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ABSTRACT
Aheroin epidemicmathematicalmodel with prevention infor-
mation and treatment, as control interventions, is analysed,
assuming that an individual’s behavioural response depends
on the spreading of information about the effects of heroin.
Such information creates awareness, which helps individu-
als to participate in preventive education and self-protective
schemeswith additional efforts.Weprove that thebasic repro-
duction number is the threshold of local stability of a drug-
free and endemic equilibrium. Then, we formulate an opti-
mal control problem to minimize the total number of drug
users and the cost associated with prevention educationmea-
sures and treatment. We prove the existence of an optimal
control and derive its characterization through Pontryagin’s
maximum principle. The resulting optimality system is solved
numerically. We observe that among all possible strategies,
the most effective and cost-less is to implement both control
policies.
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1. Introduction

An opioid drug, made from morphine, is known as heroin. It is a natural sub-
stance in the seedpod of the Asian opium poppy plant, used as a recreational
drug for its euphoric effects. Heroin is also known as diamorphine, used as a
painkiller or in an opioid replacement treatment. It is a white or brownpowder, or
a black sticky substance known as black tar heroin [1]. The users inject these types
of contents into a vein. Heroin can also be smoked, snorted or inhaled. When
injected into a vein, the drug has two to three times the effect of a similar dose of
morphine. Nowadays, the use of non-medical prescription drugs is becoming a
significant threat around the world. It is estimated that about 23% of individuals
who take these substances become dependent on them. Further, drug users are
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suffering severe mental illness, including suicidal, especially among youth indi-
viduals. According to the World Health Organization (WHO), roughly 450,000
people die as a result of drug use [2]. The spread of heroin usage and its addiction
follow many of the familiar aspects of epidemics. The National Survey on Drug
Use and Health (NSDUH) [3] estimates that the percentage of heroin users aged
twelve or above was particularly high between 2002 and 2008. Among the young
adults, it is similar high from 2009 to 2012. Currently, many countries are affected
by the heroin drug trade and its growing number of users. Due to its high in
quality and low in cost, heroin is likely to approach consumer markets over the
world with increased consumption and related harmful effects. Drug users who
share needles have a higher risk of the proliferation of other diseases, like human
immunodeficiency virus (HIV), Hepatitis B and C [4,5].

A successful anti-drug vaccine produces an immune response to block the
target drug from entering the brain and thus avoiding psychoactive or addic-
tive effects. The experimental new vaccine for heroin addiction, developed at
the National Institute on Drug Abuse (NIDA) [1], incites the generation of anti-
bodies, which block the effects of heroin. It prevents the drug from crossing
the blood-brain barrier and the euphoric effects of heroin, so far tested in mice
and rats. Side effects in quitting heroin usage are very severe and, often, con-
strain heroin addicts to reverse. Available medicines can be given during the
detoxification stage to prevent and reduce physical symptoms.

Treatment of drug users is an expensive procedure. It is a long-term process
involving various interventions and consistent monitoring to recover success-
fully. Many countries still fail to provide treatment and other health services,
mainly due to lack of funds. It is also a significant burden on the health system of
many nations. Several types of researches suggest that drug usage and the associ-
ated harm are highest among young people aged 18–25 years. Therefore, the rise
in awareness among users is needed to make countries healthy. Prevention edu-
cation, treatment interventions, and alternative development programs, as well
as a criminal justice response, prevent an increase in drug habituation and its
disorders. Furthermore, it is also important to provide treatment and services to
minimize the adverse health effects due to drug use.

Mathematical models are a handy tool to describe and predict how classes of
drug users behave. Moreover, treatment strategies can naturally be added to such
models as control variables. The resulting control systems can then play a vital
role in the understanding of the drug addiction problem. This is our motivation
in the present work: to investigate the real-life problem of heroinmathematically,
as an epidemic problem, with the aim to reduce the transmission mechanism.
As already mentioned, for a better control of the transmission mechanism, it is
crucial to consider both prevention education and treatment. Moreover, to treat
heroin addiction and disorders related to its usage, it is important the integra-
tion of both behavioural and pharmacological medications. Such an integrated
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approachwill eventually result in a society free of drug addiction.With the reduc-
tion of criminal behaviour, one expects an increase in the employment rate and
a lower risk of other related health diseases. Therefore, prevention and treatment
of heroin addiction is beneficial and efficient for individuals and society.

During the last few years, several mathematical models have been devel-
oped to describe the heroin epidemic [6,7]. The literature includes clinical and
theoretical studies [7–10], as well as educational campaigns [11]. In [6,7], sus-
ceptible, untreated, and treated individuals are considered with a standard inci-
dence rate. In [12], Wangari and Stone model the heroin problem based on
similar assumptions as used in infectious diseases and consider a saturation func-
tion for treating the heroin drug users. In [13], Wang et al. consider a mass
action incidence rate and prove the existence of a drug-free equilibrium and
a unique endemic equilibrium, which is stable under some conditions. Huang
and Liu study the stability for a heroin epidemic model with distributed delay
[14], improving related results previously obtained in [15]. A non-autonomous
heroin epidemic model is also analysed in [8], where it is suggested that the
spread of heroin among users can be controlled by full screening measures.
More recently,Wang et al. [16] analysedmathematically an age-structured heroin
epidemic model, which can be used to describe the spread of heroin habitu-
ation and addiction in a heterogeneous environment. Even though the above-
proposed models study many important features, most of them fail to consider
the heroin epidemic model as a control system. Here we propose a heroin epi-
demic disease model with control variables and study it using optimal control
theory.

In [9], the authors formulate a mathematical model for illicit drug use and
investigate optimal control strategies for the model. Precisely, they incorporate
two control functions: one to reduce the intensity of social influence and the other
to increase the rate of detection and rehabilitation of illicit drug users. In [17], a
synthetic drug transmission model is proposed and an optimal control problem
is formulated. They show that a proper optimal policy can minimize the cost
burden as well as the number of addicted individuals. In [18], the authors incor-
porate control interventions as education campaigns and treatment to minimize
the impact of HIV. In [19], an epidemic model with the effect of information
about the vaccine and treatment, as control interventions, is considered. Opti-
mal control of an SIR model with education or information, that causes a change
in the behaviour response, is proposed in [20]. The dynamics of illicit drug use
and its optimal control analysis are investigated in [9]. In [21], a mathematical
model with prescription drug addiction and treatment is proposed to control
the opioid epidemic. An optimal control problem and a cost-effectiveness analy-
sis for the transmission of the Zika virus are analysed in [22], with four types
of preventive measures as control variables. In [23,24], Ebola models with a
preventive control in the form of education campaigns are investigated. Very



3110 P. T. SOWNDARRAJAN ET AL.

recently, an age-structured heroin epidemic model is formulated with partial dif-
ferential equations, under the assumption that susceptibility and recovery are
age-dependent, keeping in view some control measures for heroin addiction
and using optimal control for simulations, which show the effect on the entire
population [25,26].

Motivated by the above-mentionedworks, we extend here available heroin epi-
demic models by introducing two new compartments. In particular, we extend
themodel proposed in [7] bymodelling behavioural change, through the spread-
ing of information and preventive education, and treatments. The novelty of the
model consists to express the risk factors of drugs through information, as a
behavioural response to susceptible individuals. As a consequence, in our model,
the susceptible have an active role in preventive education and provide a self-
protective effect. Furthermore, failure in participating in preventive programmes
moves individuals back to the susceptible population.

The paper is organized as follows. In Section 2, we formulate a newmathemat-
ical model for the heroin epidemic with a behavioural response. Furthermore,
the drug-free equilibrium is computed and the basic reproduction number R0
obtained. Section 3 deals with the stability analysis of the equilibrium points (we
prove that the heroin-free equilibrium is locally asymptotically stable when the
basic reproduction number is less than one, cf. Theorem3.1, and, under a suitable
condition, is globally asymptotically stable, cf. Theorem 3.2; andwe obtain condi-
tions underwhich the endemic equilibriumof the system is locally asymptotically
stable, cf. Theorem 3.3) and we perform a sensitivity analysis of the epidemiolog-
ical model. Then, in Section 4, we formulate an optimal control problem and do
its analysis: we prove the existence of an optimal control pair that minimizes the
proposed cost functional, in finite time, cf. Theorem 4.1; and we characterize it
using Pontryagin’s Maximum Principle, cf. Theorem 4.2. Numerical simulations
are given in Section 5. We end with some concluding remarks in Section 6. We
claim that the model here proposed and analysed can also be useful to combat
other drug epidemics such as cocaine.

2. Mathematical model

In this section, we propose and analyse a mathematical model for the heroin
epidemics. A schematic diagram for the proposed model is shown in Figure 1.
The parameter � represents the constant recruitment rate of susceptible indi-
viduals, S. The natural death rate of all individuals is assumed to be μ. The
parameter β1 represents the probability of becoming a drug user, U1, and β2
denotes the rate of drug users in treatment, U2, relapsing to untreated. The rate
at which drug users enter into treatment is p. Later, we will incorporate a ‘case
holding’ control mechanism in the model by replacing the parameter p with
u2(t), which will act as a control variable. The individuals in preventive edu-
cation, E, are in a state of self-protection and stop participating in preventive
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Figure 1. Schematic diagram of the proposed heroin epidemic model.

education, moving back to the susceptible class, at a rate θ . Parameters δ1 and
δ2 denote induced death rates caused by heroin, respectively for drug users with-
out and with treatment. Information regarding heroin mainly spreads through
various media such as TV, newspapers, etc., as well as active social and educa-
tional campaigns from the government. This information density is proportional
to the population density of drug users under no treatment and will change as
population U1 changes. Let Z(t) denote the density of information spreading in
the population at time t, such that the information density Z(t) vanishes when
U1(t) = 0. This information increases the awareness of the behavioural change
of insusceptible individuals to protect themselves from consuming heroin. Even
though the people are informed, everyone does not respond to it equally. So, only
a fraction of a susceptible populationwith information is responding to the harm-
ful effects of consuming heroin and changing their behaviour, moving to class E.
The rate of behavioural response via information interaction will be a function
of both the densities of susceptible individuals and information, that is, f (S,Z).
Also, the growth of information is a function of U1, that is, g(U1), as the growth
of information depends only on the density of untreated heroin consumers. The
rate of behavioural response of susceptible individuals, caused by the information
about the harmful and risk factors of heroin, is here assumed as f (S,Z) = u1ρSZ
[19], where u1ρ is the corresponding response rate and the parameter ρ is the rate
of information interaction by which individuals change their behaviour. Later,
we will consider u1, the response intensity through information, as a control
variable u1(t). The growth rate of information g(U1) is assumed as a saturated
functional of the form g(U1) = aU1

1+bU1
, where a is the growth rate of information

and b the saturation constant. We denote by a0 the natural degradation rate of
information, which happens with time due to natural fading of memory about
information as well as complacent behaviour. Furthermore, we consider the fol-
lowing assumptions in our model: drug users who are not in treatment may
contact with susceptible and users in treatment in an undesirable way, transmit-
ting to them the habit of consuming heroin; drug users who are in treatment does
not transmit the habit of consuming heroin to susceptible; finally, those who are
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in treatment may return back to no-treatment due to contact with U1 individu-
als. Thus, the proposed system of nonlinear ordinary differential equations is as
follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dU1(t)
dt

= β1S(t)U1(t) − pU1(t) + β2U1(t)U2(t) − (μ + δ1)U1(t),

dU2(t)
dt

= pU1(t) − β2U1(t)U2(t) − (μ + δ2)U2(t),

dS(t)
dt

= � − β1S(t)U1(t) − μS(t) + θE(t) − f (S(t),Z(t)) ,

dE(t)
dt

= f (S(t),Z(t)) − (μ + θ)E(t),

dZ(t)
dt

= g (U1(t)) − a0Z(t),

(1)

with non-negative initial conditions U1(0), U2(0), S(0), E(0) and Z(0). The total
population, denoted by N(t), is partitioned into the four sub-classes of suscep-
tible S(t), drug users not in treatment U1(t), drug users in treatment U2(t), and
educated E(t): N(t) := U1(t) + U2(t) + S(t) + E(t).

Let us consider the biologically feasible region by

D =
{
(S,U1,U2,E,Z) ∈ R

5
+ : 0 ≤ N(t) ≤ �

μ
, 0 < Z(t) ≤ a�

a0μ

}
.

Next, we establish the positive invariance of the feasible region D. It is trivial to
show that (S,U1,U2,E,Z) > 0 is positive for all time. Thus,

dN
dt

= � − μN − δ1U1 − δ2U2 ≤ � − μN.

Then, a standard comparison theorem (see, e.g. [27]) can be used to show that

N(t) ≤
(
N(0) − �

μ

)
e−μt + �

μ
≤ �

μ

for all t ≥ 0. Moreover, we have

dZ
dt

≤ aU1 − a0Z ≤ a�
μ

− a0Z.

It follows that

Z(t) ≤
(
Z(0) − a�

a0μ

)
e−a0t + a�

a0μ
≤ a�

a0μ

for all t ≥ 0 and system (1) is epidemiologically and mathematically well-posed.
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2.1. Drug-free equilibrium

In order to study the behaviour of the heroin model at its equilibrium, we set the
right-hand side of all the equations of system (1) to zero. It is easy to understand
that Ũ1 = Ũ2 = Ẽ = Z̃ = 0 at the drug-free state and, therefore, the drug-free
equilibrium (DFE) point of our heroin drug model is given as

E0 =
(
S̃, Ũ1, Ũ2, Ẽ, Z̃

)
=

(
�

μ
, 0, 0, 0, 0

)
. (2)

2.2. Basic reproduction number

The basic reproduction number, denoted by R0, is a threshold parameter used in
epidemiology to measure the transmission potential of an infection. It is defined
to be the expected number of secondary cases produced from a typical infected
individual when introduced into a susceptible population during its entire period
of infection. Here, R0 represents the total number of people that each single drug
user will initiate to drug use during their drug-using career. To obtain the basic
reproduction number for model (1), we use the next generation matrix method
of [28].

Let x = (U1,U2, S,E,Z)T . Then, system (1) can be written as

dx
dt

= F(x) − V(x),

where F(x) = (β1SU1 + β2U1U2, 0, 0, 0, 0)T is the rate of new addictions in the
population and

V(x) =
(

(μ + δ1 + p)U1,β2U1U2 + (μ + δ2)U2 − pU1,

β1SU1 + μS + u1 dSZ − θE − �,

μE + θE − u1 dSZ, a0Z − aU1

1 + bU1

)T

is the rate of transfer of individuals. Thus, the corresponding linearized matri-
ces are given as DF(x)(E0) and DV(x)(E0), respectively. To obtain the basic
reproduction number R0, we need to consider only the infected components of
F := DF(x)(E0) and V := DV(x)(E0) [28]. Therefore, we have

F =

⎛
⎜⎜⎝

β1�

μ
0 0

0 0 0
0 0 0

⎞
⎟⎟⎠
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and

V =
⎛
⎝Q1 0 0

−p Q2 0
−a 0 a0

⎞
⎠ ,

where

Q1 = μ + δ1 + p and Q2 = μ + δ2. (3)

Matrix FV−1 is said to be the next generation matrix of system (1). The basic
reproduction R0 is given as the spectral radius of FV−1, and we obtain that

R0 = β1�

μ(μ + δ1 + p)
. (4)

3. Stability analysis

In this section, we discuss the stability of the equilibrium points of model (1).

Theorem 3.1: If R0 < 1, then the heroin-free equilibrium E0 is locally asymptoti-
cally stable.

Proof: The Jacobian matrix of the system at E0 is

J(E0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−μ −β1�

μ
0 θ −u1ρ�

μ

0 −β1�

μ
− p − (μ + δ1) 0 0 0

0 p −(μ + δ2) 0 0

0 0 0 −(μ + θ)
u1ρ�

μ
0 a 0 0 −a0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The eigenvalues of the characteristic equation of J(E0) are

λ1 = −μ, λ2 = −(μ + θ), λ3 = −a0,

together with the solutions of the equation

λ2 + ζ1λ + ζ2 = 0, (5)

where ζ1 = 2μ + p + δ1 + δ2 + β1�
μ

and ζ2 = −β1�
μ

[(μ + δ2)(1 − 1
R0 )]. By the

Routh–Hurtwiz condition, the characteristic equation (5) has two roots with neg-
ative real parts if, and only if, ζi > 0, i = 1, 2. The result follows from the fact that
R0 < 1 implies ζi > 0, i = 1, 2. �

Theorem 3.2: If β1�
μ(μ+δ1)

< 1, then the heroin-free equilibrium E0 is globally
asymptotically stable.
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Proof: We consider the Lyapunov function L(U1,U2) = U1 + U2. The time
derivative of L computed along with the solutions of system (1) is given by

dL
dt

= β1SU1 − (μ + δ1)U1 − (μ + δ2)U2

≤ (μ + δ1)

[
β1�

μ(μ + δ1)
− 1

]
U1 − (μ + δ2)U2.

When β1�
μ(μ+δ1)

< 1, we get dL
dt < 0. Furthermore, dL

dt = 0 if and only if U1 =
U2 = 0. Note that the largest compact invariant set is {(S̃, Ũ1, Ũ2, Ẽ, Z̃)|dLdt =
0}. Therefore, the drug-free equilibrium E0 is globally asymptotically stable by
LaSalle’s invariance principle. �

3.1. Endemic equilibria

The endemic equilibrium point E1 = (S∗,U∗
1 ,U

∗
2 ,E

∗,Z∗) of system (1) is given
by

S∗ = �

μ

1
R0

[
Q1(β2U∗

1 + μ + δ2) − β2pU∗
1

Q1(β2U∗
1 + μ + δ2)

]
,

U∗
2 = pU∗

1
β2U∗

1 + μ + δ2
,

E∗ = u1ρS∗aU∗
1

a0(1 + bU∗
1 )(μ + θ)

,

Z∗ = aU∗
1

a0(1 + bU∗
1 )
,

with U∗
1 the positive solution of equation A1U3

1 + A2U2
1 + A3U1 + A4 = 0,

where

A1 = Q1β2a0b(μ + θ)(μ + δ1),

A2 = −a0 (μ + θ) bQ1β2�

(
1 − 1

R0

)

+ Q1β2a0(μ + θ)(μ + δ1) + Q2
1Q2a0b(μ + θ)

− �

R0
β2pa0b(μ + θ) + �

R0
β2u1ρa(μ + δ1),

A3 = −a0(μ + θ)Q1β2�

(
1 − 1

R0

)
− a0b(μ + θ)Q1Q2�

(
1 − 1

R0

)

+ Q2
1Q2a0(μ + θ)

− �

R0
β2pa0(μ + θ) + �

R0
Q1Q2u1ρa,
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A4 = −a0(μ + θ)Q1Q2�

(
1 − 1

R0

)

and Q1 and Q2 are given as in (3). For all possible values of the parameters, one
has always A1 > 0. If R0 > 1, then A4 < 0. Now, using Descartes’ rule of signs,
we obtain

(i) if A2 > 0 and A3 > 0, then there exists exactly one positive root;
(ii) if A2 > 0 and A3 < 0, then there exists exactly one positive root;
(iii) if A2 < 0 and A3 > 0, then there exists three or one positive roots;
(iv) if A2 < 0 and A3 < 0, then there exists exactly one positive root.

Therefore, U∗
1 may have a non-trivial positive value if any one of the above

four conditions (i)–(iv) is satisfied.

Theorem 3.3: The endemic equilibrium E1 = (S∗,U∗
1 ,U

∗
2 ,E

∗,Z∗) of the system is
locally asymptotically stable if R0 > 1 and the following conditions are satisfied:

	i > 0, i = 2, . . . , 5,

	1	2	3 > 	2
3 + 	2

1	4,

(	1	4 − 	5)(	1	2	3 − 	2
3 − 	2

1	4) > 	5(	1	2 − 	3)
2 + 	1	

2
5,

(6)

where

	1 = −a11 − a22 − a33 − a44 − a55,

	2 = a11(a44 + a33 + a22 + a55) − a21a12 − a14a41 − a23a32 + a55a22
+ a33(a22 + a55) + a44(a33 + a22 + a55),

	3 = a11(a23a32 − a33a44 − a44a22 − a44a55 − a33a22 − a33a55 − a55a22)

− a21a15a52 − a33a44a22 − a55(a33a44 + a44a22 + a33a22)

+ a21(a12a33 + a12a44 + a12a55) + a14(a33a41 + a41a22 + a41a55)

+ a23a32(a44 + a55),

	4 = a11a44(a33a22 − a23a32) − a11a55(a23a32 − a33a44)

+ a11a55a22(a44 + a33)

− a21a12(a33a44 + a33a55 + a44a55)

− a14a33a41(a22 + a55) − a21a14a45a52
+ a21a15a52(a33 + a44) + a23a32(a14a41 − a44a55)

+ a55a22(a33a44 − a14a41),

	5 = a11a44a55(a23a32 − a33a22) − a14a41a55(a23a32 − a33a22)

− a21(a15a33a44a52 − a12a33a44a55 − a14a45a33a52),
(7)
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with

a11 = −β1U∗
1 − μ − u1ρZ∗, a12 = −β1S∗, a14 = θ , a15 = −u1ρS∗,

a21 = β1U∗
1 , a22 = β1S∗ + β2U∗

2 − Q1, a23 = β2U∗
1 ,

a32 = p − β2U∗
2 , a33 = −β2U∗

1 − Q2,

a41 = u1ρZ, a44 = −(μ + θ), a45 = u1ρS∗,

a52 = a
(1 + bU∗

1 )
2 , a55 = −a0,

(8)
and Q1 and Q2 given by (3).

Proof: The Jacobian matrix of the system at E1 is

J(E1) =

⎛
⎜⎜⎜⎜⎝
a11 a12 0 a14 a15
a21 a22 a23 0 0
0 a32 a33 0 0
a41 0 0 a44 a45
0 a52 0 0 a55

⎞
⎟⎟⎟⎟⎠ ,

where the aij’s are given as in (8). The characteristic equation of J(E1) is given by
λ5 + 	1λ

4 + 	2λ
3 + 	3λ

2 + 	4λ + 	5 = 0 with the 	i’s defined by (7). One
has 	1 > 0 for all feasible S∗ and U∗

2 . Therefore, the endemic equilibrium of the
system is locally asymptotically stable if, and only if, the Routh–Hurwitz criterion
is satisfied, that is, conditions (6) hold. �

3.2. Sensitivity analysis

A sensitivity analysis of the epidemiological model is performed to determine
the relative importance of the model parameters to the infection transmission.
Such analysis is important to discover the parameters that have a high impact
on R0 and should be targeted by intervention strategies. The basic reproduction
number (4) of system (1) depends on the recruitment rate of susceptible, �, on
the probability β1 of becoming a drug user, on the natural death rate μ, on the
rate p at which drug users enter into treatment, and on the induced death rate δ1
caused by heroin. Computing the partial derivatives of R0 with respect to β1 and
p gives

∂R0

∂β1
= �

μ(μ + δ1 + p)
> 0,

∂R0
∂p

= − β1�

μ(δ1 + μ + p)2
< 0.

Next, we examine the sensitivity of R0 with respect to the parameters β1 and p,
by the method of Arriola and Hyman [29]: the normalized forward sensitivity
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index for each of those parameters. The normalized forward sensitivity index of a
variable for a parameter is the ratio of the relative change in the variable to the rel-
ative change in the parameter.When the variable is a differentiable function of the
parameter, then the sensitivity index may be alternatively defined using partial
derivatives. Note that to the most sensitive parameter v it corresponds a normal-
ized forward sensitivity index of one or minus one: 	v = ±1. If 	v = +1, then
an increase (decrease) of v by x per cent increases (decreases) R0 by x per cent. If
	v = −1, then an increase (decrease) of v by x per cent decreases (increases) R0
by x per cent [30,31]. In order to reduce the drug burden, we pay more attention
to the highest sensitivity index parameters. Therefore, we compute for parameters
β1 and p as follows:

	β1 =
∣∣∣∣β1

R0
∂R0
∂β1

∣∣∣∣ = 1.

It is noted that the basic reproduction number R0 is most sensitive to changes in
β1, that is, the probability of becoming a drug user. If β1 increases, then R0 will
increase. Similarly, if β1 decreases, then R0 will decrease. Next,

	p =
∣∣∣∣ pR0

∂R0
∂p

∣∣∣∣ < 1.

Here, R0 is less sensitive to changes in p, the rate at which drug users enter into
treatment. Further, 	p suggests that an increment in p will decrease R0 and a
decrease in p will increase R0. As R0 is more sensitive to changes in β1 than p,
we choose to focus more on β1. Furthermore, ∂R0

∂p < 0 implies that improving
the successful treatment rate is a successful remedy for drug addiction and its
associated disorders. Finally, this sensitivity analysis tells us that preventing (or)
controlling individuals from drug use is more effective than any other strategy.

4. Optimal control model

In this section, we begin by formulating an optimal control problem with vacci-
nation and treatment as control interventions. Then, we prove the existence of an
optimal control and characterize it through Pontryagin’s Maximum Principle.

4.1. The total cost functional

Ourmain goal is to decrease the number of drug users and the cost of implement-
ing the two control interventions. Therefore, we consider the following total cost
functional J to minimize, as the weighted sum of three components:

J[u1(·), u2(·)] =
∫ tf

0
[B1U1 + B2u41(t) + B3u22(t)] dt −→ min (9)
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subject to the model control system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt

= � − β1SU1 − μS + θE − u1(t)ρSZ,

dU1

dt
= β1SU1 − u2(t)U1 + β2U1U2 − (μ + δ1)U1,

dU2

dt
= u2(t)U1 − β2U1U2 − (μ + δ2)U2,

dE
dt

= u1(t)ρSZ − (μ + θ)E,

dZ
dt

= aU1

1 + bU1
− a0Z,

(10)

with fixed initial conditions

S(0) = S0 > 0, U1(0) = U1,0 > 0, U2(0) = U2,0 > 0,

E(0) = E0 > 0, Z(0) = Z0 > 0. (11)

Here, tf is the fixed terminal time. The detailed report of the three components
in cost functional (9) is as follows:

(i) The cost induced by heroin burden itself is
∫ tf

0
B1U1(t) dt, which is pro-

portional to the number of drug users U1. It also includes drug-affected
driving, creating an impact on the environment, nation’s economy, individ-
ual’s health loss, career loss like education, employment, and productivity,
social care, etc. The coefficient B1 represents the positive weight constant of
the heroin drug user.

(ii) Preventive education to susceptible individuals. Prevention from drug
abuse helps the population to live longer, happier and healthier. It also helps
in better growth of nation’s economy,making it stronger. Therefore, provid-
ing information about the risk factors behind the drug use, its associated
disorders and mainly its prevention, like effective participation in preven-
tive education, which includes self-protective schemes,makes a behavioural
change among susceptible population. Additional efforts are needed to
increase prevention and turn it more effective in controlling the habit of
drug use. Mainly, preventive and protective factors should include impulse
control, parental monitoring, academic competence, anti-drug use policies,
and secure neighbourhood attachment. Here, all the susceptible individuals
are made aware of preventive education through the spreading of informa-
tion. In our model, the control variable u1(t) is the intensity response func-
tion through information to maximize the individual behavioural response
and keeping cost low. The cost

∫ tf
0 B2u41(t) dt is involved in the process

of information spreading, through preventive education and its participa-
tion. It may be through campaigns, mass media, social networks, etc. It
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also represents the cost of spreading information, which includes creating
awareness about the high-risk factors of heroin abuse and its causes. More-
over, this gives information about the heroin user’s behaviour and, mainly,
its protective measures. The cost is comparatively higher because of the
additional efforts needed to convince individuals of a behavioural change.
Hence, we consider the non-linearity of order four u41(t) [19,32]. It repre-
sents the high expenses and efforts to spread the information. Here, the
coefficient B2 represents the positive weight constant associated with the
spreading of information.

(iii) Medical treatment to drug users. Drug addictions and their disorders
can be lowered by a certain level by undergoing medical procedures. It
involves hospitalization, diagnosis, medication, and other subsequent ther-
apies, like contingency management psychology, motivational incentives,
etc. Here, we consider the treatment rate p as the control variable u2(t),
which measures the treatment intensity. The cost

∫ tf
0 B3u22(t) dt is involved

in providing treatment. It represents the cost of medical treatment. To treat
drug abuse population, psychological and pharmacological medications are
included. We consider a non-linearity of order two, u22(t), in the cost for
treatment [18,33]. The coefficientB3 represents the positive weight constant
associated with treatment.

Thus, the Lagrangian function L for our optimal control problem is given by

L(S,U1,U2,E,Z, u1, u2) = B1U1 + B2u41 + B3u22. (12)

The control variables u1(t) and u2(t) of our optimal control problem involve the
following admissible control set:

Uad = {(u1, u2)|ui(t) is Lebesgue measurable on [0, tf ] : 0 ≤ ui(t)

≤ uimax, i = 1, 2},

where u1max and u2max are fixed positive constants.

4.2. Existence of optimal control

In this subsection, we prove that there exists an optimal control pair u∗
1 and u∗

2
that minimizes the cost functional J in finite time.

Theorem 4.1: There exists an optimal control pair u∗
1 and u∗

2 in Uad such that
J(u∗

1, u
∗
2) = min{J(u1, u2)}, solution to optimal control problem (9)–(11).

Proof: To prove the existence of the solution, we need to satisfy the following
conditions:
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(1) The admissible set of controlsUad and the state solutions of (10) is nonempty.
(2) The control set Uad is closed, convex and the state system can be expressed

as a linear function of the control variables with coefficients that depend on
time and state variables.

(3) The integrand L in cost functional (9) is convex on the control set Uad
and L(S,U1,U2,E,Z, u1, u2) ≥ h(u1, u2), where h(u1, u2) is continuous and
|(u1, u2)|−1h(u1, u2) → ∞whenever |(u1, u2)| → ∞, with | · | the L2(0, tf )
norm.

For each control variables u1 and u2 in the setUad, the solutions of system (10)
are bounded and the right-hand side satisfies the Lipschitz conditionwith respect
to the state variables. Therefore, by applying the Picard–Lindelöf theorem [34],
condition (1) holds. By definition, the control set Uad is closed and convex. The
model system (10) is linear in the control variables u1 and u2 with the coefficients
dependent on the state variables. Thus, condition (2) is satisfied. Finally, the inte-
grand L is convex due to the biquadratic nature of u1 and the quadratic nature
of u2.We have L(S,U1,U2,E,Z, u1, u2) ≥ B2u41 + B3u22. Let c = min(B2,B3) > 0
and h(u1, u2) = c(u41 + u22). Then, condition (3) is also satisfied. Hence, from
[35], there exists a control pair u∗

1 and u
∗
2 such that J(u

∗
1, u

∗
2) = min J(u1, u2). �

4.3. Characterization of optimal control functions

Now, we derive necessary optimality conditions using Pontryagin’s Maximum
Principle (PMP) [36,37]. In particular, we characterize the optimal control pair
u∗
1 and u∗

2 for problem (9)–(11).

Theorem 4.2: Let u∗
1 and u∗

2 be optimal controls of problem (9)–(11) and S∗,
U∗
1 , U

∗
2 , E

∗, Z∗ the corresponding optimal state trajectories satisfying (10)–(11)).
Then, there exists an adjoint variableλ = (λ1, λ2, λ3, λ4, λ5) ∈ R

5 that satisfies the
following equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dλ1
dt

= λ1β1U1 + λ1μ + λ1u1ρZ − λ2β1U1 − λ4u1ρZ,

dλ2
dt

= λ1β1S − λ2β1S + λ2u2 − λ2β2U2 + λ2μ + λ2δ1 − λ3u2

+λ3β2U2 − λ5
a

(1+bU1)2
− B1,

dλ3
dt

= −λ2β2U1 + λ3β2U1 + λ3μ + λ3δ2,

dλ4
dt

= λ4μ + λ4θ − λ1θ ,

dλ5
dt

= λ1u1ρS − λ4u1ρS + λ5a0,

(13)

with transversality conditions

λi(tf ) = 0, i = 1, . . . , 5. (14)
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Moreover, the optimal controls u∗
1 and u

∗
2 are given as

u∗
1(t) = min

{
max

{
0,

(
ρS∗(t)Z∗(t)

4B2
(λ1(t) − λ4(t))

) 1
3
}
, u1max

}
,

u∗
2(t) = min

{
max

{
0,

(λ2(t) − λ3(t))U1(t)
2B3

}
, u2max

}
.

(15)

Proof: We define the Hamiltonian function as follows:

H(S,U1,U2,E,Z, u1, u2, λ) = L(S,U1,U2,E,Z, u1, u2)

+ λ1 (� − β1SU1 − μS + θE − u1ρSZ)

+ λ2 (β1SU1 − u2U1 + β2U1U2 − (μ + δ1)U1)

+ λ3 (u2U1 − β2U1U2 − (μ + δ2)U2)

+ λ4 (u1ρSZ − (μ + θ))

+ λ5

(
aU1

1 + bU1
− a0Z

)
,

whereL is the Lagrangian function (12). Letu∗
1 andu

∗
2 be the optimal controls and

S∗,U∗
1 ,U

∗
2 ,E

∗,Z∗ the corresponding optimal state variables. From PMP, there
exist functions λ1, . . . , λ5 that satisfy the adjoint equations

dλ1
dt

= −∂H
∂S

,
dλ2
dt

= − ∂H
∂U1

,
dλ3
dt

= − ∂H
∂U2

,

dλ4
dt

= −∂H
∂E

,
dλ5
dt

= −∂H
∂Z

,

evaluated at the optimal controls and corresponding state variables, subject to the
transversality conditions λi(tf ) = 0, i = 1, . . . , 5. Therefore, we obtain adjoint
system (13) and terminal conditions (14). Finally, having in mind that

∂H
∂u1

= 4B2u31 − λ1ρZS + λ4ρSZ

and
∂H
∂u2

= 2B3u2 − λ2U1 + λ3U1,

we obtain from the minimality condition of PMP that (15) holds. �

Concluding, the optimality conditions consist of state system (10) with given
initial conditions (11), adjoint system (13) with transversality conditions (14),
and optimal control functions (15). In Section 5, we solve numerically the
obtained optimality system:

dS(t)
dt

= � − β1SU1 − μS + θE − u1ρSZ,
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dU1(t)
dt

= β1SU1 − u2U1 + β2U1U2 − (μ + δ1)U1,

dU2(t)
dt

= u2U1 − β2U1U2 − (μ + δ2)U2,

dV(t)
dt

= u1ρSZ − (μ + θ)E,

dZ(t)
dt

= aU1

1 + bU1
− a0Z,

dλ1
dt

= λ1β1U1 + λ1μ + λ1u1ρZ − λ2β1U1 − λ4u1ρZ,

dλ2
dt

= λ1β1S − λ2β1S + λ2u2 − λ2β2U2 + λ2μ + λ2δ1 − λ3u2

+ λ3β2U2 − λ5
a

(1 + bU1)2
− B1,

dλ3
dt

= −λ2β2U1 + λ3β2U1 + λ3μ + λ3δ2,

dλ4
dt

= λ4μ + λ4θ − λ1θ ,

dλ5
dt

= λ1u1ρS − λ4u1ρS + λ5a0,

S(0) = S0, U1(0) = U10, U2(0) = U20, E(0) = E0, Z(0) = Z0,

λi(tf ) = 0, i = 1, . . . , 5, (16)

with

u1 = min

{
max

{
0,

(
ρSZ
4B2

(λ1 − λ4)

) 1
3
}
, u1max

}
,

u2 = min
{
max

{
0,

(λ2 − λ3)U1

2B3

}
, u2max

}
.

(17)

Remark 4.1: In principle, there is a possibility of having ‘singular controls’,
which may occur along the arcs for which either λ1(t) − λ4(t) or λ2(t) − λ3(t)
or both vanish. In our numerical simulations , such a possibility was not found.

5. Numerical results and discussion

We begin by illustrating Theorem 3.1 numerically. For that, we consider the
parameter values as given in Table 1, for which the basic reproduction (4) is less
than one. In agreement with Theorem 3.1, we see in Figure 2 the stability of the
population around drug-free equilibrium (2).

We are, however, more interested to illustrate numerically our analytical find-
ings and the involvement of control variables in the system dynamics in the
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Table 1. Parameter values for which
R0 < 1, used to obtain Figure 2.

Parameter Value

� 2.0
β1 0.0002
β2 0.0001
μ 0.125
ρ 0.04
δ1 0.05
δ2 0.06
θ 0.001
a 0.01
b 1.0
a0 0.06

Figure 2. Stability of the population around the drug-free equilibrium E0 in agreement with
Theorem 3.1.

endemic situation, when R0 > 1, which is more challenging and where control
measures are crucial and optimal control theory has an important role. We use
a fourth-order Runge–Kutta algorithm to perform the numerical simulation of
optimal system (16) with (17). Choosing the initial conditions for the states and
the initial guesses for the controls, state system (10) is solved forward in time
using a fourth-order Runge–Kutta scheme. Using the current iteration solution
of state equation (10) and transversality conditions (14), adjoint system (13) is
solved backwards in time by the fourth-order Runge–Kutta scheme. We repeat
the iteration process by updating the controls using the state and adjoint values.
This process will continue until the values of the state, adjoint, and controls con-
verge. The initial values of unknowns we have used are given by S(0) = 15.0,
U1(0) = 5.0, U2(0) = 2.0, E(0) = 1.25 and Z(0) = 1.0. Population profiles and
control interventions are plotted for a time period of tf = 30 days. We use the set
of parameter values as in Table 2 to determine the numerical simulation of the
optimality system with a small time step size �t = 0.03. Note that here the pos-
itive weights in objective functional (9) are assumed. In general, the individual’s
response to behavioural change for a large population is very challenging, and it
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Table 2. Values of the parameters used to illustrate the
endemic situation and optimal control.

Parameter Value Units Reference

� 0.7 persons per day Assumed
β1 0.01 per day Assumed
β2 0.0008 per day Assumed
μ 0.07 per day Assumed
ρ 0.04 per day Assumed
δ1 0.05 persons per day [13]
δ2 0.06 persons per day [13]
θ 0.001 per day [19]
a 0.01 − [19]
b 1.0 − [19]
a0 0.06 − [19]
B1 6 − Assumed
B2 120 − Assumed
B3 30 − Assumed
u1max 1.0 − Assumed
u2max 1.0 − Assumed

is expensive. Therefore, and exactly because information spreading for the com-
munity to change their behaviour is expensive and a difficult task, we assume the
positive weight for the control u1 to be higher than the control u2 [18].We define
the following three approaches to examine the efficiency of the control policies
introduced:

• Case 1 – implementation of the optimal control variable u∗
1 only (u2 ≡ 0);

• Case 2 – implementation of the optimal control variable u∗
2 only (u1 ≡ 0);

• Case 3 – implementation of both optimal control variables u∗
1 and u∗

2.

Before studying these three situations under optimal control, we illustrate the
endemic situation under investigation in Figure 3, which shows the population
densities of system (1) without controls, that is, where we assume u1 ≡ 0 and
u2 ≡ 0 in control system (10).We observe from Figure 3, and in contrast with the
situation of Figure 2, that the number of drug users begins increasing and does

Figure 3. Population profiles for the endemic situation of Table 2 without controls, i.e.
u1 = u2 ≡ 0.
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not go to zero due to the absence of control variables. Therefore, the increase in
heroin users creates an economic burden on the nation, including drug-affected
driving and its impact on the environment. It also creates opportunity loss, and it
is the main burden to individual users with weight loss, mental disorders, etc. So,
we aim to minimize the drug addiction burden and also the cost of the control
policies.We induce the two control interventions, (i) preventive education as vac-
cination for drug abuse, which spreads through the information and makes the
behavioural change and (ii) treatment with medications and other therapies.

Case 1: Using the same parameters as in Table 2, the above-mentioned posi-
tive weights and initial conditions, we solve the system numerically with control
u1 to discuss the effectiveness of the control intervention u1. The correspond-
ing evolution in the population densities of the system is shown in Figure 4. We
observe from Figure 4(d) that the population of preventive education is gradually
increasing with the control u1 than without control. Moreover, we also observe
fromFigure 4(a ,b) amoderate decrease in the population of susceptible and drug
users. Further, various computational results were carried out with different val-
ues of ρ, which are depicted in Figure 5(a). It clearly shows that an increase in the

Figure 4. Population profiles without controls and under optimal control strategies for Cases 1,
2 and 3.
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Figure 5. Drug users and optimal intensity of u1 in Case 1 for various values of the rate ρ of
information interaction.

Figure 6. Optimal control profiles.

information interaction rate ρ decreases the drug user population. Moreover, the
control profile is plotted in Figure 5(b).

Case 2:Weare continuing the numerical simulations using the sameparameter
values as in Case 1 but with control u2. Then the evolution of the correspond-
ing population densities of the optimal control system is depicted in Figure 4.
Here we can understand that the number of drug users in treatment is rapidly
increasing over the course of time when compared with Case 1, see Figure 4(c).
Further, the influence of control u2 is also there in other population densities of
the model (see Figure 4(a,b)). The corresponding optimal control profile is given
in Figure 6(a). It shows that treatment for drug users rapidly decreases in the
stipulated time and then goes to zero. We conclude that medical treatment plays
a crucial role to reduce the population of heroin users.

Case 3: In this case, we take non-zero control interventions, that is, we com-
pute the solution of the optimal control problem exactly as discussed in Section 4.
Further, we continue the simulations with the same parameter values as in the
previous two cases. The evolution of the population densities is depicted in
Figure 4. As expected, the influence of both controls is more effective than the
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Figure 7. Information level with u∗
1 , u

∗
2 (15) versus u1 = u2 = 0.

Figure 8. Optimal controls u∗
1 , u

∗
2 (15) with different weights in cost functional (9).

other two cases already discussed. The optimal control profile is depicted in
Figure 6(b). Figure 7 shows the information level with optimal policies versus
without any control measures. Furthermore, we also perform numerical simula-
tions with different weights for both control interventions u1 and u2. The result
given in Figure 8(a) shows how the control strategies depend on weight B2. It is
noted that if the positive weight B2 increases, then the amount of control policy
u1 decreases. Figure 8(b) illustrates how the control strategies depend on weight
B3. The amount of treatment u2 decreases as the positive weight B3 increases.

6. Conclusion

We examined an optimal control problem for a heroin epidemic model. Infor-
mation regarding prevention education and drug treatments were considered
as control interventions. Both controls have their advantage and efficiency in
implementation. Stability theory was used to analyse the mathematical model
qualitatively. The system has two equilibrium points: a drug-free equilibrium,
which always exists, and an endemic equilibrium, which exists when the basic
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reproduction number is greater than one. We analytically found controls in
terms of state and costate variables and then numerically solved the bound-
ary value problem for the resulting system of ordinary differential equations,
finding the optimal paths. Further, various control strategieswere studied numer-
ically for the proposed control problem. Finally, we concluded that prevention
programs and treatment not only decrease the cost burden but also minimize
the number of drug abuse cases. As a future direction of research, one can
investigate the proposed heroin model by introducing stochastic effects on the
unknowns [38]. Further, application of several types of delays [39] and multiob-
jective optimization [40] are also pointed out as interesting directions for future
research.

Acknowledgements

The authors are grateful to two anonymous reviewers for several constructive comments that
really helped to improve the manuscript.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

Sowndarrajan is thankful to the Ministry of Human Resources Development (MHRD) and
National Institute of Technology Goa, India, for awarding him a Senior Research Fellowship
to Sowndarrajan.Debbouche andTorres are grateful to the Portuguese Foundation for Science
and Technology (FCT) (Fundação para a Ciência e a Tecnologia), project UIDB/04106/2020
(CIDMA).

ORCID

P. T. Sowndarrajan http://orcid.org/0000-0002-4524-5146
L. Shangerganesh http://orcid.org/0000-0001-8565-2005
A. Debbouche http://orcid.org/0000-0003-4321-9515
D. F. M. Torres http://orcid.org/0000-0001-8641-2505

References

[1] NIDA InfoFacts. Heroin. [cited 2018 Jan]. Available from: http://www.nida.nih.gov/
infofacts/heroin.html

[2] UNODC. World Drug Report. 2018. [cited 2018 June]. Available from: https://www.
unodc.org/wdr2018

[3] Lipari RN, Hughes A. Trends in heroin use in the United States: 2002 to 2013. In: The
CBHSQ report. Rockville (MD): Substance Abuse and Mental Health Services Admin-
istration, Center for Behavioral Health Statistics and Quality. [cited 2015 April 23].
Available from: https://www.ncbi.nlm.nih.gov/books/NBK343534/

[4] Li X, Zhou Y, Stanton B. Illicit drug initiation among institutionalized drug users in
China. Addiction. 2002;97:575–582.

http://orcid.org/0000-0002-4524-5146
http://orcid.org/0000-0001-8565-2005
http://orcid.org/0000-0003-4321-9515
http://orcid.org/0000-0001-8641-2505
http://www.nida.nih.gov/infofacts/heroin.html
https://www.unodc.org/wdr2018
https://www.ncbi.nlm.nih.gov/books/NBK343534/


3130 P. T. SOWNDARRAJAN ET AL.

[5] Garten RJ, Lai S, Zhang J, et al. Rapid transmission of hepatitis C virus among young
injecting heroin users in Southern China. Int J Epidemiol. 2004;33:182–188.

[6] Mulone G, Straughan B. A note on heroin epidemics. Math Biosci. 2009;218:138–141.
[7] White E, Comiskey C. Heroin epidemics, treatment and ODE modelling. Math Biosci.

2007;208:312–324.
[8] Samanta GP. Dynamic behaviour for a nonautonomous heroin epidemic model with

time delay. J Appl Math Comput. 2011;35:161–178.
[9] Mushayabasa S, Tapedzesa G.Modeling illicit drug use dynamics and its optimal control

analysis. Comput Math Methods Med. 2015;2015:383154.
[10] Mushayabasa S, Bhunu CP. Epidemiological consequences of non-compliance to HCV

therapy among intravenous drug users. Int J Res Rev Appl Sci. 2011;8:288–295.
[11] United Nations Office on Drugs and Crime (UNODC). World drug report 2014. New

York: UnitedNations; 2014. Sales No. E.14.XI.7. Available from: https://www.unodc.org/
documents/wdr2014/World_Drug_Report_2014_web.pdf

[12] Wangari IM, Stone L. Analysis of a heroin epidemic model with saturated treatment
function. J Appl Math. 2017;2017:1–21.

[13] Wang X, Yang J, Li X. Dynamics of a heroin epidemic model with very population. Appl
Math (Irvine). 2011;2:732–738.

[14] Huang G, Liu A. A note on global stability for a heroin epidemic model with distributed
delay. Appl Math Lett. 2013;26:687–691.

[15] Liu J, Zhang T. Global behaviour of a heroin epidemic model with distributed delays.
Appl Math Lett. 2011;24:1685–1692.

[16] Wang J, Wang J, Kuniya T. Analysis of an age-structured multi-group heroin epidemic
model. Appl Math Comput. 2019;347:78–100.

[17] Saha S, Samanta GP. Synthetic drugs transmission: stability analysis and optimal control.
Lett Biomath. 2019;6:1–31.

[18] Kassa S, Ouhinou A. The impact of self-protective measures in the optimal interven-
tions for controlling infectious diseases of human population. J Math Biol. 2015;70:
213–236.

[19] Saha S, Samanta GP. Modelling and optimal control of HIV/AIDS prevention through
PrEP and limited treatment. Phys A. 2019;516:280–307.

[20] JoshiH, Lenhart S,Hota S, et al. Optimal control of an SIRmodel with changing behavior
through an education campaign. Electron J Differ Equ. 2015;50:1–14.

[21] Battista NA, Pearcy LB, Strickland WC. Modeling the opioid epidemic. Bull Math Biol.
2019;81:2258–2289.

[22] Momoh AA, Fugenschuh A. Optimal control of intervention strategies and cost effec-
tiveness analysis for a Zika virus model. Oper Res Health Care. 2018;18:99–111.

[23] Bonyah E, Badu K, Asiedu-Addo SK. Optimal control application to an Ebola model.
Asian Pac J Trop Biomed. 2016;6:283–289.

[24] Area I, Ndaïrou F, Nieto JJ, et al. Ebola model and optimal control with vaccination
constraints. J Ind Manag Optim. 2018;14:427–446.

[25] KhanA, ZamanG, Ullah R, et al. Optimal control strategies for a heroin epidemicmodel
with age-dependent susceptibility and recovery-age. AIMSMath. 2021;6(2):1377–1394.

[26] Khan A, Zaman G, Ullah R,et al. Correction: optimal control strategies for a heroin
epidemic model with age-dependent susceptibility and recovery-age. AIMS Math.
2021;6(7):7318–7319.

[27] LakshmikanthamV, Leela S,MartynyukAA. Stability analysis of nonlinear systems.New
York (NY): Marcel Dekker, Inc.; 1989.

https://www.unodc.org/documents/wdr2014/World_Drug_Report_2014_web.pdf


OPTIMIZATION 3131

[28] van den Driessche P, Watmough J. Reproduction numbers and sub-threshold
endemic equilibria for compartmental models of disease transmission. Math Biosci.
2002;180:29–48.

[29] Arriola L, Hyman J. Lecture notes, forward and adjoint sensitivity analysis: with appli-
cations in Dynamical Systems, Linear Algebra and Optimisation Mathematical and
Theoretical Biology Institute; 2005.

[30] Rosa S, Torres DFM. Optimal control and sensitivity analysis of a fractional order TB
model. Stat Optim Inf Comput. 2019;7:617–625.

[31] Silva CJ, Torres DFM. Optimal control for a tuberculosis model with reinfection and
post-exposure interventions. Math Biosci. 2013;244:154–164.

[32] Zeiler I, Caulkins J, Grass D, et al. Keeping options open: an optimal control model
with trajectories that reach a dnss point in positive time. SIAM J Control Optim.
2010;48:3698–3707.

[33] Kumar A, Srivastava PK. Vaccination and treatment as control interventions in an infec-
tious disease model with their cost optimization. CommunNonlinear Sci Numer Simul.
2017;44:334–343.

[34] Coddington E, Levinson N. Theory of ordinary differential equations. New York: Tata
McGraw-Hill Education; 1955.[Q10]

[35] Gaff H, Schaefer E, Lenhart S. Use of optimal control models to predict treatment time
for managing tick-borne disease. J Biol Dyn. 2011;5:517–530.

[36] Lenhart SM, Workman JT. Optimal control applied to biological models. Boca Raton
(FL): CRC Press; 2007.

[37] Pontryagin LS, Boltyanskii VG, Gamkrelidze RV, et al. The mathematical theory of
optimal processes. New York (NY): A Pergamon Press Book, The Macmillan Co.; 1964.

[38] Zine H, Boukhouima A, Lotfi EM, et al. A stochastic time-delayed model for the effec-
tiveness of Moroccan COVID-19 deconfinement strategy. Math Model Nat Phenom.
2020;15:14 pp., paper 50.

[39] Abraha T, Al Basir F, Obsu LL, et al. Pest control using farming awareness: impact of
time delays and optimal use of biopesticides. Chaos Solitons Fractals. 2021;146:110869.

[40] Denysiuk R, Silva CJ, Torres DFM. Multiobjective optimization to a TB-HIV/AIDS
coinfection optimal control problem. Comput Appl Math. 2018;37:2112–2128.


	1. Introduction
	2. Mathematical model
	2.1. Drug-free equilibrium
	2.2. Basic reproduction number

	3. Stability analysis
	3.1. Endemic equilibria
	3.2. Sensitivity analysis

	4. Optimal control model
	4.1. The total cost functional
	4.2. Existence of optimal control
	4.3. Characterization of optimal control functions

	5. Numerical results and discussion
	6. Conclusion
	Acknowledgements
	Disclosure statement
	Funding
	ORCID
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [493.483 703.304]
>> setpagedevice


