
complex systems, observability tools have emerged that allow for traces, metrics and logs
to be generated, collected and further analyzed so that insightful information towards the
system’s internal state can be attested.

2.6.1 OpenTelemetry

An open-source project, OpenTelemetry (OTel) is a framework born from the soft-
ware industry’s interest on open-source tools, Software Development Kits (SDKs) and
Application Programming Interfaces (APIs) for sending this monitoring data to a Observ-
ability back-end in a standardized, vendor-agnostic way (OpenTelemetry, 2022). Before
this open-source solution became available, Observability software required the software
developers to use that specific Observability back-end’s libraries and agents to emit the
required data. From a technical and business point-of-view, this was harmful to a software
company, since it greatly reduces the ability to quickly and easily change Observability
back-end, locking the company in using the same observability software for long periods
of time, regardless of the adequacy of it. With this solution, open-source and innovative
add-ons and custom tools to enhance Observability of a system can be made and imple-
mented in much less time, while allowing changing the tools to interact with each other,
generating even more insightful knowledge about the systems internal state.

15

Chapter 2. State-of-the-Art

2.6.2 Telemetry

Telemetry, in the context of this document, refers to the data a system sends regarding
its internal state. For software, this data can be in the form of traces, logs and metrics.
Logs are timestamped messages emitted by a service or component of a system, which
inform about a specific occurrence, such as a request being made to a service or logging the
time it took for a function to perform. Traces are data that informs about the path that a
request took while it propagates through a service or component. If it traverses more than
one service, it is called a distributed trace. Distributed traces keep software developers
and maintainers informed about the entire path that a request might make, which is a hard
task to perform when dealing with multi-service software architectures, like microservice
or serverless software architectures. These kinds of architectures are usually complex and
non-deterministic, which make debugging quite an endeavor. Individually, these traces
and logs provide information about a specific event or set of sub-events that are related to
an event. However, in order to ensure system reliability, a system needs to be monitored
not just for a single instant but throughout time. This gives an additional dimension to
the data emitted by the system’s components. By aggregating numeric data over a set
period of time, metrics can be obtained that give more insightful knowledge regarding
the system’s internal state. For cases when the information is not numeric in nature, for
example a log informing that there has been an error, this information can be transformed
to inform of the frequency of the event that created that message. Thus, this quantification
of data allows for metrics to be recorded and shown graphically, where patterns can be
detected. By quantifying telemetry data and generating metrics, it becomes possible to
evaluate the system’s behavior before, during and after a software deployment so that it’s
success can be ascertained (Mills, 1988).

16

Chapter 3

Methodology

Each Water Utility is a Client, and the Product is the Application (the DSS) that the
Company (SCUBIC) provides as a cloud-based service. In this chapter, the old architecture
of the Application is explained, its flaws are exposed and possible solutions are analyzed.
From these possible solutions, a new architecture is proposed, correcting those flaws.

3.1 The Application

The software that the Company provides to each Client allows the Client’s water
operators and managers — the Users — to access multiple application modules:

• Monitoring Module, where data from the Client’s sensors can be consulted using
charts and other visualization methods. This is the base module, necessary for using
the other modules.

• Forecasting Module, which performs machine learning operations using the Client’s
historical sensor data and forecasted weather data to forecast water consumption for
a pre-specified period after execution.

• Forecasting Model Training Module, which trains the machine learning models used
in the Forecasting Module.

• Optimization Module, which relies on the Client’s sensor data, forecasted water
consumption data and the Simulation submodule to optimize the pump operation
schedule for lower operational cost. By optimizing the pumping operation, water
and energy usage efficiency increase, lowering CO2 emissions and reducing the cost
to operate the pumps.

• Simulation Module, where a Smart Digital Twin of the Client’s water network is
created and its water pump operations simulated.

• KPI Module, which performs arithmetic calculations to generate KPIs regarding the

17

Chapter 3. Methodology

Client’s operation.

• Solar Forecasting Module, which forecasts photovoltaic solar panel power Production
for use in conjunction with the Optimization Module.

By using the Application’s Monitoring Module, each User can access the data generated
by the modules.

For these modules to work, each Client is required to send their sensor data, with
adequate frequency. Depending on the sensors, this data can be collected by the Client’s
sensors from every minute up to every hour, which is not synonymous with the data
intake frequency. There are Clients who have sensors in remote locations which log data
in 15 minute intervals, but due to power constraints this data is only sent once or twice a
day to the Client’s central monitoring system. Thus, the distinction between data intake
frequency and data frequency must be made: the first is related to the frequency with
which the sensor data packages arrive at the Application and the latter, the frequency or
the time interval between each point of data in the set of sensor data. While the first is
important for proper scheduling of the forecasting and optimization tasks performed by
the Application, the latter is crucial to those tasks and requires a frequency of up to 1
hour.

Once data is sent from the Client’s databases and to the Application, the data is pre-
processed and stored in a Timeseries1 database. The modules access this data in order to
perform their tasks.

These Forecasting, Optimization and Simulation, Solar Forecasting and KPI calcula-
tion tasks are performed with a frequency ranging from 8 to 24 hours, every day. For most
clients, these tasks are performed once a day, at midnight, in order to prepare the next
day’s operations. The duration of the described tasks can vary, depending on the amount
of water consumption points to forecast, the complexity of the water network or on the
amount of sensor data to process. These tasks perform calculations using medium-to-large
Timeseries datasets and utilize machine learning algorithms or complex optimization al-
gorithms in conjunction with water network simulation algorithms. Thus, these tasks are
run asynchronously, in Python workers.

3.2 The Old Architecture

The old software architecture is still in use as of the date of publication of this body of
work, alongside the proposed new architecture. They are both in Production, with older
clients using the old architecture and new clients using the new architecture.

1 Series of data points indexed in time order.

18

Chapter 3. Methodology

3.2.1 Overview

The old architecture is composed of a group of Elastic Compute Cloud (EC2) instances,
one for each Client, inside the Company’s VPC. Inside each EC2 instance, using Docker2

for container orchestration, an Application is executed for that specific Client. Each
Application consists of the joint deployment of a set of services and databases, which run
inside Docker containers. As can be seen in figure 3.1, this architecture requires an EC2
instance for each Client, which is not scalable for reasons explained later in this document.

VPC

Client A's
EC2 instance

Client A's
Application

Client B's
EC2 instance

Client B's
Application

Client X's
EC2 instance

Client X's
Application

Client A Client B Client X

Figure 3.1: The AWS VPC used, hosting the old architecture’s EC2 VPS.

3.2.1.1 VPC

As can be seen on the diagram presented on Figure 3.1, these instances are deployed
to the same VPC, sharing a private network between them.

3.2.1.2 Services and Components

Each EC2 instance runs a Docker container for each one of the following services:

• InfluxDB3 (Timeseries Database)

• Telegraf4 (Data collecting service)

2 https://docker.com
3 https://www.influxdata.com/products/influxdb-overview/
4 https://www.influxdata.com/Timeseries-platform/telegraf/

19

Chapter 3. Methodology

• MongoDB5 (General use, no-SQL, Document Database)

• Grafana6 (Web platform for data visualization, the front end of the DSS)

• Nginx7 (Reverse proxy with Secure Hypertext Transfer Protocol (HTTPS) capabil-
ities)

• Let’s Encrypt8 (Automatic Transport Layer Security (TLS) Certificate installer,
companion for the Nginx container)

• Web Dev (Flask9 Web platform / API for managing Workers’ settings)

• Redis10 (Message Queue System for queuing Worker’s jobs)

• OpenSSH11 (atmoz/sftp) (Secure Shell (SSH) Server for receiving client data
through SSH File Transfer Protocol (SFTP))

• Workers (Celery12 Container running the Forecast, Simulation and Optimization
Python Algorithms as well as the KPI Algorithms.)

• Workers (Beat) (Celery Container that periodically triggers jobs in the Workers
container)

3.2.1.3 Service’s Connections

In Figure 3.2 the relations between these containers can be schematically seen. Start-
ing on the right side, with the Let’s Encrypt and Nginx containers, these provide outside
access to the Grafana and SFTP services inside the respective containers. Data from the
InfluxDB database is read by the Grafana service which allows the Client’s users and the
company’s developers to query the database and at the same time generate charts with
such information. Client sensor data is sent to the SFTP server that shares the incoming
files with the Telegraf service and allows it to pre-process that sensor data and proceed
to the data intake into the InfluxDB database. Then, either through remote access to
the Web Dev container or automatically through the Worker Beat service, tasks are sent
to the celery queue (using the Redis service) and picked up by the Worker service. This
Worker service then accesses the MongoDB Database to load algorithm and device config-
urations and the required client sensor data from the InfluxDB database before running
the tasked algorithm. Data resulting from the execution of the algorithms is then sent to
the InfluxDB database, to be read by the Grafana service. There are some connections

5 https://www.mongodb.com/
6 https://grafana.com/
7 https://www.nginx.com/
8 https://letsencrypt.org/
9 https://flask.palletsprojects.com/en/2.1.x/

10 https://redis.io/
11 https://www.openssh.com/
12 https://docs.celeryq.dev/en/stable/

20

Chapter 3. Methodology

that are bidirectional, such as the Web Dev to the MongoDB database which is the service
used to manipulate the MongoDB database’s algorithm and device configurations.

Client's Application (Docker)

Client's EC2 instance

MongoDB

InfluxDB

Worker

Worker (Beat)
Redis

Web Dev

Telegraf

SFTPGrafana

Nginx

Let's Encrypt

Figure 3.2: Old Architecture: the containers and their connections inside the Application.

3.2.1.4 Databases

There are two types of databases being used by this architecture: A Timeseries
Database, in this case InfluxDB, and an additional general-purpose Document Database:
MongoDB. Each type of database has a different role, the first one stores the Client’s
timeseries data such as sensor information, pump orders, predicted tank levels, etc. The
second one, the Document Database, is responsible for storing configuration settings for
each worker service (optimization, simulation and forecasting), for storing electrical tariffs
data and to store sensor device’s configurations.

3.2.1.5 Grafana

This web platform allows the visualization of the Timeseries data from the InfluxDB
database. This is an open-source platform that runs on a docker container with little to
no modifications necessary. The dashboards are built using the built-in tools and allow
for complex and very informative data visualization.

3.2.1.6 SFTP

The SFTP service here provides a secure method for the Clients to send files containing
the Timeseries data to our servers, where they can be processed and turned into actionable

21

Chapter 3. Methodology

insights by the algorithms running in the Workers container. The Client sends their public
key (from a cryptographic key pair) when the project start to authenticate against this
SFTP service and uploads the files to a pre-designated folder. These files are then accessed
by the Telegraf container which performs the file intake process.

3.2.1.7 Telegraf

The Telegraf container is used to gather the files containing the raw sensor data sent
from the Client to the SFTP server. Since this container shares the file upload location
folder with the SFTP service, through a convoluted process of storing the filename of the
last file uploaded, periodically checking for the next file and file handling spaghetti code
that spans multiple files and has an enormous codebase that weighs the docker image’s
file size considerably.

3.2.1.8 Nginx + Let’s Encrypt

These two containers allow secure Internet access from the EC2 instance into the
correct docker container IP address and port. The Client-facing services Grafana and
SFTP which, respectively, provide the web interface for the DSS and client file input
service are inside containers which themselves can change their internal IP inside the
Docker environment. To keep the dynamic IPs in check and allow for these services to
be accessed from outside the Docker environment, the Nginx container keeps track of
this dynamic IP and updates its route table accordingly. This allows for any of these
two containers to restart, change their IP address and still not break the routing back
to the host EC2 instance, which has an Elastic Network Interface (ENI) associated to it
exclusively. This ENI is then connected, exclusively, to a single Elastic IP (EIP) to which
the Clients connect, like Figure 3.3 implies.

As for the Let’s Encrypt container, this container shares a docker volume with the
Nginx container and automatically and periodically maintains the TLS certificate files
that the Nginx requires in order to serve the Grafana interface through HTTPS.

EC2 Instance

Docker

Grafana

Let's
 Encrypt

OpenSSH

Nginx

Elastic
Network
Interface

Clients
Internet

Figure 3.3: Internet access to the Client-facing services.

22

Chapter 3. Methodology

3.2.1.9 Redis

Redis is used as a message queue backend for Celery, enabling other services to send
Celery tasks to a queue for asynchronous execution by the Workers.

3.2.1.10 Web Dev

Based on Flask, this web application serves an API as well as serving a web page that
gives developers access to algorithm configurations and the ability to push Celery tasks to
the queue. This application connects directly to both databases.

3.2.1.11 Workers

The Workers’ container image is built in-house by the development team, using a
Python Docker image as the base image, wherein all the company’s algorithms lay. The
forecast, optimization and performance analysis/KPI algorithms are individually linked in
a Celery configuration file, which defines how each algorithm is executed in a Celery task
and how that task is called. This container executes a Celery Worker that executes all
Celery Tasks in the Celery task queue.

When a task is sent to the task queue, this Celery Worker who polls the task queue,
picks the task up and starts executing the task as soon as possible.

There are two Workers images, the first one contains the code for all algorithms and is
the one which starts the Celery worker. The other one, which is internally called Celery
Beat, executes a Celery instance in Beat mode which sends pre-configured Celery tasks to
the queue. This is used to run the algorithms periodically in order to process the Client
data and generate actionable insights for the Client.

These algorithms require decent amounts of computer resources, namely CPU power
and RAM capacity, in order to be able to run effectively. This is a direct contrast to
the remaining components of this old architecture, which see minimal Client use and are
therefore less resource intensive. In terms of storage, the situation is the opposite since
these algorithms use data stored within the other services: the database services.

3.2.2 Issues

Besides an individual EC2 instance, each Client also has an individual GitLab13

project, which is composed of several different Git14 code repositories. Each GitLab project
contains the following repositories:

• dbs (Databases configurations, build files for databases’ docker images, deployment
scripts)

• Workers (Build files for the Workers’ docker images)
13 https://gitlab.com/
14 https://git-scm.com/

23

Chapter 3. Methodology

• DBconnectors (Standardized code for database access)

• forecast_optimization_api (Code and build files for the Web Dev docker image)

In the dbs repository, build scripts for custom docker images for InfluxDB, Nginx and
Telegraf can be found. Also, here reside the scripts that are used to remotely deploy
docker containers to the EC2 instances as well as the docker-compose configuration files.
The GitLab CI/CD pipeline that deploys the old architecture to the instances also resides
here.

As for the DBconnectors repository, database connectors can be found here. These
allow offloading the code that connects to the databases from the algorithms to a separate
module, which can be reused throughout the same GitLab Project and, in theory, keep
the query methods consistent for both the Workers and Web Dev codebases.

In theWorkers repository, the code for the algorithms used by the platform to perform
the forecasting, optimization and KPI calculation as well as theDBconnectors repository
linked as a submodule can be found.

In the likeness of the Workers repository, the forecast_optimization_api reposi-
tory also imports the DBconnectors repository as a submodule. This forecast_opti-
mization_api repository is where the Web Dev container build code is situated.

3.2.2.1 Low Cohesion and High Coupling

This old architecture has severe problems regarding its Cohesion and Coupling. The
readers will notice that, as shown both above and on Figure 3.2, there are multiple services
performing read and write operations to the InfluxDB database. Although concurrency
is not a major problem, having different schemas and tag names for InfluxDB queries in
different services has historically led to multiple timeseries data not being detected when
querying the database. Such things happen when a different querying service places the
data in the database. This is due to mismanagement of repositories and git submodules,
and requires additional care, planning and communication from the developer team’s side.
Here, having a specific service to perform pre-prepared queries, with very detailed database
schemas, to which all other services would connect to query/write to the database would
solve this problem. Once again, cohesion is low, since code that is used to connect to
the database is spread out throughout the codebase. It also means that there is major
implementation coupling.

Then, there are issues regarding temporal coupling. When performing data intake, the
timeseries database, the data intake service (Telegraf), the SFTP service and the Nginx
service all need to be up and running and accessible to be able to perform data intake.
If one of these services is unavailable, data that is sent from the Client is not processed
when the unavailable service becomes available again. This has been something that has
happened before, with some regularity, and the only way to recover the missing data is
through manual data intake of the received text or spreadsheets that are sent to the SFTP

24

Chapter 3. Methodology

service which is tedious and prone to errors.
Finally, there is the issue of deployment coupling. In order to deploy a small change

to any of the services, all docker containers are shutdown and restarted, which results in
considerable downtime for each Client.

3.2.2.2 Replaceability

The old architecture possesses low replaceability, since it’s not easy to change a service
for another, such as the timeseries database or the data intake service. For example, with
the exception of the data visualization service (Grafana), major refactoring of code would
have to be done, since each service connects to the timeseries database in different ways.

3.2.2.3 Resiliency

Despite the high coupling of the application, with the old architecture using docker
containers, usually the application doesn’t become totally unusable if one of the service
fails. The problem lies with the docker orchestrator or the EC2 instance itself. If one of
these fail, then the whole application becomes instantly unavailable. If the EC2 instance
becomes unresponsive, as has happened multiple times before, then a manual, full sys-
tem reboot of the instance followed by a redeployment of the whole application stack is
inevitable.

3.2.2.4 Deployments

A deployment of the application that uses the old architecture is a tiresome and ar-
duous affair, since the application is highly deployment coupled as stated before. After
committing a change to one of the repositories, deployment involves tagging the repository
of code in which the change was made in order to create the necessary docker images
with those tags through CI/CD. In this step, a GitLab runner will pull the repository,
checkout any git submodules, perform unit tests, and then start building a docker image
with the code inside the whole repository. Currently, for the old architecture, this step
takes around 10 minutes to complete. After the tagging of the repository of code is done,
the next step is to perform the same task with the dbs repository, where another 10 to
20 minutes of docker image building takes place. Then, after all of the docker images
are built, the GitLab runner opens an SSH shell to the EC2 machine of the Client, pulls
the respectively tagged docker images and performs a docker-compose operation. This
operation instructs the docker orchestrator to shut down all running containers, delete the
volumes (with the exception of the databases) and then re-create the containers with the
newer docker images. In all, this process takes around 30 minutes to complete. During
this last step, the Users experience downtime with a duration of between 1 and 4 minutes,
if the deployment is successful.

If a change is to be done for all Clients simultaneously, this process needs to be repeated
individually, once for each client.

25

Chapter 3. Methodology

One of the faults with the older architecture is also the lack of different environments
for deployment. That means that every deployment made to each Client has the very real
possibility of breaking Production for that particular Client, where the faults would impact
the Client’s usage of the platform directly. This is a recurring event when deploying, as
the algorithms are quite complex. Given the fact that some algorithms use real-time data
gathered from the last one hundred (100) days, the somewhat unpredictable nature of the
algorithms’ execution results make the repeatability of results from day to day not trivial.
Breaking changes are also not always apparent, since some algorithms perform calculations
using data generated by other algorithms and/or real-time data and such mistakes only
become apparent on the following work day, after their execution. There are cases when
the algorithms run perfectly during week days, but fail during the weekends (since the
water consumption patterns change accordingly), and are left in broken state until the
next working day.

All of these mishaps lead to the creation of a Staging server where changes to the
platform or algorithms could be tested with real data, causing no impact to the Clients
and allowing the results to be monitored for longer periods of time in order to ascertain
system reliability. As such, a Staging environment should replicate as much as possible
the Production environment, be it the Operating System version, it’s installed packages,
Python versions, Python packages, the data in the server, the quick-fixes applied to Pro-
duction, etc. This, however, meant that a similar, Staging environment EC2 instance
needed to be running simultaneously with the Production environment’s EC2 instance,
effectively doubling the infrastructure costs. Since each Client had its own EC2 instance,
this approach would also be impossible to maintain. An attempted approach was to use a
single EC2 machine, sized similarly to the highest performing EC2 machine used by one
of the Clients, to act as a Staging server for each Client at a time. Each time a major
change was to be deployed to a Client, it would be first deployed during a set time to this
Staging server and upon success, be deployed to the Client’s Production server. Having
multiple developers perform different deployments, for different Clients, at the same time,
meant that Deployment Frequency lowered and Lead Time for Change increased as well.

3.2.2.5 Testing

Having the components of the application so tightly coupled, means that it requires
the entire application to be executed in order to properly test the entire application. This
is cumbersome and forces the developers to have a local copy of the entire application,
including the timeseries data. This data can have big dimensions, and the only method to
test with this data is to execute a script that connects remotely through SSH to the EC2
machine and makes a copy of the timeseries’ docker instance’s volume. Said volume copy
is then transferred back to the developer through an SSH tunnel, so that the developer
can then use that volume with the timeseries’ docker instance that is running locally,
for testing. Besides the massive data copy, which occupies disk space in the developers’

26

Chapter 3. Methodology

computer and results in higher data transfer costs in the AWS account, the developer is
required to have hardware capable of loading and executing all services simultaneously.

3.2.2.6 Scaling

The contrast between the different services’ computational and storage requirements
is one of the major issues of the old architecture. Adequate instance sizing is essential
to lower infrastructure costs with compute resources. As can be seen in Figure 3.4, the
CPU average utilization is usually very low, indicating that the resources allocated to this
instance are way overestimated, elevating the infrastructure costs for no reason. However,
the peaks in CPU usage that can be observed in this same Figure, which are caused by
the periodically-running algorithms, push this CPU usage up to levels that suggest the
allocated resources are somewhat adequate for this use-case. And wherein lies one of the
major issues: over a 24-hour period, the amount of time spent with very low CPU usage
is visibly and significantly superior to the time spent with adequate CPU usage for the
instance size.

Figure 3.4: Client’s EC2 Instance average CPU usage, during a three-day period, in 5
minutes intervals.

The EC2 instance upon which these services reside can be provisioned and sized to
different computational and storage needs. However, this would mean that it would either
be adequately sized for the times the workers are dormant and undersized for when the
worker’s algorithms are running, or oversized for most of the time and only adequately
sized while running said algorithms. Unfortunately, resizing an EC2 instance requires
downtime for the whole platform, since it requires the EC2 instance to be rebooted. Since
this would also stop Client access to the DSS and data intake service, this option cannot
be contemplated. After testing a platform implementation with an instance adequately
sized for the instants when workers are dormant, it was concluded that the algorithms
would either refuse to run or crash when performing resource intensive calculations due
to low RAM availability. The decision was then made, to keep the platform running in
oversized, and costly, EC2 instances.

One possible solution was to split the resources based on their compute resource re-
quirements. Having the workers on a separate EC2 instance that would be automatically
and periodically provisioned and unprovisioned according to a schedule would allow the

27

Chapter 3. Methodology

remaining services to be placed in a lower cost EC2 instance, lowering the overall infras-
tructure costs. However, without altering the existing architecture, this would mean that
the alteration would only be the place where the Workers’ docker container would be exe-
cuted. Since the amount of EC2 instances is directly proportional to the amount of Clients,
having two instances would duplicate the computational resources, networks connections
and storage space needed to maintain the platform for all Clients. This would exacerbate
the problem of limited compute resources available to our Amazon Web Services (AWS)
account.

One of the issues with the old architecture is that the number of EC2 instances needed
was directly tied to the amount of Clients, since each Client required its own instance to
host the platform, generating what is called a Scalability problem. For the company’s AWS
account, a limit of thirty-two (32) Virtual CPU (vCPU) units (each vCPU corresponds
to a processing thread in a CPU core) was imposed by Amazon as default, which meant
that the sum of EC2 instance’s vCPU units could not surpass this value. Each client
requires an EC2 instance of the type t3a.large or t3a.xlarge, respectively two (2) or
four (4) vCPU units, depending on the Client’s Water Network’s size and complexity and
contracted services. This would mean that the amount of clients was limited to sixteen
(16) clients if they all used the smaller instance or down to eight (8) clients if these Clients
required more resources. As can be concluded, this is a hard limit on the amount of clients
that can be served simultaneously by the company, which is an obvious problem.

3.2.2.7 Cost-Effectiveness

As of June 2022, the hourly price for on-demand (EC2Cost) t3a.large and
t3a.xlarge EC2 instances in the nearest AWS region (eu-west-3) was, respectively,
$0.085 and $0.1699. Since each instance requires storage, and the free storage is not
enough for the data, the Elastic Block Storage (EBS) volume for each instance was of 256
GB in size (EBS Size). The pricing for the gp2 EBS volumes is $0.116 per GB-month of
provisioned storage (EBS Pricing). Thus, for each Client, the total monthly cost of just
the instances Client Instance Monthly Cost is given by the formula:

ClientInstanceMonthlyCost = (EC2Cost × 24 × days) + (EBSSize × EBSPricing)
(3.1)

With this information, assuming a standard month of 30 days and a t3a.large in-
stance, the average cost expenditure with a single Client’s EC2 machine is:

ClientInstanceMonthlyCost = ($0.085 × 24 × 30) + (256 × $0.116) (3.2)

= $90.896

Using the same variables, but for a t3a.xlarge instance:

28

Chapter 3. Methodology

ClientInstanceMonthlyCost = ($0.1699 × 24 × 30) + (256 × $0.116) (3.3)

= $152.024

3.2.2.8 FKMs

Regarding the FKM, based on the previous issues that have been shown, by using the
old architecture, the development team has suboptimal results in the metrics.

As mentioned in the Deployment issue, the difficulty with which deployments are
performed forces the development team to gather numerous changes before deploying
them so that the deployment can be performed less frequently, resulting in less downtime
for the client. This, inevitably, lead to both a lower Deployment Frequency and also a
bigger Lead Time for Change.

In the Deployment issue, it’s also mentioned the amount of downtime that is to be ex-
pected when deploying changes to Production. Such an amount of downtime is unaccept-
able for a normal, eventless deployment. However, when failure occurs in the application
using the old architecture, the Time to Restore Service is composed of multiple amounts
of time: the time it takes for the failure to be detected, the time is takes to find a mitiga-
tion for the failure or troubleshooting time, the time it takes to re-deploy the application
(which is around 20 to 30 minutes in case the mitigation requires changes to the code)
and the time it takes for the recently deployed services to be back online. If failure occurs
during the run of a task, that task (and subsequent tasks that failed to start) will need to
be run manually as well.

Since the development team gathers numerous changes before deploying them to Pro-
duction, the chance of failure increases. Besides exacerbating the problem with the Time
to Restore Service, this method of deployment also increases Change Failure Rate.

3.2.3 Observability

One of the issues with the old architecture was the lower Observability that it pro-
vided to the Maintainers. Despite having extensive logging for each one of the services,
the other two key components of Observability - metrics and tracing - were not present
at any meaningful scale. Having to peruse hundreds of lines of code, filtering different
services and log levels just to manually create metrics for algorithm execution time was
time-consuming and tiresome. There was also no tracing put into place anywhere in the
platform. To combat this, it was stipulated by the stakeholders that the new architecture
should contemplate measures to increase observability of the entire system.

3.2.3.1 Alerts

As a consequence of the old architecture’s lack of system observability, there were
no useful metrics being created and stored besides the ones pertaining to the algorithm’s

29

Chapter 3. Methodology

result. In order to produce alarms, metrics are required to have a set of thresholds for each
one of them. Alarms automatically inform the Maintainers and stakeholders of unexpected
system behavior or catastrophic system failure in a timely manner, giving the chance for
the development team to trace the cause(s) of the problem(s) before they become apparent
and/or disruptive to the Clients. For some Clients, there were metrics and alarms setup
based on the Client’s water tank level, that would send messages to a Slack channel shared
between the company and the respective Client, but fell into disuse.

3.3 Proposed New Architecture

‘The primary measure of success of a software system is the degree to which
it meets the purpose for which it was intended’ — Bashar Nuseibeh and Steve
Easterbrook

Next, a proposed new architecture of the Application is presented. This new archi-
tecture minimizes or resolves the issues present in the old architecture, mentioned in the
previous section.

Changing from the old architecture to the new one isn’t a straightforward process.
Having clients who are still using the infrastructure upon which the old architecture relies
doesn’t allow for mistakes while doing the migration. This brings several challenges, which
are compounded by the lack of a functional new web interface for the new architecture.
For this migration to occur, careful planning is to be done and checked by the stakeholders
before any changes are put into Production. Measures such as changing network configu-
rations, restarting services or run benchmarks on the old infrastructure cannot not affect
any Clients using the old infrastructure.

To further complicate the planned migration, during the planning and implementation
phase of this project, the stakeholders required multiple changes to accommodate new
Clients, which had to be applied to the new architecture. These changes and late-requests
shape the decisions taken during the planning and implementation phase of the migra-
tion. For one of the new Clients, that the stakeholders arranged while the migration was
concurring, there was a dilemma: Further increase the number of Clients using the old
architecture (and subsequently, old infrastructure) or risk having this new Client as test
subject for the new architecture? After discussion with the stakeholders, the development
efforts were shifted from all current project to implementing the new architecture and
adapting the algorithms to make use of this new architecture.

3.3.1 Solving the Deployment issues

In order to solve the deployment issues, one first step is to combine all of the different
Applications (one for each Client), into a single Application that can serve all Clients
simultaneously, as shown in figure 3.5. With this, applying further modifications later
on to improve the old architecture is easier, since it’s only one Application that requires

30

Chapter 3. Methodology

change. Note, however, that in figure 3.5 the application is shown inside the VPC, with
no underlying infrastructure. This is by design, since the underlying infrastructure is not
relevant to this point.

VPC

Application
(Internal)

Application
(Staging)

Application
(Production)

Client A

Client B

Client X

DevelopersDevelopers

Figure 3.5: Initially proposed architecture. All Clients access the same Application and
the Application is tested in a separate Staging and Internal environment.

With this approach, the Application can be deployed only once for all Clients, reducing
the workload of the development team. By having the Clients use the same Application,
bugs or failures that might have occurred in multiple clients in the old architecture can
now be resolved simultaneously by a single deployment. A single Application also means
that the use of different environments can now be contemplated again, seeing as there is
only the need for one copy of the Application per environment. Using three environments
— Production, Staging and Testing (referred as Internal throughout the document) —
the development team can apply changes and test them before they reach Production.
Developers use the Internal environment to test new code to ensure functionality. If the
Application proves to be stable, it’s then copied to the Staging environment, where it
stays running for a set period of time so that developers can simulate User behavior
and ensure that there are no problems whatsoever with the Application. Then, after
Staging, the Application is sent to Production. This simple step, although not easy to
implement as it requires extensive code refactoring, is one of the most important changes
to solve the Deployment, Scaling and Cost-Effectiveness issues. This measure also allows
for improvement in the FKM. Deployment Frequency increases since there’s only one
Application to be deployed, therefore less work is required when compared to having to
deploy multiple Applications for small changes for all Clients. Lead Time for Change, Time
to Restore Service don’t alter as much, as the deployment time for a single Application

31

Chapter 3. Methodology

hasn’t changed much with this first step and neither has the time it takes to restore service.
Change Failure Rate decreases drastically by implementing this first step. By having two
other deployment environments to where the changes are first introduced, the code that
is deployed to the Production server has been thoroughly tested and therefore less prone
to failure.

Although moving to a single Application for all of the Clients, reducing the amount of
resources needed overall even with the introduction of multiple deployment environments,
the Application is still monolithic. As such, Scalability, Replaceability and Resiliency
issues are still not resolved.

3.3.2 Solving the Scalability issues

By decoupling the Applications’ components, it becomes possible to individually and
automatically scale the necessary components when needed. Using this approach, services
which are only run periodically can also be scaled down to 0 when not in use, such as the
Workers service. If each worker performs a task per day, and if task has a duration of 15
minutes, then the total amount of time that service is online daily is reduced to around
98%, massively reducing computational resource use and effectively lowering cost as well.
As explained in the subsection regarding Scaling in the previous section, different modules
of the Application have different compute resource needs. Some modules which are run
constantly, such as databases and APIs, can be run on low powered containers. The
opposite can be done for Workers, where high-powered compute resources can be given to
the container, albeit for very short periods of time, thus increasing the Cost-Effectiveness
of the Application.

For that reason, the next iteration of the architecture encompasses these changes, as
can be seen in Figure 3.6.

Now that each component is separate, they can be run on different infrastructure. For
that reason, the Application will be running as containers as in the previous architecture
with the change that these will not be orchestrated and hosted on an EC2 instance but
instead on elastic infrastructure. By using AWS’s Elastic Container Service (ECS)15,
each individual container can be run independently of each other and be automatically
orchestrated and deployed by AWS. These containers can use either On-Demand EC2
instances, managed by AWS, or an on-demand serverless service — Fargate16 — provided
by AWS. These instances can be combined to form clusters, to where these containers can
be deployed.

Using this approach, there are multiple advantages over the previous architecture:

15 https://docs.aws.amazon.com/AmazonECS/latest/developerguide/Welcome.html
16 https://aws.amazon.com/fargate/

32

Chapter 3. Methodology

VPC

ECS Cluster

Clients

Data
Intake

Timeseries
Database

SQL
Database

Data
Visualization

Backend
API Worker

Figure 3.6: Proposed scalable architecture. The Application’s services are now indepen-
dently scalable.

3.3.2.1 Automatic Container Orchestration

By leaving the orchestration of the container up to the AWS service, the services are
automatically restarted in case of failure, repeated failures generate alarms and trigger
actions such as reverting to the previous service version. By pushing a new service to the
orchestrator, if a previous version of that service is already running and load balancing17

is configured, then requests to that service will only be redirected to the newer version of
the service when it reaches a stable state and is proven to be healthy. After proving that
the new service is healthy and stable, the old service is then shutdown. This drastically
reduces downtime for the Clients, since the transition from the old service to the new one
is seamless and instantaneous and only occurs if the new service starts and maintains a
steady and healthy state for a set period of time.

Additionally, there is an option to enable Blue Green18, which would make the transi-
tion from the old service to the new one even more seamless.

17 Efficiently distributing incoming network traffic across a pool of available services
18 Blue green deployment is an application release model that gradually transfers user traffic from a

previous version of an app or microservice to a nearly identical new release—both of which are running in
Production.

33

Chapter 3. Methodology

3.3.2.2 Automatic Container Scaling

When using AWS ECS, resource usage metrics are gathered. When alarms and actions
are configured, these metrics trigger automatic scaling up or down procedures for each
individual containerized service depending on set thresholds. This allows for quick scaling
up when sudden usage spikes occur without needing human assistance and for scaling
down after said spikes to avoid extra cost.

There are two types of scaling that can be performed with the containers. Vertical
scaling — where the resources allocated to a container are modified which requires restart
of the container, and Horizontal Scaling where the cardinality of containers for a service is
modified. When defining a container, defining its CPU and RAM allocations is required.
Those values are not dynamic and cannot be changed after a container is running, without
restarting the container. Horizontal scaling can be performed automatically, whereas
vertical scaling cannot.

3.3.3 Replaceability

As for Replaceability, the proposed architecture improves on that measurement. Using
a Backend API and HTTP calls, a common interface to use between all services is created.
This Backend API allows for authenticated and authorized connections to be performed
between the Application’s components consistently, thus ensuring that any new service or
modification to an existing one doesn’t require change propagation beyond that service’s
business and logical vertical.

3.3.4 Resiliency

Since the application is split throughout different, independent services that are man-
aged by AWS’s ECS, there are no virtual machines or EC2 instances, no Docker orches-
trators that can fail. The availability of the ECS service provided by AWS is very high,
and therefore, the risk of failure of the infrastructure is quite low.

Seeing that the infrastructure is highly resilient, the remaining points of failure to im-
prove are the Application’s services themselves. As mentioned previously, the Automatic
Container Orchestration service that the ECS service provides is configured to automat-
ically restart containers in case of failure. If the failure persists, then the orchestrator
alerts the DevOps team and attempts to restart the service using a previous configuration
of that same service. Therefore, failures are more likely due to occur due to human error
when writing code. However, the code that is put into Production is tested and thoroughly
vetted before deployment to Production, which decreases even further the risk of failure
in that environment.

34

Chapter 3. Methodology

3.3.5 Temporal Coupling

Despite the best attempts, failure can still occur. If a message is sent from a service to
another while it’s unavailable to receive it, then it’s lost. If synchronization issues arise,
then the temporal coupling that torments the old architecture can make a task fail to
be executed. The cause for unavailability can be due to the service failing to start, fail
during execution, not being reachable due to network misconfigurations, if it experiences
manual scaling events or if it’s unresponsive due to high amounts of requests to it. If a
new architecture is to be drawn, then it needs to address this issue.

To that end, another version of the proposed architecture is presented in figure 3.7.

VPC

ECS Cluster

Data
Intake Queue

Backend
Load Balancer

Backend
API

Worker

Task
QueueSQL

Database

Timeseries
Database

Data
Intake

Data
Visualization

Figure 3.7: Temporally-decoupled and more resilient scalable architecture proposal.

With this new version, the Temporal Coupling has been massively reduced, the Re-
siliency has improved and it now allows for horizontal scalability for the services more
prone to require it. By introducing queues and load balancers to the architecture, services
are no longer temporally coupled and the Application can now handle interruption of some
services. Messages in the queues will be delivered to the corresponding services as soon as
they become available again. With this, resiliency has also improved, since the effects of
the failure of a service can be minimized by having duplicate services running and a load
balancer that can re-route that service’s requests to an available service as can be seen in
figure 3.8.

It’s now also more resistant to load peaks, due to the introduction of queues and load
balancers. When scaling is the most adequate solution, the service is scaled and the load
balancer is informed and start routing the requests to better distribute the load between
the pool of service workers. If horizontal scaling is not possible, too costly or the peaks
are not big enough, the queuing systems ensure that the requests are attended to as soon
as possible.

35

Chapter 3. Methodology

VPC

ECS Cluster

BackendAPI
IP: 10.0.1.1
Version: 1.2

Status: Failed

BackendAPI
IP: 10.0.1.4
Version: 1.1

Status: Stopped

BackendAPI
IP: 10.0.1.8
Version: 1.2

Status: Healthy

X X

Backend
API

Load Balancer

backend.internal.scubic

Figure 3.8: A Backend API service Load Balancer re-routing traffic towards the most
recent and healthiest version of the service.

3.3.6 Implementation Coupling

As mentioned previously, in the old architecture, the implementation coupling was
strong mainly due to the database access methodology. With the newest architecture,
this coupling is drastically lowered, since the only way to access the databases is through
HTTP calls to the Backend API. This means that implementing methods or services that
require the use of data in the databases is as simple as an API call. If a new service
needs a different data structure output or input to/from the database, then the changes
are made in the Backend API, making that new data structure available for future use by
other services as well, in case they need it.

3.3.7 Testing

The new architecture makes use of different development environments, so that a
staggered deployment to Production can happen and testing can be performed in the
Internal environment and then confirmed again the Staging environment. This facilitates
testing the Application on real infrastructure. However, not all testing requires testing the
whole Application, and for that, the new architecture allows for each one of the services to
be run locally for testing and at the same time, use the services in the Application that is
running in any of the Environments. In order to test a Worker service or a Backend API
service, the developer needs only to execute the service to be tested locally and connect
it to the VPC.

This is possible due to three new services: A Discovery Service (AWS Cloud Map19), a
private Domain Name System (DNS) server and a private VPN server. Services created in

19 https://aws.amazon.com/cloud-map/

36

Chapter 3. Methodology

the ECS service are automatically added to the Discovery Service by AWS. These services
are given human-readable names that explicit the service name and the environment as
well as the domain they belong to (e.g. backendapi.internal.scubic.pt). This name is
then picked up by a private DNS server running alongside a private VPN server. Together,
these three services allow both developers and other services for seamless connection to
services. If the service is scalable, then the address points not to the service itself but
to the load balancer serving that address, as seen in Figure 3.9. This allows for reliable
connection to the service.

VPC

ECS Cluster

Data
Intake Queue

Backend
Load Balancer

Backend
API

Worker

Task
QueueSQL

Database

Timeseries
Database

Data
Intake

External Connection EC2 Instance

DNS
Service

VPN
Service

Service
Discovery
Service

Data
Visualization

Developers' Computer

VPN
Client

Data
Visualization

Internet

Figure 3.9: Example use of the VPN to test local Data Visualization Service with remote
Backend API.

This new approach uses the namespaces created by the AWS Cloud Map Discovery
Service, and the naming scheme chosen was intuitive, as demonstrated in figure 3.10

37

Chapter 3. Methodology

service environment domain

namespace

backend internal scubic. .backend .internal

Figure 3.10: A service naming scheme example.

3.3.8 New components

3.3.8.1 Serverless

As can be seen in Figure 3.6 and Figure 3.7, the Clients send their data to the Data
Intake. The data intake process is relatively simple: take the Client’s sensor data, correctly
tag the data and send it to the Data Intake Queue, to be placed in the Timeseries Database.
However, not all Clients are the same. Some Clients send raw text files, some send Comma-
Separated Values (CSV) text files and even Microsoft Excel files. Some files are received
through e-mail, others through SFTP. Those who do not send files, have given secure
access to their databases through their own APIs. Either way, each Client has a different
method to give access to their sensor data. Building a single service to deal with all
possible methods of data intake is not possible and would end up a monolithic solution.
Thus, the solution proposed here is to separate the data intake from the specific data
intake from each Client, by having a service that accepts only pre-processed and tagged
sensor data and inputs it into the Timeseries database, and a service for each type of data
intake method. Clients using e-mail would have their data pre-processed and tagged by
a different service than clients who give access to their APIs. However, having multiple
services running is costly and so, these services would need to be run only when needed.
A similar solution to the one used in the whole Application would be to use containers
that scale up and down at set intervals. But the time that it takes for a container to be up
and running is billable and superior to the average time it takes to intake data. And so,
the decision was made to use AWS’ Serverless Services, namely AWS Lambda20. Using
Lambda, the code for the data intake doesn’t require to be in the form of a container,
thus reducing space requirements and the time it takes for a function to be called, loaded
and executed. This service is billed by the millisecond and has low compute capabilities,
which make it ideal for these simple tasks.

By building and deploying several Lambda functions, one for each method of data
intake, thousands of data points can be read simultaneously. However, the Timeseries
database expects pre-processed data with the correct tags and measurements, so a single
Data Intake Lambda Function is also created to perform the standardization and nor-
malization of the data points and ensure the correct placement in the database. One

20 https://aws.amazon.com/lambda/

38

Chapter 3. Methodology

problem that might occur is at set times, such as midnight, when most Clients send their
data simultaneously. In order to avoid bottlenecks and ensure all messages are delivered,
a message queue is set up between all Client data intake functions and the main Data
Intake function, as shown in figure 3.11.

VPC

ECS Cluster

Backend
Load Balancer

Backend
APITimeseries

Database

Data Intake
Main Function

AWS S3
.txt Intake

AWS S3
.csv Intake

AWS S3
.xlsx Intake

Email
Intake

Client API
Intake

Periodic
Trigger

Data Intake
Queue

Legacy
SFTP
Server

Figure 3.11: Serverless Data Intake. Client’s data arrives, is pre-processed by the corre-
sponding AWS Lambda function and sent to the Data Intake queue for further processing
by a main Data Intake Lambda Function.

3.3.8.2 Backend API

The first element of the new architecture to be researched and produced was the
Backend API. A new API solves the problem that existed with having different methods
to read and write to the databases. Using this Backend API, each service that requires
access to the database is therefore required to have authorization to access the Backend
API, which in turn reinforces security regarding database access. Having a standardized
method to access the databases also allows for easier debugging, since every service uses
the same API interfaces, which can help rule out databases and the Backend API from
possible fault causes.

The old architecture had a Flask API that served a webservice through which develop-
ers could manually tweak optimization and forecasting settings and issue tasks. This API,

39

Chapter 3. Methodology

however, had no security features nor any authentication in place, with its access limited
only through network settings, where each developer had to manually establish an SSH
tunnel to the Client’s EC2 machine in order to access said API. Due to time constraints
and limited knowledge inside the company regarding securing a Flask API, research had
to be performed in order to determine the best course of action regarding the choice of
web framework for a Backend API.

3.3.8.3 SQL Database

After discussion with the stakeholders and the Chief Technology Officer (CTO), the
decision to pursue a more feature-rich APIs such as Django21 was taken. Besides the
many authentication, authorization and overall security features that Django includes
in the base installation, its main feature is its Object-Relational Mapper (ORM). After
working with Flask and the MongoDB database, Django and an SQL database such as
PostgreSQL22 is apparently an easier option that has much more community support and
the SQL database is more suited for Production environments where critical systems are
used, in this case: Water Utilities’s data. Since there wasn’t big support for MongoDB
in neither the Django official modules nor its community, the decision to change to an
SQL Database was made. This was a simple decision, since the data that is present in old
Clients’ MongoDB databases is mostly auto-generated before the deployment is finalized,
each time a deployment occurs. That meant that the old Clients’ data wasn’t hard to
place in the new database. Using Django’s ORM also means that changing data-types,
changing fields associated with an object and other changes that result in database schema
changes are performed automatically and each change is stored in the Django directory as
a migration file. This file, when placed into the git repository of the Backend API allows
for these changes to be kept and enable rollbacks in case of mishaps.

3.3.9 Workers

As a result of trying to improve the architecture, splitting each one of the tasks —
Water Forecasting, Solar Power Forecasting, Weather Forecasting, Simulation, Optimiza-
tion, Model Training and KPI Calculation into their own service and code repository was
successful. With this, it gave more liberty for developers to work on different tasks without
complicated git merges and also increased the resilience of the system. Previously, if an
error occurred with the Worker container, it stopped all of the tasks. Now, since they are
independently orchestrated, only the respective task’s container stops. The only exception
is the inevitable temporal coupling between the Forecasting tasks and the Optimization
task, since the latter requires data from the former.

21 https://www.djangoproject.com/
22 https://www.postgresql.org/

40

Chapter 3. Methodology

3.3.10 VPN and DNS

For the VPN, the chosen implementation was to use the now popular WireGuard23

VPN server. This was a decision taken based on (24th Annual Network and Distributed
System Security Symposium, NDSS 2017, San Diego, California, USA, February 26 -
March 1, 2017 2017). As for the DNS server, the implementation chosen was a popular
choice among the Networking community — Unbound24, since it was only required due to
regular failures with the AWS DNS server. After a full audit report by the Open Source
Technology Improvement Fund, published online (2022), the decision was taken to use
this implementation.

3.3.11 Observability

Increasing the old architecture’s observability is not easy. After carefully studying
the most popular Observability technology stacks, it was decided in conjunction with the
stakeholders and the CTO that further studying of this subject was in order so as to
properly implement it. Using empirical data from other companies and industry veterans,
implementing the proposed Observability technology stack was deemed arduous and out
of the scope of this work.

However, this new architecture relies heavily on AWS infrastructure and as such, pro-
duces a large amount of logs and metrics that are aggregated by AWS in real-time. Using
AWS’s own data visualization tools and the data that is currently being logged and quan-
tified, the Observability of the new architecture has, objectively, been increased greatly,
reaching the goal set in the introductory part of this document.

3.3.12 Finalized Proposed Version

After compiling all of the information in the previous sections and subsections, the
final diagrams that encompass the new architecture are presented hereafter. This is the
new architecture that has been put into Production for the new Clients that have been
gathered since this migration project started, and has been used daily since May 2022.

3.3.12.1 Networking

Starting with a networking and security overview, as can be seen in figure 3.12, the
different services are shown in their respective matrix of environments. Note that there are
no relationships between the services, as these relations have already been demonstrated in
previous sections. These environments have the goal to separate the different development
environments — Internal, Staging, Production — and the services which require both ac-
cess to the Internet and to be accessed from the Internet. On the Public Environment,
both the Grafana services and the Backend APIs are accessible from the Internet, as they

23 https://www.wireguard.com/
24 https://nlnetlabs.nl/projects/unbound/about/

41

Chapter 3. Methodology

Main VPC

Public
Environment

Private
Environment

Internal Environment

ECS
Cluster

Private subnet

Redis

InfluxDB

ECS
Cluster

Public subnet

Backend API

Grafana

Simulation Worker

Forecast Worker

PostgreSQL

Optimization Worker

Staging Environment

ECS
Cluster

Private subnet

Redis

InfluxDB

ECS
Cluster

Public subnet

Backend API

Grafana

Simulation Worker

Forecast Worker

PostgreSQL

Optimization Worker

Production Environment

ECS
Cluster

Private subnet

Redis

InfluxDB

ECS
Cluster

Public subnet

Backend API

Grafana

Simulation Worker

Forecast Worker

PostgreSQL

Optimization Worker

Figure 3.12: The VPC is divided in six different ECS Clusters, each with their subnet.
The VPC is divided in two ways between Public and Private Environments and also
divided in three parts, one for Internal use and the other two for Staging and Production
Environments, respectively.

42

Chapter 3. Methodology

are connected to the Main VPC’s Internet Gateway which allows containers’ bidirectional
communication to the Internet. In contrast, the services hosted on the Private Environ-
ment Clusters are inaccessible from the Internet and need a NAT gateway service25 to be
able to access the Internet (although only for request that originate from inside the private
subnets).

Additionally, each subnet represented in figure 3.12 actually depicts a set of three
subnets, each associated with a different Availability Zone26. Services launched into an
ECS cluster are launched into any of the three available subnets for that Cluster.

3.3.12.2 Storage

While the containers orchestrated by AWS’s ECS have 30 GB of disk space to use
freely, it’s ephemeral storage. If the service running in the container needs to be restarted
or fails, that data is lost, hence the need for persistent storage. When the ECS cluster is
composed of EC2 instances, it’s possible to mount the container’s volumes to the instance’s
block storage but such implementation is not adequate for everyday use or even Production
usage. If the ECS cluster uses Fargate, such option is not even available. As such, data
must be stored in an independently managed storage. The compatible AWS service that
provides storage for containers in both Fargate and EC2 Clusters is AWS’s Elastic File
System (EFS)27. As presented in figure 3.13, each EFS is accessed through one of three
Access Points, one for each Availability Zone, which coincide with this architecture’s subnet
configuration.

Region: Europe (Paris) (eu-west-3)

EFS

Private Subnet A

Access
Point A

Availability Zone A
 (eu-west-3a)

Private Subnet C

Access
Point C

Private Subnet B

Access
Point B

Availability Zone B
 (eu-west-3b)

Availability Zone C
 (eu-west-3c)

Figure 3.13: Availability of an Elastic File System throughout multiple Availability Zones.

When a service that requires the use of an EFS is launched in ECS, the container
25 https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html
26 Distinct locations within an AWS Region that are engineered to be isolated from failures in other

Availability Zones.
27 https://aws.amazon.com/efs/

43

Chapter 3. Methodology

orchestrator mounts the volume to the correspondent access point, depending on which
subnet the container was launched into.

44

Chapter 4

Results and Discussion

4.1 Scalability Improvements

4.1.1 Cost Rundown

The Infrastructure used to provide the Application to the Client is not free. As such,
before comparing the older and newer architectures, the costs associated with each indi-
vidual item are presented in Table 4.1 and Table 4.2, respectively.

Table 4.1: Individual Cost of AWS Infrastructure used with the old architecture. Each
Month corresponds to 30 days.

Name Description
Monthly
Use
(h)

Hourly
Cost
($/h)

Monthly
Cost
($/month)

AWS EC2 t3a.large EC2 Instance with 2 vCPU and 8 GB RAM 720 0.085 61.200
AWS EC2 t3a.xlarge EC2 Instance with 4 vCPU with 16 GB RAM 720 0.1699 122.328
AWS EBS Volume EBS Volume of type: gp2 with Size: 256 GB - - 29.696

Each Client using the old architecture would require one of the two EC2 instances
presented in the Table 4.1 table, plus an EBS volume. The total expenditure with infras-
tructure, on a monthly basis, for a Client, is the sum of the EC2 instance and the EBS
volume. Together, that value varies between $90.896 and $152.024. This value can be
even higher, if the Client has an abnormal need for extra compute or memory resources,
which would further reduce the scalability of this old architecture.

45

Chapter 4. Results and Discussion

Table 4.2: Individual Cost of AWS ECS Fargate Containers used in the new architecture.
Each Month corresponds to 30 days.

Type Name and Description Configuration
Daily
Use
(h)

Monthly
Use
(h)

Hourly
Cost
($/h)

Monthly
Cost

($/month)
0.25 vCPU 24 720 0.01215 8.748

A
ECS Fargate Container

Very Low Power Requirements 0.5 GB RAM 24 720 0.00265 1.908
0.5 vCPU 24 720 0.02430 17.496

B
ECS Fargate Container
Low Power Requirements 1 GB RAM 24 720 0.00530 3.816

2 vCPU 0.25 7.5 0.09720 0.729
C

AWS Fargate Container
Medium Power Requirements 4 GB RAM 0.25 7.5 0.02120 0.159

2 vCPU 0.5 15 0.09720 1.458
D

AWS Fargate Container
Medium Power Requirements 4 GB RAM 0.5 15 0.02120 0.318

4 vCPU 1.50 45 0.19440 8.748
E

AWS Fargate Container
High Power Requirements 8 GB RAM 1.50 45 0.04240 1.908

As mentioned in section 3.2.2.6, due to constraints in the AWS EC2 service, there is a
maximum limit of 32 vCPU units for each AWS account. This means that, even if all of
the Clients only required the smaller option that uses 2 vCPU, the maximum number of
Clients would still be only 16 Clients. With the new architecture, there is no hard limit
on the number of clients that can be served simultaneously. As of the time of writing, the
new architecture is currently serving three different clients, being that one of these Clients
has a water network that generates as much data as all previous Clients combined, for
both the old architecture and the new one. It was also tested using 17 fictional Clients,
totaling 20 Clients being served by the Application simultaneously, with no discernible
issues for the Users nor resource usages above the normal everyday operation with the
three regular Clients.

The new architecture has one Application for each development environment — Pro-
duction, Staging and Internal. Using Table 4.2 as reference, each Environment uses two
containers of type A for the PostgreSQL database and Redis services, two containers of
type B for Backend API and InfluxDB database services, one container of type C and D
for the Forecasting and KPI Calculation services, respectively. Finally, type E containers
are used for the Optimization service. In order to test reducing even further the resource
usage for services that are running constantly, in the Internal environment, the Backend
API service and InfluxDB database service have been scaled down vertically to use con-
tainers of type A. Additionally, other services are being run in this Internal environment
for further testing, but are not accounted here due to being temporary services used while
the Web Platform is not ready for Production.

As can be observed in figure 4.1, the monthly cost of maintaining the infrastructure
needed for the Application scales linearly for the old architecture, while the new archi-
tecture’s cost for low amounts of Clients is kept steady. Despite the fact that the new
infrastructure has not yet been tested for more than 20 Clients, hence the data in the

46

Chapter 4. Results and Discussion

figure ending at 20 clients, according to the resource usage during both peak hours and
idle times, these were largely unaltered, and usage difference was negligible. Therefore,
the usage of the Application using the new architecture is sure to be capable of handling
many more Clients simultaneously.

Figure 4.1: Infrastructure Cost Per Client.

Remaining Costs

The costs presented here are only the main costs associated with the differences between
the architectures. These are the bulk of the monthly costs with the infrastructure used.
There are also costs related to Data Transfer in and out of the VPC, costs with Costumer
Support, costs associated with automatic backups of data and other resources. Some
resource usages are not reported in this document due to Client confidentiality agreements,
being free of charge or being used so sparingly or in low quantities that the costs are
irrelevant or included in the Free Tier1.

4.1.2 Development and Deployment Issues

Besides the infrastructural scaling issue, there was also a problem scaling the human
resources needed for development. Having the Application be the same for all of the
Clients, instead of being one separately maintained Application for each Client, drastically
lowers the developer manpower needed for maintaining and updating an Application for
multiple Clients. Therefore, this new architecture is substantially and clearly scalable
when compared with the previous architecture.

1 Certain AWS resources are free until a certain level of usage is achieved.

47

Chapter 4. Results and Discussion

4.1.3 Ensuring Performance

One of the constraints with the new architecture’s Application was that it should not
perform visibly worse than the old architecture’s Application. In order to attest that,
those services which suffered from peaks in usage that were available in both the old
and new architecture’s Application should be compared. Unfortunately, only the Water
Forecasting service was common between both the new architecture’s Application and one
of the older Client’s Application. Despite having just one metric to analyze, it is still a
metric worth checking.

In order to analyze this, since neither Application has a working metric collector to
check the duration of water forecast tasks, the values had to be manually checked from the
logs that task emitted. For the old architecture, that was achieved by consulting Google’s
Cloud’s operations suite, formerly Stackdriver2. The new architecture was able to provide
this information through AWS’ CloudWatch Observability platform.

After running forecasts for 13 different days, which refer to 13 forecast tasks executed
one for each day, the results are presented in table 4.3.

Date
Old Architecture Water Forecast Task

Duration in seconds
New Architecture Water Forecast Task

Duration in seconds
01/02/2022 47.907 8.356
02/02/2022 48.769 10.325
03/02/2022 47.516 11.879
04/02/2022 48.551 11.248
05/02/2022 50.627 11.909
06/02/2022 48.497 12.350
07/02/2022 49.039 12.580
08/02/2022 50.289 13.404
09/02/2022 50.553 13.046
10/02/2022 50.34 13.457
11/02/2022 46.85 13.566
12/02/2022 46.873 14.268
13/02/2022 46.227 13.058

Table 4.3: Comparison between Water Forecast Task Duration (in seconds) for the same
period of 13 days in February.

As can be seen, the duration of the task improved quite considerably, ensuring that
the performance that was achieved in the previous architecture is still easily achievable
and with room to grow.

2 https://cloud.google.com/products/operations

48

Chapter 4. Results and Discussion

4.2 DevOps Improvements

The Company’s developer team’s general sentiment towards the implementation of
the new architecture is one of relief and excitement. As stated in Section 3.2.2.4 and
section 3.2.2.5, there were several issues regarding the developer workflow when working in
the Application. After implementing the new architecture, these concerns have diminished
considerably. The measures taken in section 3.3.1 and Section 3.3.7 have brought a new
and better workflow to the development team. This can be attested by the results in the
FKM.

4.2.1 Deployment Frequency

In order to measure the deployment frequency of the old architecture, GitLab’s tagging
list for a select number of Clients was analyzed. As stated in Section 3.2.2.4, each deploy-
ment made to the old architecture’s infrastructure was linked to a tag in the subversion
control system. Following the history for each tag since the first day of January 2020,
ignoring failures to deploy due to badly configured CI/CD elements, the table present in
table 4.4 was elaborated. Client’s names are omitted due to confidentiality agreements.
Client C****’s Application was only pushed into Production on the 11th of April 2021,
hence the lack of data up until the 2nd quarter of that year. Despite the fact that the
deployments made for these older clients were made due to updates or bugs in different
modules of the Application, since the Application has very high deployment coupling, the
process of deployment was nearly identical for all of these events and counted towards this
table in the same manner.

Table 4.4: Number of Deployments per Yearly Quarter for three Clients using the old
Application.

Year Quarter Client A*** Client C**** Client I**** Total Number of Deployments
1st 2 - 5 7
2nd 1 - 2 3
3rd 1 - 3 4

2020

4th 9 - 2 11
1st 18 - 3 21
2nd 2 11 0 13
3rd 3 9 0 12

2021

4th 0 1 0 1
1st 0 0 0 0

2022
2nd 0 0 1 1

The choice of the time period was done purposely for several reasons. The first is
related to the recent SARS-Cov2 pandemic that changed the workflow inside the Company,
seeing that the workforce was relocated to working-from-home during the year of 2020.
The second reason was the development team itself, that changed considerably during

49

Chapter 4. Results and Discussion

the pandemic. Third reason was the influence of this project to build a new architecture,
since it changed the Company’s development priorities. The idea of a new architecture was
considered somewhere in 2020, and became a priority in late 2021. The development and
deployment of updates to Clients is not uniformly distributed throughout this time period,
since newer Clients become priority as the amount of work is greater at the beginning of a
new Client project. The table is indexed by time, with time periods of 4 months, in order
not to occupy too much space in the document. For each block of 4 months, it’s presented
the total number of deployments performed for each Client during that time period.

From Table 4.4, it also becomes apparent that the development team does not work
on multiple projects simultaneously with the same involvement. Each time a Client re-
quires refactoring or updates, the amount of deployments performed to other clients drops
drastically. It can also be observed that, unless a refactor or big update is required, the
amount of deployments is very reduced or non-existent. Finally, the plan to move these
older Clients to the new Application that uses the new architecture is being put into place
and the updates to the old Applications was put on hold, to focus work on the new ar-
chitecture. This fact reflects on the lack of deployments for these older Clients since the
fourth quarter of 2021, when the project to migrate to the new Application was started.

As for the Deployment Frequency of the new architecture and the new Application,
the measurement was performed differently. Since each service is deployed independently,
Table 4.5 gathers the number of deployment per service per time period. Preparing the
old architecture’s components to accept multiple users and study, implement and test each
one of them took some time, the deployment of the new architecture is relatively recent.
Therefore, the time periods used in the table are in monthly intervals.

Table 4.5: Number of monthly deployment events per service in the new architecture.
Data collected from March 3rd to June 23rd, 2022.

Month
Backend
API

InfluxDB PostgreSQL
Forecast
Worker

Optimization
Worker

Perfomance
Worker

Redis Total

March 5 2 2 4 - 2 2 17
April 5 0 0 0 5 2 0 12
May 2 0 0 0 11 0 0 13
June 3 0 0 2 1 1 0 7

Although there are only 4 months of available data, a trend can be seen. In comparison
with the old architecture, the amount of total deployments per month has increased,
increasing the Deployment Frequency.

4.2.2 Lead Time for Change

Lead time for change, as a result of the new architecture and the new workflow it
brings to the Company, has decreased rapidly. Whereas changes would take hours or even
days to reach Production in the old architecture, the new architecture is able to deploy
a new version of a service in a matter of minutes. There is no table for this subsection

50

Chapter 4. Results and Discussion

of results for multiple reasons: Firstly, because the planned Observability platform is not
yet ready nor are the automatic CI/CD procedures currently running. Due to this, data
cannot be reliably obtained from neither an automatic Observability platform nor from a
local registry. The development team is small and since the new architecture is still not
finished, deployments have been made manually and, for that reason, there are no reliable
records of when those deployments occurred.

Although this value cannot be stated, it can be empirically seen that this metric has
decreased, which is an improvement. During the development of this implementation of
the new architecture, there were only two persons working full time on this. Assuming
the amount of re-prioritizing tasks was minimal, each developer mostly only addressed a
change at a time. This means that every deployment was the result of the most recent
change to code. Empirically, since the deployment and implementation coupling is low
or non-existent, changes made to code were put into Production as soon as possible,
leaving minutes or hours between changes and their deployment to Production. This
was exacerbated since there were no real Clients using the new Application until the last
month, July 2022, so the failure of a component was not a critical issue.

Therefore, it can be considered that the Lead Time for Change has improved.

4.2.3 Time to Restore Service

Likewise, the fact that the new architecture possesses low-to-nonexistent deployment
coupling made the Time to Restore Service reach lower values. This can be seen by the
fact that it is no longer required to deploy the whole Application in order to publish a
fix to Production. There are also no EC2 instances to be restarted, so this time is even
shorter now. Once again, however, this cannot be observed directly and objectively since
there is no numerical data to back up this claim in a mathematical way.

4.2.4 Change Failure Rate

As previously referred in section 3.3.1, the new architecture’s ability to test the code
multiple times in similar environments drastically reduces the Change Failure Rate. This
cannot be measured yet, for multiple reasons. Firstly, like the other metrics, there are no
Observability metrics for this metric. Secondly, since this new architecture project is still
being developed actively, the amount of changes is higher than would be expected during
a normal time and so, this number should not be taken into account. Nevertheless, the
changes to the architecture should prove that this metric has improved as soon as more
data is available.

4.3 Observability Improvements

As for Observability of the System, this has increased, reaching the goal that was
set out in the beginning of the project. The old architecture has no Observability, with

51

Chapter 4. Results and Discussion

the exception of the logs that are aggregated by Google Cloud’s operations suite, for-
merly Stackdriver (Screenshot available on Figure A.1) and AWS’s EC2 instance resource
monitoring shown on figure 4.2

Figure 4.2: All of the information available on EC2 instances. More detailed information
is available, but for extra cost.

These are the only two Observability options for the old architecture. Although the
AWS EC2 instance monitoring can provide useful information regarding CPU, Memory
and Network activity throughout time, not much can be concluded from that.

Now, with the new architecture making use of AWS’ ECS platform to orchestrate each
service’s containers, with the ability to create metric from the logs it gathers and set
alarms for those metrics, the amount and quality of Observability has improved consider-
ably. Since each service is separate and independent, resource usage can be more useful to
determine, how, when and why bottlenecks might occur when performing tasks. Through
monitoring solutions such as AWS’ CloudWatch3, it’s possible to obtain knowledge re-
garding internal system behavior that was not previously possible in the old architecture.
As an example, figure 4.3 shows three usage spikes across different services. Reducing the
number of services shown on the chart as in figure 4.4 allows the reader to understand
that the services using the CPU in those spikes are the Backend API and the Timeseries
database: InfluxDB. Occurring 3 times, and at the same time that the forecasting, opti-
mization and simulation tasks are running attests that the two events are indeed related,

3 https://aws.amazon.com/cloudwatch/

52

Chapter 4. Results and Discussion

as they should be.
As for the services, through this observability tool, it was possible to verify resource

utilization by service and by environment. With this information available, it’s now pos-
sible to analyze if the container running the service is well dimensioned for the service it’s
running. In figure 4.5 it can be seen that, apart to the spikes in CPU usage, most of the
services remain idle for the most part, with the exception of the Redis services, which are
using 15% of the capacity that was reserved for each container. This indicates that, while
not optimal, since the service is already operating on the lowest powered and cheapest
container possible, it’s well dimensioned. The remaining services, excluding the Backend
API and InfluxDB have an average CPU utilization below 5%, which indicates that for
some of those services, reducing their container’s CPU capacity can be further achieved.

Figure 4.3: Average CPU Utilization for all services in all environments, with a period of
5 minutes, during the last 24 hours.

All in all, the Observability of the Application is superior when using the new archi-
tecture, and as such, the goal set in the beginning of the document was achieved.

53

Chapter 4. Results and Discussion

Figure 4.4: Average CPU Utilization for the backend API and InfluxDB services in all
environments, with a period of 5 minutes, during the last 24 hours.

Figure 4.5: Average CPU Utilization for all services in all environments, with a period of
5 minutes, during the last 24 hours. The scrolling action above the charts lines provides
additional information regarding the resources that produced that line. In this case, Redis,
is shown to have a superior CPU utilization while idling.

54

Chapter 5

Conclusion

5.1 Final Considerations

Building software from the start is not a simple process, and it is always bound by
engineering, time and business constraints. When Water Utilities pick software to use for
the management of their daily pump operations, they are expecting an Application that
can be reliable and resilient but also performant. The goal of this dissertation was to
take the previous Application’s architecture and build a new Application from the ground
up, reusing code as little as possible, with the exception of the code that runs the special
forecasting, simulation and optimization algorithms. This new Application, using a new
software architecture, was meant to fix the major problems plaguing the old Application,
mainly the scalability issue.

The microservices and software architecture design literature was enlightening, and so,
the design patterns and knowledge was applied to this task and an analysis of the problem
was performed. Looking into the old architecture revealed more issues than it was thought
to have. The issues that were decided to be solved: the scalability, DevOps challenges and
Observability improvement. These were the goals to achieve with the new Application.

In order to accomplish such goals, a new way to think about how to handle multiple,
simultaneous Clients was needed. By using modern software engineering and software
architecture techniques, the new architecture started to gain shape as it separated its
modules from the Application’s monolithic architecture. This separation of responsibilities
and independence for each module allowed the Application to serve both the Client and
the Developer in a much easier way.

After sorting the scalability problem by removing the services from the monolithic
Application and using them as microservices in a containerized environment, where or-
chestration was automatic, many of the problems present in the old architecture were
gone.

The move to AWS Infrastructure, more precisely to the serverless platform for con-
tainers Fargate, allowed larger Observability of the system, which improves the overall
DevOps metrics.

55

Chapter 5. Conclusion

As for the final goal, of improving the Four Key Metrics of DevOps, the goal was
achieved as well, since the process to deploy changes to production was more robust and
production-safe while also improving by a long margin the delays that occurred between
committing a change to the Application’s code repository and the change being put into
Production.

Overall, the technologies used were more than adequate and suited for the work that
was proposed. Having achieved the goals set in the Introduction of this document, it is
safe to say that the final product, the Application, was successful.

5.2 Future Work

Despite meeting all of the goals set out in the beginning of the project, there were
some concerns that were not mentioned in the document that are as important or even
more important than the architecture. Although they required the architecture to reach
a more concluded state before being implemented, there are functionalities such as:

• Implementation of automatic actions based on observability metrics.

• Development of a standard protocol for Water Utilities to send their data to reduce
pre-processing on the Company’s infrastructure.

Another possible work for the future would be to implement Observability using third-
party, open-source tooling, so that the Application and supporting software were not tied
to a specific infrastructure provider such as AWS.

56

References

(2022).
url: https://ostif.org/our-audit-of-unbound-dns-by-x41-d-sec-full-resu

lts/ (cit. on p. 41).
24th Annual Network and Distributed System Security Symposium, NDSS 2017, San Diego,

California, USA, February 26 - March 1, 2017 (2017). The Internet Society.
url: https://www.ndss-symposium.org/ndss2017/ (cit. on p. 41).

Adams, Patton, Omar Al-Shahery, Joseph Chmiel, Amy Cunliffe, Molly Day, Oliver Fay,
Charlie Gardner, Gian Luca Giuliani, Samuel Goddard, and Larry et al. Karl (2022).
2020 CYBER THREATSCAPE REPORT.
url: https://www.accenture.com/_acnmedia/PDF-136/Accenture-2020-Cyber-

Threatscape-Full-Report.pdf (cit. on p. 7).
Ali, Abdulrazzaq, Abu Bakar Md Sultan, Abdul azim abdul ghani, and Hazura Zulzalil

(Sept. 2017). “in Critical Issues Across SAAS Development: Learning from Experience
CRITICAL ISSUES ACROSS SAAS DEVELOPMENT: LEARNING FROM EXPE-
RIENCE.” In: pp. 2393–2835. (Cit. on p. 6).

Aljamal, Rawan, Ali El-Mousa, and Fahed Jubair (2018). “A comparative review of high-
performance computing major cloud service providers.” In: 2018 9th International Con-
ference on Information and Communication Systems (ICICS). doi: 10.1109/iacs.2

018.8355463. (Cit. on p. 6).
Alnumay, Waleed (2020). “A brief study on Software as a Service in Cloud Computing

Paradigm.” In: Journal of Engineering and Applied Sciences, pp. 1–15. doi: 10.5455

/jeas.2020050101. (Cit. on pp. 5, 6).
Bass, Len, Ingo Weber, and Liming Zhu (2015). DevOps. Addison-Wesley. (Cit. on p. 14).
Candela, Ivan, Gabriele Bavota, Barbara Russo, and Rocco Oliveto (2016). “Using Cohe-

sion and Coupling for Software Remodularization.” In: ACM Transactions on Software
Engineering and Methodology 25.3, pp. 1–28. doi: 10.1145/2928268. (Cit. on p. 9).

Cavusoglu, Hasan, Huseyin Cavusoglu, and Jun Zhang (2008). “Security Patch Manage-
ment: Share the Burden or Share the Damage?” In:Management Science 54.4, pp. 657–
670. doi: 10.1287/mnsc.1070.0794. (Cit. on p. 7).

Chen, Rui, Shanshan Li, and Zheng Li (2017). “From Monolith to Microservices: A
Dataflow-Driven Approach.” In: 2017 24th Asia-Pacific Software Engineering Con-
ference (APSEC). doi: 10.1109/apsec.2017.53. (Cit. on p. 10).

57

https://ostif.org/our-audit-of-unbound-dns-by-x41-d-sec-full-results/
https://ostif.org/our-audit-of-unbound-dns-by-x41-d-sec-full-results/
https://www.ndss-symposium.org/ndss2017/
https://www.accenture.com/_acnmedia/PDF-136/Accenture-2020-Cyber-Threatscape-Full-Report.pdf
https://www.accenture.com/_acnmedia/PDF-136/Accenture-2020-Cyber-Threatscape-Full-Report.pdf
https://doi.org/10.1109/iacs.2018.8355463
https://doi.org/10.1109/iacs.2018.8355463
https://doi.org/10.5455/jeas.2020050101
https://doi.org/10.5455/jeas.2020050101
https://doi.org/10.1145/2928268
https://doi.org/10.1287/mnsc.1070.0794
https://doi.org/10.1109/apsec.2017.53

References

Dillon, Tharam, Chen Wu, and Elizabeth Chang (2010). “Cloud Computing: Issues and
Challenges.” In: pp. 27–33. doi: 10.1109/AINA.2010.187. (Cit. on p. 6).

Eugene Wiegers, Karl and Joy Beatty (2013). Software Requirements. 3rd ed. Microsoft
Press, U.S., pp. 4–23. (Cit. on p. 8).

Forsgren, Nicole, Dustin Smith, Jez Humble, and Jessie Frazelle (2019). 2019 Accelerate
State of DevOps Report. Tech. rep.
url: http://cloud.google.com/devops/state-of-devops/ (cit. on p. 14).

Glenn, Ashton (2018). “Equifax: Anatomy of a Security Breach.” PhD thesis. Georgia
Southern University. (Cit. on p. 7).

Gopal, Madan (1993). Modern control system theory. New Age International. (Cit. on
p. 15).

Hasselbring, Wilhelm (2018). “Software architecture: Past, present, future.” In: The
Essence of Software Engineering. Springer, Cham, pp. 169–184. (Cit. on pp. 8, 9).

IDC (2019). IDC FutureScape: Worldwide IT Industry 2019 Predictions. (Cit. on p. 12).
IDC (2021). IDC FutureScape: Worldwide IT Industry 2021 Predictions. (Cit. on p. 5).
“ISO/IEC/IEEE International Standard - Systems and software engineering–Vocabulary”

(2017). In: ISO/IEC/IEEE 24765:2017(E), pp. 1–541. doi: 10.1109/IEEESTD.2017

.8016712. (Cit. on p. 7).
Kim, Won (2009). “Cloud Computing: Today and Tomorrow.” In: The Journal of Object

Technology 8.1, p. 65. doi: 10.5381/jot.2009.8.1.c4. (Cit. on p. 5).
Lewellen, Stephanie (2020). “Identifying Key Stakeholders as Part of Requirements Elici-

tation in Software Ecosystems.” In: Proceedings of the 24th ACM International Systems
and Software Product Line Conference - Volume B B, pp. 88–95. doi: 10.1145/3382

026.3431249.
url: https://dl.acm.org/doi/pdf/10.1145/3382026.3431249 (cit. on p. 8).

Marks, Eric A and Michael Bell (2008). Service-oriented architecture: a planning and
implementation guide for business and technology. John Wiley & Sons. (Cit. on p. 8).

Martin, Robert C. (2014). Agile Software Development, Principles, Patterns, and Prac-
tices: Pearson New International Edition. 1st ed. Pearson. (Cit. on p. 12).

Mell, P M and T Grance (2011). “The NIST definition of cloud computing.” In: doi:
10.6028/nist.sp.800-145. (Cit. on pp. 5, 6).

Mills, Everald E (1988). Software metrics. Tech. rep. CARNEGIE-MELLON UNIV
PITTSBURGH PA SOFTWARE ENGINEERING INST. (Cit. on p. 16).

Newman, Sam (2015). Building Microservices. 1st ed. O’Reilly Media. (Cit. on p. 12).
Newman, Sam (2019). Monolith to microservices: evolutionary patterns to transform your

monolith. O’Reilly Media. (Cit. on pp. 2, 10, 11).
Niedermaier, Sina, Falko Koetter, Andreas Freymann, and Stefan Wagner (2019). “On

Observability and Monitoring of Distributed Systems – An Industry Interview Study.”
In: Service-Oriented Computing. Ed. by Sami Yangui, Ismael Bouassida Rodriguez,
Khalil Drira, and Zahir Tari. Cham: Springer International Publishing, pp. 36–52.
isbn: 978-3-030-33702-5. (Cit. on p. 15).

58

https://doi.org/10.1109/AINA.2010.187
http://cloud.google.com/devops/state-of-devops/
https://doi.org/10.1109/IEEESTD.2017.8016712
https://doi.org/10.1109/IEEESTD.2017.8016712
https://doi.org/10.5381/jot.2009.8.1.c4
https://doi.org/10.1145/3382026.3431249
https://doi.org/10.1145/3382026.3431249
https://dl.acm.org/doi/pdf/10.1145/3382026.3431249
https://doi.org/10.6028/nist.sp.800-145

References

Niknejad, Naghmeh, Waidah Ismail, Imran Ghani, Behzad Nazari, Mahadi Bahari, and Ab
Razak Bin Che Hussin (2020). “Understanding Service-Oriented Architecture (SOA):
A systematic literature review and directions for further investigation.” In: Information
Systems 91, p. 101491. doi: 10.1016/j.is.2020.101491. (Cit. on p. 8).

OpenTelemetry (2022).
url: https://opentelemetry.io/docs/concepts/observability-primer/ (cit. on
p. 15).

Pacheco, Carla, Ivan García, and Miryam Reyes (2018). “Requirements elicitation tech-
niques: a systematic literature review based on the maturity of the techniques.” In:
IET Software 12.4, pp. 365–378. doi: 10.1049/iet-sen.2017.0144. (Cit. on p. 8).

Parnas, D. L. (1972). “On the criteria to be used in decomposing systems into modules.”
In: Communications of the ACM 15.12, pp. 1053–1058. doi: 10.1145/361598.361623.
(Cit. on p. 9).

Rapid7 (2018). Security Report for In-Production Web Applications.
url: https://www.rapid7.com/globalassets/_pdfs/whitepaperguide/rapid7-t

cell-application-security-report.pdf (cit. on p. 7).
Rezaei, Reza, Thiam Kian Chiew, Sai Peck Lee, and Zeinab Shams Aliee (2014). “A

semantic interoperability framework for software as a service systems in cloud com-
puting environments.” In: Expert Systems with Applications 41.13, pp. 5751–5770. doi:
10.1016/j.eswa.2014.03.020. (Cit. on p. 5).

Sallin, Marc, Martin Kropp, Craig Anslow, James W. Quilty, and Andreas Meier (June
2021). “Measuring software delivery performance using the four key metrics of De-
vOps.” In: Lecture Notes in Business Information Processing, pp. 103–119. doi: 10.1

007/978-3-030-78098-2_7. (Cit. on p. 14).
Sommerville, Ian and Pete Sawyer (1997). Requirements engineering. Wiley, pp. 4–5. (Cit.

on p. 8).
Tal, Liran (2022). Alert: peacenotwar module sabotages npm developers in the node-ipc

package to protest the invasion of Ukraine | Snyk.
url: https://snyk.io/blog/peacenotwar-malicious-npm-node-ipc-package-vu

lnerability/ (cit. on p. 9).

59

https://doi.org/10.1016/j.is.2020.101491
https://opentelemetry.io/docs/concepts/observability-primer/
https://doi.org/10.1049/iet-sen.2017.0144
https://doi.org/10.1145/361598.361623
https://www.rapid7.com/globalassets/_pdfs/whitepaperguide/rapid7-tcell-application-security-report.pdf
https://www.rapid7.com/globalassets/_pdfs/whitepaperguide/rapid7-tcell-application-security-report.pdf
https://doi.org/10.1016/j.eswa.2014.03.020
https://doi.org/10.1007/978-3-030-78098-2_7
https://doi.org/10.1007/978-3-030-78098-2_7
https://snyk.io/blog/peacenotwar-malicious-npm-node-ipc-package-vulnerability/
https://snyk.io/blog/peacenotwar-malicious-npm-node-ipc-package-vulnerability/

Appendices

61

Appendix A

Appendix example

A.1 Logging Interfaces

A.1.1 Google Cloud’s Log Explorer (Former Stackdriver)

63

Appendix A. Appendix example

Figure A.1: Screenshot of an old Application’s Worker’s Logs displayed on the formerly
named Stackdriver, now part of Google’s Cloud solutions.

64

	Table of contents
	List of figures
	List of tables
	List of abbreviations
	Introduction
	Water Supply Systems
	Existing Decision Support System
	Objectives
	Structure of the Document

	State-of-the-Art
	Cloud Computing
	Deployment models for cloud computing

	Software-as-a-Service
	Security

	Software Engineering
	Defining Requirements

	Software Architecture
	Service-Oriented Architecture
	Modularity
	Reusing Software Components
	Cohesion and Coupling
	Monolithic and Modular Monolithic
	Microservices

	DevOps
	Deployment Frequency
	Lead Time for Change
	Time to Restore Service
	Change Failure Rate

	Observability
	OpenTelemetry
	Telemetry

	Methodology
	The Application
	The Old Architecture
	Overview
	Issues
	Observability

	Proposed New Architecture
	Solving the Deployment issues
	Solving the Scalability issues
	Replaceability
	Resiliency
	Temporal Coupling
	Implementation Coupling
	Testing
	New components
	Workers
	VPN and DNS
	Observability
	Finalized Proposed Version

	Results and Discussion
	Scalability Improvements
	Cost Rundown
	Development and Deployment Issues
	Ensuring Performance

	DevOps Improvements
	Deployment Frequency
	Lead Time for Change
	Time to Restore Service
	Change Failure Rate

	Observability Improvements

	Conclusion
	Final Considerations
	Future Work

	References
	Appendices
	Appendix example
	Logging Interfaces
	Google Cloud's Log Explorer (Former Stackdriver)

